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Abstract

A general paradigm for recognizing 3D objects is offered, and applied to some
geometric primitives (spheres, cylinders, cones, and tori). The assumption is that a
curve on the surface, or a pair of intersecting curves, was measured with high accuracy
(for instance, by a sensory robot). Differential invariants of the curve(s) are then used
to recognize the surface. The motivation is twofold: the output of some devices is not
surface range data, but such curves. Also, a considerable speedup is obtained by using
curve data, as opposed to surface data which usually contains a much higher number
of points.

We survey global, algebraic methods for recognizing surfaces, and point out their
limitations. After introducing some notions from differential geometry and elimination
theory, the differential and “semi-differential” approach to the problem is described,

and novel invariants which are based on the curve’s curvature and torsion are derived.



1 Introduction and Previous Work

One task an intelligent system should be able to accomplish is recognition. Usually, a recog-
nition system derives some characteristics of an object it examines, and tries to match them
against similar characteristics in a data base. Suppose, for instance, that one is dealing with
2D objects, and tries to recognize them, given their boundary. Typically, there is a finite
data base these boundaries are matched against; various invariants have been derived, some
global and some local [1, 17, 26], to solve this problem. These are quantities that do not
change under certain transformations (Euclidean, affine, projective), and therefore can be
used to recognize an object even after it had been altered by such transformations.

Here, a different problem is addressed — recognizing a surface in 3D space, while the
information we have is one-dimensional. Specifically, we assume that some measuring device
has sampled a curve, or a pair of intersecting curves, on the surface. Given the curve(s),
the goal is to recognize the surface. Typical sensors which are the source of such curves are
measuring devices, such as coordinate measuring machines, manufactured by the Brown &
Sharpe Company (Figure 1), or the IBM RS/1 Cartesian robot. Such devices can measure 3D
curves with very high accuracy (for instance, typical error range for a coordinate measuring
machine is 0.01 mm).

In [3], an algorithm is presented for determining the axis of a surface of revolution,
using the information measured by a tactile sensor which can also estimate the two principle
curvatures (see Section 3.2). Here, we assume that only the data points are given. In [7],
the parameters of a cylinder are computed from structured light patterns.

Some previous work has addressed the problem of recognizing various surfaces given
their occluding contours [14, 10]. However, the aggregate of possible curves on a surface is,
usually, much larger than the aggregate of its occluding contours, and may contain far more
complicated curves; for instance, the occluding contour of a sphere is always a circle, while
there are a great many 3D curves — some of which have rather complicated structure — on a
sphere.

Clearly, we are facing a different type of recognition problem from the one previously
described, which is usually solved by matching against a data base. It is impossible to build
a data base which contains, say, all the curves on a sphere, or even a dense sampling of these
curves. Therefore, we have to discover curve characteristics which will enable to answer a
question such as “can this curve, after a certain transformation, be embedded on a sphere?”,

as opposed to “can this curve, after a certain transformation, be superimposed on curve No.



Figure 1: High-accuracy measuring device and a curve it measured on a cylinder.

129 in the data base?”.

One way to proceed is straightforward: fit an implicit polynomial to the curve’s points,
and, from its type, determine the surface. This is the algebraic approach [19, 12]. However,
this approach will fail if the curve does not lie on a single “primitive” (sphere, cylinder etc),
but “crosses over” between two or more primitives (see Section 2.1 and Figure 3). In that
case, the global algebraic fit will give us a meaningless result. A very rich theory of local, or
differential invariants, was developed to solve this problem [5, 4, 8, 24, 21]. In Section 2 we
quickly survey the global approach as applied to our problems, but the focus of this paper
is on the local approach.

Natural curve characteristics to use for recognition are curvature and torsion, as they do
not change under rigid transformations. Since we're dealing with 3D data, a rigid transfor-
mation is usually a general enough model. So, the goal is to discover invariants depending
on a curve’s curvature and torsion, which will provide a necessary condition for it to lie on
a certain type of surface.

Let us demonstrate this by a simple, 2D example: a plane curve can be embedded in a
circle if and only if its curvature is constant. So, in this case, the invariant is the curvature’s

derivative. Naturally, we don’t expect to find such simple invariants for curves lying on 3D



surfaces; one trivial example is the well-known condition for a 3D curve to be planar — that
its torsion equals zero — but this is an exceptional case.

In the sequel, we derive invariants which are a necessary condition for a curve, or an
intersection of two curves, to lie on a sphere, cylinder, cone, or torus. These depend only
on the curvature and torsion at a point on the curve (or the curvature and torsion of two
curves at their intersection point). We also derive some “semi-differential” invariants, which
use not only the differential properties of the curve, but a few points on it. Such invariants
have been widely used in computer vision for recognizing plane and space curves [4, 21, 18];
their main advantage is that they allow to use derivatives of lower order than the “purely

differential” invariants necessitate.

2 The Algebraic Approach

Implicit polynomials can be used to describe 2D and 3D objects. Some works which address
the fitting of implicit polynomials are [22, 2, 13, 23, 20]. One can then use polynomial
invariants to recognize the objects [19, 12, 9, 11]. Let us shortly describe how a sphere,
cone, cylinder and torus can be recognized using such invariants. Note that the first three
objects can be fitted with a quadratic, and the torus with a quartic. Suppose, then, that we

succeeded to fit data with a quadratic. Write it as
XAX"+ (0, X)+s5=0 (1)
where A is a 3 x 3 matrix, v a vector in R3, and s a scalar. It is easy to verify that

e If the object is a sphere, A has three positive and identical eigenvalues. It is then

trivial to extract the sphere’s center and radius.

e [f the object is a cylinder, A has two positive and identical eigenvalues, and one zero
eigenvalue; also, the axis of the cylinder is in the direction of the eigenvector with zero

eigenvalue, and it is trivial to extract its radius.

e If the object is a cone, A has two identical positive eigenvalues and one negative
eigenvalue. The axis of the cone is in the direction of the eigenvector with the negative

eigenvalue. It is then trivial to extract the cone’s opening angle and apex.
e [f the object is a torus, its general equation is
B =z —0a)*+(y -0+ (z—c)?+R>—r*)? —4R*((x —a)* +
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(y =02+ (z—¢c)?—((x—a)n; + (y — b)ng + (2 — ¢)ns)?)

where (a, b, c) is its center point, (n;,n2,n3) a unit vector perpendicular to the plane

over which the torus lies, and R (r) are the major (minor) radii.

It’s trivial to extract a, b, ¢ from Ej,, (for instance, differentiating Fy,, three times by x
gives 24z —24a). To extract r and R, note that substituting {x = a,y = b, 2 = ¢} in Ej,,
ives 7'+ R*—2 R?*r?, and substituting {z = a,y = b,z = ¢} in P Bior O Figr 4 O Byor
gLvi ) g =a0,Yy=0,2= 922 dy? 922
gives —12 R?—127r2+8 R?n 2 +8 R?ny? +8 R?ns? = —4R?—12r2. It is trivial to extract

R and r from these two identities. After R, r, a, b, ¢ have been recovered, it is trivial

to recover (nq,ng, n3).

2.1 Number of Points Needed

Experiments on curve data show that a relatively high number of points is necessary to
achieve reliable algebraic fitting. For instance, for the cylinder data we have used (Figure
1), more than 200 points are required for a reliable fit. We are not sure why this happens;
apparently, the fact that the points lie on a curve, which is a “one dimensional entity”,
results in singularities when trying to fit it with an implicit polynomial which, by its nature,
is appropriate for fitting “two dimensional entities”.

On the other hand, when using the differential invariants proposed here, a far smaller

number of points was necessary; usually, invariants were computed using 10 points or so.

2.2 Applying Invariants to Segmentation

Since the algebraic approach for recognition given a curve may fail, because it can pass
through a few geometric primitives, one may try to segment the curve, using some notion of
discontinuity, and then use algebraic techniques for each segment. We now show that this
is not always easy, by constructing a curve which is infinitely differentiable, yet crosses over

from a sphere to a cylinder. Define

S(t):{o t<0

exp(7) t>0

it is well-known that this function is smooth (infinitely differentiable) at every point, and
that all its derivatives at ¢ = 0 are zero. Using s(t), it is trivial to construct smooth functions
s1(t), s2(t) on the interval [0,00) such that s;(0) = 0,s(t) = 1 for t > 1, so(t) = /3 for

0 <t <1, and sy() is monotonically increasing for ¢ > 1 (see Figure 2).
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Figure 2: Auxiliary functions used to construct the curve in Figure 3.

Define a curve ¢(t) as follows

o(t) = (s1(t) cos(t), s1(t) sin(t), (/4 —si(t)) 0<t<1
(cos(t),sin(t), so(t)) 1<t<2

It is easy to see that ¢(t) is a smooth curve which crosses over from a sphere with radius 2 to
a cylinder with radius 1 (at ¢t = 1). The curve is displayed in Figure 3. Next to it, we plot the
curvature, torsion, curvature’s derivative, and a spherical invariant for curves (see Section 5,
Equation 10). It is interesting to see that, although the curvature and torsion are continuous,
there is a very sharp break in the spherical invariant, at the point in which the curve crosses
over from the sphere to the cylinder; this demonstrates that the kind of invariants presented
here can succeed where segmentation by “ordinary” differential properties (curvature, torsion

etc.) fails.
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Figure 3: Demonstrating how invariants manage to detect when a curve crosses over from

one geometric primitive (sphere) to another (cylinder), although the curvature, torsion etc.
cannot detect this crossing over.



3 Mathematical Preliminaries — Some Differential Ge-

ometry and Elimination Theory

In the sequel, a few concepts from geometry and algebra are required. We proceed to define

them and state some of their important properties.

3.1 Some Differential Geometry of Curves

A curve in 3D Euclidean space is a differentiable function ¢ : [0,1] — R?. At each point
c(t), three orthogonal unit vectors are associated with the curve: its tangent vector T, which
points at the direction of the curve’s derivative, its normal vector N, and its binormal vector
B, which is equal to the vector (cross) product of 7" and N.

This triplet of vectors is called the Frenet trihedron at c(t).

In addition, two scalars are associated with each point on the curve. These are the
curvature k and torsion 7. Intuitively speaking, the curvature measures how “bent” the
curve is; for instance, the curvature of a circle is equal to the inverse of its radius. The torsion
measures the speed at which the curve moves out of the plane (the so-called osculating plane)
which locally approximates it; thus, the torsion of a planar curve is zero.

The curvature and torsion can be computed from the parameterization of the curve:

e x|
P

(¢ xc") e

T == II|2

" x ¢
k and 7 are invariant to translation and rotation; this makes them especially attractive
for recognition purposes.

The celebrated Frenet formulas relate the Frenet trihedron with the curvature and torsion.

If the curve is parameterized by arclength (that is, |¢'| = 1), the following hold:



A concept of crucial importance to this work is the local canonical form. Let us see how
it is derived. Assume that the curve is parameterized by its arclength s. From Taylor’s
expansion, we have

2 3 4 85

e(s) = c(0) + 5¢'(0) + 5¢"(0) + Tre" (0) + e (0) 4+ 5P (0) + ofs”)

EC
¢ (0) is equal to the tangent vector T at ¢t = 0. Using the first Frenet formula, ¢ (0) =
T' = kN. Therefore, ¢ (0) = (kN) =k N+xN =k N+k(—xT—7B) = k N—k*T —k7B.
Similarly, we can derive expressions for the fourth and fifth derivatives. Substituting

them into the Taylor series gives

s’kN  s(k' N —k*T — kT B)

c(s) =¢(0) +sT + 5 T 5
s'(k" N =2k 7B —3kKx T —k’N — kT B — x7°N)
+ (2)
24
55 " " " ro / 12
1—20( N—4kk T—3k TB—3k 1T B—3Kk 72N -3k T —

6Kk N+ K*T+ k7B —kr B—3kr7T N +r*2T + kr°B) + o(s”)

from now on, we shall omit the o(s®) part. We are allowed to do so as long as the powers

of s used are bounded by 5.

3.2 Some Differential Geometry of Surfaces

Locally, a surface S in 3D Euclidean space is a differentiable image of an open set O in
R?. Formally, it is the set of triplets {(x(u,v),y(u,v),2(u,v)) / (u,v) € O}. The tan-
gent plane to S at the point ((z(u,v),y(u,v),z(u,v)) is the plane spanned by (zy, Yy, 2u)
and (z,,Yy, 2,). The normal to S at (u,v) is the unit vector pointing at the direction of
(s Yuy 2u) X (Ty, Yu, 20); it is therefore perpendicular to the tangent plane.

In the sequel, we shall use the fact that if C; and Cy are curves which intersect on S,
then the normal to S at their intersection point is a unit vector at the direction of the vector
product of their tangent vectors. This holds unless these tangent vectors are parallel.

The intersection of S with any plane containing N is called a normal section of S. Note
that the normal section is determined by a unit vector v in the tangent plane, which is the
direction at which the plane containing N intersects the tangent plane. Thus, we may speak
of a normal section at the direction v.

The curvature of a normal section is called the normal curvature. The maximal such

curvature, ki, and the minimal, ko, are called the principle curvatures of S. Let us denote



their directions by k: and k; It can be proved that they are orthogonal and that, if v =

ki1 cos(f) + ko sin(6), then the normal curvature at the direction v equals
ki cos®(0) + kysin®(0) (3)

The product K = kiks is called the Gaussian curvature, and the mean H = % is the
mean curvature.
Suppose a curve C' lies on the surface S. Then, if its curvature is k¢, and the normal

curvature of S at the direction of C’s tangent vector is kg, then
ks = k¢ cos(0) (4)

where 6 is the angle between Ng, the normal to S, and N¢, the normal to C.

3.3 Elimination Theory

Elimination theory is a branch of algebra which deals with eliminating variables from equa-
tions. It is especially useful for determining when a system of equations has a root. Let us
start with the simplest case — two polynomials in one variable, p = p,2" 4+ pn_12" ' + ... + po,
and ¢ = g™ + gm_12™ 4+ .+ qo.

To compute the resultant of p and ¢, one first constructs an (n + m) X (n 4+ m) matrix
as follows. Its first row consists of p’s coefficients, followed by zeros. The second row is
obtained by translating the first one to the right, etc. When this can be done no more, the
same process is repeated for ¢’s coefficients. The resultant is equal to the determinant of
this matrix. For instance, the resultant of az® + ba® + ca? +dx + e and Ax® + Bx?>+ Cx + D

is the determinant of

A B C D 0 0 0
0 A B CD 0 0
0 0 A B C DO
0 0 0 A BCD

10



A basic result in elimination theory is that the resultant is equal to zero if p and ¢ have
a common root.

It is also possible to eliminate variables from systems of polynomials with more equations.
For example, if we have three polynomial equations with two variables, there is an expression
in the coefficients of these polynomials which is zero if the system has a solution. In general,
elimination is a difficult problem, and it is not always possible to explicitly write down these

expressions.

4 The General Method

In this section, a general overview of the method for deriving differential and semi-differential
invariants for curves lying on surfaces is provided.

We wish to find conditions on the curvature and torsion of a curve C' which will allow us
to determine if it possibly lies on a certain geometric object OB, which is described by a
generic implicit equation, P(x,y, z) = 0.

The method by which these conditions is derived proceeds as follows. First, we use the
local canonical form to write down an expression for C' in the vicinity of a point M we have
measured on OBJ; we also assume that we have measured x, 7, and their derivatives, as
well as the Frenet trihedron at M. These are all determined from the derivatives of C so,
if we have accurate measurements for C' in the vicinity of M, we may directly calculate
them. Since k and 7 do not depend on the pose of the C', we are allowed to translate and
rotate OBJ — and the curve on it — thus obtaining a new curve C. Denote the rotated and
translated object by OBJ new-

Every condition on 7 and k we derive for C is, of course, also a condition for C'. The
reason we apply rigid transformations to OBJ is because these allow us to make assumptions
on C’s Frenet trihedron which result in simpler calculations; this will be explained in the
sequel. Let P(x,y, z) be the implicit equation defining OBJ e -

Next, we substitute C’s local canonical form into P(z,y, z); This results in a Taylor series
in s. This series has to be identically zero, because C is contained in OBJ .., and, therefore,
has to satisfy the equation which defines OBJ ,,.o. This gives us a set of equations — each for
every coefficient in the Taylor series. Next, we eliminate from these equations everything but
C’s curvature and torsion. For one curve, we usually have to eliminate the Frenet trihedron.
For two curves, we will show that the Frenet trihedrons are known and therefore need not

be eliminated. In both cases, the elimination gives an expression that has to be zero; and
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Figure 4: Rotating and translating the sphere.

this is the sought invariant.

We proceed to apply this paradigm to specific objects; first, the sphere is tackled.

5 The Case for a Sphere

In order to derive a differential invariant for a curve ¢(s) to lie on a sphere, we need to use

only the following part of ¢’s local canonical form:

!
K)ZSS SZH SSKJ 3

c(s) =¢(0) + (s — T)T + (7 + T)N — EHTB + o(s?) (5)

Since translation and rotation do not change the curvature and torsion, we may assume,
without loss of generality, that the point M, at which our measurements of x and 7 were
taken, is at the origin, and that the sphere lies on the XY plane. Hence, the sphere’s
equation is

24y +(z—R?*—-R*=0 (6)

Let us also assume, without loss of generality, that the sphere had been rotated so that
T = (1,0,0) (see Figure 4).

Since N is a unit vector perpendicular to 7', it has to be of the form N = (0, cos(«), sin(«))
for some «; also, B=T x N = (0, — sin(«), cos(«)).

Note that the rigid transformation applied to the sphere has reduced the Frenet trihedron
to a trihedron depending only on the single parameter cc. This is important, because we have

to eliminate the trihedron, in order to obtain a condition depending only on x and 7; and,

12



in general, the more variables we have to eliminate, the more equations are necessary, and
there’s a danger that the solution will be extremely complicated.
Substituting these T, N, B in Equation 5 gives the following expressions for the compo-

nents of ¢(s):

z(s) =s— %
y(s) = s kc;)s(a) L8 (k cos(a)6—|— kT sin(a))
o(s) = s ks;n(a) 48 (K sin(a)6— kT cos(w))

Plugging these expressions into the sphere’s equation (6) gives a Taylor series in s, which
has to be identically zero, therefore all its coefficients are zero. The expression is rather
complicated, so we don’t write it down here; However, its constant and linear coefficients

are identically zero, the coefficient of s? is

1 —Eksin(e)R=0 (7)

The coefficient of s3 is

K sin(a)R — kt cos(a)R =0 (8)

And, naturally, we have the equation

sin?(a) + cos®*(a) — 1 =0 9)

We may view these as algebraic equations, by treating sin(«) and cos(«) as algebraic
variables. Then, from these three Equations (7,8,9), we may eliminate sin(«) and cos(a), to

obtain the identity

s k22 + (H,)Z
o kA2

This gives us a differential invariant for a curve lying on a sphere; namely, the expression

R (10)

k272 + (/ﬁ’)2
L2
has to be a constant. Note that we can immediately extract the sphere’s radius.
It should be noted that this condition has been derived before, using other methods (see,

for instance, [6], page 25). We have nonetheless decided that it’s worthwhile to show how

13



Figure 5: Rotating and translating the cylinder.

it is derived by using the local canonical form and elimination theory. This derivation will
hopefully make it easier to follow the derivation of differential invariants for curves on the

cylinder and cone, presented in the following sections.

6 The Case for a Cylinder

6.1 One Curve, Known Radius

We now proceed to derive differential invariants for a curve which lies on a cylinder. To
the best of our knowledge, such invariants have not been derived before. The method is
roughly the one used for the sphere, however, the mathematical details are considerably
more complicated.

Given a point M on a curve which lies on a cylinder, we can assume without loss of
generality that the cylinder had been translated and rotated so that M is at the origin, and
the cylinder lies on the XY plane (recall that this does not alter the curvature and torsion).
Let us further assume that it had been rotated at some angle 3 so that the tangent vector
at M is aligned with the X-axis (see Figure 5).

Hence, T'= (1,0,0), and the cylinder’s equation becomes
(zcos(B) +ysin(B))? + (z — R)*> = R* =0 (11)

As for the sphere, it follows that N = (0, cos(«), sin(«)) for some «, and B = (0, — sin(«), cos()).

14



We now substitute these T', N, B in the local canonical form (2). This gives the following

expressions for the components of ¢(s):

s*k? s'kk sP(—4 kK —3 K24 Kt 4 K27?)
6 8 120

s’k cos(a)  s3(k cos(a) + kT sin(a))

ys)=——%——+ 5
s*(k" cos(a) + 2k 7 sin(a) — k3 cos(a) + k7 sin(a) — kT2 cos(a))
24
55 " " o /
Eo(/i cos(a) +3k 7sin(a) + 3k 7 sin(a) — 3k 77 cos(a) —
6 k%K cos(a) — K37 sin(a) + w7 sin(a) — 3kTT cos(a) — w7° sin(a))
%K si (k' si — KT COS
o(s) = s?k sin(a) 48 (k sin(a) — kT cos())
2 6
s*(k" sin(a) — 2K 7 cos(a) — k¥ sin(a) — k7 cos(a) — kT2 sin(a))
24
85 " " ro ’
(k sin(a) — 3k 7 cos(a) — 3k 7 cos(a) — 3k T2 sin(a) —

120
6 2k sin(a) + K7 cos(a) — kT cos(a) — 3KT T sin(a) + k7> cos(a))

Plugging these into the cylinder’s equation (11) gives, as before, a Taylor series in s which
has to be identically zero. This expression is huge and we do not write it down here; we
need only the coefficients of the powers of s between 0 and 5.

The coefficients of the constant and linear terms are identically zero.

For the other terms, we obtain the following expressions, after substituting cos(a) =

x,sin(a) =y, cos(f) = z,sin(f) = w:
For the coefficient of s

—2kyR+22> = 0 (12)

For the coefficient of s3

6 zwkx — 2K yR+2kT R = 0 (13)

For the coefficient of s*

15



8zwkTy —2k yR+4k TxR +2k*R +2kT £R+ 2Kk7°yR — (14)

6 K222 + 82wk x — 8 22Kk2+ 6K = 0

In the sequel, it will be beneficial to use a simplified version of (14). Note that we
can subtract from (14) the product of (12) by an appropriate constant, and eliminate the
coefficient of 2% in (14) (it already has an yR term, so we are not adding anything). Similarly,
we can subtract from the new equation an appropriate multiple of (13), to remove from it the
term with the monomial xzw — also, without adding anything new, as the set of monomials

of (14) contains that of (13). After grouping, we can write the simplified (14) as
Ag + A12%2% + Aoz R + AsyR + Agyzw = 0 (15)

Note that we can easily compute the A;’s as functions of x and 7. Hence, (15) is equivalent
to (14), but much simpler. This will turn out to be useful.

For the coefficient of s°, we obtain the equation

—25" yR — 20 k*y1 2% — 20 ki 1222 — 30 zwrls — 10 zwkr?e + 10 zwkT Y+
20 zwk Ty + 102wk — 25 TR+ 6k TaR—302%kK + 6K TXYR + (16)
12 k%K yR + 6k 7 xR+ 2kT R —2KkT°zR+20KkK +6KTT yR = 0

in addition we have

22 +y =1 =0 (17)
24w’ -1 =0 (18)

Assume now that the radius R is known. In that case, we have to eliminate z, y, 2, w from
Equations (12,13,14,17,18) (note that we need at least five equations in order to eliminate
four unknowns). All our attempts to directly do this, using various packages for symbolic
computations, have failed; however, it is possible to proceed as follows. First, solve the
system consisting of the four simplest equations (12,13,17,18). Then, substitute the solution
into (14).

Using the Maple symbolic computation program, it was possible to find a solution for

Equations (12,13,17,18). This solution uses an auxiliary polynomial we denote by p;(9):

16



p1(6) = 81 KB R? + (18 R?k “K* — 18 kP72 R? + 81 k% — 162 k*R?)6° +
36 ' RO%K T + (—81 kS + 81 #3R2 — 36 2% k' + w'TIR? + 2 212 R%” +

R 418 KST2R?)6* — 36 K*RO®K T + (18 Rkt — 2 k22 R — 2 RZNA)(SZ + R

Denote by ¢ a root of p;(4). Then, the solution of (12,13,17,18) equals

2

R 9 Kiq* — ¢2Kk272 + q2/<;'2 —9k*q2 — kK
2= —
q(9¢r*+ 2K TR)

=9k Re'¢*+ k' Re*k*1% + K Re? — 9K Re'q> — k"R + 9K'r ¢

w =
2 ’
2 2 ’ 2 _95444—421‘62724-!12/‘6’ —9H4q2—ﬁ3
3¢?(9¢r? +2K' T R)K \/ OaE 2 TR

2

R(9 k¢t — ¢?Kk%7% + 2K — 9Kt — K

q(9gr*+ 2K TR)K

)

y=—

T =q
Substituting these expressions into (14) and simplifying, we obtain the following identity

(18 K572 R? — 45 B2k K + 27 R?6" I + 162 k°R? — 81k5)¢® + (27k°7 R — 547K RV +
(=36 K°r2R? — K2R + 671 k3T B2+ 35 Rk — 2k R2 — 5 R + T2 R?%: K +
162k — 372R2%" K* — 162 K°R? — 27 R%" k%) ¢* + 907k RE*(* + (=3 "R2:" k + 6 R?" +
0k R%” — 2T B2 kY2 — R =0

Let us denote this polynomial by ps(q).

Now, we know that p;() and py() must have a common root; therefore, their resultant
must be zero. This resultant is, therefore, an invariant for a curve lying on a cylinder.

Recalling the definition of the resultant of two polynomials (Section 3.3), we can write
down the resultant of p;() and py(). It is a determinant whose elements depend on the
curvature and torsion; if the curve lies on a cylinder, this determinant has to be zero, and

this is an invariant for a curve lying on a cylinder.
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Figure 6: Logarithm of the resultant of p;() and py(), as a function of R, for a point sampled

from a curve on a cylinder of radius 2.

6.2 One Curve, Unknown Radius
6.2.1 Numerical Search for the Correct Radius

Suppose we do not know the radii of the cylinders in the data-base.

There are two ways to proceed. We can simply follow the trivial observation that, if we
substitute the correct R into p;() and py(), we will get two polynomials whose resultant is
zero. We can therefore conduct a simple, one-dimensional search for R which minimizes this
resultant.

Experience has shown us that this simple numerical algorithm works quite well. For
example, in Figure 6, a plot for the logarithm of the resultant, for values of x and 7 measured
on a curve on a cylinder with a radius of 2, is displayed. We can clearly see a strong minimum

at the correct radius.

6.2.2 Solve for the Correct Radius

The second method for the case in which the radius is unknown is to eliminate R, x,y, 2z, w
from Equations 12,13,15,16,17,18. This can be done by solving Equations 12,13,15,17,18, and

substituting the solution in Equation 16; if this gives zero, it means that these six equations
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have a common solution, which is a necessary condition for the curve to lie on a cylinder.
This is why it was important to define Equation 15, the simplified version of (14); we could
not find a reasonable solution with (14). However, it turns out that Equations 12,13,15,17,18
do have a relatively simple solution, expressed as follows. x is the root of the following

equation:

81K%A4,%0"% 4+ (162 A, %% — 5417 Ay Ay k7 + 162654, Ap + 16245 Ay k7)510 +

(1087 Ay Ay k" — 54K Ag Ay 7+ 81 Ap?k® +162K"Ap Ay — 18 A T2kP A, + 81 K842 —
Bdr Ay Apk® — 541 Ay Agr® — 324 As Ay kT + 9724268 + 9k A2k — 324 K84, Ag +
81 A, 265 118K A; 1 Ap + 81 A52k8)6% + (162654, Ap — 18 Ay 72K5 A5 +

1854 Ap2k° +1087 Ay Az kS — 162 A3%k5 — 18724265 + 18 Ag 7268 A, + 6 K34, 7 Ag —
36 k%4, KIQAO — 18 Ap%7%k% + 108 K7 A4, AT —36 Kt TAy Ay + 18K3 454 KIQA() +

108 Ay Agi® — 32457 Ag Ay +6 Ag 3k% A, + 16245 Ay 57 — 27k A, 2" — 547 Ay Ay 57 —
81 Ap%k5 — 162K%492)6° + (36 ki T Ap Ay — 54K Ay Ay KD — 12 K3A4 T I<.',,2A0 +

27 n,2A42n4 + 18 Ap%r2%k% + A%k + 972A42/§6 —54K7T A Ayt + n,4A02 +81k%4,% +
16257 Ag Ag + 81 A52k5 + 2 Ag?r2k2k" — 541 Ay Ay kS — 6 Ag T3K5 A4, —

36 k345K Ag + 18 Ap T2K5 A5 — 36 K1 Ag2k T+ 18 K1 A, K Ag)dt + (=2 Ag?r2k2K +
6H3A4 THI2A0 + 18 /<V4A02/<V,2 +18Kk3A3 H’2A0 - 9/-52/142/14 -

2k 49202 + K A2

Note that this is really a sixth-degree equation, as only even powers of  appear. After x
is solved for, we can easily extract y from Equation 17. Then, after substituting the known
values of x and y in Equations 12,13,18 we can solve for the remaining unknowns — w, z and
R:

Define € to be

’ 12
K22 — 2kt ayks + %k + 9K'a?y?
and then
Root (6% — 9k*a?y?) (kT2 — yK)

{w = 3 2y ,z = Root(e6® — 9k'2%y*), R

_ 9kPya?

po(19)

(by Root of an equation, we mean the root of the equation when viewed as an equation
in 0). The equations in (19) are trivial to solve and involve only taking square roots.
The reader may ask why we did not apply this trick to simplify the solution of the

equations for the case in which the radius is known. If we had done that, it would not have
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been possible to obtain a function of x and 7 alone; the x would still have been there! And,
as long as it is there, we cannot find a condition on k and 7, as desired, but only a condition
on z, kK and 7.

There is also a direct solution to the system of equations 12,13,15,17,18, in which all the
unknowns — R, z,y, z, w — are written in terms of k, 7, and their derivatives; however, that
expression is truly horrendous, covering three entire pages when written in small format!
For all practical purposes, it is better to use the solution above, which first extracts z and

y and then solves for the other unknowns.

6.2.3 Comparison of Methods

While the second method is straightforward and does not require any search (as opposed to
the first method), it has the drawback of requiring the fifth derivative of the curve, which
appears in Equation 16 (note that calculating the third derivative of the curvature and the
second derivative of the torsion requires the fifth derivative of the curve). The first method
requires a numerical search for the correct radius, but uses only the fourth derivative of the
curve. Depending on how accurate the measurements are, one may opt for using the first or

the second method.

6.3 The case for a Cylinder with Two Intersecting Curves and

Unknown Radius

Suppose we have two curves on the cylinder, intersecting at a point M. For instance, one
can design a sensory robot to traverse a point twice, in different directions. Another possible
source is an intersecting pattern of structured light rays. It turns out that a particularly
simple invariant can be written in this case.

We refer to the curves as “first” and “second” (it makes no difference which is which, of
course). As noted in Section 3.2, two intersecting curves on the surface allow us to compute
its normal A/ (denoted this way to prevent confusion with N, the normal to a curve). We
may, as before, translate and rotate the cylinder so that the intersection point M is in the
origin, the cylinder lies on the XY plane, and the tangent vector of the first curve equals
(1,0,0). The difference is that now, as opposed to when we only had a single curve, we know
the normal N and the binormal B of the new curves; this is because now we know that the
rotation and translation not only move M to the origin and align the tangent to the first
curve with (1,0,0), they also align N with (0,0, 1). Let us look at the triplet (T, N, B) for
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the first curve (before the rotation). We can calculate the inner products (N, T') and (N, N).
These inner products do not change after the rotation of the curve; if N is rotated into N,
then, since T is rotated into (1,0,0), we have the equality (Nyew,(1,0,0)) = (N,T), and,
since N is rotated into (0,0, 1), we have the equality (Npew, (0,0,1)) = (N,N). Since Npeyp
is a unit vector, we can recover it; and, since we know the tangent and normal of the new
curve, we know its binormal, which is equal to their vector product. Following a similar
argument, we also know the Frenet trihedron of the (new) second curve .

As before, let § denote the angle in which the cylinder is aligned relative to the XY
plane. Let us denote the tangent, normal and binormal of the first curve by (1,0,0),
(0, cos(a),sin(cw)) and (0, —sin(a), cos(cr)), and those of the second curve by (71,75,0),
(N1, Ny, N3), (By, Bs, B3) (remember that all these coordinates are now known). Note that
the z-coordinate of both tangents has to be zero, as they are both in the tangent plane
which, after the rigid transformation, is the XY plane.

Substituting these expressions into the local canonical form, then into the cylinder’s equa-
tion, and equating coefficients to zero, results in the following equations (K is the curvature

of the second curve):

For the coefficient of s?, first curve, we have

22° — 2ksin(a)R = 0 (20)

For the coefficient of s*, first curve, we have

6 zwk cos(a) — 2k sin(a)R + 2kt cos(a)R = 0 (21)

For the coefficient of s?, second curve, we have

2Ty> —2KNs R +22°T> —2T,°2* + 42Ty wTy, = 0 (22)

Also
Z24+uwr—-1=0 (23)

(where, as before, cos(f) = z,sin(f) = w).

Eliminating w, z and R from (20,21,22,23) results in the identity

9T %sin(a)’cos(a)’k* — 6 K3cos()” sin(a)r Ty Ty — 9 k*cos(a)” sin(a) K Ny + k272Ty2cos(a)? +
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6 k2T, Ty & sin(a)” cos(a) — 2 7 Ty? sin(a) cos(a)k + (n')ZTQZSin(a)2 =0

(remember that « is known, and does not have to be eliminated).

And this is an invariant for two intersecting curves, which can be used to test whether
they lie on a cylinder. The invariant depends on the curvature and torsion of one curve, and
the curvature of the other; therefore, it does not require any derivatives of order higher than
three.

7 The Case For a Cone with Two Intersecting Curves

We have not addressed the problem of finding invariants for a cone using a single curve;
because a cone has more degrees of freedom than a sphere or a cylinder, this would necessitate
using the sixth derivative of a curve to express such an invariant.

We proceed to show how two intersecting curves yield an invariant for the cone. We will
not go into all the details, as the method resembles the one used for a cylinder with two
intersecting curves.

First, the cone is rotated and translated so that its apex is at the origin, and the point of
intersection of the two curves, M, lies on the XY plane, which is also the tangent plane at M.
Then, it is rotated in the XY plane so that the tangent vector of the first curve is (1,0, 0).
As for the cylinder, we can extract the tangent, normal, and binormal vectors to the two
curves at their new location; denote the normal to the first curve at M by (0, cos(3), sin(f5)).
Note that now M does not lie at the origin, but at an (unknown) distance of yy from it. The
(unknown — as for the cylinder) rotation angle of the cone in the XY plane is denoted by
«, and the (unknown) rotation angle around the Y axis (Figure 7) is denoted 6; this is just
half of the cone’s opening angle.

It is then a trivial matter to write down the equation of the rotated and translated cone,
and to substitute into it the local canonical forms of the two curves. As before, the coefficients
of the two resulting Taylor series have to be zero, resulting in the following equations. Let
K and T denote the curvature and torsion of the second curve, and T} etc. the components
of its Frenet trihedron vectors. S stands for sin(3), C' for cos(3), x for cos(#), y for sin(f), z

for cos(a), w for sin(«) (remember that S and C' are known, and do not have to be solved for):
For the coefficient of s?, first curve, we have

22°2* +2xkSyoy = 0 (24)
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Figure 7: Rotating and translating the cone.

For the coefficient of s?, first curve, we have
—2xkt Cyoy + 6 yzwkS + 22K Syyy — 6 2°2wkC = 0 (25)
Which can be written more compactly as
Ay 2% 2w 4+ Ay xyyy + Agayw = 0 (26)
For the coefficient of s?, second curve, we have

222222 — 4 a2 2wTy Ty + 22°Ty? — 222122 + 22K Ny yoy = 0 (27)

Just as for the cylinder, we can subtract from (27) appropriate multiples of (24) and (25),

and obtain the simpler form

Ay 2? + Asxyyo + Agv22w = 0 (28)

For the coefficient of s, second curve, we have

6 yxzIK N3 Ty + 6 yrwK Ny Ty + 6 2°Ty KNy — 6 %1y KNy 22 — 22 KT By yoy +
20K1 N3yoy — 6222wT) KNy — 6 2°2wK N, Ty + 6 222°T) KN, = 0 (29)

Which, as before, can be reduced to
A zyw + Agzyz + Aga® + Ajgzyyo = 0 (30)
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Note that the A;’s can be readily computed from the known quantities — the curvature,
torsion, and Frenet trihedron of the two curves.

We also have the equations

4+ -1 =0 (31)

and

w?+22—-1 =0 (32)

It is possible to eliminate {x,y, z, w, yo} from these six equations (24,26,28,30,31,32), and
obtain

—2SkAPA3 Ay Ag A7 — Ay? A2 A2 As + 28Kk A4% Ay Ay As Az Ag — SkAg A2 As? Ay Ag —
S?K2Ag? A3? Ag2 Ay — A3?Ag? As® + SkAy As? Ag? As? — SPk? A2 Ay A3%Ag Ay —

S?K2Ag3 Ag Ag Ay Ag + 2 S%Kk%Ag Ay Ay Ag Az Ag — S2K2A4% A2 Ag% As —

S3K3Ag Ay2A1% A7 Ag — 25%K2 A% Ay As Ag A3 Ag + 2 53Kk3Ag A2 Ay A7 Az Ag +

SkAg Ay? Az Ajg Ay Ag — 2SKA2A3% A1y As Ag + S3K3APB A A + S%K%Ag A2 Ay Ag” Ay +
S3k3APB AP A + SkAP A AR + S3R3AGP AL A3? Ag® + 2 Ay A3? Ag A5*Apy —

2A4 Az Ag As? Ay A7 — 3SKAg Ay Az Ag As Ay Ag + Sk A3 A3? Ay? + 2 SKAy Az Ag As? Ay Ag +
285%Kk%AgP Ay Ag Az Ajg — 2 SKA2AL Ag Az Ajg As + S*R?Ag® Ay A3 Ag Ay A7 + SkALP A® A% —
S3k3AG2 Ay Ag Ag Ay Ag — SkAg?Ag Ag Ay A7 As + SkAg A3 Ag Ay A% A7 +

SkAg?A3?Ag Ay As + S?K?Ag? A3 Ag Ay As Ag — 2 8%K% A2 A2 A% As +

S2k2Ag Ay’ Ay A72 Ay — S?K2Ag As2 AL A7 As Ajg — Ag?As?A1g% As — 3 5%Kk2Ag Ay Ay A7 A Ag As +
2A2A3 A1g Ay Ay As — SkAg Ay A1 A72 Ay As + SkAg Ay Ay A7 Ag Ay As —

S?K2Ag? Ay Ay Ay Ay Ag + S?K%Ag Ay A2 A7 As Ag + SkAL A2 A2 As2 = 0

And this is an invariant for two curves on a cone. It depends on the curvature and torsion
of the two curves; therefore, it does not require any derivatives of order higher than three.
This is an invariant for two curves on a cone.

8 Numerical Computation of Derivatives

The algorithms suggested here require computing the derivatives of a curve in 3D space. The

problem of computing high-order derivatives from discrete data was addressed in [25]. The
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derivatives at each point are calculated by convolving appropriate differentiation filters with
the given curve. One way of deriving such filters is based on fitting high-order polynomials
to the data curve and differentiating the polynomial. We do not need to do the fitting for
each actual curve; it is only done in deriving the filters.

In deriving the filters, the data curve f is approximated by a linear combination of

orthogonal polynomials of orders 0,...,!:

where P;(z) are polynomials which are orthonormal with respect to a weight function w(z).
The coefficients a; are determined by the condition that the polynomial fits the curve in the
sense of (weighted) least squares. It can be proved that if the curve f is a polynomial of
order up to [, than the above filter yields an exact k-th derivatives when the coefficients a;
are:

a; = P (0)

2

In practice, good results are obtained for any reasonably smooth f (not only polynomials),
as long as the the order [ of the filter is larger than the desired order k of the derivative.
However, a high [ requires a filter with a wide support.

Discrete versions of this method on a finite interval are described in detail in [15]. In
particular, the Krawtchouk and the discrete Chebyshev polynomials were studied and closed
form formulas for them were given up to fifth order. However, it was shown in [25] that
continuous polynomials, defined on a finite interval, are just as effective but much simpler
to calculate. Good results were obtained using the Legendre and continuous Chebyshev
polynomials.

For example, see Figure 8 for the derivative of the spherical invariant (Equation 10),
for the curve plotted in Figure 3, when noise of variance equal to 5 percent of the distance
between the points was added to it. Derivatives were computed using the method described
in [25]. The derivative is relatively small for the part of the curve that lies on the sphere
(0 <t <1), and significantly changes when the curve crosses over to the cylinder (at ¢t = 1).
Note that computing the invariant’s derivatives requires the first derivative of the torsion

and the second derivative of the curvature, that is, the fourth derivative of the curve.
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Figure 8: Derivative of spherical invariant (Equation 10) for the curve in Figure 3, after
noise had been added to it. Note change in derivative when the curve crosses over from the

sphere to the cylinder (at t = 1).
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9 Semi-Differential Invariants

In this section we study curve invariants which use only curvature (this requires computing
only the first and second derivatives of the curve). We also assume that the only primitives
the recognition system may encounter are spheres, cylinders, cones, and tori. When the
information from one point is not enough to uniquely determine the object, we will use an

additional point or two on the curve to help disambiguate the object.

9.1 Object Recognition from Two Intersecting Curves

Given two intersecting curves C; and Cy, we extract T, Ny, By, ke1, 1o, No, Bo, ko at the
intersection point M. These are the Frenet trihedrons and the curvature for both curves
respectively. Recall that Ng, the normal to the surface at M, equals T} x T5.

For each curve we compute 6, the angle between Ng and the curve’s normal. The surface
normal curvature equals ky, = k¢ cos(f), and kg (3) = k1 sin?(B) + ka cos?(3), where k1, ks
are the principal curvatures for the surface at M, and 3 is the angle between the tangent to
the curve and K3, the second principal direction.

Given two curves we have two equations for the surface normal curvature, with three

unknowns — k1, ko, and [:

KNg1 = K1 SiHZ(,B) + Ko COS2(B)

Knge = kisin®(B+ @) + kacos’ (B + ¢), (33)

where ¢ is the angle between 77 and 75. Usually, it is impossible to solve such a system;
however, if we know in advance that the geometric primitives can only be spheres, cylinders,

cones, and tori, it is possible to identify them and extract their parameters.

Sphere

In this case k1 = Ky and consequently rky,1 = Kng2. For all other objects (cylinders, cones,
and tori) the two principle curvatures are not equal; therefore, two distinct normal curvatures
are identical only in the degenerate case in which the angles between the curves’ tangents
and K] are equal. Therefore, if the surface normal curvatures corresponding to the two curves
are equal, we can assume with high probability that we are dealing with a sphere.

The sphere’s radius is then R = 1/ky,, and its center is at M + RNg. Using an additional

point (Section 8.2), we can determine if the object is indeed a sphere.
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Cylinder

If the given object is a cylinder, its parameters can be recovered as follows. As k; = 0, the
surface normal equations are reduced to two equations with two unknowns. Solving them,
we can recover ko and the principal directions K7, k5. The cylinder’s radius is R = HLQ, and

the orientation of its axis is k1. A point on the axis is:
C =M + RNg.

It is important to note that this does not prove that the object is a cylinder. That has

to be verified using an additional point on the curve (see Section 8.2).

Cone

Assume the object is a cone. As for the cylinder, x; = 0, and we can recover ks and
the principal directions K, K. The radius of the cone at M is R = /-;_12 cos(a), where « is

15,949 and the axis orientation is

the cone’s opening angle. The apex is located at M +
K1 cos(a) + Ky sin(a). a can be determined from an additional point on the curve (see Section

8.2).

Torus

From (33) we cannot recover the torus, because the number of unknowns is three. We will
parameterized our solution as a parameter of 3. For a given 3, we can recover ki, ks. The
values of k1, ko change on the torus as a function of v, the angle between the major radius of
the torus, R, and the vector to the current point on the torus. ki, k9 are given as a function
of ~:

— cos(7) 1

= Rireos() 277

where R and r are the major and minor radii of the torus respectively (see Figure 9).

R1

Given k1, kg, y we can recover R, r as follows:

1 1 1
R = _(H_1 - K—Q)COS(V) .

The orientation of the torus, IV;, can be recovered by : N; = Ngsin(y) + K3 cos(y). The

center of the torus is then at:
C =M + N;r + (Ng cos(y) — Rysin(y)) R
( and 7 can be determined by an additional point on the curve (see Section 8.2).
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Figure 9: Torus.

9.2 Verification Using an Additional Point

The hypothesis about an object and its parameters can be verified by an additional point

on one of the curves. For the hypothesis to be correct, several constraints must be satisfied.

e The point M must lie on the surface. This means that if P is the object’s implicit
equation, P(M) = 0.

e T, the curve’s tangent, must be orthogonal to Ng at the point. Thus

Ng-Te = 0.

e If 0 is the angle between Ng and N¢, then kg = k¢ cos(6) (see Equation 4), where the
value of kg is determined by the principal curvatures x; and Ky and the angle between
them and T¢.

Therefore, each additional point yields three additional equations which have to be satis-
fied. These equations can be used to verify hypotheses or to determine the value of unknown
parameters.

If the additional points are not on a curve, and we don’t have any differential properties
associated with them, we still have the first condition (they have to satisfy the surface
equation). In that case, we will need more points; this is a typical tradeoff for semi-differential

invariants.

9.3 Object Recognition from One Curve

When two intersecting curves are given, we are able to recover Ng and thus we know the

angle f between Ng and No. When we are given only one curve, # is an unknown parameter
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which has to be recovered.

Sphere

In this case k; = ko, and consequently ky, = 1/R. For every value of 6, the surface
normal and the sphere’s radius are determined as follows, where (T, N¢, Be) are the Frenet

trihedron of the curve:

1
s = cos(0)N¢ + sin(6) Be o co(0)
From that we recover the center of the sphere,
Ng
M + RNg = M + — +tan(f) B¢ (34)

Kc

Thus we have a family of possible spheres, parameterized by 6.

Given additional points, we can proceed as follows: either substitute them at the (hypoth-
esized) sphere’s equation, or (if they are on a curve) use the verification method described
in Section 8.2. Alternatively, given two points on a curve, applying Equation 34 to both of
them results in four linear equations in cos(f;), tan(f;), cos(fz), and tan(f,). The solution is

verified by checking if the two angles satisfy

1 — cos?(0;)

tan(f:) = cos(6;)

Cylinder

In the case of the cylinder we know that k1 = 0 and ke = %. Given a point M; on the curve,
the two unknowns are #; and 3;. When they are given, the cylinder is uniquely defined. Note
that k7 is the axis of the cylinder, so it has to be the same for every point on the cylinder.
We will now use these facts to define R and 7 the axis of the cylinder as functions of #; and

B (see Equations 33, 4):
cos®(3y)

= ke cos(6y)

Ng = cos(#1)N¢ + sin(61) Be

Ky =Tesin(B1) + (Te x Ng) cos(f) (35)
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And a point on the axis is:
Cl = M1 + RNSI

Given an additional point, its G5 and #, can be recovered as follows:

2
fo = arcsin(Tes - K1), B9 = arccos(w )
K/CQR

From them we can recover the point on the axis C5 closest to the second point, and both

points must lie on the cylinder’s axis, which is parallel to £7; therefore,
(Cy = Cy) x Ky =0,

which gives us two equations in two unknowns, which can be solved for the values of #; and
b

These two points give the equation of the cylinder that passes through them and satisfies
the given constraints. In addition, from (35) f#y = arccos((Teo X Ngo) - K1), which gives an

additional constraint to verify that this is indeed a cylinder with the computed parameters.

Cone

The case of the cone is similar to the cylinder but slightly more complicated. Given two
points on a curve we would like to find the angles 6y, 31, 6>, and 5. These angles parameterize
the local surface structure of the two points. At first we will exploit the fact that the line
from the point on the surface in the direction of K1 must pass through the tip of the cone.
Thus we have a constraint that the two such lines of the two points must intersect. The point
C = P + k2 Ng lies on the central axis of the cone. Therefore we two additional constraints
which are due to the fact that C,Cs, and the tip of the cone lie on the same line. Finally,
the angle of the cone o must be the same for both surface points. As « is the angle between
k1 and the axis of the cone, we can write an additional constraint enforcing the uniqueness
of a. With the four above mentioned constraints we can recover the values of the unknown
angles and recover the shape of the object.

As in the cylinder, these two points give the equation of the cone that passes through
them and satisfies the given constraints. However, an additional point is needed to verify
that this is indeed the real object.

Torus

In order to be able to recover the seven parameters of the torus, we parameterize them by

four local parameters of one point. The parameters are 6, 3, k1, and . As described above
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these four parameters are enough to describe the torus. In order to recover those parameters
we need two additional points because each point yields three constraints. Thus using three

points we can recover the shape of the torus and verify that the object is indeed a torus.

9.3.1 Experimental Results

The algorithm for a single curve has been tested on real data received from the Brown &
Sharpe Company using their coordinate measuring machines (Figure 1). The data is a curve
measured on a cylinder. For each point on the curve T, N¢, B¢, and k¢ are estimated. Using
the algorithm described above, the problem is reduced to solving for cos(f;) and cos(3;),
where all other parameters are expressed as functions of these unknown values. The correct
values must satisfy four equations and have to satisfy the constraints that the absolute values
of the cosine and sine of the various angles must be less than 1. The values of the unknowns
are found using non-linear least squares optimization techniques. In this case we use the
Levenberg-Marquardt procedure of the MINPACK library [16].

We chose at random 200 pairs of points and ran the minimization procedure on them
using several initial conditions for the minimization. Even though the data is noisy, most
pairs of points yielded results close to the correct shape. The results were sorted according
to the least-squares error (LSE) of the four equations. We trace the five cylinders with the
smallest LSE in Figure 10(a). One of these results and the original data are shown in 10(b).
It is important to note that only the data on the two points and their derivatives mentioned
above was used to recover the shape of the cylinder. Additional points can then be used, if

desired, to get a better estimate for the shape.

10 Conclusions

A novel method to recognize some surfaces, given curve(s) on them, was presented. It
proceeds by using invariants which are computed on curves, but which supply information
on the type of surfaces the curve can possibly lie on.

The method can use 3D curves derived from stereo and structured light; it is particularly
useful when given the output of measuring devices which produce such curves (for instance,
sensory robots and coordinate measuring machines).

The main advantage of the proposed method compared to algebraic methods is in its

local nature, which enables it to segment and recognize curves (and the surfaces they lie on),
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Figure 10: (a) The five recovered cylinders with the lowest LSE. (b) The recovered shape of
the cylinder and the data points.

even if the curves lie on more than one geometric primitive. Also, it necessitates a far smaller

number of curve points than the algebraic method, for recognizing a single primitive.
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