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Abstract

The problem of automatic robust estimation of the epipolar
geometry in cases where the correspondences are contami-
nated with a high percentage of outliers is addressed. This
situation often occurs when the images have undergone a
significant deformation, either due to large rotation or wide
baseline of the cameras. An accelerated algorithm for the
identification of the false matches between the views is pre-
sented. The algorithm generates a set of weak motion mod-
els (WMMs). Each WMM roughly approximates the motion
of correspondences from one image to the other. The al-
gorithm represents the distribution of the median of the ge-
ometric distances of a correspondence to the WMMs as a
mixture model of outlier correspondences and inlier corre-
spondences. The algorithm generates an outlier correspon-
dence sample from the data. This sample is used to estimate
the outlier rate and to estimate the outlier pdf. Using these
two pdfs the probability that each correspondence is an in-
lier is estimated. These probabilities enable to guide the
sampling. In the RANSAC process this guided sampling ac-
celerates the search process. The resulting algorithm when
tested on real images achieves a speedup of between one or
two orders of magnitude!

1. Introduction
Recovery of epipolar geometry is a fundamental problem
in computer vision. The RANdom SAmple Consensus al-
gorithm (RANSAC) [4] has been widely used in computer
vision in particular for recovering the epipolar geometry.

The RANSAC algorithm is simple but powerful. Repeat-
edly, random subsets are selected from the input data and
the model parameters fitting the subset are calculated. The
size of a random sample is the smallest sufficient for deter-
mining the model parameters. In each iteration the quality
of the model is evaluated on the full data set. At the end, the
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s\ε 25% 50% 60% 70% 80% 85%

3 8 34 70 168 573 1,362
7 33 588 2,808 21,055 3.5E05 2.6E06

Table 1: The number of samples I required to ensure, with proba-
bility p = 0.99, that at least one sample has no outliers for a given
size of sample s and proportion of outliers ε.

model with the largest consensus set is returned. Two issues
immediately arise:

1. How to check the quality of the model? Different
cost functions may be used, the standard being the number
of data points consistent with the model. In [9] a method
of maximum likelihood estimation by sampling consensus
(MLESAC) is described. MLESAC evaluates the likeli-
hood of the hypothesis, representing the error distribution
as a mixture model in which the inlier error is Gaussian
and the outlier error is uniform. In [2] the need for user
supplied threshold is eliminated by reformulating another
robust method, the M-estimator, as a projection pursuit op-
timization problem. The projection based pbM-estimator
automatically derives the threshold from univariate kernel
density estimates.

2. When to stop the algorithm? The number of it-
erations is chosen sufficiently high [4, 7] to ensure with
probability p that at least one of the random samples of
s points is free from outliers. Usually p is chosen to be
0.99. Suppose ε is the probability that any selected feature
is an outlier. Then at least I selections are required, where
(1 − (1 − ε)s)I = 1 − p, thus

I = log(1 − p)/ log(1 − (1 − ε)s). (1)

Table 1 gives the values of I for different values of s and ε.
Although ε is not generally known in advance, a lower

bound can be estimated from the largest consistent set ob-
served so far. It is widely appreciated that this stoping cri-
terion is often wildly optimistic [6, 3] because with noisy
data it is not enough to have a sample composed only of
inliers, they must be inliers that span the manifold. This
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significantly reduces the number of sample sets that will ac-
curately span the manifold. Several approaches have been
suggested to speed-up RANSAC. ROR [1] can speed-up the
sampling process by reducing the contamination level ε of
the data points when the camera’s internal parameters are
known. ROR exploits the possibility of rotating one of the
images to achieve some common behavior of the inliers.
ROR may be run as a postprocessing step on output from
any point matching algorithm. In R-RANSAC [5] the com-
putational savings are achieved by typically evaluating only
a fraction of the data points for each of the hypothesized
models. Hypothesized models which pass the initial test are
evaluated with all of the data points. LO-RANSAC [3] ex-
ploits the fact that the model hypothesis from an uncontam-
inated minimal sample is often sufficiently near the optimal
solution and a local optimization step is applied to selected
models. The number of samples which the LO-RANSAC
performs achieves a good agreement with the theoretical
predictions of Eq. (1).

As can be seen in Table 1, the number of needed itera-
tions increases when the percentage of outliers is over 50%
and it dramatically increases after 70%. The reason this is
that for ε close to 1 the expression in Eq. (1) can be approx-
imated by I ≈ log(1 − p)/(1 − ε)s, which is a s degree
polynomial in 1/(1 − ε). Note that the iteration numbers in
the table are the theoretic ones and in practice they can be
much higher. Situations with high percentages of outliers
often occur when the images have undergone a significant
deformation, either due to large rotation or wide baseline of
the cameras [8].

In this paper we propose novel improvements to the ro-
bust estimation of epipolar geometry. The main goal is to
assign probabilities to the putative correspondences and to
use them in the RANSAC step. We use weak motion mod-
els (WMMs) to estimate these probabilities which are more
informative than the correlation scores used for this purpose
in [6].

The algorithm generates a set of WMMs which are simi-
lar in spirit to weak classifiers in supervised learning cases.
Each WMM roughly approximates the motion of corre-
spondences from one image to the other. The algorithm
represents the distribution of the median of the geomet-
ric distances of a correspondence to the WMMs as a mix-
ture model of outlier correspondences and inlier correspon-
dences. Typically the inlier correspondences are closer to
the WMMs then the outlier correspondences. The algorithm
then generates an outlier correspondence sample. This sam-
ple is used to estimate the outlier rate and to estimate the
outlier pdf. When generating the sample we take into con-
sideration the corner distribution on the images, the similar-
ity between the corners and the corner matching technique.
Using these two distributions, the probability that each cor-
respondence is an inlier is estimated. These probabilities

enable to guide the sampling, i.e. in each iteration a random
subset of seven correspondences is chosen where each cor-
respondence in this subset is chosen according to its proba-
bility.

The two main contributions of this paper are: i) the use
of WMMs to probe the correspondence set and ii) the gener-
ation and the use of the outlier correspondence sample. Our
approach makes it possible to break the iteration number
theoretical boundary given by Eq. (1). The acceleration is
especially significant for outlier percentages above 70%. In
such outlier percentages our algorithm achieves a speedup
of between one to two orders of magnitude!!

The paper is organized as follows. Section 2 describes
the WMMs. Section 3 presents the mixture density model
and the generation of the outlier correspondence sample.
The generation of the WMMs is described in Section 4. Sec-
tion 5 presents the details of the algorithm. The results are
shown and discussed in Section 6. The paper is concluded
in Section 7.

2 Weak motion model

Given a set of N putative correspondences {pi ↔ p′i}, we
seek to find the set of inlier correspondences and we wish
to compute the fundamental matrix between the two im-
ages. The algorithm that we describe in the next sections
uses WMMs to solve these problems. A WMM is a motion
model that roughly approximates the motion that a point un-
derwent from the first image to the second image. In gen-
eral each point in the first image moves to its correspond-
ing epipolar line. In [11] a probabilistic motion model was
presented limiting the motion to a segment of the epipolar
line. A WMM should approximate the motion of the inlier
correspondences. Thus the agreement of the putative cor-
respondences to the WMMs should yield a probability that
a correspondence is an inlier. These probabilities enable
guided sampling from the putative correspondences. We use
an affine transformation as a WMM, i.e.x′

y′

1

 =

a11 a12 tx
a21 a22 ty
0 0 1

 x
y
1

 ,

where the matrix A = [aij ] is an invertible 2 × 2 matrix
and (tx, ty) is a 2D translation. Note that three points in
the joint image space [10] define a unique affine transfor-
mation and that an affine transformation is a linear trans-
formation that defines a two dimensional manifold in the
joint image space. We have found that very often an affine
transformation that has been formed from three inlier cor-
respondences can be used as a WMM. Let {wj} be a set of
Nw WMMs. Let dij be the geometric distance from corre-
spondence pi ↔ p′i to the manifold defined by the WMM
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wj , i.e.

dij = min
p̃

‖pi − p̃‖2 + ‖p′i − Haj
p̃‖2,

where Haj
is the affine transformation representing wj .

This geometric distance can be easily analytically calcu-
lated because the affine transformation is a linear transfor-
mation.

Let di be the median distance of pi ↔ p′i to the mani-
folds, i.e.

di = med{dij}Nw
j=1.

This median distance can be thought of as a random variable
and is modeled as a mixture model:

fd(di) = fin(di)(1 − ε) + fout(di)ε,

where fin(di) = f(di|pi ↔ p′i inlier), fout(di) =
f(di|pi ↔ p′i outlier) and ε is the mixing parameter which
is the probability that any selected correspondence is an out-
lier.

3 Probability estimation using outlier
sample

The probability, Pin(i), that correspondence pi ↔ p′i is an
inlier can be calculated by

Pin(i) =
fin(di)(1 − ε)

fd(di)
.

We estimate this probability in a non-parametric manner.
All we assume is that the median distances of the inlier cor-
respondences, di, are bounded by an unknown parameter D
and that the outlier correspondences are not. Thus

fd(di) =
{

fin(di)(1 − ε) + fout(di)ε, di ≤ D;
fout(di)ε, otherwise.

We obtain

Pin(i) =

{
fd(di)−fout(di)ε

fd(di)
, di ≤ D;

0, otherwise.

The algorithm estimates fd() using a kernel density esti-
mator. The kernel estimator with given kernel K is defined
by ̂pdf(x) =

1
nh

n∑
i=1

K(
x − Xi

h
),

where h is the kernel width, n is the number of sampled data
points and Xi is the ith observation of the random variable

X . We use a Gaussian kernel function and the L-Stage Plug
In method [12] to estimate the bandwidth, i.e.

h = (
4σ̂5

3n
)1/5,

where σ̂ is the sample standard deviation.
The estimation of fout() is more problematic. We usu-

ally do not have any prior knowledge about this pdf. There-
fore we turn to generate a sample of outlier correspon-
dences. Given such a sample {oi ↔ o′i}, i = 1, ..., No we
can estimate fout() like we estimated fd().

We have tried three methods to generate this outlier sam-
ple.

1. Uniformly. Each point of each correspondence is sam-
pled uniformly from the images.

2. Corner based. Each point of each correspondence is
sampled uniformly from the corner sets of the images.

3. Algorithm guided. Using the same algorithm that
generates the putative correspondences {pi ↔ p′i},
only this time it excludes from the input of the algo-
rithm the correspondences that already have been used
to generate {pi ↔ p′i}. In our experiments only mu-
tually best candidates were selected as putative corre-
spondences. So the entries that were selected for the
putative correspondences were removed and the out-
lier sample was generated using the same method.

We found that the algorithm guided method gives the
best estimation to the outlier distribution. To demonstrate
this, a set of ten WMMs was randomly generated for the
image pair in Fig. 1. Fig. 2 shows the distribution of the ac-
tual outliers and of the three aforementioned methods. The
distributions in this figure and in rest of the figures in this
paper are shown with Gaussian kernel smoothing with the
L-Stage Plug In method for bandwidth estimation. In Fig. 2
the algorithm guided method gives a much better estimate
of the fout() than the other two methods.

The reason for this is that the outliers have a distribution
that depends on several factors. It depends on the distribu-
tion of the corners in the images. Usually there are regions
in the image that have a larger density of corners than oth-
ers. For example in Fig. 1 the region of the white wall has
much less corners than the slide projector region. The distri-
bution also depends on the texture around the corners. For
example a corner on the desk of Fig. 1 has a better chance
to be matched to another corner on the desk, because the
texture around the corners on the desk is more similar to
each other than to corners from other regions. The second
method takes into consideration the distribution of the cor-
ners in the images. Fig. 1 shows that the second method
gives a slightly better estimation relative to the first method.
The algorithm guided method gives the best estimation. It
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takes into consideration the corner distribution, the similarly
between the corners and the matching technique.

Figure 1: Slide projector image pair, with correct matching points
marked.
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Figure 2: The distributions for the slide projector image pair of
the actual outliers, uniformly method, corner based method and
the algorithm guided method. The algorithm guided method gives
the best estimation.

The algorithm estimates D as the smallest distance at
which the number of putative correspondences less the num-
ber of expected outliers according to the outlier sample is
equal to the number of expected inliers, i.e.

D = min{d|�
N∑

i=1

I(di < d)− N

No

No∑
i=1

I(do
i < d)� = �(1 − ε)N�},

(2)
where do

i is the median of the distances of oi ↔ o′i to
the WMM manifolds and I() is the index function, i.e.

I(True) = 1 and I(False) = 0. The estimation of ε is
described in Section 5.

The following figures show results for the slide projec-
tor image pair. Fig. 3 shows fd(), fout() and fin() density
functions and Fig. 4 shows histograms of Pin() for inlier
and outlier correspondences. Note that a large number of
outlier correspondences get probability zero to be an inlier
and a large number of the inlier correspondences get proba-
bility 0.6 to be an inlier while the original inlier rate is only
0.22. These probabilities are used to guide the RANSAC
step of the algorithm enabling to accelerate the search pro-
cess. For illustration Fig. 5 shows some of the inlier corre-
spondences with solid white lines, three outlier correspon-
dences with a probability greater than zero to be an in-
lier with black solid lines and three outlier correspondences
with probability zero to be an inlier with white dashed lines.
Note that outlier correspondences with probabilities greater
than zero have motions similar to the inliers and can not
be discarded using the WMMs. However outlier correspon-
dences with probability zero have a different motion relative
to the inliers and have been successfully detected using the
WMMs.
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Figure 3: Density function for the slide projector image pair (a)
fd(d) density function (b) fout(d) and fin(d) density functions.
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Figure 4: Histograms for Pin() of (a) inlier correspondences (b)
outlier correspondences for the slide projector image pair.
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Figure 5: Several inlier correspondences are shown with solid
white lines, three outlier correspondences with a probability
greater than zero to be an inlier are shown with black solid lines
and three outlier correspondences with probability zero to be an
inlier are shown with dashed white lines.

4 Weak motion model generation

In order to get a set of approximately Nw WMMs. A
RANSAC style algorithm is used. At each iteration a sub-
set of three correspondences is randomly chosen from the
putative correspondences. Each subset uniquely defines an
affine transformation. After Nw/(1−ε)3 iterations we have
on average Nw subsets containing only inlier correspon-
dences. Each subset gets a score. The score is the geo-
metric distance of the (1− ε)N th closest correspondence to
the manifold of the affine transformation of the subset. A
subset that fits an affine transformation that can be used as
a WMM gets a low score because at least (1 − ε)N inliers
are relatively close to the manifold. An affine transforma-
tion based on a subset that includes outliers usually can not
be used as a WMM and does not have a set of (1 − ε)N
correspondences that are relatively close to its manifold and
because of that will get a relatively high score. We take the
set of Nw models with the lowest scores to be the set of the
WMMs.

5 The algorithm

In this section we describe the flow of the algorithm. The
generation of the WMMs and the computation of the proba-
bility of each correspondence to be an inlier depend on ε. In
general ε is not known in advance. The algorithm searches
for the correct ε starting from the lowest rate level up to the
highest rate level of a rate level set, {εj}, given as input by
the user. The algorithm is summarized in Algorithm 1. The
details of the algorithm are as follows:

Generation of outlier sample

The algorithm generates an outlier sample. This step is done
only once at the beginning of the algorithm using the algo-

Algorithm 1 Guided Sampling via WMMs and Outlier Sample
Generation

1: Generate an outlier sample
2: For each εj starting from the smallest up to the highest:

a) Generate random WMMs for the current
rate level εj

b) Fine tune the estimate of the outlier rate
c) Estimate inlier probabilities
d) Estimate the number of iterations, N̂s, for the

guided LO-RANSAC
e) If N̂s < Nt then

execute guided LO-RANSAC
f) Check the stopping criteria of the algorithm

rithm guided method to generate the outlier sample.

Generation of random weak motion models

The generation of the random WMMs is done in the same
manner described in Section 4. However in Section 4 we
assumed that ε is known in advance. As in practice this is
not the case we work on the rate level set {εj} in parallel.
Each rate level, εj , is associated with a number of iterations
NIj

= �Nw/(1 − εj)3�. Each rate level has a set, Bj , of
Nw suspected WMMs. These sets are updated during the
generation of the random affine transformations.

Each set Bj keeps the Nw best affine transformations
found until now that are suspected to be WMMs. In each
iteration a new subset of three correspondences is randomly
chosen and the appropriate affine transformation is formed.
The geometric distance of each of the correspondences to
the manifold of the affine transformation is calculated. Each
rate level εj gives a different score to this affine transforma-
tion. The score is the distance of the (1 − εj)N th closest
correspondence to the manifold of the affine transformation.
Each of the rate levels that the algorithm did not pass until
now, keeps the current affine transformation if it has one of
the Nw lower scores obtained till now. In our implementa-
tion each of the WMM sets, Bj , is kept in a different heap.
This enables very efficient updates of the sets. The random
generation of the affine transformations continues until the
number of iterations reaches NIj

.

Fine tune the estimate of the outlier rate

The outlier rate level set {εj} is given as an input from the
user. So, no εj is expected to be the accurate outlier rate
of the putative correspondences. In this step the algorithm
fine tunes the estimation of the outlier rate. First the median
distance sets of the putative correspondences {di} and of
the outlier sample {do

i } are calculated according to the cur-
rent set of WMMs, Bj , where j is the index of the current
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outlier rate level. The search for the accurate outlier rate is
carried out around εj in the region A = [ εj+εj−1

2 ,
εj+εj+1

2 ].
Note that for each ε ∈ A there is an appropriate Dε ac-
cording to Eq. (2). The search seeks to find ε̂j that gives
the best fit between the outlier sample distribution and pu-
tative correspondence distribution for distances greater than
D. Let cdfout() be the empirical distribution function of

the outlier sample, i.e. cdfout(d) =
∑ No

i=1 I(do
i <d)

No
and let

cdfmix() be the empirical distribution function of the out-
lier pdf given by the mixture model, i.e. cdfmix(d) =

(
∑ N

i=1 I(di<d)

N − (1 − ε))/ε for d > D. The quality of the
fit between these cdfs is measured by the number of zero
crossing of cdfout(d) − cdfmix(d), where a large number
represents a good fit. To ensure that this score will not be
biased toward lower values of ε the parameter D is set to be
D(εj+εj−1)/2 for all of the checked values of ε. Other meth-
ods for cdf comparison can also be used in this step, such as
the Kolmogorov-Smirnov test.

Inlier probability estimation

The probability, Pin(i), that correspondence pi ↔ p′i is an
inlier is calculated for all the correspondences by

Pin(i) =

{
fd(di)−fout(di)ε̂j

fd(di)
, di ≤ Dε̂j

;
0, otherwise.

The estimate of the density function at each point is done
using the kernel density estimator described in Section 3.

Iteration number estimation

The inlier probability estimation is used to accelerate the
search for the fundamental matrix using a guided RANSAC
algorithm. The correspondences are sampled according to
their inlier probability. In each guided RANSAC iteration a
subset sample of seven correspondences is chosen. Corre-
spondence i has probability Pin(i)∑ N

i=1 Pin(i)
to be chosen. The

number of samples Ns is chosen sufficiently high to ensure
with probability p that at least one of the samples of seven
correspondences is free from outliers. Thus Eq. (1) has to
be generalized. Let S be the set of all possible subsets of
seven correspondences. The probability of subset si ∈ S to
be chosen in the guided sampling step is

Pc(si) =
7∏

j=1

Pin(cij)∑N
k=1 Pin(k)

,

where cij is the jth correspondence in subset si. The calcu-
lation of Ns has to take into consideration all the possible
combination series of subsets si where each subset is cho-
sen according the probability function Pc(). This kind of

calculation is infeasible, however we can estimate Ns using
a Monte Carlo method. We generate a series M of length
NM of subsets si. Each member in the series is chosen in
the same manner as in the guided sampling step, i.e. ac-
cording to the probability function Pc(). The series M rep-
resents an “average” subseries of the guided sampling step.
We calculate how many such subseries should be taken in
order to ensure with probability p that at least one of the
samples of seven correspondences is free from outliers. We
have

(
NM∏
i=1

(1 − Pc(mi)))K = 1 − p,

where mi ∈ M is a subset of seven correspondences and
K is the number of subseries needed to be taken in order to
ensure the probability p. Now we can estimate Ns as

N̂s = K ∗ NM .

The length of series M should be sufficiently long to en-
sure that M represents an “average” subseries of the guided
sampling step.

Guided LO-RANSAC

The guided LO-RANSAC step is not carried out when the
WMMs did not provide enough probabilistic information to
reduce the number of iterations N̂s below a user defined
threshold Nt. In this step a slightly different version of
LO-RANSAC algorithm is applied. The difference is in
the sampling technique. Instead of random sampling, the
samples are chosen according to the probabilities Pin(i). In
each iteration a subset of seven correspondences is sampled.
The number of iterations is limited to N̂s. At the end of this
step, the fundamental matrix F with the largest number of
inliers Ninj

is kept.
Note that the algorithm has two RANSAC style steps,

the WMM generation step and the guided LO-RANSAC
step. Each iteration of the second type is more costly be-
cause in each iteration a fundamental matrix has to be com-
puted based on seven correspondences. This involves com-
puting the roots of a polynomial of degree three which may
have up to three solutions for the fundamental matrix and
the distances of the putative correspondences to each of the
non linear manifolds of the fundamental matrices have to
be calculated. On the other hand, in each iteration of the
random WMM generation step a unique affine transforation
is formed using a linear algorithm and the distances of the
putative correspondences to the linear manifold of the affine
transformation have to be calculated. In our implementation
the run time of an average iteration of the LO-RANSAC is
4.5 times more costly than an average iteration of the ran-
dom WMM generation step.

6



Characteristics LO-RANSAC Proposed algorithm Speedup rate
N In. ε 75% End In. 75% End In. 75% End

Slide pr. 565 122 0.78 70,878 384,171 114.8 326 (427) 1,388 (1,274) 118.9 18.2 59.2
Desk 303 63 0.79 80,841 341,958 61.7 168 (411) 495 (908) 62.1 42.1 78.3
Lab 730 131 0.82 >232,596 >860,590 124.3 109 (2,216) 1,214 (2534) 129.0 >90 >114
Corridor 401 70 0.83 >228,675 1,000,000 59.7 1,038 (1,327) 1,645 (2,227) 66.4 >137 >178
Building 363 44 0.88 >821170 1,000,000 26.8 1,042 (4,635) 2,202 (7,832) 41.9 >208 >251
Road 401 50 0.88 >547,547 1,000,000 37.6 1,532 (1,937) 5,168 (10,000) 49.2 >270 >181
Yard 508 53 0.90 >508,519 1,000,000 43.5 91 (10,000) 2,843 (10,000) 50.9 >265 >185

Table 2: Experiment characteristics and results. N is the number of putative correspondences, “In.” is the number of inlier correspon-
dences and ε is the outlier rate level. For each algorithm “75%” is the average number of samples until at least 75% of the true inliers are
found, “End” is the average number of iterations until the termination of the algorithm and “In.” is the average number of inliers that were
found until the termination of the algorithm. The numbers in parentheses are the average numbers of the WMMs that have been generated.
The last two columns show the average time speedup rate until at least 75% of the possible inliers are found and until the termination of
the algorithm. Several numbers in the table are shown with the “greater than” symbol that indicates that there have been cases in which the
LO-RANSAC algorithm terminated when it exceeded one million iterations.

Checking the stopping criteria of the algorithm

In this step the algorithm checks the stopping criteria.
The algorithm has two estimates of the number of inliers:
N(1−ε̂j) from the mixture model and Ninj

from the guided
LO-RANSAC. If the two estimations are approximately the
same then the algorithm terminates and returns the funda-
mental matrix F and the set of Ninj

inlier correspondences.
The algorithm also terminates when that the current estima-
tion of the number of inliers is lower than the largest inlier
set found until this stage. This situation is checked after the
estimation of ε̂j in the fine tuning step of the algorithm. In
this case the algorithm returns the largest found inlier set
and its fundamental matrix.

6 Experiments

The proposed algorithm was tested on many image pairs
of indoor and outdoor scenes several of which are pre-
sented here. All the putative correspondences were de-
tected and matched automatically using a very simple
method. Corners were detected by the Harris corner de-
tector. Cross correlation scores were generated between
all corners with each patch undergoing 36 evenly spaced
rotations, the strongest matches over these rotations are
stored. Only mutually best candidates were selected as
putative correspondences. We have compared our algo-
rithm with the LO-RANSAC algorithm which gives near
perfect agreement with the theoretical performance that
is given by Eq. (1). The termination criterion based on
Eq. (1) was set to p = 0.99. In cases where the num-
ber of iterations exceeded one million the algorithm also
terminated. The parameters for the proposed algorithm
were as follows. The outlier rate level set, {εj}, was set
to {0.1, 0.25, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.925, 0.95}

, the number of WMMs generated for each of the outlier
rate levels was set to Nw = 10, the length of the series M
was set to NM = 1000 and the threshold for the guided
LO-RANSAC step was Nt = 3000. Seven experiments
are presented in this section. Some of the image pairs are
shown in Fig. 6. The cases that are presented here are diffi-
cult cases in which the outlier rate is between 0.78-0.9. The
characterization of the scenes, the number of putative cor-
respondences, the number of inlier correspondences and the
outlier rate are summarized in Table 2. Each algorithm has
been applied to each image pair twenty times. For each al-
gorithm the following statistics are presented: The number
of samples until at least 75% of the true inliers are found
(as was suggested in [6]), the number of iterations until the
termination of the algorithm and the number of inliers that
have been found until the termination of the algorithm. The
number of generated WMMs is also reported. The results
of the experiments are summarized in Table 2. The aver-
age speedup rate time achieved in the experiments until at
least 75% of the possible inliers have been found is between
18.2-270 and the average speedup rate time until the ter-
mination of the algorithm is between 59.2-251. Note that
several numbers in the table are shown with the “greater
than” symbol that indicates that at least in one case the LO-
RANSAC algorithm terminated when it exceeded one mil-
lion iterations. Removal of this early termination criterion
yields much higher results. In addition, the number of inlier
correspondences found by the proposed algorithm is larger
than in the ones achieved by LO-RANSAC and the results
are near perfect.

7 Summary and Conclusions

In this work, we presented a novel algorithm for automatic
robust estimation of the epipolar geometry in cases where
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(a) Corridor image pair (b) Lab image pair

(c) Road image pair (d) Building image pair

Figure 6: Some of the real image pairs on which the algorithms were tested.

the correspondences are contaminated with a high percent-
age of outliers. The algorithm uses WMMs that roughly
approximate the motion of correspondences from one im-
age to the other. The algorithm generates a set of WMMs
and represents the distribution of the median of geomet-
ric distances of a correspondence to the WMMs as a mix-
ture model of outlier correspondences and inlier correspon-
dences. An outlier correspondence sample is then generated
using the algorithm guided method. This method takes into
consideration the corner distribution in the images, the sim-
ilarity between the corner neighborhoods and the matching
technique. The outlier sample is used to estimate the outlier
rate and to estimate the outlier pdf. These pdfs are then used
to estimate the probability that each correspondence is an
inlier. These probabilities guide the sampling which accel-
erates the search process. The performance of the algorithm
was compared to the performance of the LO-RANSAC al-
gorithm that gives near perfect agreement with the number
of iterations given by Eq. (1). The resulting algorithm when
tested on real image pairs achieves speedup rates of 59-251!

References

[1] A. Adam, E. Rivlin, and I. Shimshoni. ROR: Rejection of
outliers by rotations. IEEE Trans. Patt. Anal. Mach. Intell.,
23(1):78–84, January 2001.

[2] H. Chen and P. Meer. Robust regression with projection
based m-estimators. In International Conference on Com-
puter Vision, pages 878–885, 2003.

[3] O. Chum, J. Matas, and J.V. Kittler. Locally optimized
RANSAC. In German Pattern Recognition Symposium,
pages 236–243, 2003.

[4] M.A. Fischler and R.C. Bolles. Random sample consen-
sus: A paradigm for model fitting with applications to image
analysis and automated cartography. Comm. of the ACM,
24(6):381–395, June 1981.

[5] J. Matas and O. Chum. Randomized RANSAC with td,d test.
Image and Vision Computing, 22(10):837–842, September
2004.

[6] B. Tordoff and D.W. Murray. Guided sampling and consen-
sus for motion estimation. In European Conference on Com-
puter Vision, pages I: 82–96, 2002.

[7] P.H.S. Torr. Motion segmentation and outlier detection. In
PhD thesis, Dept. of Engineering Science, University of Ox-
ford, 1995.

[8] P.H.S. Torr and C. Davidson. IMPSAC: Synthesis of impor-
tance sampling and random sample consensus. IEEE Trans.
Patt. Anal. Mach. Intell., 25(3):354–364, March 2003.

[9] P.H.S. Torr and A. Zisserman. MLESAC: A new robust esti-
mator with application to estimating image geometry. Comp.
Vis. Im. Understanding, 78(1):138–156, April 2000.

[10] B. Triggs. Matching constraints and the joint image. In In-
ternational Conference on Computer Vision, pages 338–343,
1995.

[11] B. Triggs. Joint feature distributions for image correspon-
dence. In International Conference on Computer Vision,
pages II: 201–208, 2001.

[12] M.P. Wand and M.C. Jones. Kernel Smoothing. Chapman &
Hall, 1995.

8


