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Balanced Exploration and Exploitation Model
Search for Efficient Epipolar Geometry Estimation

Liran Goshen and Ilan Shimshoni, Member, IEEE

Abstract— The estimation of the epipolar geometry is espe-
cially difficult when the putative correspondences include a low
percentage of inlier correspondences and/or a large subset of
the inliers is consistent with a degenerate configuration of the
epipolar geometry that is totally incorrect. This work presents the
Balanced Exploration and Exploitation Model Search (BEEM)
algorithm that works very well especially for these difficult scenes.

The algorithm handles these two problems in a unified manner.
It includes the following main features: (1) Balanced use of three
search techniques: global random exploration, local exploration
near the current best solution and local exploitation to improve
the quality of the model. (2) Exploits available prior information
to accelerate the search process. (3) Uses the best found model
to guide the search process, escape from degenerate models and
to define an efficient stopping criterion. (4) Presents a simple
and efficient method to estimate the epipolar geometry from
two SIFT correspondences. (5) Uses the locality-sensitive hashing
(LSH) approximate nearest neighbor algorithm for fast putative
correspondences generation.

The resulting algorithm when tested on real images with or
without degenerate configurations gives quality estimations and
achieves significant speedups compared to the state of the art
algorithms.

Index Terms— Fundamental matrix, robust estimation.

I. INTRODUCTION

The estimation of the epipolar geometry is an important
task in computer vision. The RANdom SAmple Consensus
algorithm (RANSAC) [1] has been widely used in computer
vision in particular for recovering the epipolar geometry. The
estimation of the epipolar geometry is especially difficult in
two cases. The first difficult situation is when the putative
correspondences include a low percentage of inliers. The other
problem occurs when a large subset of inliers is consistent with
a degenerate epipolar geometry.

In the first case, the number of required iterations is usually
high. A popular stopping criterion in a RANSAC like algo-
rithm is

_ log(1—p) _ —log(l—p)
T log(l—a®) as

; ey

where s is the size of the random sample, I is the number of
iterations, « is the inlier rate, and p is the required probability
[1], [2]. For example, for & = 0.15 the number of needed
iterations for s = 7, s = 3 and s = 2 are [ = 2,695, 296,
I =1,362 and I = 202 respectively, for p = 0.99.

Several approaches have been suggested to speed-up the
RANSAC algorithm. LO-RANSAC [3] exploits the fact that
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the model hypothesis from an uncontaminated minimal sample
is often sufficiently near to the optimal solution and a local
optimization step is carried out only if a new maximum in
the size of the support set of the current sample model has
occurred. The number of samples which the LO-RANSAC
performs achieves a good agreement with the theoretical
predictions of Eq. (1).

In [4] random sampling was replaced by guided sampling.
The guidance of the sampling is based on the correlation score
of the correspondences. The idea of guided sampling is very
promising. However, the correlation score provides only weak
evidence to the correctness of the matches. Using their method
with a more powerful score can yield more significant speed-
ups. This was achieved in the PROSAC [5] algorithm which
exploits the similarity between SIFT [6] features. Generally
speaking, PROSAC exploits the linear ordering defined on
the set of correspondences by the similarity function used in
establishing putative correspondences. PROSAC samples are
drawn from progressively larger sets of top-ranked correspon-
dences. In our previous work [7] the algorithm generates a set
of weak motion models (WMMs). These models approximate
the motion of points between the two images using a smaller
number of matches and thus are computationally cheaper
to detect. These WMMs are used to establish probabilities
that matches are correct. The RANSAC process uses these
probabilities to guide the sampling. WMMs are especially
useful when no good prior knowledge is available for this
task.

Assigning probabilities to putative correspondences was
also used to evaluate the score of possible solutions. Domke
& Aloimonos [8] used probabilities based on Gabor filters for
this purpose.

In [9], [10] it was suggested to use three affine region
to region matches to estimate the epipolar geometry in each
RANSAC sample. To hypothesize a model of the epipolar
geometry, a random sample of three region correspondences
are drawn. Three region correspondences give nine point corre-
spondences. These are then used to estimate the fundamental
matrix F' using the linear eight-point algorithm [11]. Under
this framework s in Eq. (1) is changed from seven to three,
reducing considerably the number of iterations. In [12], which
was performed concurrently with our work [13], two pairs of
affine matches were used. In that case it was assumed that
some information is available about the internal calibration
matrices.

Another approach for dealing with a large number of
outliers is to substitute the combinatorial complexity of finding
a correct set of matches with a search in the motion parameter
space, looking for a set of parameters which is supported by
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a large set of matches [14]. This approach is most effective
when dealing with constrained motion.

The second difficult situation occurs when a large subset
of inliers is consistent with a degenerate epipolar geometry.
This situation often occurs when the scene includes a de-
generacy or close to degenerate configurations. In this case
standard epipolar geometry estimation algorithms often return
an epipolar geometry with a high number of inliers that is
however totally incorrect. The estimation of the fundamental
matrix in such situations has been addressed before. In [15]
a RANSAC-based algorithm for robust estimation of epipolar
geometry in the possible presence of dominant scene plane
was presented. This algorithm exploits the theorem that if five
or more out of the seven correspondences are related by an
homography then there is an epipolar geometry consistent with
the seven tuple as well as with all correspondences related
by the homography. In each iteration the algorithm selects
a sample of seven correspondences. It then detects samples
in which at least five correspondences are consistent with an
homography. This homography is then used to estimate the
epipolar geometry by the plane and parallax algorithm [16].

To illustrate the above difficult situations, consider the
following two examples. Figure 1(a) shows the flowerpot
image scene in which the inlier rate is low and it includes
a dominant degenerate configuration. In this scene 17% out
of the 252 putative correspondences are inliers and 70% of
the inliers lie in a small part of the scene which yields a
degenerate configuration. A computation of the fundamental
matrix based on only inliers from this small space results in
a very unstable fundamental matrix. On this scene RANSAC
often fails to find the correct fundamental matrix. Figure 1(a)
shows a typical result of RANSAC. Dots represent inliers
from the degenerate configuration, circles represent inliers
which do not belong to the degenerate configuration and the
x represents an outlier that RANSAC detected as an inlier. In
this example RANSAC succeeded to find all the inliers that
belong to the degenerate configuration but failed to find any
inliers outside it. This is demonstrated in Figure 1(b), which
shows the square root of the symmetric epipolar distance of
the inlier pair from the fundamental matrix. The distances
of the inliers outside the degenerate configuration are large.
Although, a large number of inliers were found, the precision
of the resulting fundamental matrix is very low. The number
of iterations for this scene according to Eq. (1) for p = 0.99 is
over one million. Figure 1(c) shows another example in which
the inlier rate is 16.5% out of 310 putative correspondences
and it includes a dominant plane degenerate configuration. In
this scene 78% of the inliers lie near the plane. Figure 1(d)
shows a typical result of RANSAC which succeed to find part
of the inliers that lie near the plane and failed to find any inliers
not close to the plane. As a result, the fundamental matrix is
totally incorrect as can be seen in Figure 1(d). The number of
iterations required for this scene according to Eq. (1) is again
over one million.

In this paper we propose a novel algorithm for robust esti-
mation of epipolar geometry. The algorithm handles the above
two difficult cases in a unified manner. The algorithm can
handle not only the planar degeneracy, but scenes that include

a variety of degeneracies or close to degenerate configurations.
The balanced exploration and exploitation model (BEEM)
search algorithm includes a balanced use of three search tech-
niques borrowed from classical general optimization methods
and adapted them for use within the RANSAC framework.
The first technique is global random exploration, which tests
random possible solutions. The second technique is local
exploration which searches for better solutions in the neighbor-
hood of the current best solution, and finally local exploitation
which tries to improve the quality of the model by local search
methods. Moreover, it exploits available prior information, the
distance ratio of the closest to second-closest neighbors of
a SIFT keypoint, to accelerate the search process [6]. The
novelty here is to convert each distance ratio assigned to a
correspondence into a prior probability that the correspon-
dence is an inlier using empirical non-parametric distributions.
We use this probability to guide the sampling process. The
algorithm uses the best found model to guide the search
process, escape from degenerate models and define an efficient
stopping criterion. This is done by a smart sampling strategy.
In addition, we developed a simple and efficient method for
global exploration which is able to estimate the epipolar
geometry from two SIFT correspondences. The combination
of the prior probabilities and the two SIFT estimation method
enables to find estimations after a very small number of
iterations has been tried. This method is only able to provide
an initial estimate for the fundamental matrix and needs all the
other components of the system to yield an accurate result.

Considering the system as a whole, the only slow steps
left are the generation of the features and their matching. The
matching is sped up using the LSH [17] approximate nearest
neighbor algorithm. The generation of the SIFT features can
be accelerated using the approximation described in [18] or a
GPU based implementation described in [19].

The resulting algorithm when tested on real images with
or without degenerate configurations gives quality estimations
and achieves significant speedups, especially in scenes that
include the aforementioned difficult situations.

The paper is organized as follows. In Section II the ex-
ploration and exploitation search techniques are discussed.
Section III describes the generation of the prior probability
for putative correspondences. Our fast method for global
exploration which is able to calculate the fundamental matrix
from two SIFT correspondences is presented in Section IV.
Section V describes a method to estimate the quality of the best
found epipolar geometry model. The details of the algorithm
are presented in Section VI. Experimental results are shown
and discussed in Section VII. The paper is concluded in
Section VIII.

A shorter version of this paper including some of the results
presented here has been presented at ECCV 2006 [13].

II. EXPLORATION AND EXPLOITATION

Any efficient search algorithm must use two general tech-
niques to find the global maximum: exploration to investigate
points in new and unknown regions of the search space
and exploitation to make use of knowledge found at points
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(c) Book scene
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Image scenes and quality evaluation. The graph shows the distance from the epipolar surface for the inliers (degeneracy inliers

denoted by dots whereas the non-degeneracy inliers are denoted by circles) The non-degeneracy inliers lie very far from the surface.

previously visited to help find better points. These two require-
ments are contradictory, and a good search algorithm must
strike a balance between them. A purely random search is
good at exploration, but does no exploitation, while a purely
hill climbing method is good at exploitation, but does little
exploration. Combinations of these two strategies can be quite
effective, but it is difficult to know where the best balance lies.

Robust estimation of the fundamental matrix can be thought
of as a search process. The search is for the parameters
of the fundamental matrix and the set of inliers. Therefore,
algorithms that estimate the epipolar geometry can be analyzed
according to the way they combine the above techniques. The
RANSAC algorithm [1] samples in each iteration a minimal
subset of matches and computes from it a model. This random
process is actually an indirect global exploration of the param-
eter space. In the PbM algorithm [20], [21] each exploration
iteration is followed by a standard exploitation step. A hill
climbing procedure over the parameter space is performed
using a local search algorithm. The LO-RANSAC algorithm
[3] makes an exploitation step only when a new good model
is found in an exploration iteration. The exploitation step is
performed by choosing random samples only from the set
of suspected inliers, the model’s support set, and computing
a fundamental matrix from it. In cases that there exists a
degenerate configuration the exploitation step tends to enlarge
the support set but it includes only inliers belonging to the
degeneracy. In our algorithm we use the LO-RANSAC local
optimization step to perform the exploitation stage.

In classical search algorithms such as simulated annealing a
local exploration step exists. There, with a certain probability

a local step in the parameter space is taken which does not
improve the quality of the current solution. This step is used to
escape from local minima in the parameter space. No similar
step exists within the RANSAC family of algorithms. Even if
a relatively good model that includes a large number of inliers
is found, it is not used after the exploitation (LO-RANSAC)
step has been performed. The algorithm simply returns to
random sampling hoping to find by chance a better model. This
problem occurs mainly when the RANSAC process reaches a
degenerate set of inliers. We suggest to add an intermediate
technique that uses the previous best solution and explores its
neighborhood looking for a better solution whose support set
is larger and includes most of the support set of the previous
best solution. We use the term neighborhood loosely. When the
current solution is supported by a degenerate set, the solution is
merely a point on a surface consistent with the support set. The
goal of the local exploration step is to find another point on
this surface, which can be quite far in the parameter space from
the current solution, which is consistent with all the correct
matches. Thus when we use the term local we mean so in the
support set sense. To achieve this we need to generate a sample
of inliers which includes in addition to members of the current
support set other correspondences. Once we have a “good”
previous solution it can be assumed that the vast majority of
its support set are inliers. Therefore, when choosing a subset
for the RANSAC step, we choose most of the subset from
the support set and the rest from points that are outside the
support set. When such a subset consists only of inliers the
support set of the resulting model tends to break out from
the confines of the set of inliers belonging to the degeneracy
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(the local maximum) yielding a more correct solution. Unlike
simulated annealing in our algorithm, the result of the local
exploration step is only used if the size of the support set
increases.

When incorporating a local exploration step into the al-
gorithm several questions have to be addressed. First, local
exploration is only effective when the best previous support
set includes nearly only inliers. So, it is essential to be able to
recognize such sets. Second, depending on the quality of the
set a balance between the application of global exploration, lo-
cal exploration and exploitation has to be struck. Finally, how
to incorporate available prior information about the quality of
each putative correspondence into the general scheme.

The BEEM algorithm includes all of the components de-
scribed above. Its state diagram is presented in Figure 2.
The algorithm includes the following states and the transitions
between them:

o Prior estimation. Use prior available information to
estimate the probability that a correspondence is an inlier.
This probability is used to guide the sampling in the other
states.

o Global exploration. Sample a minimal subset of corre-
spondences and instantiate the model from the subset. If
the size of the support set of the formed model is larger
than all the models that were formed in this state goto
the exploitation state, otherwise goto the model quality
estimation state.

o Model quality estimation. Estimate the quality of the
best model found until now based on the size of its
support set and the number of iterations that the algorithm
has performed until now. Use this quality estimate to
choose probabilistically the next state, global exploration
or local exploration.

o Local exploration. Sample a subset of correspondences
from the support set of the best model and sample a
subset of correspondences from the rest of the correspon-
dences. Instantiate the model from the union of the two
subsets. If the size of its support set is larger than all
the models that were previously formed in this state goto
the exploitation state, otherwise goto the model quality
estimation state.

« Exploitation. Iteratively try to improve the last formed
model by choosing subsets of matches from the support
set and testing their quality. At the end of this process
goto the model quality estimation state.

In the following sections we will describe the main com-
ponents of the algorithm which include our methods for prior
probability estimation, our fast method for global exploration:
the 2-SIFT method, which is used to produce initial solutions
to the fundamental matrix estimation, and our method for
model quality estimation. The detailed algorithm is given in
section VI.

III. USING PRIOR INFORMATION OF THE MATCH

Each SIFT feature is represented by a descriptor vector
whose length is 128. The best candidate match for each
SIFT keypoint from the first image is found by identifying

Model
quality
estimatio

Prior
estimation

Global
exploration

Local
exploration

Exploitation

Fig. 2. State diagram of the balanced exploration and exploitation model
search (BEEM) algorithm. The algorithm first assigns probabilities to the
putative correspondences, then performs a global exploration step. Depending
on the quality of the recovered model the algorithm performs global or local
exploration steps followed by an exploitation step.

the keypoint in the second image whose descriptor is closest
to it in a Euclidian distance sense. Some features from the
first image will not have any correct match in the second
image. Therefore, it is useful to have the ability to discard
them. A global threshold on the distance to the closest feature
does not perform well, as some descriptors are much more
discriminative than others. A more effective measure was
suggested in [6] is obtained by comparing the distance of
the closest neighbor to that of the second-closest neighbor.
This measure performs well because for correct matches
the closest neighbor is significantly closer than the closest
incorrect match. For false matches, there will likely be a
number of other false matches within similar distances due
to the high dimensionality of the feature space. We can think
of the second-closest match as providing an estimate of the
density of the false matches within this region of the feature
space. The consequence of this criterion is that repetitive
features appearing in the image will also be discarded.

Let r; be the distance ratio of the closest to the second-
closest neighbors of the i*" keypoint of the first image. Fig-
ure 3(a) shows the value of this measure for real image data for
inliers and outliers. In [6] it was suggested to reject all matches
in which the distance ratio is greater than ryj,,esp, = 0.8. In
our experiments we follow this rule also. The probabilistic
meaning of this is that each correspondence whose score is
below this threshold is sampled uniformly. PROSAC exploits
this ratio even more and its samples are drawn from progres-
sively larger sets from the set of correspondences ordered by
this ratio. This improves the performance of the algorithm. In
this work we make an additional step by giving an empirical
probabilistic meaning to this ratio.

The distance ratio can be thought of as a random variable
and is modeled as a mixture model:

fr(ri) = fin(ri)a + fout(ri)(l - a),
where fin(r;) = f(rilp; < P; inlier), fout(r:) = f(rilpi <
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p, outlier), and « is the mixing parameter which is the
probability that any selected correspondence is an inlier. The
probability, P;, (i), that correspondence p; < p. is an inlier
can be calculated using Bayes’ rule:

_ fin(ri)a
f’in(ri)a + fout(ri)(l - Oé) .

We estimate this probability in a non-parametric manner.
We generate two samples from real images:

Pin(i) 2

e Sin, a sample of N;, inlier ratio distances.
o Sout, a sample of N, outlier ratio distances.

We estimate f;,() and f,,:() using a kernel density estimator
over S;, and S,,; respectively.

We estimate o for a given image pair using curve fitting
of the empirical cumulative distribution function (cdf) of S,
Sout and the set of ratios of the putative correspondences. An
empirical cdf over a set of measurements S can be estimated
by

1V g(si:9)

F(s) = T’

where
(S' S) _ 17 $; <8
g\8i>8) = 0, otherwise

and s; is the ith element in S.
Let ——
_ ) s thres N
R ={pjlp; _jNR—F 1}j=Rl
be a set of Ny uniformly spaced ratio distances. We obtain a
set of the following Ny linear equations

Fr(ﬂj) = Fm(pj)oz +Fout(loj)(l —a),j=1,..,Ng.

These equations are used to estimate o by a least-squares
technique. Once « has been estimated P, () can be estimated
for all putative correspondences using Eq. (2). Figure 3(b)
shows the probability P;, () for several values of «.. Figure 3(c)
shows the distributions of the estimated P, () of the inliers
and the outliers, for the book scene image pair. As can be
seen in the graph, a large portion of the correspondences that
got high probabilities are indeed inliers. In this example the
inlier rate of matches with 7¢,,csp less than 0.8 is 16.5% and
the estimated « is 15.7% which is quite accurate.

The estimation of the inlier rate using the prior distributions
gives a very good clue about the relation between the two
images. If the estimated inlier rate, &, is close to zero the two
images are probably not related.

Tardoff & Murray [4] use normalized correlation between
the regions around putative correspondences as a basis for
their probability measure. Comparing their method to ours
several differences are apparent. The evidence we use is
more informative as pointed out by Lowe [6]. The difference
between the two types of evidence is that the correlation
score yields an absolute score whereas the Euclidean distance
between SIFT features does not in itself indicate the quality
of the match. Therefore, the ratio of the distances is used as
the basis for the probability estimate. Ratios close to one are
considered to be outliers with high probability. Thus, when
dealing with repeated structures in the image the SIFT score

is unable to differentiate between this case and outlier matches
and discards them. The correlation score on the other hand can
detect this case but is unable to choose among the different
instances of the structure. Therefore, all possible alternatives
are assigned similar probabilities which are all quite low.
The result in both cases is similar because due to the low
probabilities the matches of the repeated structures are rarely
chosen. In addition, Tardoff & Murray have to compute the
correlation score between all possible matches in order to
compute the best match’s probability, whereas the SIFT ratio
score requires the computation of only two scores.

When comparing our method to PROSAC we claim that
there is a slight disadvantage of not assigning probabilities to
the correspondences. When given a set of matches with close
probability values, pairs with a slightly higher probability to
be correct might be placed much higher in the list and chosen
much more often, whereas we will choose all these pairs with
approximately equal probability. When some of these high
probability pairs are outliers, the number of iterations needed
to find an outlier-free set could increase considerably.

IV. GLOBAL EXPLORATION: EPIPOLAR GEOMETRY FROM
TWO SIFT CORRESPONDENCES

In [9], [10] it was suggested to use three affine region
to region matches to estimate the epipolar geometry in each
RANSAC sample. Actually, two regions suffice. Assuming
that for each region to region match there exists an homog-
raphy which approximates the transformation between the
regions, the two homographies can be used to recover the
fundamental matrix [22, Chapter 13, pages 337-338]. The
fact that the transformation is approximated by a special
type of homography such as an affine or even a similarity
transformation does not change this fact. Moreover, each
transformation can be represented by a set of four pairs of
points satisfying the transformation and used as input for the
normalized eight point algorithm yielding comparable results
to the two homographies algorithm. This general principle can
be applied to any local region matching method [9], [23]-[27].

In our implementation we chose the SIFT descriptor which
is a very powerful descriptor for image matching. This descrip-
tor is invariant to the similarity transformation which is not as
accurate as the affine transformation or the homography but as
we will show worked well in practice. The ability to generate
epipolar geometry from two SIFT correspondences instead of
seven point correspondences is expected to reduce significantly
the runtime according to Eq. (1). This ability actually reduces
the complexity of the robust estimation of the fundamental
matrix to that of a robust estimation of a line from a set of
points in space. We suggest a simple method to estimate the
epipolar geometry from two SIFT correspondences. Each SIFT
keypoint is characterized by its location p = (z, y), orientation
0 of the dominant gradients and its scale s. We generate for
each SIFT keypoint a set of four points

((z,y), (x + lscos(8),y + lssin(P),

(z+lscos(f + %),y + Issin(f + 2F),
(z + Iscos(f + 2F),y + lssin(f + 4F)).
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Fig. 3.

(a) The empirical distributions of the distance ratio, r, for inlier and outliers were generated based on twenty image pairs. (b) The

probability that a correspondence is an inlier as a function of r for several values of the inlier rate, . (c) The distributions of the estimated
probability P, () of the inliers and the outliers, for the book scene image pair.

We set! = g%’, where w is the width of the descriptor window.

The configuration of the four points is illustrated in Figure 4.
Thus, the three additional points lie within the descriptor
window. A set of two SIFT correspondences gives a set of
eight point correspondences. These can be used to estimate the
fundamental matrix using the normalized eight-point algorithm
[11]. This method is equivalent to finding the fundamental
matrix which is consistent with two homographies. The addi-
tional points are simply used to represent those homographies.
When scoring an hypothesized fundamental matrix, a SIFT
correspondence is considered consistent with the hypothesized
epipolar geometry only when all coincident four point cor-
respondences, (pslaps2aps37ps4) A (p;17p225p;3ap;4)’ are
within their respective error thresholds. The location of the
first point in the set is quite accurate, whereas the location
of the last three points are less accurate because they are
approximated from the SIFT characteristics. We use the error
threshold d for the first point in the set and dv/s’s for the
other three, where s and s’ are the SIFT scale parameters
of the keypoints of the first and the second SIFT descriptors
respectively and d is a threshold parameter.

One may wonder how accurate is the estimation of the
fundamental matrix using the 2-SIFT method. The 2-SIFT
method generates four point correspondences from each SIFT
keypoint. These four points are usually quite close to each
other and the last three points are estimated less accurately.
Therefore, a fundamental matrix which is based on such point
correspondences is expected to be less accurate then when the
points are accurately estimated and uniformly distributed over
the whole image. However, all that is required of this step
of the algorithm is to produce a very rough approximation of
the fundamental matrix which will be supported by several
additional correct correspondences.

To check the severity of this problem, the estimation quality
of the 2-SIFT method, was compared to the quality of the
7-point algorithm, normalized 8-point algorithm with 8 and
9 point correspondences. Two types of real scenes without
any dominant degenerate configurations were checked: a scene
moving sideways and a scene moving forward. For each
scene the inlier SIFT correspondences were found. For each

Fig. 4.
descriptor.

Ilustration of the four points generation for the SIFT

algorithm in each scene 10,000 samples were taken from the
inlier correspondences. For each sample a fundamental matrix
was calculated and the number of correspondences consistent
with the model was recorded. The size of the support set
of the model quantifies the quality of the model. Figure 5
shows the results. The horizontal axis gives the size of the
support set and the vertical axis represents the distribution
of the models that were supported by sets of this size. The
results of the 2-SIFT method are less accurate than the 7-,
8-, and 9-point algorithms as expected. This can be seen from
the graphs as in many cases only a small number of inliers
support the proposed solution. However, it usually recovers
enough supporting inliers to initialize the fundamental matrix
estimation process. Clearly, the use of the LO-RANSAC step
after the 2-SIFT method is very important to produce a more
accurate solution.

To improve the estimation quality, we checked one more
method, the 2-SIFT without the singularity constraint (2-SIFT-
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NSC) method. In this method the singularity constraint of
the fundamental matrix is not enforced. The result is usually
an illegal model, but in the sample step of the algorithm
it is not necessary to work with legal models, because the
main purpose of the sample step is to detect large amounts
of supporting inliers. The results of the 2-SIFT-NSC method
which are also shown in Figure 5 outperform the 2-SIFT
method. The reason for this is that the singularity constraint
enforcement when applied in the 8-point algorithm changes
the solution in a non-optimal way, by projecting the matrix
to the closest point on the singularity surface. This is not the
optimal solution, since the entries of the fundamental matrix
do not have equal importance. In addition, the computation
of the optimal singular matrix adds to the computational cost.
For both reasons it is better not to apply this step at all. We
therefore use the 2-SIFT-NSC method in our algorithm.

The examples shown above deal with motions which do not
involve out of plane rotation. In these cases a similarity trans-
formation well approximates the local motion and therefore
both the SIFT and the 2-SIFT algorithm work well. It is also
interesting to check whether the 2-SIFT algorithm will be able
to perform in cases where severe foreshortening occurs. This
happens when there is a large out of plane rotation between
the two images. It is well documented that the SIFT feature
matching algorithm itself does not work in very high rotation
angles. Therefore the question remains whether the 2-SIFT
algorithm will be able to perform at the extreme cases when
the SIFT algorithm still works. This might be problematic
because the local transformations between the corresponding
SIFT features could be far from the similarity transformations
assumed by the SIFT algorithm.

To demonstrate the performance of the algorithm in this
situation the algorithm was applied to the following two pairs
of images shown in Figure 6. As expected the fraction of
correct matches from the total number of feature pairs is
much lower (0.17 & 0.1 respectively) due to the difficulty
to match SIFT features in this case. Like in the previous
experiment we plotted the success of the various RANSAC
variants in Figure 7. In these cases also enough supporting
matches were found to enable the BEEM algorithm to start
its journey towards the correct solution. In these experiments
the recovered fundamental matrix was quite poor due to
the inaccurate SIFT transformations used in its construction.
Therefore, enforcing the singularity constraint on it causes a
larger deterioration in the solution. This can be clearly seen
by comparing the graphs of the 2-SIFT to the 2-SIFT-NSC.
The 2-SIFT-NSC is clearly superior due to the small number
of fundamental matrix hypotheses which were supported by
a very small number of correspondences. These experiments
demonstrate that as long as the SIFT process detects correct
matches the 2-SIFT algorithm will be able to exploit them to
find an approximate fundamental matrix.

The results presented in this section have demonstrated
that the 2-SIFT method generates good results within the
general framework of the BEEM algorithm. It can not be used
however, as a complete method because a fundamental matrix
supported only by say ten matches out of a hundred is a poor
estimation for the correct solution.

V. BEST FOUND MODEL QUALITY ESTIMATION

In the model quality estimation state the algorithm estimates
the quality of the best found model as an inlier model, i.e. a
model that nearly all the members of its support set are inliers.
When an inlier model is detected it can help accelerate the
search process using the local exploration state, whereas using
an outlier model in that state is useless. In such situations we
want to direct the BEEM algorithm to continue to perform
global exploration. To achieve this we have to estimate the
probability that the model is supported by outliers that are by
chance consistent with it. Let P,,,(i/N) be the probability
that at most 4 outlier matches support an outlier model from
the N putative matches. Let Npoy = max{N;}._, be the
maximal size of the support set after [ iterations achieved by
model My.s:, where N; is the size of the support set of the ith
iteration. Using the above definitions, the probability, F;, that
Mipes: 1s not an outlier model is estimated. This is equivalent
to the probability that in all of the I iterations the support set
of size Np.s+ could not be achieved by an outlier model. Thus,

P(I = vilzlpr()b(Ni < Nbest)
I
HPTOb(Ni < Nbest) = (PmrL((Nbest - 1)/N))I

i=1

The BEEM algorithm uses the probability P, as an estimate
to the quality of the best found model. We estimate P,,, () us-
ing several unrelated image pairs in a non-parametric manner.
We ran the 2-SIFT-NSC algorithm for the above image pairs
and recorded the size of the support sets of the outlier models.
Figure 8(a) shows the cdf P,,,() as a function of the fraction
of falsely detected inliers, ¢ from the total number of putative
matches N. The empirical distribution shows that when the
fraction of detected matches is larger than 0.035 it can not be
a result of a totally incorrect fundamental matrix. As a result
in this case the algorithm will be directed to perform only
local exploration steps. Figure 8(b) shows the probability P,
as a function of Ny, for I = 10, I = 100 and I = 1000,
where the number of putative correspondences is set to 400.
Note that when the number of iterations increases the “belief”
of the algorithm in the correctness of small subsets decreases.
As a result, the algorithm tends to do more global exploration.

VI. ALGORITHM DETAILS

Up to this point, we have described the principles of the
BEEM algorithm. Now, we will put them all together, yielding
the complete epipolar geometry estimation algorithm. The
algorithm is summarized in Algorithm 1. The details of the
algorithm are as follows:

Fundamental matrix generation. The generation of the
fundamental matrix from a given subset S of SIFT correspon-
dences chosen from the set of putative correspondences, C, is
done as follows: if 2 < |S| < 7 then we use the normalized
eight-point algorithm, where each SIFT correspondence pro-
vides four point correspondences, as described in Section IV.
If |S| = 7 then we use the seven-point algorithm with seven
points, one from each SIFT correspondence. If |S| > 7 then
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Algorithm evaluation. For each of the algorithms 10,000 experiments were run over the inlier correspondences. The number of

correspondences supporting the obtained fundamental matrix was recorded and their distribution is shown.

Outdoor scene

Indoor scene

Fig. 6. Scenes with considerable foreshortening.

we use the standard normalized eight-point algorithm with | S|
keypoints provided from the SIFT correspondences.

Exploitation. This state is very similar to the local optimiza-
tion method described in [3] with a small improvement. In
this state a new sampling procedure is executed. Samples
are selected only from the support set S of the previous
state. New models are verified against the whole set of
putative correspondences. The size of the sample is set to

min(S/2, Nr), where N is set to 14 as was suggested in [3].
For each fundamental matrix generated from a sample, all the
correspondences in its support set are used to compute a new
model using the linear algorithm. This process is repeated until
no improvement is achieved. The modification we made to the
original LO-RANSAC is that whenever a larger support set
is found the exploitation process restarts again with it. The
algorithm exits this state to the model quality estimation state
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after I o iterations without improvement, where I is set to
ten in our experiments.

Local exploration. The parameter space close to the best
model found so far is searched in this state by choosing a
sample of size min (|Spest|/2, Np — 1) SIFT correspondences
from Spes: and a single SIFT correspondence from C'\ Spes:.
Here again Np was set to 14. The fundamental matrix is
instantiated from the union of the above subset and the single
SIFT correspondence, where the single SIFT correspondence
always contributes four point correspondences. This way, the
algorithm has a better chance to escape from degenerate
configurations.

Once |Spest| exceeds 0.035|C| according to our empirical
model (whose distribution is plotted in Figure 8(a)) the model
must contain a large number of inliers. As a result, P, is
equal to one. When this happens the sampling strategy for
correspondences from C'\ Sp.s+ changes slightly. Each time a
new maximum is found, i.e. Syes; Was updated, the correspon-
dences in C'\ Spes: are sorted in decreasing order according
to P;,(). In each iteration a single SIFT correspondence is
chosen from C'\ Spes: according to the sorting order and the

rest as usual from Spe;.

Stopping criterion. The BEEM algorithm terminates if in the
last |C| — |Skest| exploration samples the subset Sp.s; was
not updated and if P, is equal to one in these samples. This
criterion ensures with high confidence that nearly all the inliers
have been detected. This suggested stopping criterion usually
terminates much earlier than in the standard approach, because
once the algorithm finds a model with an adequate number of
inliers, P, is estimated as one and the algorithm enters the
final local exploration iterations. Because the correspondences
in C \ Spest are sorted in decreasing order according to
P;,,(), the rest of the inliers are rapidly found. Once Spes:
ceases to change |C| — |Spest| iterations are performed. In the
experiments that we have performed, the number of iterations
until an adequate number of inliers are found is usually
very small, thanks to the various components of the BEEM
algorithm. As a result, the total number of iterations of the
BEEM algorithm is in practice slightly higher than the number
of outliers in the putative correspondence set. This number is
much lower than the bound given by Eq. (1).
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begin Prior estimation:
Estimate « and P;, () of the set C' of putative

correspondences.
end

begin Global exploration:
Sample according to P;,,() a subset of two SIFT
correspondences from C';
Instantiate the fundamental matrix F’
if the support set S of F is the best found in this
state then
goto Exploitation
else
goto Model quality estimation;

end

begin Exploitation:
Execute local optimization with inner RANSAC over
S until 7o repetitions without improvement;

if found model with largest support until now then

keep its support set in Spest;
end

begin Model quality estimation:
Estimate F.;
if the stopping criterion is satisfied then
terminate;
Choose with probability P, to goto Local exploration;

otherwise goto Global exploration;
end

begin Local exploration:
Sample according to P;,() a subset of SIFT
correspondences from Spess;
if P, <1 then
sample according to P, () a single SIFT from
C \ Sbest
else
choose the next SIFT correspondence from
C \ Sbest; .
Instantiate the fundamental matrix F’;
if the support set S of F is the largest found in this
state then
goto Exploitation;
else
goto Model quality estimation;

Algorithm 1: The BEEM algorithm.

VII. EXPERIMENTS

A. BEEM algorithm

The proposed algorithm was tested on many image pairs of
indoor and outdoor scenes several of which are presented here.
The cases that are presented here are difficult cases in which
the inlier rate is low and includes a dominant degeneracy.

For each image we applied the SIFT method to detect
the keypoints. The descriptors of the first image were then
stored in an LSH [17] data structure and the descriptors of
the second image were used for querying the data structure to
find their approximate nearest neighbors to generate putative
correspondences. We used the adapted version of the LSH [28]
with data driven partitions. The LSH algorithm is simple for
implementation and efficient. For example, the running time

for the generation of the putative correspondences of the book
scene was reduced from 25.6 seconds using a simple linear
search to 0.45 seconds using the LSH algorithm on a Pentium
4 CPU 1.70GHz computer (all the run time results in this paper
were checked on this computer). The LSH algorithm has been
claimed to be faster than other nearest neighbor techniques
such as KD-tree [17], [29]. This claim was not verified by us
for this case.

For illustration reasons, we divided the set of putative
correspondences into three sets: outliers, inliers belonging to
the degenerate configuration and the rest of the inliers for
which most of them have to be part of the support set in order
to generate an accurate fundamental matrix. The images of the
scenes are shown in Figures 1, 9, 6. Their details are given in
Table I.

For each scene six algorithms were tested: the BEEM
algorithm, LO-RANSAC using samples of two SIFT cor-
respondences to generate fundamental matrixes (2SIFT LO-
RANSAC), RANSAC using samples of two SIFT correspon-
dences (2SIFT RANSAC), LO-RANSAC using samples of
seven point correspondences where the samples were sampled
according to the probability P, (7) (7pt P-LO-RANSAC), LO-
RANSAC using samples of seven point correspondences (7pt
LO-RANSAC), and RANSAC using samples of seven point
correspondences (7pt RANSAC). The termination criterion
for RANSAC and LO-RANSAC was based on Eq. (1), for
p = 0.99. In cases where the number of iterations exceeded
10,000 the algorithm also terminated. Each algorithm has
been applied to each image pair twenty times. For each
algorithm the following statistics are presented: the success
rate defined as the percentage of the experiments in which at
least 75% of the inliers were found and at least 50% of the
inliers outside the degenerate configuration were found, the
number of iterations until the termination of the algorithm, the
number of inliers found, and the number of inliers outside the
degenerate configuration found. For the BEEM algorithm, in
the iteration column the average number of global exploration
iterations is also given denoted in parentheses. The running
times in seconds are given for MATLAB implementations.
These running times are only given for comparative reasons.
A C++ implementation could easily speed up the algorithm
by an order of magnitude.

The results shown in Table II clearly show that the BEEM
algorithm outperforms the other algorithms in the way that it
deals with degeneracies, detecting almost always most of the
inliers outside of the degenerate configuration. The quality of
the results as represented by the overall number of detected
inliers is also much higher. The number of iterations until
termination of the algorithm is much lower than for the
other algorithms. Finally, the number of global exploration
iterations of the BEEM algorithm is very low as a result of
the use of the prior information and the 2-SIFT method. As
mentioned in the previous section, the number of iterations
of the BEEM algorithm is in practice slightly higher than the
number of outliers in the putative correspondence set. This
number is much lower than the number of iterations of the
other algorithms.

The results of the other algorithms demonstrate the con-
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[ Scene | Degeneracy [N [a J& [Out [In [ Deg In. [ Non-Deg. In. |
Flowerpot | Small region 252 | 0.17 | 0.25 | 210 | 42 30 12
Book Plane 310 | 0.17 | 0.16 | 260 | 50 44 6
Board Plane 276 | 0.27 | 0.25 | 201 | 75 57 18
Cars Several small regions | 272 | 0.17 | 0.11 | 225 | 47 35 12
Indoor Plane 310 | 0.17 | 0.14 | 256 | 54 43 11
Outdoor None 308 0.1 | 0.11 277 | 31 31

TABLE 1

THE CHARACTERISTICS OF THE TESTED SCENES. FOR EACH SCENE THE TABLE GIVES THE TYPE OF DEGENERACY, NUMBER OF
CORRESPONDENCES, INLIER RATE, BEEM ESTIMATION OF THE INLIER RATE, THE NUMBER OF OUTLIERS, THE NUMBER OF INLIERS,
THE NUMBER OF INLIERS BELONGING TO THE DEGENERACY, AND THE NUMBER OF INLIERS NOT BELONGING TO THE DEGENERACY.

Scene Algorithm Success | Iterations In. N.Deg. [ Times
BEEM 100% (5.0) 213 | 40.6 11.2 11.1
2SIFT LO-RANSAC 30% 356 | 29.8 3.6 10.3
Flowerpot 2SIFT RANSAC 0% 880 16.9 0 21.3
7pt P-LO-RANSAC 65% 10,000 | 34.6 79 | 708.9
7pt LO-RANSAC 15% 10,000 | 27.2 24 | 704.5
7pt RANSAC 0% 10,000 19.5 1.2 | 703.2
BEEM 95% (6.3) 279 | 44.1 5.6 12.9
2SIFT LO-RANSAC 5% 660 | 272 0.6 15.5
Book 2SIFT RANSAC 0% 2,449 11.2 0.2 46.6
7pt P-LO-RANSAC 30% 10,000 | 35.1 1.8 | 796.3
7pt LO-RANSAC 0% 10,000 19.9 02 | 7899
7pt RANSAC 0% 10,000 16.5 0.5 | 785.7
BEEM 90% (1.7) 207 72.4 15.6 11.6
2SIFT LO-RANSAC 5% 9 | 57.8 1.9 8.0
Board 2SIFT RANSAC 0% 1964 319 1.0 139
7pt P-LO-RANSAC 15% 10,000 | 61.3 49 | 761.0
7pt LO-RANSAC 5% 10,000 | 579 2.1 | 760.9
7pt RANSAC 0% 10,000 | 53.6 1.1 | 758.2
BEEM 100% (2.5)230 | 4438 10.9 10.3
2SIFT LO-RANSAC 30% 533 313 5.7 11.2
Car 2SIFT RANSAC 0% 1,236 14.8 1.0 27.1
7pt P-LO-RANSAC 70% 10,000 | 39.2 82 | 701.0
7pt LO-RANSAC 25% 10,000 | 27.25 39 | 7015
7pt RANSAC 0% 10,000 | 18.05 23 | 6984
BEEM 100% (9.7) 272.7 53.7 10.8 14.6
2SIFT LO-RANSAC 45% 217.1 48.6 5.5 11.7
Indoor 2SIFT RANSAC 0% 1,177 | 22.6 0.8 39.8
7pt P-LO-RANSAC 55% 10,000 | 49.6 59 | 8465
7pt LO-RANSAC 0% 10,000 159 0.9 | 701.5
7pt RANSAC 0% 10,000 17.1 04 | 8473
BEEM 100% | (12.6) 301.4 | 283 N/A 14.7
2SIFT LO-RANSAC 30% 1,195 19.1 N/A 422
Outdoor 2SIFT RANSAC 0% 2,756 13 N/A 93.2
7pt P-LO-RANSAC 35% 10,000 19.3 N/A | 856.2
7pt LO-RANSAC 0% 10,000 10.1 N/A | 847.6
7pt RANSAC 0% 10,000 13 N/A | 845.7
TABLE II

RESULTS OF THE EXPERIMENTS. FOR EACH ALGORITHM THE FOLLOWING STATISTICS ARE PRESENTED: THE SUCCESS RATE, THE
NUMBER OF ITERATIONS UNTIL THE TERMINATION OF THE ALGORITHM, THE NUMBER OF INLIERS FOUND, AND THE NUMBER OF
INLIERS OUTSIDE THE DEGENERATE CONFIGURATION FOUND, AND THE RUNNING TIMES. FOR THE BEEM ALGORITHM, THE NUMBER

OF GLOBAL EXPLORATION ITERATIONS IS GIVEN IN PARENTHESES.

tribution of each component of the BEEM algorithm to the
quality of the detection. Comparing the BEEM algorithm
to the 2-SIFT LO-RANSAC we can see the effects of the
local exploration step. This step increases dramatically the
success of the algorithm in dealing with degeneracies. This
is achieved at no clear additional computational cost. There

are challenging cases such as the outdoor scene whose results
are also presented in Table II, where the local exploration
reduces considerably the running time while improving the
result even though there are no degeneracies in the scene.
This is simply an example where the stopping criterion of the
BEEM algorithm yields a faster run than the stopping criterion
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(a) Board scene

(b) Car scene

Fig. 9. BEEM experiment image scenes. Degeneracy inliers denoted by dots whereas the non-degeneracy inliers are denoted by circles.

of RANSAC.

When the LO-RANSAC step is removed in the next imple-
mentation, the algorithm always fails to detect the degeneracy
and requires more iterations. When the 2-SIFT is replaced by
the seven point RANSAC, the complexity increases dramat-
ically and even when a good solution has been found, the
algorithm is not able to stop because the number of iterations
has not reached the RANSAC stopping criterion. When the
probabilistic sampling is turned off, the success rate is further
reduced and the number of recovered inliers decreases. Finally,
when comparing the 2-SIFT to the seven point RANSAC we
can see how poorly the 2-SIFT performs by looking at the
number of recovered inliers. This demonstrates that the 2-SIFT
method needs the other components of the BEEM algorithm
to insure its success. This is because its goal is not to find
an accurate fundamental matrix but merely a good starting
position which is exploited by the other components.

B. Plane degeneracy

In scenes which contain a dominant plane, algorithms have
been proposed to deal with the degeneracy caused by it [15],
[16]. In such cases the algorithm has to be given a parameter
measuring the planarity of the plane. Consider for example
the two examples presented above, the Board scene and the
Book scene. In the first case an actual plane containing many
features is present. In the second scene the back wall with
the shelves is the relatively planar region of the scene. In
the following experiment we compared the planarity of both
scenes in the following manner. For both scenes 10,000
quintuple correct matches from the degenerate plane were
sampled and the geometric distance of the fifth point match
from the homography computed from the other four matches
was calculated. The results are presented in Figure 10. What
can clearly be seen is that the distances in the two cases are
very different and therefore setting a threshold on the distance
determining whether a plane exists or not is required and can
vary considerably from scene to scene. Moreover, once the
algorithm finds an homography for a non-planar region, the
remaining steps of the algorithm are not guaranteed to succeed.

The BEEM algorithm on the other hand does not explicitly
model the degeneracy and therefore is not limited to the
modeled degeneracy. Therefore, it does not depend on the level
of the planarity of the region. It simply detects correct matches
which the current solution does not explain. In conclusion, the
BEEM algorithm is a non-parametric method whereas previous

methods are model (plane) based and they exploit the model
after it has been detected.

VIII. DISCUSSION

In this paper we presented the BEEM algorithm for epipolar
geometry estimation. It works very well in difficult scenes,
where the inlier rate is low and/or large subsets of the inlier
correspondences are consistent with a degenerate configu-
ration. The BEEM algorithm can replace algorithms from
the RANSAC family whenever robust model estimation is
needed. The principles of the BEEM algorithm, using prior
knowledge; balance use of exploration and exploitation within
the RANSAC framework; and the generation of approximate
(not necessarily legal) models in the RANSAC step, can be
applied in other cases also.

The BEEM algorithm can be easily modified to address
other estimation problems. Homographies can be robustly
estimated from one or two SIFT correspondences. Nister’s
algorithm [30] for Essential matrix estimation can also be
improved under the BEEM framework using two SIFT corre-
spondences instead of five point correspondences resulting in
a faster algorithm. In both cases the entire BEEM framework
is needed in order to improve the results obtained by the 1-
2SIFT match algorithm.

The only limitation of the BEEM algorithm is that it relies
on correctly matched SIFT features. In cases where the camera
underwent considerable out of plane rotation this might not
be possible because the local transformation might not be
close enough to a similarity transformation. As a result the
SIFT matching process will perform poorly. This problem
might be addressed using other types of features which are
matched using more accurate transformations such as affine
transformations or homographies.
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