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Abstract

A general paradigm for recognizing �D objects is o�ered� and applied to some

geometric primitives �spheres� cylinders� cones� and tori�� The assumption is that a

curve on the surface� or a pair of intersecting curves� was measured with high accuracy

�for instance� by a sensory robot�� Di�erential invariants of the curve�s� are then used

to recognize the surface� The motivation is twofold� the output of some devices is not

surface range data� but such curves� Also� a considerable speedup is obtained by using

curve data� as opposed to surface data which usually contains a much higher number

of points�

We survey global� algebraic methods for recognizing surfaces� and point out their

limitations� After introducing some notions from di�erential geometry and elimination

theory� the di�erential and 	semi
di�erential� approach to the problem is described�

and novel invariants which are based on the curve�s curvature and torsion are derived�
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� Introduction and Previous Work

One task an intelligent system should be able to accomplish is recognition� Usually� a recog�

nition system derives some characteristics of an object it examines� and tries to match them

against similar characteristics in a data base� Suppose� for instance� that one is dealing with

�D objects� and tries to recognize them� given their boundary� Typically� there is a �nite

data base these boundaries are matched against� various invariants have been derived� some

global and some local ��� �	� �
�� to solve this problem� These are quantities that do not

change under certain transformations �Euclidean� a
ne� projective�� and therefore can be

used to recognize an object even after it had been altered by such transformations�

Here� a di�erent problem is addressed � recognizing a surface in �D space� while the

information we have is one�dimensional� Speci�cally� we assume that some measuring device

has sampled a curve� or a pair of intersecting curves� on the surface� Given the curve�s��

the goal is to recognize the surface� Typical sensors which are the source of such curves are

measuring devices� such as coordinate measuring machines� manufactured by the Brown �

Sharpe Company �Figure ��� or the IBM RS�� Cartesian robot� Such devices can measure �D

curves with very high accuracy �for instance� typical error range for a coordinate measuring

machine is ���� mm��

In ���� an algorithm is presented for determining the axis of a surface of revolution�

using the information measured by a tactile sensor which can also estimate the two principle

curvatures �see Section ����� Here� we assume that only the data points are given� In �	��

the parameters of a cylinder are computed from structured light patterns�

Some previous work has addressed the problem of recognizing various surfaces given

their occluding contours ���� ���� However� the aggregate of possible curves on a surface is�

usually� much larger than the aggregate of its occluding contours� and may contain far more

complicated curves� for instance� the occluding contour of a sphere is always a circle� while

there are a great many �D curves � some of which have rather complicated structure � on a

sphere�

Clearly� we are facing a di�erent type of recognition problem from the one previously

described� which is usually solved by matching against a data base� It is impossible to build

a data base which contains� say� all the curves on a sphere� or even a dense sampling of these

curves� Therefore� we have to discover curve characteristics which will enable to answer a

question such as �can this curve� after a certain transformation� be embedded on a sphere���

as opposed to �can this curve� after a certain transformation� be superimposed on curve No�
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Figure �� High�accuracy measuring device and a curve it measured on a cylinder�

��� in the data base���

One way to proceed is straightforward� �t an implicit polynomial to the curve�s points�

and� from its type� determine the surface� This is the algebraic approach ���� ���� However�

this approach will fail if the curve does not lie on a single �primitive� �sphere� cylinder etc��

but �crosses over� between two or more primitives �see Section ��� and Figure ��� In that

case� the global algebraic �t will give us a meaningless result� A very rich theory of local� or

di�erential invariants� was developed to solve this problem ��� �� �� ��� ���� In Section � we

quickly survey the global approach as applied to our problems� but the focus of this paper

is on the local approach�

Natural curve characteristics to use for recognition are curvature and torsion� as they do

not change under rigid transformations� Since we�re dealing with �D data� a rigid transfor�

mation is usually a general enough model� So� the goal is to discover invariants depending

on a curve�s curvature and torsion� which will provide a necessary condition for it to lie on

a certain type of surface�

Let us demonstrate this by a simple� �D example� a plane curve can be embedded in a

circle if and only if its curvature is constant� So� in this case� the invariant is the curvature�s

derivative� Naturally� we don�t expect to �nd such simple invariants for curves lying on �D
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surfaces� one trivial example is the well�known condition for a �D curve to be planar � that

its torsion equals zero � but this is an exceptional case�

In the sequel� we derive invariants which are a necessary condition for a curve� or an

intersection of two curves� to lie on a sphere� cylinder� cone� or torus� These depend only

on the curvature and torsion at a point on the curve �or the curvature and torsion of two

curves at their intersection point�� We also derive some �semi�di�erential� invariants� which

use not only the di�erential properties of the curve� but a few points on it� Such invariants

have been widely used in computer vision for recognizing plane and space curves ��� ��� ����

their main advantage is that they allow to use derivatives of lower order than the �purely

di�erential� invariants necessitate�

� The Algebraic Approach

Implicit polynomials can be used to describe �D and �D objects� Some works which address

the �tting of implicit polynomials are ���� �� ��� ��� ���� One can then use polynomial

invariants to recognize the objects ���� ��� �� ���� Let us shortly describe how a sphere�

cone� cylinder and torus can be recognized using such invariants� Note that the �rst three

objects can be �tted with a quadratic� and the torus with a quartic� Suppose� then� that we

succeeded to �t data with a quadratic� Write it as

XAX t � �v�X� � s � � ���

where A is a �� � matrix� v a vector in R�� and s a scalar� It is easy to verify that

� If the object is a sphere� A has three positive and identical eigenvalues� It is then

trivial to extract the sphere�s center and radius�

� If the object is a cylinder� A has two positive and identical eigenvalues� and one zero

eigenvalue� also� the axis of the cylinder is in the direction of the eigenvector with zero

eigenvalue� and it is trivial to extract its radius�

� If the object is a cone� A has two identical positive eigenvalues and one negative

eigenvalue� The axis of the cone is in the direction of the eigenvector with the negative

eigenvalue� It is then trivial to extract the cone�s opening angle and apex�

� If the object is a torus� its general equation is

Etor � ��x� a�� � �y � b�� � �z � c�� � R� � r��� � �R���x� a�� �
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�y � b�� � �z � c�� � ��x� a�n� � �y � b�n� � �z � c�n� ���

where �a� b� c� is its center point� �n�� n�� n�� a unit vector perpendicular to the plane

over which the torus lies� and R �r� are the major �minor� radii�

It�s trivial to extract a� b� c from Etor �for instance� di�erentiating Etor three times by x

gives ��x���a�� To extract r and R� note that substituting fx � a� y � b� z � cg in Etor

gives r��R���R�r�� and substituting fx � a� y � b� z � cg in ��Etor

�x�
� ��Etor

�y�
� ��Etor

�z�

gives ���R���� r���R�n�
���R�n�

���R�n�
� � ��R����r�� It is trivial to extract

R and r from these two identities� After R� r� a� b� c have been recovered� it is trivial

to recover �n�� n�� n���

��� Number of Points Needed

Experiments on curve data show that a relatively high number of points is necessary to

achieve reliable algebraic �tting� For instance� for the cylinder data we have used �Figure

��� more than ��� points are required for a reliable �t� We are not sure why this happens�

apparently� the fact that the points lie on a curve� which is a �one dimensional entity��

results in singularities when trying to �t it with an implicit polynomial which� by its nature�

is appropriate for �tting �two dimensional entities��

On the other hand� when using the di�erential invariants proposed here� a far smaller

number of points was necessary� usually� invariants were computed using �� points or so�

��� Applying Invariants to Segmentation

Since the algebraic approach for recognition given a curve may fail� because it can pass

through a few geometric primitives� one may try to segment the curve� using some notion of

discontinuity� and then use algebraic techniques for each segment� We now show that this

is not always easy� by constructing a curve which is in�nitely di�erentiable� yet crosses over

from a sphere to a cylinder� De�ne

s�t� �

��
�

� t � �

exp���
t�

� t � �

it is well�known that this function is smooth �in�nitely di�erentiable� at every point� and

that all its derivatives at t � � are zero� Using s�t�� it is trivial to construct smooth functions

s��t�� s��t� on the interval ����� such that s���� � �� s��t� � � for t � �� s��t� �
p

� for

� � t � �� and s��� is monotonically increasing for t � � �see Figure ���
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Figure �� Auxiliary functions used to construct the curve in Figure ��

De�ne a curve c�t� as follows

c�t� �

��
�

�s��t� cos�t�� s��t� sin�t��
q

�� s���t� � � � t � �

�cos�t�� sin�t�� s��t�� � � t � �
�

It is easy to see that c�t� is a smooth curve which crosses over from a sphere with radius � to

a cylinder with radius � �at t � ��� The curve is displayed in Figure �� Next to it� we plot the

curvature� torsion� curvature�s derivative� and a spherical invariant for curves �see Section ��

Equation ���� It is interesting to see that� although the curvature and torsion are continuous�

there is a very sharp break in the spherical invariant� at the point in which the curve crosses

over from the sphere to the cylinder� this demonstrates that the kind of invariants presented

here can succeed where segmentation by �ordinary� di�erential properties �curvature� torsion

etc�� fails�
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� Mathematical Preliminaries � Some Di�erential Ge�

ometry and Elimination Theory

In the sequel� a few concepts from geometry and algebra are required� We proceed to de�ne

them and state some of their important properties�

��� Some Di�erential Geometry of Curves

A curve in �D Euclidean space is a di�erentiable function c � ��� �� � R�� At each point

c�t�� three orthogonal unit vectors are associated with the curve� its tangent vector T � which

points at the direction of the curve�s derivative� its normal vector N � and its binormal vector

B� which is equal to the vector �cross� product of T and N �

This triplet of vectors is called the Frenet trihedron at c�t��

In addition� two scalars are associated with each point on the curve� These are the

curvature � and torsion � � Intuitively speaking� the curvature measures how �bent� the

curve is� for instance� the curvature of a circle is equal to the inverse of its radius� The torsion

measures the speed at which the curve moves out of the plane �the so�called osculating plane�

which locally approximates it� thus� the torsion of a planar curve is zero�

The curvature and torsion can be computed from the parameterization of the curve�

� �
jc� � c

�� j
jc�j�

� � � �c
� � c

��

� � c���

jc� � c�� j�

� and � are invariant to translation and rotation� this makes them especially attractive

for recognition purposes�

The celebrated Frenet formulas relate the Frenet trihedron with the curvature and torsion�

If the curve is parameterized by arclength �that is� jc�j � ��� the following hold�

T
�

� �N

N
�

� ��T � �B

B
�

� �N

�



A concept of crucial importance to this work is the local canonical form� Let us see how

it is derived� Assume that the curve is parameterized by its arclength s� From Taylor�s

expansion� we have

c�s� � c��� � sc
�

��� �
s�

� 
c

��

��� �
s�

� 
c

���

��� �
s�

� 
c������ �

s�

� 
c������ � o�s��

c
�

��� is equal to the tangent vector T at t � �� Using the �rst Frenet formula� c
��

��� �

T
�

� �N � Therefore� c
���

��� � ��N�
�

� �
�

N��N
�

� �
�

N�����T��B� � �
�

N���T���B�

Similarly� we can derive expressions for the fourth and �fth derivatives� Substituting

them into the Taylor series gives

c�s� � c��� � sT �
s��N

�
�
s���

�

N � ��T � �� B�



�

s���
��

N � � �
�

� B � � ��
�

T � ��N � ��
�

B � �� �N �

��
� ���

s�

���
��

���

N � � ��
��

T � � �
��

� B � � �
�

�
�

B � � �
�

� �N � � �
��
T �


 ���
�

N � ��T � ��� B � ��
��

B � � �� �
�

N � ��� �T � �� �B� � o�s��

from now on� we shall omit the o�s�� part� We are allowed to do so as long as the powers

of s used are bounded by ��

��� Some Di�erential Geometry of Surfaces

Locally� a surface S in �D Euclidean space is a di�erentiable image of an open set O in

R�� Formally� it is the set of triplets f�x�u� v�� y�u� v�� z�u� v�� � �u� v� 	 Og� The tan�

gent plane to S at the point ��x�u� v�� y�u� v�� z�u� v�� is the plane spanned by �xu� yu� zu�

and �xv� yv� zv�� The normal to S at �u� v� is the unit vector pointing at the direction of

�xu� yu� zu�� �xv� yv� zv�� it is therefore perpendicular to the tangent plane�

In the sequel� we shall use the fact that if C� and C� are curves which intersect on S�

then the normal to S at their intersection point is a unit vector at the direction of the vector

product of their tangent vectors� This holds unless these tangent vectors are parallel�

The intersection of S with any plane containing N is called a normal section of S� Note

that the normal section is determined by a unit vector v in the tangent plane� which is the

direction at which the plane containing N intersects the tangent plane� Thus� we may speak

of a normal section at the direction v�

The curvature of a normal section is called the normal curvature� The maximal such

curvature� k�� and the minimal� k�� are called the principle curvatures of S� Let us denote
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their directions by �k� and �k�� It can be proved that they are orthogonal and that� if v �

�k� cos�	� � �k� sin�	�� then the normal curvature at the direction v equals

k� cos��	� � k� sin��	� ���

The product K � k�k� is called the Gaussian curvature� and the mean H � k��k�
�

is the

mean curvature�

Suppose a curve C lies on the surface S� Then� if its curvature is �C � and the normal

curvature of S at the direction of C�s tangent vector is �S� then

�S � �C cos�	� ���

where 	 is the angle between NS� the normal to S� and NC � the normal to C�

��� Elimination Theory

Elimination theory is a branch of algebra which deals with eliminating variables from equa�

tions� It is especially useful for determining when a system of equations has a root� Let us

start with the simplest case � two polynomials in one variable� p � pnx
n�pn��x

n�� � ����p	�

and q � qmx
m � qm��x

m�� � ��� � q	�

To compute the resultant of p and q� one �rst constructs an �n � m� � �n � m� matrix

as follows� Its �rst row consists of p�s coe
cients� followed by zeros� The second row is

obtained by translating the �rst one to the right� etc� When this can be done no more� the

same process is repeated for q�s coe
cients� The resultant is equal to the determinant of

this matrix� For instance� the resultant of ax� � bx� � cx� � dx� e and Ax� �Bx� �Cx�D

is the determinant of

�
BBBBBBBBBBBBBBBBBBBBBB�

a b c d e � �

� a b c d e �

� � a b c d e

A B C D � � �

� A B C D � �

� � A B C D �

� � � A B C D

�
CCCCCCCCCCCCCCCCCCCCCCA

��



A basic result in elimination theory is that the resultant is equal to zero if p and q have

a common root�

It is also possible to eliminate variables from systems of polynomials with more equations�

For example� if we have three polynomial equations with two variables� there is an expression

in the coe
cients of these polynomials which is zero if the system has a solution� In general�

elimination is a di
cult problem� and it is not always possible to explicitly write down these

expressions�

� The General Method

In this section� a general overview of the method for deriving di�erential and semi�di�erential

invariants for curves lying on surfaces is provided�

We wish to �nd conditions on the curvature and torsion of a curve C which will allow us

to determine if it possibly lies on a certain geometric object OBJ � which is described by a

generic implicit equation� P �x� y� z� � ��

The method by which these conditions is derived proceeds as follows� First� we use the

local canonical form to write down an expression for C in the vicinity of a point M we have

measured on OBJ � we also assume that we have measured �� � � and their derivatives� as

well as the Frenet trihedron at M � These are all determined from the derivatives of C� so�

if we have accurate measurements for C in the vicinity of M � we may directly calculate

them� Since � and � do not depend on the pose of the C� we are allowed to translate and

rotate OBJ � and the curve on it � thus obtaining a new curve C� Denote the rotated and

translated object by OBJ new�

Every condition on � and � we derive for C is� of course� also a condition for C� The

reason we apply rigid transformations to OBJ is because these allow us to make assumptions

on C�s Frenet trihedron which result in simpler calculations� this will be explained in the

sequel� Let P�x� y� z� be the implicit equation de�ning OBJ new�

Next� we substitute C�s local canonical form into P�x� y� z�� This results in a Taylor series

in s� This series has to be identically zero� because C is contained in OBJ new� and� therefore�

has to satisfy the equation which de�nes OBJ new� This gives us a set of equations � each for

every coe
cient in the Taylor series� Next� we eliminate from these equations everything but

C�s curvature and torsion� For one curve� we usually have to eliminate the Frenet trihedron�

For two curves� we will show that the Frenet trihedrons are known and therefore need not

be eliminated� In both cases� the elimination gives an expression that has to be zero� and
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Figure �� Rotating and translating the sphere�

this is the sought invariant�

We proceed to apply this paradigm to speci�c objects� �rst� the sphere is tackled�

� The Case for a Sphere

In order to derive a di�erential invariant for a curve c�s� to lie on a sphere� we need to use

only the following part of c�s local canonical form�

c�s� � c��� � �s� ��s�



�T � �

s��

�
�
s��

�



�N � s�



��B � o�s�� ���

Since translation and rotation do not change the curvature and torsion� we may assume�

without loss of generality� that the point M � at which our measurements of � and � were

taken� is at the origin� and that the sphere lies on the XY plane� Hence� the sphere�s

equation is

x� � y� � �z �R�� �R� � � �
�

Let us also assume� without loss of generality� that the sphere had been rotated so that

T � ��� �� �� �see Figure ���

Since N is a unit vector perpendicular to T � it has to be of the form N � ��� cos�
�� sin�
��

for some 
� also� B � T �N � ���� sin�
�� cos�
���

Note that the rigid transformation applied to the sphere has reduced the Frenet trihedron

to a trihedron depending only on the single parameter 
� This is important� because we have

to eliminate the trihedron� in order to obtain a condition depending only on � and � � and�

��



in general� the more variables we have to eliminate� the more equations are necessary� and

there�s a danger that the solution will be extremely complicated�

Substituting these T�N�B in Equation � gives the following expressions for the compo�

nents of c�s��

x�s� � s� s�k�




y�s� �
s�k cos�
�

�
�
s���

�

cos�
� � k� sin�
��




z�s� �
s�k sin�
�

�
�
s���

�

sin�
�� k� cos�
��




Plugging these expressions into the sphere�s equation �
� gives a Taylor series in s� which

has to be identically zero� therefore all its coe
cients are zero� The expression is rather

complicated� so we don�t write it down here� However� its constant and linear coe
cients

are identically zero� the coe
cient of s� is

�� k sin�
�R � � �	�

The coe
cient of s� is

�
�

sin�
�R� k� cos�
�R � � ���

And� naturally� we have the equation

sin��
� � cos��
�� � � � ���

We may view these as algebraic equations� by treating sin�
� and cos�
� as algebraic

variables� Then� from these three Equations �	������ we may eliminate sin�
� and cos�
�� to

obtain the identity

R� �
k�� � � ��

�

�
�

k�� �
����

This gives us a di�erential invariant for a curve lying on a sphere� namely� the expression

k�� � � ��
�

�
�

k�� �

has to be a constant� Note that we can immediately extract the sphere�s radius�

It should be noted that this condition has been derived before� using other methods �see�

for instance� �
�� page ���� We have nonetheless decided that it�s worthwhile to show how
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Figure �� Rotating and translating the cylinder�

it is derived by using the local canonical form and elimination theory� This derivation will

hopefully make it easier to follow the derivation of di�erential invariants for curves on the

cylinder and cone� presented in the following sections�

	 The Case for a Cylinder

��� One Curve� Known Radius

We now proceed to derive di�erential invariants for a curve which lies on a cylinder� To

the best of our knowledge� such invariants have not been derived before� The method is

roughly the one used for the sphere� however� the mathematical details are considerably

more complicated�

Given a point M on a curve which lies on a cylinder� we can assume without loss of

generality that the cylinder had been translated and rotated so that M is at the origin� and

the cylinder lies on the XY plane �recall that this does not alter the curvature and torsion��

Let us further assume that it had been rotated at some angle � so that the tangent vector

at M is aligned with the X�axis �see Figure ���

Hence� T � ��� �� ��� and the cylinder�s equation becomes

�x cos��� � y sin����� � �z � R�� � R� � � ����

As for the sphere� it follows that N � ��� cos�
�� sin�
�� for some 
� and B � ���� sin�
�� cos�
���

��



We now substitute these T�N�B in the local canonical form ���� This gives the following

expressions for the components of c�s��

x�s� � s� s���



� s���

�

�
�
s���� ��

�� � � �
��

� �� � ��� ��

���

y�s� �
s�� cos�
�

�
�
s���

�

cos�
� � �� sin�
��



�

s���
��

cos�
� � � �
�

� sin�
�� �� cos�
� � ��
�

sin�
�� �� � cos�
��

��
�

s�

���
��

���

cos�
� � � �
��

� sin�
� � � �
�

�
�

sin�
�� � �
�

� � cos�
��

 ���

�

cos�
�� ��� sin�
� � ��
��

sin�
�� � �� �
�

cos�
�� �� � sin�
��

z�s� �
s�� sin�
�

�
�
s���

�

sin�
�� �� cos�
��



�

s���
��

sin�
�� � �
�

� cos�
�� �� sin�
�� ��
�

cos�
�� �� � sin�
��

��
�

s�

���
��

���

sin�
�� � �
��

� cos�
�� � �
�

�
�

cos�
�� � �
�

� � sin�
��

 ���

�

sin�
� � ��� cos�
�� ��
��

cos�
�� � �� �
�

sin�
� � �� � cos�
��

Plugging these into the cylinder�s equation ���� gives� as before� a Taylor series in s which

has to be identically zero� This expression is huge and we do not write it down here� we

need only the coe
cients of the powers of s between � and ��

The coe
cients of the constant and linear terms are identically zero�

For the other terms� we obtain the following expressions� after substituting cos�
� �

x� sin�
� � y� cos��� � z� sin��� � w�

For the coe
cient of s�

�� �yR � � z� � � ����

For the coe
cient of s�


 zw�x� � �
�

yR � � �� xR � � ����

For the coe
cient of s�

��



� zw�� y � � �
��

yR � � �
�

� xR � � ��yR � � ��
�

xR � � �� �yR� ����


 ��x�z� � � zw�
�

x� � z��� � 
 �� � �

In the sequel� it will be bene�cial to use a simpli�ed version of ����� Note that we

can subtract from ���� the product of ���� by an appropriate constant� and eliminate the

coe
cient of z� in ���� �it already has an yR term� so we are not adding anything�� Similarly�

we can subtract from the new equation an appropriate multiple of ����� to remove from it the

term with the monomial xzw � also� without adding anything new� as the set of monomials

of ���� contains that of ����� After grouping� we can write the simpli�ed ���� as

A	 � A�x
�z� � A�xR � A�yR � A�yzw � � ����

Note that we can easily compute the Ai�s as functions of � and � � Hence� ���� is equivalent

to ����� but much simpler� This will turn out to be useful�

For the coe
cient of s�� we obtain the equation

�� �
���

yR� �� ��y� xz� � �� ��
�

x�z� � �� zw��x� �� zw�� �x � �� zw��
�

y �

�� zw�
�

� y � �� zw�
��

x� � ��� xR � 
 �
��

� xR� �� z���
�

� 
 �
�

� �yR � ��
�

�� ���
�

yR � 
 �
�

�
�

xR � � ��
��

xR� � �� �xR � �� ��
�

� 
 �� �
�

yR � �

in addition we have

x� � y� � � � � ��	�

z� � w� � � � � ����

Assume now that the radius R is known� In that case� we have to eliminate x� y� z� w from

Equations �����������	���� �note that we need at least �ve equations in order to eliminate

four unknowns�� All our attempts to directly do this� using various packages for symbolic

computations� have failed� however� it is possible to proceed as follows� First� solve the

system consisting of the four simplest equations ��������	����� Then� substitute the solution

into �����

Using the Maple symbolic computation program� it was possible to �nd a solution for

Equations ��������	����� This solution uses an auxiliary polynomial we denote by p�����

�




p���� � �� �
�
R� � ���R��
��
�� � �� ��� �R� � �� �� � �
� �
R���� �

�
 ��R���
�

� � ���� �� � �� �
R� � �
R��
��
�� � ��� �R� � � ��� �R��

��
�

R��
��

� �� ��� �R���� � �
 ��R���
�

� � ���R��
��
�� � � ��� �R��

�� � �R��
��

��� � R��
��

Denote by q a root of p����� Then� the solution of ��������	���� equals

z � R

vuut�� ��q� � q���� � � q���� � � ��q� � ���

q�� q�� � � �� � R�

w �
�� �

�

R��q� � �
�

Rq���� � � �
��
Rq� � � �

�

R��q� � �
��
R � � ��� q�

�q��� q�� � � �� � R���
r
����q��q������q����

����q�����

q�� q�����
�

� R�

y � �R�� ��q� � q���� � � q��
�� � � ��q� � �

��
�

q�� q�� � � �� � R��

x � q

Substituting these expressions into ���� and simplifying� we obtain the following identity

��� k�� �R� � ��R�k
��
k� � �	R��

��

k� � �
� k
R� � �� k��q� � ��	 k��
�

R � �� � �
�

Rk��q� �

���
 k�� �R� � k�� �R��
��

� 
 � �
�

k��
�

R� � � �
��
R��

��

k � � k�� �R� � �R��
��

� 	�R��
��
k� �

�
� k� � � � �R��
��

k� � �
� k
R� � �	R��
��

k��q� � �� � �
�

Rk�q� � ��� �
��
R��

��

k � 
R��
��

�

� k�� �R��
�� � �	R��

��
k��q� �R��

��
� �

Let us denote this polynomial by p��q��

Now� we know that p��� and p��� must have a common root� therefore� their resultant

must be zero� This resultant is� therefore� an invariant for a curve lying on a cylinder�

Recalling the de�nition of the resultant of two polynomials �Section ����� we can write

down the resultant of p��� and p���� It is a determinant whose elements depend on the

curvature and torsion� if the curve lies on a cylinder� this determinant has to be zero� and

this is an invariant for a curve lying on a cylinder�

�	
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Figure 
� Logarithm of the resultant of p��� and p���� as a function of R� for a point sampled

from a curve on a cylinder of radius ��

��� One Curve� Unknown Radius

����� Numerical Search for the Correct Radius

Suppose we do not know the radii of the cylinders in the data�base�

There are two ways to proceed� We can simply follow the trivial observation that� if we

substitute the correct R into p��� and p���� we will get two polynomials whose resultant is

zero� We can therefore conduct a simple� one�dimensional search for R which minimizes this

resultant�

Experience has shown us that this simple numerical algorithm works quite well� For

example� in Figure 
� a plot for the logarithm of the resultant� for values of � and � measured

on a curve on a cylinder with a radius of �� is displayed� We can clearly see a strong minimum

at the correct radius�

����� Solve for the Correct Radius

The second method for the case in which the radius is unknown is to eliminate R� x� y� z� w

from Equations ����������
��	���� This can be done by solving Equations ����������	���� and

substituting the solution in Equation �
� if this gives zero� it means that these six equations

��



have a common solution� which is a necessary condition for the curve to lie on a cylinder�

This is why it was important to de�ne Equation ��� the simpli�ed version of ����� we could

not �nd a reasonable solution with ����� However� it turns out that Equations ����������	���

do have a relatively simple solution� expressed as follows� x is the root of the following

equation�
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Note that this is really a sixth�degree equation� as only even powers of � appear� After x

is solved for� we can easily extract y from Equation �	� Then� after substituting the known

values of x and y in Equations �������� we can solve for the remaining unknowns � w� z and

R�

De�ne 
 to be

��� �x� � � k� xy�
�

� y��
��

� � ��x�y�

and then

fw � �Root�
 �� � � ��x�y���k� x� y�
�

�

� ��xy
� z � Root�
 �� � � ��x�y��� R �

� ��yx�



g ����

�by Root of an equation� we mean the root of the equation when viewed as an equation

in ��� The equations in ���� are trivial to solve and involve only taking square roots�

The reader may ask why we did not apply this trick to simplify the solution of the

equations for the case in which the radius is known� If we had done that� it would not have

��



been possible to obtain a function of � and � alone� the x would still have been there And�

as long as it is there� we cannot �nd a condition on � and � � as desired� but only a condition

on x� � and � �

There is also a direct solution to the system of equations ����������	���� in which all the

unknowns � R� x� y� z� w � are written in terms of �� � � and their derivatives� however� that

expression is truly horrendous� covering three entire pages when written in small format 

For all practical purposes� it is better to use the solution above� which �rst extracts x and

y and then solves for the other unknowns�

����� Comparison of Methods

While the second method is straightforward and does not require any search �as opposed to

the �rst method�� it has the drawback of requiring the �fth derivative of the curve� which

appears in Equation �
 �note that calculating the third derivative of the curvature and the

second derivative of the torsion requires the �fth derivative of the curve�� The �rst method

requires a numerical search for the correct radius� but uses only the fourth derivative of the

curve� Depending on how accurate the measurements are� one may opt for using the �rst or

the second method�

��� The case for a Cylinder with Two Intersecting Curves and

Unknown Radius

Suppose we have two curves on the cylinder� intersecting at a point M � For instance� one

can design a sensory robot to traverse a point twice� in di�erent directions� Another possible

source is an intersecting pattern of structured light rays� It turns out that a particularly

simple invariant can be written in this case�

We refer to the curves as ��rst� and �second� �it makes no di�erence which is which� of

course�� As noted in Section ���� two intersecting curves on the surface allow us to compute

its normal N �denoted this way to prevent confusion with N � the normal to a curve�� We

may� as before� translate and rotate the cylinder so that the intersection point M is in the

origin� the cylinder lies on the XY plane� and the tangent vector of the �rst curve equals

�������� The di�erence is that now� as opposed to when we only had a single curve� we know

the normal N and the binormal B of the new curves� this is because now we know that the

rotation and translation not only move M to the origin and align the tangent to the �rst

curve with ��� �� ��� they also align N with ��� �� ��� Let us look at the triplet �T�N�B� for

��



the �rst curve �before the rotation�� We can calculate the inner products �N� T � and �N�N ��

These inner products do not change after the rotation of the curve� if N is rotated into Nnew�

then� since T is rotated into ��� �� ��� we have the equality �Nnew� ��� �� ��� � �N� T �� and�

since N is rotated into ��� �� ��� we have the equality �Nnew� ��� �� ��� � �N�N �� Since Nnew

is a unit vector� we can recover it� and� since we know the tangent and normal of the new

curve� we know its binormal� which is equal to their vector product� Following a similar

argument� we also know the Frenet trihedron of the �new� second curve �

As before� let � denote the angle in which the cylinder is aligned relative to the XY

plane� Let us denote the tangent� normal and binormal of the �rst curve by ��� �� ���

��� cos�
�� sin�
�� and ���� sin�
�� cos�
��� and those of the second curve by �T�� T�� ���

�N�� N�� N��� �B�� B�� B�� �remember that all these coordinates are now known�� Note that

the z�coordinate of both tangents has to be zero� as they are both in the tangent plane

which� after the rigid transformation� is the XY plane�

Substituting these expressions into the local canonical form� then into the cylinder�s equa�

tion� and equating coe
cients to zero� results in the following equations �K is the curvature

of the second curve��

For the coe
cient of s�� �rst curve� we have

� z� � � k sin�
�R � � ����

For the coe
cient of s�� �rst curve� we have


 zwk cos�
�� � �
�

sin�
�R � � k� cos�
�R � � ����

For the coe
cient of s�� second curve� we have

�T�
� � �KN�R � � z�T�

� � �T�
�z� � � zT� wT� � � ����

Also

z� � w� � � � � ����

�where� as before� cos��� � z� sin��� � w��

Eliminating w� z and R from ������������� results in the identity

�T�
�sin�
��cos�
���� � 
 ��cos�
�� sin�
�� T� T� � � ��cos�
�� sin�
�KN� � ��� �T�

�cos�
�� �

��




 ��T� T� �
�

sin�
�� cos�
�� � �
�

� T�
� sin�
� cos�
�� � ��

�

�
�
T�

�sin�
�� � �

�remember that 
 is known� and does not have to be eliminated��

And this is an invariant for two intersecting curves� which can be used to test whether

they lie on a cylinder� The invariant depends on the curvature and torsion of one curve� and

the curvature of the other� therefore� it does not require any derivatives of order higher than

three�


 The Case For a Cone with Two Intersecting Curves

We have not addressed the problem of �nding invariants for a cone using a single curve�

because a cone has more degrees of freedom than a sphere or a cylinder� this would necessitate

using the sixth derivative of a curve to express such an invariant�

We proceed to show how two intersecting curves yield an invariant for the cone� We will

not go into all the details� as the method resembles the one used for a cylinder with two

intersecting curves�

First� the cone is rotated and translated so that its apex is at the origin� and the point of

intersection of the two curves� M � lies on the XY plane� which is also the tangent plane at M �

Then� it is rotated in the XY plane so that the tangent vector of the �rst curve is ��� �� ���

As for the cylinder� we can extract the tangent� normal� and binormal vectors to the two

curves at their new location� denote the normal to the �rst curve at M by ��� cos���� sin�����

Note that now M does not lie at the origin� but at an �unknown� distance of y	 from it� The

�unknown � as for the cylinder� rotation angle of the cone in the XY plane is denoted by


� and the �unknown� rotation angle around the Y axis �Figure 	� is denoted 	� this is just

half of the cone�s opening angle�

It is then a trivial matter to write down the equation of the rotated and translated cone�

and to substitute into it the local canonical forms of the two curves� As before� the coe
cients

of the two resulting Taylor series have to be zero� resulting in the following equations� Let

K and T denote the curvature and torsion of the second curve� and T� etc� the components

of its Frenet trihedron vectors� S stands for sin���� C for cos���� x for cos�	�� y for sin�	�� z

for cos�
�� w for sin�
� �remember that S and C are known� and do not have to be solved for��

For the coe
cient of s�� �rst curve� we have

� x�z� � � xkSy	 y � � ����

��
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Figure 	� Rotating and translating the cone�

For the coe
cient of s�� �rst curve� we have

�� xk� Cy	 y � 
 yxwkS � � x�
�

Sy	 y � 
 x�zwkC � � ����

Which can be written more compactly as

A� x
�zw � A� xyy	 � A� xyw � � ��
�

For the coe
cient of s�� second curve� we have

� x�z�T�
� � � x�zwT� T� � � x�T�

� � � x�T�
�z� � � xKN� y	 y � � ��	�

Just as for the cylinder� we can subtract from ��	� appropriate multiples of ���� and �����

and obtain the simpler form

A� x
� � A� xyy	 � A� x

�zw � � ����

For the coe
cient of s�� second curve� we have


 yxzKN� T� � 
 yxwKN� T� � 
 x�T�KN� � 
 x�T�KN� z
� � � xKT B� y	 y �

� xK�N� y	 y � 
 x�zwT�KN� � 
 x�zwKN� T� � 
 x�z�T�KN� � � ����

Which� as before� can be reduced to

A
 xyw � A
 xyz � A� x
� � A�	 xyy	 � � ����

��



Note that the Ai�s can be readily computed from the known quantities � the curvature�

torsion� and Frenet trihedron of the two curves�

We also have the equations

x� � y� � � � � ����

and

w� � z� � � � � ����

It is possible to eliminate fx� y� z� w� y	g from these six equations �����
�������������� and

obtain
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And this is an invariant for two curves on a cone� It depends on the curvature and torsion

of the two curves� therefore� it does not require any derivatives of order higher than three�

This is an invariant for two curves on a cone�

� Numerical Computation of Derivatives

The algorithms suggested here require computing the derivatives of a curve in �D space� The

problem of computing high�order derivatives from discrete data was addressed in ����� The

��



derivatives at each point are calculated by convolving appropriate di�erentiation �lters with

the given curve� One way of deriving such �lters is based on �tting high�order polynomials

to the data curve and di�erentiating the polynomial� We do not need to do the �tting for

each actual curve� it is only done in deriving the �lters�

In deriving the �lters� the data curve f is approximated by a linear combination of

orthogonal polynomials of orders �� � � � � l�

Fl��x� � w�x�
lX

i�	

aiPi�x�

where Pi�x� are polynomials which are orthonormal with respect to a weight function w�x��

The coe
cients ai are determined by the condition that the polynomial �ts the curve in the

sense of �weighted� least squares� It can be proved that if the curve f is a polynomial of

order up to l� than the above �lter yields an exact k�th derivatives when the coe
cients ai

are�

ai � P �k�
i ���

In practice� good results are obtained for any reasonably smooth f �not only polynomials��

as long as the the order l of the �lter is larger than the desired order k of the derivative�

However� a high l requires a �lter with a wide support�

Discrete versions of this method on a �nite interval are described in detail in ����� In

particular� the Krawtchouk and the discrete Chebyshev polynomials were studied and closed

form formulas for them were given up to �fth order� However� it was shown in ���� that

continuous polynomials� de�ned on a �nite interval� are just as e�ective but much simpler

to calculate� Good results were obtained using the Legendre and continuous Chebyshev

polynomials�

For example� see Figure � for the derivative of the spherical invariant �Equation ����

for the curve plotted in Figure �� when noise of variance equal to � percent of the distance

between the points was added to it� Derivatives were computed using the method described

in ����� The derivative is relatively small for the part of the curve that lies on the sphere

�� � t � ��� and signi�cantly changes when the curve crosses over to the cylinder �at t � ���

Note that computing the invariant�s derivatives requires the �rst derivative of the torsion

and the second derivative of the curvature� that is� the fourth derivative of the curve�

��
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Figure �� Derivative of spherical invariant �Equation ��� for the curve in Figure �� after

noise had been added to it� Note change in derivative when the curve crosses over from the

sphere to the cylinder �at t � ���
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� Semi�Di�erential Invariants

In this section we study curve invariants which use only curvature �this requires computing

only the �rst and second derivatives of the curve�� We also assume that the only primitives

the recognition system may encounter are spheres� cylinders� cones� and tori� When the

information from one point is not enough to uniquely determine the object� we will use an

additional point or two on the curve to help disambiguate the object�

	�� Object Recognition from Two Intersecting Curves

Given two intersecting curves C� and C�� we extract T�� N�� B�� �c�� T�� N�� B�� �c� at the

intersection point M � These are the Frenet trihedrons and the curvature for both curves

respectively� Recall that NS� the normal to the surface at M � equals T� � T��

For each curve we compute 	� the angle between NS and the curve�s normal� The surface

normal curvature equals �NS � �C cos�	�� and �NS��� � �� sin���� ��� cos����� where ��� ��

are the principal curvatures for the surface at M � and � is the angle between the tangent to

the curve and ���� the second principal direction�

Given two curves we have two equations for the surface normal curvature� with three

unknowns � ��� k�� and ��

�NS� � �� sin���� � �� cos����

�NS� � �� sin��� � �� � �� cos��� � ��� ����

where � is the angle between T� and T�� Usually� it is impossible to solve such a system�

however� if we know in advance that the geometric primitives can only be spheres� cylinders�

cones� and tori� it is possible to identify them and extract their parameters�

Sphere

In this case �� � �� and consequently �NS� � �NS�� For all other objects �cylinders� cones�

and tori� the two principle curvatures are not equal� therefore� two distinct normal curvatures

are identical only in the degenerate case in which the angles between the curves� tangents

and ��� are equal� Therefore� if the surface normal curvatures corresponding to the two curves

are equal� we can assume with high probability that we are dealing with a sphere�

The sphere�s radius is then R � ���NS � and its center is at M�RNS � Using an additional

point �Section ����� we can determine if the object is indeed a sphere�

�	



Cylinder

If the given object is a cylinder� its parameters can be recovered as follows� As �� � �� the

surface normal equations are reduced to two equations with two unknowns� Solving them�

we can recover �� and the principal directions ���� ���� The cylinder�s radius is R � �
��

� and

the orientation of its axis is ���� A point on the axis is�

C � M � RNS�

It is important to note that this does not prove that the object is a cylinder� That has

to be veri�ed using an additional point on the curve �see Section �����

Cone

Assume the object is a cone� As for the cylinder� �� � �� and we can recover �� and

the principal directions ���� ���� The radius of the cone at M is R � �
��

cos�
�� where 
 is

the cone�s opening angle� The apex is located at M � ���
cot���
��

� and the axis orientation is

��� cos�
�� ��� sin�
�� 
 can be determined from an additional point on the curve �see Section

�����

Torus

From ���� we cannot recover the torus� because the number of unknowns is three� We will

parameterized our solution as a parameter of �� For a given �� we can recover ��� ��� The

values of ��� �� change on the torus as a function of �� the angle between the major radius of

the torus� R� and the vector to the current point on the torus� ��� �� are given as a function

of ��

�� �
� cos���

R � r cos���
�� �

�

r

where R and r are the major and minor radii of the torus respectively �see Figure ���

Given ��� ��� � we can recover R� r as follows�

R � ��
�

��
� �

��
� cos��� r �

�

��

The orientation of the torus� Nt� can be recovered by � Nt � NS sin��� � ��� cos���� The

center of the torus is then at�

C � M � Ntr � �NS cos���� ��� sin����R

� and � can be determined by an additional point on the curve �see Section �����

��
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Figure �� Torus�

	�� Veri
cation Using an Additional Point

The hypothesis about an object and its parameters can be veri�ed by an additional point

on one of the curves� For the hypothesis to be correct� several constraints must be satis�ed�

� The point M must lie on the surface� This means that if P is the object�s implicit

equation� P �M� � ��

� TC � the curve�s tangent� must be orthogonal to NS at the point� Thus

NS � TC � ��

� If 	 is the angle between NS and NC � then �S � �C cos�	� �see Equation ��� where the

value of �S is determined by the principal curvatures �� and �� and the angle between

them and TC �

Therefore� each additional point yields three additional equations which have to be satis�

�ed� These equations can be used to verify hypotheses or to determine the value of unknown

parameters�

If the additional points are not on a curve� and we don�t have any di�erential properties

associated with them� we still have the �rst condition �they have to satisfy the surface

equation�� In that case� we will need more points� this is a typical tradeo� for semi�di�erential

invariants�

	�� Object Recognition from One Curve

When two intersecting curves are given� we are able to recover NS and thus we know the

angle 	 between NS and NC � When we are given only one curve� 	 is an unknown parameter

��



which has to be recovered�

Sphere

In this case �� � ��� and consequently �NS � ��R� For every value of 	� the surface

normal and the sphere�s radius are determined as follows� where �TC � NC � BC� are the Frenet

trihedron of the curve�

NS � cos�	�NC � sin�	�BC R �
�

�C cos�	�

From that we recover the center of the sphere�

M � RNS � M �
NS

�C
� tan�	�BC ����

Thus we have a family of possible spheres� parameterized by 	�

Given additional points� we can proceed as follows� either substitute them at the �hypoth�

esized� sphere�s equation� or �if they are on a curve� use the veri�cation method described

in Section ���� Alternatively� given two points on a curve� applying Equation �� to both of

them results in four linear equations in cos�	��� tan�	��� cos�	��� and tan�	��� The solution is

veri�ed by checking if the two angles satisfy

tan�	i� �

q
�� cos��	i�

cos�	i�
�

Cylinder

In the case of the cylinder we know that �� � � and �� � �
R

� Given a point M� on the curve�

the two unknowns are 	� and ��� When they are given� the cylinder is uniquely de�ned� Note

that ��� is the axis of the cylinder� so it has to be the same for every point on the cylinder�

We will now use these facts to de�ne R and ��� the axis of the cylinder as functions of 	� and

�� �see Equations ��� ���

R �
cos�����

�C� cos�	��
�

NS � cos�	��NC � sin�	��BC

��� � TC sin���� � �TC �NS� cos���� ����

��



And a point on the axis is�

C� � M� � RNS�

Given an additional point� its �� and 	� can be recovered as follows�

�� � arcsin�TC� � ����� 	� � arccos�
cos�����

�C�R
��

From them we can recover the point on the axis C� closest to the second point� and both

points must lie on the cylinder�s axis� which is parallel to ���� therefore�

�C� � C��� ��� � ��

which gives us two equations in two unknowns� which can be solved for the values of 	� and

���

These two points give the equation of the cylinder that passes through them and satis�es

the given constraints� In addition� from ���� �� � arccos��TC� � NS�� � ����� which gives an

additional constraint to verify that this is indeed a cylinder with the computed parameters�

Cone

The case of the cone is similar to the cylinder but slightly more complicated� Given two

points on a curve we would like to �nd the angles 	�� ��� 	�� and ��� These angles parameterize

the local surface structure of the two points� At �rst we will exploit the fact that the line

from the point on the surface in the direction of ��� must pass through the tip of the cone�

Thus we have a constraint that the two such lines of the two points must intersect� The point

C � P � ��NS lies on the central axis of the cone� Therefore we two additional constraints

which are due to the fact that C�� C�� and the tip of the cone lie on the same line� Finally�

the angle of the cone 
 must be the same for both surface points� As 
 is the angle between

��� and the axis of the cone� we can write an additional constraint enforcing the uniqueness

of 
� With the four above mentioned constraints we can recover the values of the unknown

angles and recover the shape of the object�

As in the cylinder� these two points give the equation of the cone that passes through

them and satis�es the given constraints� However� an additional point is needed to verify

that this is indeed the real object�

Torus

In order to be able to recover the seven parameters of the torus� we parameterize them by

four local parameters of one point� The parameters are 	� �� ��� and �� As described above

��



these four parameters are enough to describe the torus� In order to recover those parameters

we need two additional points because each point yields three constraints� Thus using three

points we can recover the shape of the torus and verify that the object is indeed a torus�

����� Experimental Results

The algorithm for a single curve has been tested on real data received from the Brown �

Sharpe Company using their coordinate measuring machines �Figure ��� The data is a curve

measured on a cylinder� For each point on the curve TC � NC � BC � and �C are estimated� Using

the algorithm described above� the problem is reduced to solving for cos�	�� and cos�����

where all other parameters are expressed as functions of these unknown values� The correct

values must satisfy four equations and have to satisfy the constraints that the absolute values

of the cosine and sine of the various angles must be less than �� The values of the unknowns

are found using non�linear least squares optimization techniques� In this case we use the

Levenberg�Marquardt procedure of the MINPACK library ��
��

We chose at random ��� pairs of points and ran the minimization procedure on them

using several initial conditions for the minimization� Even though the data is noisy� most

pairs of points yielded results close to the correct shape� The results were sorted according

to the least�squares error �LSE� of the four equations� We trace the �ve cylinders with the

smallest LSE in Figure ���a�� One of these results and the original data are shown in ���b��

It is important to note that only the data on the two points and their derivatives mentioned

above was used to recover the shape of the cylinder� Additional points can then be used� if

desired� to get a better estimate for the shape�

�
 Conclusions

A novel method to recognize some surfaces� given curve�s� on them� was presented� It

proceeds by using invariants which are computed on curves� but which supply information

on the type of surfaces the curve can possibly lie on�

The method can use �D curves derived from stereo and structured light� it is particularly

useful when given the output of measuring devices which produce such curves �for instance�

sensory robots and coordinate measuring machines��

The main advantage of the proposed method compared to algebraic methods is in its

local nature� which enables it to segment and recognize curves �and the surfaces they lie on��

��



�a� �b�

Figure ��� �a� The �ve recovered cylinders with the lowest LSE� �b� The recovered shape of

the cylinder and the data points�

even if the curves lie on more than one geometric primitive� Also� it necessitates a far smaller

number of curve points than the algebraic method� for recognizing a single primitive�
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