Pattern mining in system logs: opportunities for pocess
improvement

Dolev Mezebovsky, Pnina Soffer, and llan Shimshoni

University of Haifa, Carmel Mountain 31905, Haifardel
dkmezebov@gmail.conspnina@is.haifa.ac,iishimshoni@mis.haifa.ac.il

Abstract. Enterprise systems implementations are often apaoiad by
changes in the business processes of the orgamgati which they take place.
However, not all the changes are desirable. In ith@nmplementations it is
possible that the newly operational business psoeguires many additional
steps as “workarounds” of the system limitatioms] & hence performed in an
inefficient manner. Such inefficiencies are reféettin the event log of the
system as recurring patterns of log entries. Odentified, they can be resolved
over time by modifications to the enterprise systé&adressing this situation,
the paper proposes an approach for identifyingfizieft workarounds by
mining the related patterns in an event log. Theepacharacterizes such
patterns, proposes a mining algorithm, and rulespf@ritizing the required
process improvements.

Keywords: Process mining, Enterprise systems, Event log

1 Introduction

Enterprise systems implementations are often acaoieg by changes in the
business processes of the organizations in whieh téike place. In fact, the desired
change in the business processes is in many caseasf the reasons that motivate the
enterprise system implementation. Changes in tlsnbss processes can also stem
from the need to adapt the enterprise to the etisergystem rather than the other
way around J0]. In such cases, some process changes can bsdee
improvements relatively to the original processasrgo the implementation, but not
necessarily all of them.

This is especially true in implementations thattak‘vanilla” strategy15], in which
the system is implemented as it is with minimaltooszations and adaptations. In
such situations, a typical scenario would be thatrtewly operating business process
is still capable of achieving its operational gdait requires many additional steps as
workarounds of the system’s limitations. Thus, duthievement of operational goals
is at the cost of more effort, resources, and time.

To illustrate the situation, we will consider tl@léwing case taken from a university
and use it as a running example throughout thismpdp the university, a student
registers for a program, and may decide to switthanother program while he
studies. Prior to the implementation of an entegpgaystem, changing the program to
which a student was registered was done throughjacy system. When the secretary

Dolev Mezebovsky, Pnina Soffer, and llan Sitioni

was reporting a change in a student’s progranthalcourses the student had already
taken were “converted” to the new program. Then gheretary could specifically
remove the credits of the courses which were Hevaat for the new program. Such
activity is not supported by the enterprise sysiemplemented in the university.
Hence, when a student wishes to change the progeaisiregistered to, the secretary
has to separately detach all the course creditsttiteent already has, and attach them
again under the new program. This task is both tioressuming and error-prone.
Typically, such situations arise shortly after thgstem becomes live, and are
intended to be addressed later on, as incremengabivements of the already running
system. For example, such an improvement coulctcbieeed by adding a function to
the university enterprise system. This function ldoautomatically detach all the
credits of a student and attach them again undeewa program, while all the
secretary has to do is to indicate the program gdadowever, since this may be the
case with a large number of processes, they caalhdite immediately addressed.
Furthermore, as time passes by, the people whatepére process may get used to
the inefficient way of performing their task, andus they will not require its
improvement. As a result, the process will remaiits inefficient form. The problem
which is then faced by the organization is firstidentify the inefficient processes,
and second, to prioritize them so they can gragumel improved. To the best of our
knowledge, this problem has not been addressear so f

This paper proposes an approach for identifying prdritizing requirements for
process improvement. Specifically, we address iciefft processes whose
inefficiency stems from workarounds forced by a lyemtroduced enterprise system.
The identification is based on mining event logsha system, and prioritization is
based on the frequency of these workarounds artdednmagnitude.

The situation addressed here is when technology (@eterprise system) drives
changes in the business processes, albeit in agsinadle way. The approach uses a
technological solution (mining event logs) to driesirable changes in the processes.
The remainder of the paper is organized as folld®ection two demonstrates and
characterizes the reflection of workarounds indtient log of a system; Section three
provides a basic formalization of a pattern in @ fite and an algorithm for pattern
mining; Section four addresses the prioritizatiow autilization of the patterns for
process improvement; Section five discusses thpgzed approach as compared to
related work; conclusions are given in Section six.

2 The reflection of workarounds in an event log

Our premise is that a series of steps that logicadflect an activity from the
business process point of view is reflected inghent log of an enterprise system as
a recurring pattern performed by the same usehisnsection we illustrate this by an
example related to the above mentioned universiggss.

Although a log file includes actions performed liytlae system users, we show in
our example (Table 1) only the log entries thaateeko one user (YPRESS). Table 1
includes log entries, specifying the process codd amame, where “process” is
actually a transaction, the timestamp (date ance)tinthe user name, and the

Pattern mining in system logs: opportunities for pocessmprovement

parameters to which the transaction applies (in thse course name, program name,
and student name). All entries include two typegufcesses (transactions): attach
course and detach course. They all apply to theesatadent (Fredrick), three
programs (MIS Major, CS Minor, and MIS Minor), awifferent course names.
Finally, all the entries relate to the same daté aere performed within about 15
minutes.

Table 1.Event Log Example

Row |Process Process Date Time User |Student Course | Program
Num Name Name Name Name Name

1 PR12 Attach | 15.06.08| 13:45:52 YPRESS Fredrick Linear MIS
Course Algebra Major

> PR12 Attach | 15.06.08| 13:46:26 YPRESSFredrick| Algorithms MIS
Course Major

3 PR12 Attach | 15.06.08| 13:47:44 YPRESS Fredrick| Data MIS
Course Structures Major

4 PR11 Detach | 15.06.08| 13:49:18 YPRESS Fredrick Linear CS Mino
Course Algebra

5 PR11 Detach| 15.06.08| 13:49:24 YPRESS Fredrick| Algorithms | CS Minof
Course

6 PR11 Detach | 15.06.08| 13:49:31 YPRESS Fredrick Data CS Mino
Course Structures

7 PR12 Attach | 15.06.08| 13:54:19 YPRESSFredrick| Information MIS
Course Technology] Major

8 PR11 Detach| 15.06.08| 13:55:28 YPRESS Fredrick| Information MIS
Course Technology] Minor

9 PR12 Attach | 15.06.08| 13:56:40 YPRESSFredrick Business MIS
Course Intelligence| Major

10 PR11 Detach | 15.06.08| 13:58:20 YPRESS Fredrick Business MIS
Course Intelligence| Minor

11 PR12 Attach | 15.06.08| 13:59:35 YPRESSFredrick| Programmin MIS
Course Design Major

12 PR11 Detach | 15.06.08| 14:01:29 YPRESS Fredrickl Programmin MIS
Course Design Minor

The short time frame, within which a series of @piens concerning a recurrent
set of parameters was performed, may indicate terpathat stands for one “logical”
activity. Our goal is to be able to automaticathgmtify such patterns in an event file,
and successfully indicate a larger activity that haen done by the user. Note that the
patterns we address do not bear a meaning whidinigar in any sense to the
workflow patterns 4]. They are not generic. Rather, they capturecarrent set of
related log entries. To get a better understandbut patterns and their structure, we
represent the log entries of Table 1 graphicalllgion 1 and Fig. 2.

Dolev Mezebovsky, Pnina Soffer, and llan Sitioni

Ti Process User Student Program Course
ime (Event) (Event Creator) (Event’s Object) (Target Object) (Event Property)
13:45:00
1
13:46:00 Linear
2 Algebra
PR12
13:47:00 3
13:48:00 Algorithms
4 YPRESS — Fredrick
13:49:00
e |
PR11
Data
13:51:00
v

Fig. 1. A graphical representation of rows 1 to 6 of Table

Fig. 1 shows two distinct sets of entries alongetifhe first three entries perform
the operation PR12 (attach course) to MIS Majorgpam with three different
courses, and the last three entries perform theatipe PR11 (detach course) to CS
Minor program with the same three courses. Alldperations are performed by the
same user to the same student. In Fig. 2 no swtimati sets of operations exist over
the time axis. Rather, the operations PR12 and P&fernate. Still, they are
performed to two programs of the same student gntidosame user.

Course
Process User Student Program (Event Property) or

Time (Event) (Event Creator) (Event’s Object) (Target Object) (Independent Object)

13:54:00

13:55:00
Information
Technology
13:56:00

Business
Intelligence

13:57:00
YPRESS |—w Fredrick

13:58:00

13:59:00 Programming

Design

14:00:00

14:01:00

14:02:00

v
Fig. 2. A graphical representation of rows 7 to 12 of €abl

We classify all these entries as belonging to tames pattern, and draw the
following general indications for the existence afpattern. (a) All the entries are
performed by the same user and within a limitecetframe. The maximal time frame
for pattern identification can be given as a patemé& an automated application
which will identify patterns in a system log. (bhd& entries have at least one
parameter whose value is fixed. We term the fixathmeter(s) thénvariant set of
the pattern. (c) The entries have at least onempatea whose value is different for
different entries. We term the parameter(s) whoakies changes throughout the
entries thevariant set of the pattern. As to the order of performing bperations in
the pattern, we do not consider it mandatory féked order (e.g., all PR12 and then

Pattern mining in system logs: opportunities for pocessmprovement

all PR11, or alternating operations). Since we m@ssuhat for the person who
performs these operations they all belong to orgickh activity, the specific
execution order is not necessarily of importance.

In the following section we formalize the patterefidition and propose an
algorithm for pattern detection.

3 Pattern Mining

3.1 Basic concepts

To formalize the pattern concept, we need to stamroviding formal definitions of
an entry in a log file and its components.

User— A field in the log entry that indicates who matle commit of the event.

User € {System Users}

Timestamp — The time the log entry was committed.

Timestamp > 0

Operation — The type of activity (transaction) that was penfed.

Operation € {System Operations }

Operand — Parameter of a mathematical function. In a lgentry an operand is a
pointer to an object or a pointer to a parametérevaf the function (transaction).
Operande {Operands : Operands ¢ @}

ORSO —An ordered set of operands, with at least one opkirathe set.

ORSO= (< Operands > |[Operands| = 1)

Entry — An event in the log file, which is representgdabtuple. The entry includes
user, timestamp, operation and an ordered lispefands.

Entry =< User, Timestamp, Operation, ORSO >.

TimeFrame — Delta of timestamps that are used to set pastamhand end entry.
TimeFramez [(end entry).timestamp - (start entry).timestamp]

For defining a pattern, we rely on the followingotassumptions.

1. For every two entries in a log file, if they dioypthe same operation, then their
number of operands, order of operands, and typpefands are the same.

2. Each log file entry has all the needed operémg®rform the event transaction.
Both these assumptions are logical when considenngvent log. First, the operands
characterize an operation, hence it makes senasstame that entries with the same
operation have the same set of operands. As \weletis no reason to believe that the
order in which the operands are given in the Idg fiaries in different entries.
Second, we consider a complete log file withoutsinig information.

Based on the above definitions and assumptionsnes now define a pattern. We
consider a pattern as a combination of entriesshtisfy certain conditions. For the
entries to relate to a single “logical” activithely need to (a) relate to the same set of
operands, and (b) include repetition in the valoEsome fields and some fields
whose values differ. Fields whose value does nanhgé in the pattern are termed
invariant while the others are termedriant.

Dolev Mezebovsky, Pnina Soffer, and llan Sitioni

For a legal pattern the user must be invariant @ed timestamp variant with a
timeframe smaller than a user defined constanaddition, the union of operation
and operands must have at least one invariantdigidone variant field. We represent
a pattern as an entry whose components are sétsatide variant or invariant. Note
that:
If Sis a set such th&e {invariant} thenf§ =1
If Sis a set such th&e {variant} then §>1
ORSO includes the same operand types for all entrigmenTa pattern is formally
defined as:
Pattern = < User, Timestamps, Operations, ORSOs >:
User € {invariant}, Timestamps € {variant}, ORSO # 0,
(Operations U ORSOs) N {invariant} + @
(Operations U ORSOs) N {variant} # @
The order of components in the pattern is the sasnia the entry. A log file entry is
by definition a trivial pattern.

3.2 Pattern Finder Algorithm

For two given patterns (entryA and entryB), we wdéitermine if their composition
yields a pattern using the algorithm DIPFinder d&ga in Fig. 3.

The algorithm verifies that the entries have thenesauser and fall within the
predetermined timeframe. Then it goes through tbpérations and list of operands,
compares their values, and classifies them asntagiainvariant. If there is at least
one variant and at least one invariant, the algoriteturns the pattern (specified as a
combined entry).

Entries that were recognized as patterns will besickered as a single entry for the
next iteration of recurrence. The algorithm uses@able patternEntry that contains
the specific values of the pattern invariants aetd sf values for the pattern variants.
This variable will be returned by the function irder to be used by the algorithm in
the next iteration.

3.3 DIPFinder Example

We demonstrate the algorithm by applying it to datan Table 1 as inputs. Fig. 4
shows the entries that relate to rows 1-6 in Tdbl&he rest of the entries can be
similarly analyzed.

Pattern mining in system logs: opportunities for pocessmprovement

£D PFinder entry (entryA entryB, TinmeFrane)

e

entryB. ORSO i] . ordSet Val ues or
entryB. ORSJ i] . ordSet Val ues or
entryA ORSO i].ordSet Val ues then

entryB. ORSO i] . or dSet Val ues;

entryA. ORSO i] . or dSet Val ues

If (entryA « Enpty and entryB #Enpty)
Tf = max(entryA timestanp L entryB.tinmestanp)- min(entryA tinmestanp u
ntryB. tinmestanp);
If Tf #0 and entryA user = entryB.user and Tf < TineFrane then
invari ant Counter « 0O;
vari ant Counter -~ O;
patternEntry ~ Enpty;
patternEntry.user = entryA user;
patternEntry.tinestanp = entryA tinmestanp u entryB.tinestanp;
opSet Lengt h « entryA. ORSO. | engt h;
If entryA oprtSet - entryB.oprtSet or
entryA oprtSet c entryB. oprt Set or
entryB.oprtSet = entryA oprtSet then
i nvari ant Count er ++;
patternEntry. operation = entryA operation y entryB.operation;
El se
vari ant Count er ++;
patternEntry.oprtSet = entryA oprtSet u entryB.oprtSet;
End
For i = 1 - opSetLength do
If entryA. ORSO i].ordSet Val ues

entryA. ORSO i] . or dSet Val ues
entryB. ORSO i] . or dSet Val ues

patternEntry. ORSJ i] . or dSet Val ues «
entryA. ORSO i] . ordSet Val ues v

i nvari ant Count er ++;
El se /1 we nmet sonme new val ue/s
patternEntry. ORSO i]. ordSet Val ues «
entryB. ORSO i].ordSet Val ues wu

vari ant Count er ++;
End // end for |oop
I f variantCounter = 0 or invariantCounter= 1 /* no pattern */
patternEntry ~ Enpty;
End
return patternEntry
End
End
return Enpty

Fig. 3. DIPFinder algorithm

Q):

@
©)
4
®)
(6)

< YPRESS, '13.45.52', PR12, Fredrick, ‘Linear Algebra’, 'MIS Major'>

: < YPRESS, '13.46.26', PR12, Fredrick, 'Algorithms’, 'MIS Major>

: < YPRESS, '13.47.44', PR12, Fredrick, 'Data Structures', 'MIS Major'>
: < YPRESS, '13.49.18', PR11, Fredrick, 'Linear Algebra’, '‘CS Minor'>

: < YPRESS, '13.49.24', PR11, Fredrick, 'Algorithms’, 'CS Minor'>

: < YPRESS, '13.49.31', PR11, Fredrick, 'Data Structures', 'CS Minor'>

Fig. 4. Log entries for rows 1-6 in Table 1
We select entries (1) and (2) as first inputs toagorithm. Timeframe for the

process is set to 20 minutes. The output is thebawed entry (1, 2).
DIPFinder[(1): < YPRESS, '13.45.52', PR12, Fredrick, ‘Lingtgebra’, 'MIS Major'>,

(2): < YPRESS, '13.46.26', PR12, Fredriglgorithms', 'MIS Major'} —
(1,2) : < YPRESS, ('13.45.52', '13.46.26'), PRARdrick, (L.A., 'Alg.), 'MIS Major'>

Dolev Mezebovsky, Pnina Soffer, and llan Sitioni

We will now apply the algorithm again to the conddrentry (1, 2) and to entry (3).
DIPFinder[(1, 2), (3] =
[(1,2): < YPRESS, (13.45.52, '13.46.26"), PRE2drick, (L.A., 'Alg."), 'MIS Major'>,

(3): < YPRESS, '13.47.44', PR12, FakdrData Structures', 'MIS Majof>~+

(1,2, 3): < YPRESS, ('13.45.52', '13.47.4431P, Fredrick, (L.A., ‘Alg.', 'DS), 'MIS Major'>
A similar processing of the entries 4, 5, and édgehe following output:
(4, 5, 6): < YPRESS, ('13.49.18', '13.49.31"), PR&redrick, (L.A.", 'Alg.", 'DS'), 'CS Minor'>
Next, we try to process together the pattern enfti¢?,3) and (4,5,6).
DIPFinder[(1, 2, 3), (4, 5, §)=

[, 2, 3): < YPRESS, (13.45.52, '13.47.44"), BREedrick, (L.A., 'Alg.', 'DS"), 'MIS Major;>

(4,5,6): < YPRESS, ('13.49.18', '13.49.31"), PRredrick, (L.A.", 'Alg.', 'DS'), 'CS Minor}>—

(1,2,3,4,5,6): < YPRESS, (13.45.52', '13.49,3(PR12, PR11), Fredrick, (LA, 'Alg.", 'DIMIS

Major', 'CS Minor') >

We have a pattern in which the User is invariams, dtart and end times meet the
limits of TimeFrame, the operation is variant (PRPR11), and there is at least one
invariant operand — the student 'Fredrick’. Witls ttecognition of pattern we can
draw a conclusion that this is a set of relatedviiets, which may stand for one
“logical” activity which is inefficiently performedoy the users. To make further
conclusions we have to determine what the purpdsthi® set of activities is, or
basically what it does. Section 4 deals with thisstion.

While the DIPFinder algorithm is capable of incretadly aggregating log entries
into a pattern, some higher-level algorithm id stdeded for managing the entire log
file, and particularly for reducing the complexdfthe search. This algorithm, which
is currently under development, will be a versida divide and conquer algorithm. It
will recurrently employ DIPFinder for combination$ entries whose size increases
gradually until all patterns are identified.

4 Utilizing the identified patterns for process impovement

Having identified patterns in the log file, it isllsnot certain that they really stand
for a “workaround” of the limitations imposed byetlenterprise system. It may be
possible that they reflect the normal and expeuatay the business process should be
performed. For example, when a student registera tmumber of courses at the
beginning of a semester, this will be manifested aapattern in the log file.
Nevertheless, this is a series of operations wklobuld be performed sequentially
and do not require process improvement. Hencegnpatthat are identified serve as a
basis for interviews with the system users, tofydtat they stand for inefficiencies
in the business processes.

Once patterns that stand for inefficient procegsetion are identified, the process
can be improved by introducing changes to the prisar system. Such changes can
be, considering our example, a designated userfantein which the user indicates
the student whose program should be changed as asethe source and target
programs. The attaching and detaching of courst®is automatically performed by
the system. However, since many such patterns magdntified, some prioritization

Pattern mining in system logs: opportunities for pocessmprovement

should be made for performing the required changesthis purpose, we propose the
following prioritization rule.

Assuming the log file relates to a given periodiwfe (e.g., a month), it is possible
to calculate the following metrics:

The count of a pattern: given a pattern P, its coupti€the number of times the
pattern appears in the log file.

The average size of a pattern: given a pattern P, its average ABgis the average

number of entries it includes. Let P occus @nes in a log file, so occurrence i

includes pentries. ThedS, = Cizicjl n;.
P

Theweighted count of a pattern (weighted by size): SE AS*Cp.

Priority for process improvement can be given tétggas whose occurrence is
frequent and which entail a relatively large numbieentries, namely, patterns whose
weighted count is high. Alternatively, it is podsilto consider the actual time span of
a pattern (average or median) instead of the c@unth a measure does not assume
that the entries of different patterns are equithe-consuming.

Note that the patterns and the proposed prioritysrare merely an indication of
potential improvement. Usually, when metrics aréapplied, prioritization can only
rely on human considerations. These are influehgetthe interaction with the system
users who raise their complaints. The proposedsrptevide an objective measure
which can be used, possibly in addition to otheiorgiization considerations.
Additional considerations are mainly related toc$fie business and organizational
priorities which can only be assigned by humarthénorganization.

5 Related work

The approach presented in this paper relates t@rbe of process mining, since it
analyzes data in a system log in order to get sonuerstanding about a business
process. In this section we review process minitegature to establish the unique
features of our approach.

Process mining primarily aims at discovering a pescmodel based on the process
reflection in an event log of a system. Processasdre actually performed by users
have in most cases a flow which is different thaa flow that the process designing
team has thought of. Process mining is capablesabdering these actual flows and
composing an actual process model. The motivatioéveloping this approach was
to find an alternative way of analyzing processeless time than the traditional way
of interviews and observations. Creating a workfldasign is a complicated time-
consuming process and typically there are discr@parbetween the actual workflow
processes and the processes as perceived by thegemaent 18]. In addition the
analysis made by people is error prone, may leadntonsistencies between
individual views of the same process, and is suhbj@@ossible incompleteness of
information collected from employees about the pssdB].

An early work that relied on event logs for discong behavioral patterns was
reported in 9]. The technique is based on a probability analgdithe event traces.
Metrics such as frequency and regularity of theneweccurrences behavior were
saved by the system. This technique is useful inymiasks of software engineering,

Dolev Mezebovsky, Pnina Soffer, and llan Sitioni

including architecture discovery, reengineeringgrusnteraction modeling, and
software process improvement.

Relating specifically to business processt#® main challenges involved in
extracting a process models include definitions edige conditions identifying
concurrency of events, and overcoming diversityclwHeads to complex models that
are difficult to interpretThe presence of duplicate activities, hidden activjtiesd
non-free-choice constructs are also challenges vehenocess mining technique is
applied.

Besides the construction of an actual process m@idetess mining has served for
other purposes as well. Delta analysis and confocedestingcompares the actual
process with some predefined process, and detéf¢sedces between the model
constructed in the design phase and the actuahasevas registered in the log files
[1]. Another use of mining techniques was presented6in If focuses on the
performer of the event and derives social netwarsisg this information. Another
investigated aspect, which is quite close to ogu$p is efficiency analysis based on
timestamps 3]. Timestamps indicate activities which cause yla the process. In
contrast, we use the timestamps as indication dbrac that were performed
sequentially and within a short period of time,rapresenting an inefficient way of
performing one “logical” activity.
Pattern discovery is mentioned in several worksaling with flexible processedT],
the mining approach is to divide the log file tonfmgeneous subsets by using a
clustering technique, and then to build a procesdahfor each subset. Our pattern
discovery approach differs from that since we lémka pattern (subset) performed by
a single user, whilel[7] does not. Pattern discovery is also possib[@Jinwhere the
event log is clustered iteratively so each of tbsulting clusters relates to a set of
cases that can be represented by a process mbitelvdrk relies on the frequency of
an event for pattern discovery regardless of petyn contrast, our work identifies a
pattern based on event types regardless of tlegjuémncy.

Process mining has been used for various domaingaiticular, healthcarel],
as an environment of very dynamic behavior, wagatdd as a challenging domain,
where process mining can significantly contribuexamples include 12] where
process mining techniques discover paths followggdrticular groups of patients.
Three different perspectives were analyzed usiegRtoM framework 11]: control
flow, organizational, and performance. Another domahere process mining was
applied is the public sectob], where it was used for office work analysis. the
domain of industry and supply chait4] the discovered process enabled analysis
across the supply chain, and could be used ad &otdnprove business processes in
networked organizations. The application in thevgafe development domain raised
several challengesl§]. Since process models and software process Isnadser
different aspects, the work considered the mair@sphat can connect between the
models such as the control flow aspect, the inféionaaspect which records the data
produced by the event, and the organization aspédd. approach is somehow close
to our approach, but our goal is differedthe use of process mining in the
security domain was presented j, usingprocess mining techniques to analyze
audit trails for security violations. The purposasio support security levels ranging
from low-level intrusion detection to high-leveafrd prevention.

Pattern mining in system logs: opportunities for pocessmprovement

Our approach differs from the above reviewed preceming works in two main
issues. First, as opposed to the process miningo&ioneating a process model, we
use the system event log with the aim of discogedanpattern which may reflect a
single activity from the user’s point of view. Henahe focus of our approach is
narrower than the entire process model aimed aprogess mining approaches.
Second, the specific use for which these patterasndended is the identification of
process inefficiencies resulting from a lack ofteys support. This specific use has
not been proposed yet.

6 Conclusions

The paper deals with two ways in which technologg drive business processes.
First, the introduction of an enterprise systemultssin changes in the business
processes. However, these are not necessarilyalilsichanges. Second, mining
technology can be utilized in such situations dsivger for process improvement.

The problem of inefficient processes as a resuktrdérprise system adoption is
very common in practice (e.gl0]), and, to the best of our knowledge, has not
received a technology-based solution so far. Onetribuition of the paper is,
therefore, making this problem explicit and disé¢ugsit. Besides that, the main
contribution of the paper is the approach propdeedddressing such situation. This
includes (a) a clear definition of the reflectiohimefficient workarounds as patterns
in an event log of the system, (b) an algorithmgattern identification, and (c) rules
for prioritizing improvement requirements.

The algorithm presented here is still an initigpstowards a complete and efficient
algorithm, needed for addressing the high volumdaté in a real system log file. In
future, we intend to complete the development amplémentation of the algorithm
and to apply it to real data of the university cstsely, as well as in other domains.

References

1. van der Aalst W.M.P.: Business alignment: usingcpss mining as a tool
for Delta analysis and conformance testing. Reqems Engineering
Journal 10(3), pp.198--211. (2005)

2. van der Aalst W.M.P. and de Medeiros A.K.A.: Praceddining and
Security: Detecting Anomalous Process Executiors @hecking Process
Conformance. Second International Workshop on Sgclasues with Petri
Nets and other Computational Models (WISP 2004 Bdsi and R. Gorrieri
and F. Martinelli, STAR, Servizio Tipografico Aredella Ricerca, CNR
Pisa, Italy, pp. 69--84. (2004)

3. van der Aalst W.M.P and van Dongen B.F.: Discowgriworkflow
Performance Models from Timed Logs. In: Y. HanT8i, and D. Wikarski,
(eds.), International Conference on Engineering d&beployment of

Dolev Mezebovsky, Pnina Soffer, and llan Sitioni

10.

11.

12.

13.

14.

Cooperative Information Systems (EDCIS 2002), vaug#80 of Lecture
Notes in Computer Science, pp. 45--63. SpringetageBerlin. (2002)

van der Aalst W. M. P., Hofstede, A. H. M. ter, Riszewski, B., and
Barros, A. P... Workflow Patterns, Distributed aRdrallel Databases.
14(1), p. 5--51. (2003)

van der Aalst W.M.P, Reijers H.A., Weijters A.J.M,Man Dongen B.F.,
Alves de Medeiros A.K., Song M., and Verbeek H.M.\Business Process
Mining: An Industrial Application. Information Syains, 32(5) pp. 713--732.
(2007)

van der Aalst W.M.P, Reijers H.A. and Song M.: Digering Social
Networks from Event Logs. Computer Supported Coatpexr Work, 14(6)
pp. 549--593. (2005)

Alves de Medeiros AK., Guzzo A., Greco G., van dalst W.M.P.,
Weijters A.J.M.M., van Dongen B., and Sacca D..cdeéss Mining Based on
Clustering: A Quest for Precision. In: A. ter Hefde, B. Benatallah, and H.-
Y. Paik, (eds.), BPM 2007 Workshops, LNCS 4928.1pf3-29. (2008)

Bandinelli, S., Fuggetta, A., Lavazza, L., Loi, Mnd Picco, G.: Modeling
and improving an industrial software process. EFEE Trans. Softw. Eng.
21, 5, pp 440--454. (1995)

Cook J.E. and Wolf A.L.: Discovering Models of Sefire Processes from
Event-Based Data. ACM Transactions on Software fewying and
Methodology 7(3) pp. 215--249. (1998)

Davenport, T.: Putting the Enterprise into the Emise System. Harvard
Business Review 76(4) pp. 121--131. (1998)

van Dongen B.F., de Medeiros A.K.A., Verbeek H.M,Weijters A.J.M.M.
and van der Aalst W.M.P.: The ProM framework: A neva in process
mining tool support. In: 26th International Confece on Applications and
Theory of Petri Nets (ICATPN 2005), G. Ciardo andDarondeau, LNCS
3536, pp. 444--454. (2005)

Mans R.S., Schonenberg M.H., Song M., van der A&l$11.P., and Bakker
P.J.M..: Process Mining in Health Care. In: L. Azde and A.R. Londral,
(eds.), International Conference on Health Infoicsa{(HEALTHINF'08),
pp. 118--125, Funchal, Maldeira, Portugal, Jan2&~31. (2008)

Maruster L., van der Aalst W.M.P., Weijters A.J.M,Man den Bosch A.
and Daelemans W.: Automated Discovery of Workflonoddls from
Hospital Data. In: B. Krése, M. de Rijke, G. Sche, and M. van Someren,
(eds.), Proceedings of the 13th Belgium-Netherlar@snference on
Artificial Intelligence (BNAIC 2001), pp. 183--19(02001)

Maruster L., Wortmann J.C., Weijters A.J.M.M., arah der Aalst W.M.P.:
Discovering Distributed Processes in Supply Chaficeedings of the

15.

16.

17.

18.

Pattern mining in system logs: opportunities for pocessmprovement

International Conference on Advanced Production a¢@ment Systems
(APMS 2002), pp. 119--128. (2002)

Parr, A.N. and Shanks, G.: A taxonomy of ERP immatation approaches.
Proceedings of the 33rd Annual Hawaii InternatioBahference on System
Sciences,Volume 1, IEEE Press, pp. 1--10. (2000)

Rubin V., Gunther C.W., van der Aalst W.M.P., KiedE., van Dongen
B.F., and Schafer W.: Process Mining FrameworkSoftware Processes.
In: International Conference on Software Processftwaire Process
Dynamics and Agility (ICSP 2007), volume 4470 ofctiee Notes in
Computer Science, pp. 169--181. Springer-Verlaglig2007)

Song M., Ginther C.W. and van der Aalst W.M.P.:cér&lustering in
Process Mining. 4th Workshop on Business Procesdligence (BPI 08).
(2008)

Weijters A.J.M.M., van der Aalst W.M.P.: Processnmg: discovering
workflow models from event-based data. In: B. Kok de Rijke, G.
Schreiber, M. van Someren (eds.), Proceedings ef 1tBth Belgium-
Netherlands Conference on Atrtificial Intelligend&NAIC 2001), pp. 283--
290. (2001)

