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a b s t r a c t

This paper describes an efficient and robust localization system for indoor mobile robots and AGVs. The
system utilizes a sensor that measures bearings to artificial landmarks, and an efficient triangulation
method. We present a calibration method for the system components and overcome typical problems for
sensors of thementioned type, which are localization inmotion and incorrect identification of landmarks.
The resulting localization system was tested on a mobile robot. It consumes less than 4% of a Pentium4
3.2 GHz processing power while providing an accurate and reliable localization result every 0.5 s. The
system was successfully incorporated within a real mobile robot system which performs many other
computational tasks in parallel.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Robot localization is an essential component for path planning
to desired locations and for preventing the robot from reaching un-
desired locations. While GPS-based systems provide comfortable
solutions for outdoor localization, indoors other methods have to
be considered.Many industrial AGVs localize using stripes orwires
attached to the floor. The drawback of this approach is that the pos-
sible paths the robot can traverse are limited, and therefore its mo-
tion is not flexible.
The simultaneous localization and map building (SLAM)

approach [1,2] opened a new branch of promising research on the
localization problem. A special variant of this problem applicable
to our case deals with the calibration of a 1D projective camera
and the recovery of the landmark positions [3,4]. Under this setting
an omnidirectional camera can be used to detect the positions of
vertical lines in the scene [5]. The problem however is that even
though these methods are able to build a map of the locations of
the landmarks, there exists an unknown similarity transformation
between the coordinate system of the recovered map and the
coordinate system of the environment specified by the user.
One of the methods to perform indoor localization is to put

landmarks at known locations and using a sensor mounted on the
robot to measure their bearings. The hardware for implementing
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this method can vary from a laser sensor with retro-reflective
stripes to an omnidirectional camera with landmarks that create
certain image patterns. This hardware is manufactured by several
companies and used widely in AGV systems. The traditional
geometric method for localization from landmark bearings is
based on the idea that two bearing measurements constrain
the position of the robot to lie on a specific circle. Thus, when
three measurements are available the robot location can be
computed [6–12].
Whenmore than three landmarks are observed, these methods

yield several dependent localization estimates. The naive idea
of averaging these estimates is computationally inefficient and
statistically sub-optimal.
In [13] an algebraic technique was suggested, where each

landmark defines a linear constraint on the position and the
orientation of the robot and an efficient least-squares solution
is obtained. When more than three measurements are available,
an estimate of the mean square error (MSE) is also obtained.
It was shown experimentally that this algorithm yields close to
optimal localization results at a fraction of the cost of the non-
linear maximum likelihood method.
Mobile robot systems which use landmark bearings for

localization are widely used [14–17], and therefore it is important
to develop accurate and robust localization algorithms for them.
The method presented in [13] deals correctly with unbiased

noise yielding close to optimal results efficiently. However, in
real world situations other sources of error are present and a
localization systemmust be able to handle such cases. Dealingwith
these cases is the main focus of this paper.
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Fig. 1. (a) A laser beam is sent towards an artificial landmark and received, using a rotating mirror. (b) The landmark is detected on the omnidirectional camera image.

There are four reasons for possible failure of the triangulation
method presented in [13] thatwe investigated and solved. The first
problem is that the sensor mechanics cause biased measurement
errors and therefore has to be calibrated. The second cause of error
is that the positions of the landmarks in the environment, which
were manually measured and which are given to the algorithm,
might be inaccurate. In Section 4 we present an analysis and a
combined calibration technique for these two problems. In certain
sensors, localization in motion can distort the results as well. In
Section 5 we modeled the effects of translation and rotation on
the measurements and using it were able to achieve accurate
localizations even while the robot was moving. This correction
is especially significant when the robot rotates. Finally, there are
cases inwhich even if the landmark bearing ismeasured accurately
its identity is not detected correctly. This causes gross errors in the
localization. In Section 6 a RANSAC-based [18] method is proposed
for efficient detection of misidentified landmarks.
Our method performs all its operations without requiring

ground truth localizations, relying only on MSE calculations.
This is in contrast to approaches that deal with such problems
by requiring the user to supply ground truth localizations for
many robot locations, an extremely tedious and time-consuming
process.
All the components of our system were implemented and

tested on a Denning MRV4 mobile robot platform with a LaserNav
landmark bearings localization laser sensor. In the final experiment
described in Section 7 we compared the results of our localization
to those achieved by an independent camera-based measurement
system and achieved nearly identical results.

2. Localization system hardware

Typical sensors for performing artificial landmark bearings
localization are the laser scanner illustrated in Fig. 1a, and an
omnidirectional camera sensor illustrated in Fig. 1b.
The laser scanner consists of an emitter, a receiver, and a

rotatingmirror that reflects a laser beam towards the environment.
The landmarks are usuallymade of retro-reflectivematerial so they
can be easily detected by the photodetector inside the scanner.
They can be in the form of a single strip [11], or in the form of a
barcode. Hence, the returning beam is analyzed and the landmarks
are detected and identified.
In the omnidirectional camera setup, the landmarks appearance

has to be distinguishable from other objects in the scene. An image
processing algorithm detects the observed landmarks.
A set of n artificial landmarks is placed at known locations Pi ∈

<
2 of which a subset is visible at each robot location. The sensor
returns the identity and the bearingmeasured to each landmark βi
with respect to the sensor orientation, fromwhich the location and
the orientation of the sensor are calculated by triangulation. The
frame origins of the sensor and the robot are aligned, and therefore
the localization is valid for the robot too. See Fig. 2 for illustration
of the robot, the sensor and the landmarks.

Fig. 2. The robot, the localization sensor and the artificial landmarks. The black
dashed line denotes the robot and the sensor orientation.

3. Estimation of localization result accuracy

According to themethod described in [13], the relation between
the unknown position P and the orientation θ of the robot, and the
known position Pi of the landmark is derived from a coordinate
transformation from the global coordinates to the robot reference
frame. Transformation of a single bearing yields the following set
of two equations, each equation is for a row of R2×2:

Mi = li(cosβi, sinβi) = R(Pi − P) = RPi + T , (1)

where Mi are the coordinates of the landmark in the robot
reference frame,R is a planar rotationmatrix by θ , li is the unknown
distance from P to Pi, and T = −RP .
Eliminating li leads to a single linear homogeneous equation

with four unknowns: cos(θ), sin(θ), Tx, and Ty. When three
measurements are available together with the natural constraint
on cos(θ) and sin(θ), the problem is solved and the position
and orientation of the robot are computed. If more than three
landmarks are available, the linear least-squares solution is
obtained and the error provides a quality measure—however, in
this paper we use a more accurate quality measure. It is the
mean of squared differences between the observed bearings to the
landmarks, and the angles that are calculated from the localization
result and the known locations of the landmarks. This measure
is statistically correct since it is based on the assumption that
measurement errors have a zero mean Gaussian distribution. Let
(Px, Py) be the position of the robot, i.e the localization result and
let (Pix , Piy) be the position of the ith landmark. The estimate of the
bearing is therefore

βci = arctan2(Piy − Py, Pix − Px). (2)

The angular error of a single landmark is

1βi = (βci − θ)− βi. (3)

The error value of a localization result is the MSE of all the
landmarks of the scan:

S =
n∑
i=1

1β2i

n
. (4)
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Under the assumption mentioned above that

1βi ∼ N(0, σ 2β ),

it follows that
nS
σ 2β
∼ χ2(n),

and therefore given a certain probability value very close to one,
a threshold on S can be derived for each value of n. σ 2β is found
experimentally for the sensor. Thus, when S is greater than that
threshold, the zero mean Gaussian assumption we made about
the measurement errors does not hold (e.g., when a landmark
is misidentified) and we therefore deduce that the localization
result is incorrect. This is the basic measure that we use in
all our algorithms to estimate the quality of the localization
result. Therefore, at least four landmarks have to be detected in
each observation to enable localization with an error estimate.
Obviously, as more landmarks are detected in a single observation,
the localization accuracy increases.

4. Calibration of the localization system components

Calibration is a necessary step in complex measuring systems
in order to assure accurate results. We have to calibrate two
components: the hardware which is the sensor and the robot, and
the landmarks set. The aim of the hardware calibration is to yield
unbiased bearing measurements. This was not the case initially.
The reasons for that can be either insufficient leveling of the sensor
or distorted readings of the sensor. The landmarks set has to be
calibrated in order to overcome the inaccuracies in measurements
of the landmark positions that were performed by the user. These
inaccuracies can significantly distort the localization results.
This section presents the methods to calibrate each component

separately and provides an algorithm to calibrate the components
together in a joint procedure.

4.1. Hardware calibration given locations of the landmarks

The uncalibrated hardware problem can be detected when the
robot rotates around its axis at a fixed location. The location
component of the localization result (Px, Py) is supposed to be
normally distributed around a certain position with a small
variance and dispersion, but instead it is grossly dispersed as
can be seen in Fig. 3. This experiment demonstrates a problem
which always causes localization errors. We expect that after the
hardware calibration step, under these conditions, the localization
system should produce a set of locations with a small variance
caused by the unbiased measurement errors. A fixed set of
landmarks was used, thus isolating the nature of the distortion
function. As can be seen in Fig. 3, the distorted localization results
are continuous and periodic. This implies that the distortion
function that offsets the observed angles is also continuous and
periodic.
Thus, the observed value of the bearing can be modeled as

βi = βcorr i − f (βi), where βcorr i is the correct angle and f is the
distortion function. Our goal is to find an approximation for f and
use it to compensate for each observed bearing, such that βcorr i =
βi+ f̂ (βi), where f̂ is the approximation for f . A convenient way to
approximate such continuous periodic functions is by their Fourier
coefficients. Consider the following second-order approximation:

f̂ (βi) = A cos(βi)+ B sin(βi)+ C cos(2βi)+ D sin(2βi)+ E. (5)

We wish to estimate the coefficients A, B, C,D, and E. The average
value of f̂ must be zero, because otherwise the correcting function
contributes a constant rotation component to the robot. Therefore,
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Fig. 3. Distorted localization results due to uncalibrated hardware. The axes:
(Px, Py), in cm. The points are the localization system output, which disperses over
7 cm instead of being constant.
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Fig. 4. Illustration of the correction function f for each angle in the range of [0, 2π ]
for (A, B, C,D) = (−0.0081, 0.0005, 0.00098,−4.12e− 005). The horizontal axis
represents the bearing in radians, the vertical axis represents the correction value
in radians.

we set E = 0. Since the distortion transforms the bearing of each
landmark differently, the bearings become inconsistent with the
real locations of the landmarks, and the MSE of the localization
result increases. Therefore, we want to find the coefficients that
minimize the sum of the MSE over the set of scans:

{A, B, C,D} = argmin
M∑
j=1

Sj, (6)

whereM is the number of scans in the set, and Sj is the MSE of the
localization result of scan j given in Eq. (4). In this case however the
estimated angular error is calculated as1βi = βci−θ−(βi+f̂ (βi)).
An example of a correction function f obtained by our method

is shown in Fig. 4. Our implementation uses the Nelder–Mead sim-
plex method, which is an unconstrained nonlinear minimization
technique [19].
To test the hardware calibration method, one can place the

robot at different locations, without the restriction of using a
fixed set of landmarks. In our experiment we placed the robot
at three different locations. Approximately 2000 scans were
made at each point. As shown in Fig. 5, the same correction
parameters (A, B, C,D) = (−0.0081, 0.0005, 0.00098,−4.12e −
005) transformed the three twisted circles on the top row into
normal distributions of points in the second row. The third row
of Fig. 5 shows the density distribution of Sj before and after the
correction was applied, demonstrating that the error values have
been reduced considerably.
The resulting robot positions are scattered within circles of

diameter 2 cm, while 95% of the points lie within a diameter of
1.3 cm. These results show that a single correction function with
the recovered coefficients corrects the bias accurately invariantly
to the robot’s position. It is important to stress here that the
dispersion of the localization results was not a parameter which
the algorithm tried to minimize. Therefore, the fact that the
resulting dispersion is small demonstrates that the correction
achieved by the algorithm improves the localization quality. The
fact that the orientation of the robot remains correct is shown in
the final test of the system which is discussed in Section 7.
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Fig. 5. Experiments for correction of distortion due to uncalibrated hardware. The blue points are the localization system outputs at fixed location but different orientations
of the robot. The third row shows the density distribution of Sj before (green) and after (black) the correction was applied. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

4.2. Calibration of the landmarks set given calibrated hardware

Inaccurate manual measurement of landmark locations is an
additional distortion factor. Its effect on the angular error of a
single landmark bearing measurement increases grossly as the
robot approaches the landmark. Errors of this type cause bias in
the localization results, create regions of bad localization near
groups of inaccurately measured landmarks, and therefore must
be handled.
The landmarks set calibration consists of two stages. In the first

stage, positions of the landmarks that minimize the MSE (Eq. (4))
over a set of measurements at different locations and orientations
of the robot are calculated. The result however is invariant to
planar similarity transformations. Therefore in the second stage, a
transformation which yields the closest positions to those initially
measured is found. Thus, the solution found is as close as possible
to the scene metric as measured initially by the user.

4.2.1. Calculation of internally consistent locations of the landmarks
At the beginning of the process, we have a set of landmark

coordinatesmeasured by the user denoted by V0 = {0Pi}i=1..n. They
are inaccurate, but close to the true locations. Our goal is to find the
landmark locations thatminimize theMSE over a group ofM scans.
We denote this set by V1,

V1 = argmin
{1Pi}i=1..n

M∑
j=1

Sj. (7)

To find this set, we use the Nelder–Mead algorithmwith a starting
point V0. During the optimization process, when the landmark
location estimates change, so do the estimated robot positions and
the MSEs of the scans. The result of this stage is a set of internally
consistent locations of the landmarks.

In our experiments, performed in a room of size 10 × 10 m,
each measurement of a landmark location had an error bounded
by 5 cm. In order to find more accurate locations of the landmarks,
bearing data were collected from several positions of the robot
distributed evenly over the whole scene. In our experiment, for
n = 11 landmarks,M = 50 measurements were taken.

4.2.2. Correct the locations of the landmarks to fit the original metrics
Landmark locations found in the first stage of the landmarks

set calibration correspond to the metrics of the scene up to a
similarity transformation, because when such a transformation
is applied to the locations of the robot and the landmarks—
the bearings do not change. This is also true if the landmark
locations were obtained by a SLAM algorithm such as the one
described in [3]. This phenomenon causes the localization results
not to be in sync with the objects in the scene and the zones
that the robot needs to reach or avoid, all measured in the
scene metrics. The manual measurements of initial locations of
the landmarks are inaccurate, but they are the only source of
information on the metrics of the scene that we have. Therefore
they are used to perform a global correction. We wish to find
the similarity transformation consisting of a rotation matrix R by
angle γ , a translation vector t and a scale parameter s. Applying
this transformation to V1 will yield V2 whose distance from the
measured landmark locations V0 is minimal. To solve this problem
we formulate a new minimization problem, where the target
function is
{s, γ , t} = argmin‖V2 − V0‖, (8)
where V2i = s ·R ·V1i + t. The optimization process starts with the
values s = 1, γ = 0, t = (0, 0).
An example of a landmarks set calibration is presented in

Table 1. Note that in the first two rows of the table, the V0 − V1
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Table 1
Table of landmark coordinate sets and their sum of error values.

V0 V1 V0 − V1 V2 V0 − V2
158.2 245.4 159.5 241.2 −1.3 4.2 159.1 240.6 −0.9 4.8
157.7 489.3 158.7 485.0 −1.0 4.3 158.2 483.8 −0.5 5.5
523.8 −311.7 526.7 −312.6 −2.9 0.9 525.4 −311.6 −1.6 −0.0
523.8 192.0 526.1 192.6 −2.3 −0.7 524.7 192.3 −0.9 −0.3
−78.2 457.6 −77.8 459.1 −0.3 −1.6 −77.8 457.9 −0.4 −0.3
523.8 −2.4 525.7 −2.4 −1.9 0.1 524.3 −2.3 −0.5 −0.1
−429.1 −26.1 −430.9 −25.1 1.8 −1.0 −429.8 −25.2 0.6 −0.9
70.8 −546.6 70.8 −547.9 −0.0 1.3 70.8 −546.4 0.0 −0.2
−339.9 −513.6 −340.8 −513.3 0.9 −0.3 −339.8 −512.0 −0.1 −1.5
−435.5 105.5 −435.8 106.7 0.4 −1.3 −434.7 106.4 −0.8 −0.9
524.0 68.0 525.4 68.1 −1.4 −0.1 524.0 68.1 0.0 −0.2

MSE 3.5e−4 1.0e−5 1.0e−5
Dist. 30.3 21.0

Table 2
Evolution of the measures over a single run of the combined calibration algorithm.

Stage: Init 1 2 3 Joint Metric

Err1: 1.5e−3 6.72e−4 1.19e−4 1.14e−4 2.56e−5 2.56e−5Err2: 8.85e−4 3.28e−5 6.2e−5 2.85e−5
Dist: 0 30.36 31.6 32.3 32.8 19.18

values are very large and similar. This is due to the manual
inaccurate measurement of the first landmark which was used as
a basis to measure the second one. The MSE for V2 is of course the
same as for V1. The total distance to V0 was reduced from 30.3 cm
to 21 cm as a result of the second minimization process.

4.3. Combined calibration algorithm for the hardware and the
landmarks set

It is challenging to fit a stable optimizationprocedure to amulti-
dimensional problem, where the error function contains many
local minima near the optimal solution. One useful technique is to
decompose the optimization problem into several sub-problems,
apply the optimization iteratively to each one and then use the
solution obtained as a starting point for the global optimization
step. In our case the problem decomposes naturally into the two
sub-problems described above. The only question left is with
which sub-problem to begin. We decided to apply the hardware
calibration step first because the errors of the measured landmark
locations are bounded and therefore the angular errors that they
create are relatively small given that the robot is far enough from
the landmarks. Moreover, each error in landmark position affects
only its measurements. On the other hand, the sensor calibration
errors affect all the measurements and it is therefore better to
reduce them first. Finally, the iterative nature of the procedurewill
cause the process to converge.
The combined calibration algorithm is presented in Algo-

rithm 1. In our experiments, three iterations of steps 1–3 of
Algorithm 1 were always sufficient for the results to converge for
a value of ε = 0.1.
An example that demonstrates the evolution of the important

measures of a single run is shown in Table 2. ‘‘Err1’’ denotes the
MSE for the robot calibration step, ‘‘Err2’’ denotes the MSE for
the landmark set position correction step, and ‘‘Dist’’ denotes the
absolute value of the distance between the landmark locations at
the current stage and the initial values. The column ‘‘Init’’ contains
the initial values of the procedure, ‘‘1, 2, 3’’ are the values obtained
in the three iterations of the iterative step, ‘‘Joint’’—the values
found in the joint step, and ‘‘Metric’’ are the values obtained
at the end of the metric correction stage. The table shows that
before the third iteration the error values in each category decrease
consistently, but the difference in landmark locations increases.
The metric correction step reduces the difference in landmark
locations but as expected does not change the MSE values.

Algorithm 1 Combined Calibration Procedure
1: repeat
2: Calculate A, B, C,D according to the method described in

Section 4.1, yielding an error value S1.
3: Calculate the new landmark locations according to the

method described in 4.2.1 using the A, B, C,D that have just
been calculated. The calculation yields an error value S2.

4: until S1−S2S1
< ε

5: Perform optimization over the A, B, C,D and the {Pi}i=1..n
together, using their values that have just been calculated as
the starting point:

{A, B, C,D}, {Pi}i=1..n = argmin
M∑
j=1
Sj.

6: Correct the locations of the landmarks found at the end of the
last iteration to fit the originalmetrics according to themethod
described in Section 4.2.2.

To test the stability of the combined optimization procedure,
we ran it on 20 different sets of calibration data. The resulting
dispersion is up to 2.5 cm in the fixed rotation experiments, while
95% of the points lie within 1.3 cm. The differences in the final
locations of the landmarks between the results are up to 2 cm.
Accurate manual measurements of the landmark locations were
performed and justified the calibration results.

5. Localization in motion

Another type of correction is required in order to ensure
accurate localization during robotmotionwhile using laser sensors
with a rotating mirror. The reason for this phenomenon is that
as the laser mirror rotates at a certain velocity, the bearing
measurements of different landmarks are not performed exactly
at the same time, causing distortion in the measurements. We
will first consider the case of robot translation for which the
localization errors were relatively small and then discuss the case
of rotation where without correction the localization errors are
considerable.

5.1. Correction for translation

Consider the case when the robot is moving straight at an
unknown velocity vrob. The robot starts to scan the first landmark
in the scan at time t0. For each landmark i in the scan, it is scanned
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Fig. 6. Correction of the localization results during robot translation. Left: the robot
speed in m/s, as estimated by odometry (dashed) compared to the optimization
method (solid) for the four experiments. Right: the MSE ratio before and after the
correction.

at time ti = t0 +1ti. Then, for the ith landmark, mi = vrob ·1ti is
the distance that the robot moved along its motion axis.
Suppose that the bearing to the first landmark in the scan is β0.

Then, it takes the mirror rotating at angular velocity of avmirr time
interval of1ti to cover βi − β0 radians. Therefore,

1ti =
βi − β0

2π
/avmirr .

The robot has moved in that time period
mi = 1tivrob.
To compensate for the robot motion we estimate the corrected
landmark position Ci at time t0 as
Ci = Pi −mi.
We consider only the case when the robot moves only in the

forward or the backward direction. Hence,
vrob = V (cos(θ), sin(θ)),
where θ is the rough estimate of the robot orientation obtained
from the localization estimation performedon the biasedmeasure-
ments and V is the robot’s speed. V is estimated by minimizing

{P, θ, V } = argmin
∑ 1β2i

n
,

where1βi = (βci − θ)− βi, and in this case
βci = arctan2(Ciy − Py, Cix − Px).
To test the correction process, four experiments were per-

formed in which the robot was given a command to move in a
straight line. Fig. 6(left) compares the speed of the robot mea-
sured by the odometry to the speed measured by the algorithm.
Fig. 6(right) presents the ratio of the sum of the MSE of the ex-
periments before and after the correction. As the speed increases
so does the ratio indicating that the increased error can be ex-
plained by themodel. Finally, the average estimated position of the
robot changed only slightly as a result of the correctedmodel, from
0.24 cm in the lowest speed to 1.47 cm in the highest speed (Fig. 7).

5.2. Correction for rotation

We now turn to deal with robot rotation. In this case the robot
rotates at an angular speed of avrob. Suppose that we are observing
a landmark at bearingβi, the scan starts at time t0 and the landmark
is detected at time ti. Then,
1ti = ti − t0 = βi/avmirr .

–250 –200 –150 –100 –50 0
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Fig. 7. Correction of the localization results during robot translation obtained from
four experiments. The localization results without correction (dashed) compared to
the results after correction (solid). The correction is between 0.24 cm for slow speed
to 1.47 cm for high speed.
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Fig. 8. Illustration of angle measurement distortion due to robot rotation.

At this time the mirror of the sensor has rotated by βmirr i =
avmirr · 1ti and the robot rotated by βrobi = avrob · 1ti. Both of
the angles contribute to the measured bearing, βi = βrobi + βmirr i .
We are interested tomeasure only themirror rotation, soβrobmust
be subtracted: βmirr i = βi − βrobi . An illustration of this model is
presented in Fig. 8.
Assuming that within a single scan the robot’s angular velocity

is close to constant, the velocity of the robot that minimizes the
MSE of the result for all the observed landmarks must be found.
The setting is similar to Eq. (4), but this time

1βi = (βci − θ)− βmirr i .

In other words, we have to solve the following minimization
problem:

avrob = argmin
n∑
i=1

1β2i

n
, (9)

where1βi = (βci − θ)− βi(1− avrob/avmirr).
The function of the MSE versus the approximated angular

velocity is close to parabolic and smooth, as can be seen in Fig. 9.
This is because (βci − θ) changes only slightly yielding a parabolic
function in avrob.
In such cases, when a single minimum exists, Brent’s method

of parabolic interpolation in one dimension [20] can be applied to
search efficiently for the minimum of the error function. Fig. 10
shows the results of the correction of the localization during the
robot’s rotation. In this experiment the robot was rotating at
speeds of up to 45° per second around its axis at a fixed location.
170 scans were taken during the experiment and for each scan the
angular velocity was estimated. The corrected results lie within a
circle of diameter 2 cm, while the raw results are scattered within
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Table 3
An example of a landmarks set with a misidentified landmark (28).

Index 2 4 7 8 15 21 26 28

X 524.0 −78.1 523.8 −429.3 71.1 −339.1 −434.4 523.4
Y 192.7 458.3 −2.1 −25.4 −546.9 −512.6 106.3 68.4

Bearing 2.88 1.33 3.28 −0.13 −1.59 −0.94 0.15 2.13

Error value Active

0.68 + + + + + + + +

1.46 (+) + (+) − − − − (+)
1.26e−4 − − − (+) (+) + − (+)
2.32e−7 + (+) + + + (+) (+) −

–2 –1 0 1 2
0

1

x 10
–4

Fig. 9. MSE of a scan versus assumed robot angular velocity. The minimum point
corresponds to the correct angular velocity of the robot.
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Fig. 10. Correction of the localization results during robot rotation. The axes are
the coordinates of the scene in cm. The points are the localization system outputs.
The distorted results are shown on the left and the corrected results are shown on
the right.

a 30 cm diameter. The sum of the MSE over the set is 2.8e−5 for
the corrected results as compared to 1.7e−2 for the initial results.
As can be seen from the results, without the correction localization
is simply not possible during robot rotation.
As a result of our experiments we conclude that the correction

obtained from modeling robot rotation far exceeds the correction
due to modeling robot translation. We decided that for robots that
move straight slower than 4 m/s while the average distance to
the observed landmarks is greater than 2 m, the small increase in
accuracy is not worth the increased complexity and the additional
recognized landmarks required to deal with errors resulting from
straight motion.

6. Misidentification of landmarks

In landmark-based localization systems, the sensor has to
identify each landmark and measure its bearing. Occasionally a
small number of landmarks will be misidentified. The meaning
of such an error for the localization system is that it detects a
landmark at a completely incorrect angle. In order for a localization
system to be robust, this problem has to be addressed.
In order to overcome the problemof indexmisidentification,we

must perform the following steps.

1. Detect the existence of index misidentification.
2. Eliminate the misidentified landmarks from the scan.
3. Calculate a result based on the landmarks that were identified
correctly, without losing the scan.

The error values that appear due to index misidentification
are greater by an order of magnitude than the error values that

remain after the previous corrections. Thus, it is easy to detect
index misidentifications. The problem that remains is to find the
misidentified landmarks. We treat it as a set of measurements
that contain a majority of true noisy measurements and several
grossly erroneous measurements. RANSAC is a generic technique
for treating such cases [18]. Based on itwe formulated an algorithm
for detection ofmisidentified landmarks, presented in Algorithm2.
The algorithm treats a set of n bearings I for which a high

MSE was computed. d is an experimentally determined threshold
value, chosen to identify exceptionally high angular errors. The
advantage of the RANSAC-based approach is that it performs the
localization at most K times. Its disadvantage is its probabilistic
nature which leads to incompleteness. The probability to miss the
correct solution perr is
perr = (1− pcorr s)K ,
where pcorr is the probability that a landmark is correctly identified,
s the number of landmarks selected at random, and K the number
of iterations performed. Assume for example that pcorr = 0.9 and
using the value of s = 5. We chose K = 20 for which the value
obtained for perr is 2e − 8. Under these conditions the probability
of the RANSAC-based procedure to fail is negligible.

Algorithm 2 Detection of misidentified landmarks
1: for i = 1 to K do
2: Choose at random 3 landmarks (5 landmarks if the robot

moves) from I and denote this set A.
3: Calculate the localization result for the set A and the MSE. If

the robot moves, estimate also the angular velocity.
4: S = ∅.
5: for Each landmark b ∈ I\A do
6: Compute the angle βcb according to Eq. 2.
7: Compute∆βb according to Eq. 3.
8: if∆βb < d then
9: consider that landmark b ‘‘agrees’’ with the localization

result of set A, and therefore S = S
⋃
{b}.

10: end if
11: end for
12: If |S| > |I\A|/2 accept the result of the set S and terminate.
13: end for
14: Report failure.

A typical run of the RANSAC-based method is presented in
Table 3. The upper part of the table contains the landmark indices,
locations and bearings. The top row of the bottom part shows
a result based on all the observed landmarks, that invoked the
RANSAC-basedmethod because of its high error value. In the other
rows of the bottom part ‘‘(+)’’ denotes landmarks belonging to
the set A from which the localization was estimated, ‘‘+’’ denotes
landmarks belonging to the set S of landmarks that agree with the
localization result, and ‘‘-’’ denotes landmarks which do not. In the
first two tests the size of S is only one. In the third test, it was
four. The remaining landmark 28 was the misidentified landmark.
It appeared in the first two trials and therefore yielded incorrect
localizations which were discarded by the algorithm.
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Fig. 11. (a) Placement of the camera relative to the robot; (b) MRV4 mobile robot with a calibration grid mounted on it, and the relevant coordinate frames.

7. Testing the system

To test the localization system, we compared its results
to the results of another method that measures position and
orientation of the robot using a camera and a checkered board.
We used the camera calibration toolbox [21] to perform an
alternative localization. Its function ‘‘Comp. Extrinsic’’ computes
the transformation matrix from the reference frame of the
calibration grid to the camera reference frame, cgT . A high-
resolution and sensitivity camera was used, in order to ensure
accurate results. The camera was placed as shown on Fig. 11a.
The grid was mounted on the robot, and for some of the
measurements of the localization system, corresponding grid
location and orientation measurements were taken. To avoid
smearing, images were taken only when the robot was stationary.
These corresponding measurements test the global correctness of
the system, while the experiment in Section 5 demonstrates the
local correctness while the robot is in motion. An image of the
robot with the mounted grid and the relevant coordinate systems
is shown in Fig. 11b.
An image of the grid at the room’s coordinates origin point

was taken in order to extract the transformation matrix from
the camera system to the room origin, crT . From each image,

c
gT

was extracted. Then, it is possible to calculate the transformation
matrix from the room reference frame to the grid reference frame:
r
gT =

r
cT ·

c
gT =

c
rT
−1
·
c
gT . There is a constant transformation

g
RT

between the robot reference frame and the grid reference frame.
This transformation is estimated as the average transformation
computed from all the images between these coordinate frames.
We are interested in the X and Y translation components of rRT =
r
gT ·

g
RT , and its rotation θ in the

rX, rY plane.

Experimental results

In the experiments we used a Denning Robotics MRV4 mobile
robot with a LaserNav laser sensor. A new setup of 10 landmarks
was used for this experiment, and the system was fully re-
calibrated. The robot moved on curves between 15 stops, while
measuring its position continuously. At each stop an image of the
grid was also taken. The standard deviation of robot localization
using the Camera Calibration Toolbox for the rX and rY axes
respectively was (3.8, 2.5) mm. This STD was calculated internally
by the camera calibration toolbox. The difference between the
localizations was on average (1.7, 2.5) mm, with the STD of (2.1,
1.7) mm. This shows that the localization system STD is bounded
by (5.9, 4.2) mm. The angular error STD derived in the same way
was 0.07°. These results confirm the accuracy found in the previous
experiments,±1.5 cm.
Fig. 12 plots part of the results. The results show that during

the motion between the stationary points the localization results
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Fig. 12. Robot positions and orientations rotated clockwise by 90°measured by the
camera when the robot was stationary (black asterisks and thick lines), and by the
localization system (black dots and thin lines). The axes are the scene coordinates
in mm.
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Fig. 13. Comparison between the localization results without (cyan and green) and
with (red & blue) the corrections, and the camera basedmeasurements (black). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

are smooth and frequent. Their local accuracy has been shown in
Section 5.
Fig. 13 compares the results obtained with and without

the various corrections described in this paper. Two of the
motion sequences from Fig. 12 are shown with and without the
corrections. Note that the corrected motion is much smoother
and the localization results are much closer to the ones obtained
by the vision system. In the experiment several occurrences
of misidentified landmarks occurred. The algorithm dealt with
these cases correctly. When no corrections were performed the
localization results yielded gross errors yielding errors of up to
600 cm. We therefore do not show these results in the figure.
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Fig. 14. Comparison between the localization errors without and with the
corrections (except landmark indexmisidentifications) with respect to the camera-
based measurements. The confidence measure values are also shown. The values
before the correction are plotted in blue as 100% whereas the measures with the
correction (in red) are scaled respectively.

Finally, in Fig. 14 a comparison of the location and orientation
results, error values and their variances are shown together with
the confidence measure values. The measures are only compared
when the robot is stationary so the vision-based localization can
be performed accurately. Still, the reduction in the positional error
and confidencemeasure are by factors of 4-5. The correction in the
orientation is more modest.

8. Discussion and conclusions

In this paper we described the steps that have to be taken to
transform an efficient triangulation method and an off-the-shelf
landmark bearings sensor to a complete localization systemwhich
yields accurate and robust performance.With these enhancements
the localization system has been incorporated into a mobile robot
application. The robot works successfully in an environment with
obstacles and areas that it should avoid. The localization system
enables the robot to plan paths, to avoid areas out of its workspace,
and to reach important locations like the docking station or the
automated storage device.
A simple extension to our algorithm enables automatic addition

of new landmarks to the system. The robot has simply to traverse
the workspace, record the bearings of the new landmark, calculate
its rough location and then run the optimization procedure from
Section 4.2.
At this stage our results can be used within the framework of

an extendedKalman filter aswas done in [17,11]. However,making
themaximal effort to generate themost accurate and robust results
from a single bearings measurement of a landmarks set, as was
presented here, is a prerequisite for a good EKF-based localization
system.
To increase the availability of data for localization when

landmarks are occluded, it is possible in the future to deal with
cases in which less than the minimal number of landmark bearing
measurements are available at a single observation, within the
framework of the EKF or a particle filter. This will enable mobile
robots and AGVs to perform better in dynamic environments
where landmarks are frequently occluded by moving objects.
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