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Abstract

In this paper we introduce a novel method for detection and segmentation of
crypts in colon biopsies. Most of the approaches proposed in the literature try
to segment the crypts using only the biopsy image without understanding the
meaning of each pixel. The proposed method differs in that we segment the
crypts using an automatically generated pixel-level classification image of the
original biopsy image and handle the artifacts due to the sectioning process
and variance in color, shape and size of the crypts. The biopsy image pixels
are classified to nuclei, immune system, lumen, cytoplasm, stroma and goblet
cells. The crypts are then segmented using a novel active contour approach,
where the external force is determined by the semantics of each pixel and the
model of the crypt. The active contour is applied for every lumen candidate
detected using the pixel-level classification. Finally, a false positive crypt
elimination process is performed to remove segmentation errors. This is
done by measuring their adherence to the crypt model using the pixel level
classification results. The method was tested on 54 biopsy images containing
4944 healthy and 2236 cancerous crypts, resulting in 87% detection of the
crypts with 9% of false positive segments (segments that do not represent a
crypt). The segmentation accuracy of the true positive segments is 96%.
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1. Introduction

Cancer is a leading cause of death worldwide, accounting for 7.6 million
deaths (around 13% of all deaths) in 2008. Lung, stomach, liver, colon and
breast cancer cause the most cancer deaths each year. Deaths from cancer
worldwide are projected to continue rising, with an estimated 13.1 million
deaths in 2030 (WHO, 2014).

Early detection of cancer development can lead to a full recovery. Cancer
can be detected in a number of ways, including the presence of certain signs
and symptoms, screening tests, or medical imaging. Once a possible cancer
is detected, it is diagnosed by a biopsy – a tissue that is being removed in a
minimal invasive way from the suspected organ. The biopsy is examined by
a pathologist via a microscope. Due to the implications that the diagnosis
has for the patient, this process is central.

The pathologist needs to be precise and have the ability sift through huge
amounts of data to detect small anomalies in the biopsy. The same precision
is required under the added pressure of a very heavy caseload. Moreover,
it turns out, for example, that approximately 80% of the 1 million prostate
biopsies performed in the U.S. every year are benign. This suggests that
prostate pathologists and, quite possibly, pathologists in other fields as well,
are spending much of their time sieving through benign tissue. There is thus
a clear need for an automatic tool to draw the pathologist’s attention to
biopsies with a suspicious region.

A prerequisite for the diagnosis of disease in biopsy images is often the
identification of certain histological structures. The presence, extent, size,
shape, and other morphological characteristics of these structures are impor-
tant indicators for the presence or severity of the disease. Tissue types such
as prostate, colon, breast, and thyroid include glandular structures. The first
step in quantifying such tissues, and hence in identifying the related diseases,
is to segment the glandular structures.

In this study we work with colon tissue images. The colonic biopsy image
is composed of a stromal intermedium containing glands (called crypts) and
immune system cells that surround the crypts (see Figure 1). The crypts
are composed of an inner area (lumen, goblet cells, and cytoplasm) and an
outer layer of epithelial cell nuclei (denoted as nuclei). This composition of
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the crypt is denoted, the crypt model. This model is valid for both healthy
and cancerous crypts.

In cancerous colon tissue, the size of the crypts changes, as does the
thickness of the nuclei layer, along with other structural and visual properties
(Marchevsky and Bartels, 1994; Landini and Rippin, 1996; Wu et al., 2004a,b;
Deligdisch et al., 1999; Butler et al., 2002; Biertho et al., 2004; Bloyet et al.,
1999; Deligdisch et al., 2003). Examples of cancerous biopsies of colon tissue
are shown in Figure 2.

Figure 1: Healthy colon tissue and crypt structure. The model of the crypt is a lumen
and goblet cells in cytoplasm, surrounded by a thin layer of epithelial cell nuclei (denoted
as nuclei). The crypt and immune system cells are in the stromal intermedium.

Figure 2: Cancerous colon tissue biopsies sub-images.

Considerable progress has been made in the field of histology image anal-
ysis and many surveys on gland segmentation have been conducted (Gurcan
et al., 2009; Demir and Yener, 2005; Belsare and Mushrif, 2012; Smochină
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et al., 2011; Bhattacharjee et al., 2014). There are several approaches to this
problem. Thresholding based methods (Weyn et al., 1998; Krtolica et al.,
2002; Albert et al., 1996, 1998; Lockett and Herman, 1994) rely on the as-
sumption that an intensity threshold determines whether a pixel belongs to
a nuclear region. These methods are generally easy to implement, but they
are quite sensitive to color variations due to staining, fixation, sectioning
procedures, or the fading of the dye.

Other studies segment the glands under the assumption of a shape using
image filters and morphological operations. In Wu and Gil (2006), an image
gland segmentation algorithm using biased median filtering was introduced.
The algorithm was based on the orientation and location of goblet cells. The
algorithm is limited to healthy glands, in which the goblet cells lie side by side
and their shape can be approximated by long ellipses, but these properties
do not hold in cancerous tissue, in which the crypts might not contain goblet
cells. In Smochina et al. (2013), a technique based on a closing morphological
hierarchy was presented. This closing operator fills gaps in the crypt contour
but sometimes eliminates crypt lumina completely.

Several studies focus on the problem of gland segmentation using the fact
that glands are characterized by their luminal areas surrounded by epithelial
cells. In Gunduz-Demir et al. (2010), the tissue was decomposed into a
set of primitive objects (nuclei and lumen) and the glands were segmented
using the organizational properties of these objects. This approach extracts
objects (nucleus cells and lumina) using a circle-fitting algorithm. It is limited
because in cancerous cells, the nuclei cells and lumina are not always circular.
This is overcome by Rathore et al. (2013), which models epithelial cells as
ellipses.

A more advanced approach to crypt segmentation is the usage of pixel-
level classification (which we will denote PLC). In Nguyen et al. (2012a,b),
each pixel is classified to one of the classes described in Figure 1. After that,
gland boundary extraction is performed by unifying the nuclei pixels with the
cytoplasm pixels. Finally, the gland is constructed by expansion of the lumen
pixels until reaching the boundary from the previous step. This method is
sensitive to PLC errors, and pixel unification will result in inaccurate gland
segmentation. Finally, this method cannot segment high-grade carcinoma
glands, in which the nuclei layer is broken and the crypt shape is not circular.

In Naik et al. (2007, 2008), a level-set method to segment glands in
prostate biopsies is presented. First, a pixel-level classifier is applied to ex-
tract the lumina, nuclei, and cytoplasm. Second, the level-set method is
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applied with an initial contour as the lumen edge, and the attraction force
is the nuclei pixels. The intensities of the nuclei likelihood image form the
stopping gradient of the level set. Consequently, the gland segments obtained
in this approach only include lumen and cytoplasm regions, while we want to
capture the entire gland area, which also includes nuclei on the gland bound-
ary. Since there are usually multiple layers of nuclei on the gland boundary
and gaps between these layers, it is difficult to force the level-set curve to
capture all the nuclei on the gland boundary. Moreover, although relying on
PLC in the segmentation process is a good approach, this method is very
sensitive to low-level classification errors. In the case of pixel misclassifica-
tion, the contour might evolve incorrectly. This method also does not have
a postprocessing step that eliminates false positive crypts.

The accuracy of segmentation methods that rely on PLC significantly
drops when the PLC is not accurate due to classification errors, or when
the biopsy contains artifacts that violate the crypt model. In Naik et al.
(2007, 2008), the segmentation relies on the PLC accuracy and there is no
logic incorporated in to the algorithm to enable accurate segmentation even
if the PLC is not perfect. Dealing with such problems is one of the main
contributions of this paper. Here we present a PLC based segmentation
similar in spirit to Naik et al. (2007, 2008), show its weaknesses and develop
a more robust segmentation algorithm that handles PLC errors.

The PLC information also gives more accurate features in the process
of eliminating false-positive segments. In Chomphuwiset et al. (2010), bile
ducts are segmented and each segment is classified as a bile duct or as a false
positive segment using distance histogram of each PLC class.

In this paper a novel segmentation method is presented. The complex
problem of segmenting crypts is broken into three steps. Each step relies
on the results of the previous steps but uses a higher level of knowledge to
overcome any errors that may have occurred. In the first step, the pixels
are classified in a novel two-step method that first classifies the nuclei and
immune system cells and after that the lumen, cytoplasm, goblet cells, and
stroma. In the second step lumen candidates are selected on the basis of
the PLC. For every lumen candidate, an active contour (Kass et al., 1988)
is initialized with its edge. The active contour maintains a variable for each
of its contour points, indicating its state with respect to the crypt model.
The calculation of the external forces is based on these variables and the
PLC image. This new, memory-based active contour method helps overcome
misclassifications in the PLC. The final step is verification. Invalid crypts
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that do not comply with the model are eliminated using the following feature
types extracted from the crypt candidates: the shape of the segmented crypt
and the distribution of the pixel classes.

The paper is organized as follows. Section 2 presents an overview of our
method. In Section 3 we explain the choice of using the Random Forest
classifier. Section 4 presents the first step of this method, the PLC of the
biopsy image. Section 5 explains how crypts are segmented using an active
contour method that relies on the PLC image. Section 6 presents the final
step, the elimination of false positive segmented crypts. Section 7 presents
the evaluation method and results of each step of the proposed segmentation
method on thousands of healthy and cancerous crypts. Finally, Section 8
discusses the limitations of this method and future research directions.

2. Method Overview

The proposed active contour segmentation approach relies on the charac-
teristics of the crypt structure: a lumen with a layer of nuclei, surrounded by
the stroma. The design of this segmentation method is based on two layers of
information, where the computation in each layer relies on the layers beneath
it, while exploiting higher levels of knowledge. The third step automatically
analyzes the results. The segmentation architecture is shown in Figure 3 and
consists of the following steps:

1. PLC. To find the characteristics of the crypts in the biopsy image,
the image pixels need to be classified into the following types: lumen,
cytoplasm, goblet cells, nucleus layer, stroma and immune system cells
(see Figure 1). According to the colon biopsy structure, the crypts are
surrounded by a layer of nuclei and located in a stromal intermedium
with immune system cells. Therefore, the nuclei and immune system
cells give a very good indication whether their surrounding tissue is
stromal or belongs to the inner layers of the crypt. To use this heuristic,
a two step-pixel classification process using a RandomForest (Breiman,
2001) is performed to establish the entire PLC image. First, nuclei
and immune system cell classification is performed. Then the results
are used to classify the lumen, stroma, cytoplasm, and goblet cells.
Finally, the results of the two classifiers are merged.

2. Crypt segmentation. Although PLC gives impressive results, two
types of classification errors might occur: nuclei might be confused
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with immune system cells and the stroma might be confused with the
inner area of the crypt.
Errors in the PLC can occur for several reasons. First, the stain fades
over time: the thickness of a tissue section and the fading of the dye
cause variations in the intensity distribution of a tissue image (see the
different colors in Figures 1 and 2). Second, sectioning artifacts are
similar in color to the crypt lumina (see Figure 4a). Third, the color
of healthy crypt nuclei differs from that of cancerous crypt nuclei (Fig-
ure 4b). Fourth, the crypt model is not always satisfied; the layer of
nuclei can be broken. See for example Figure 4c.
The crypts are therefore segmented using an active contour that is ini-
tialized to the edge of the lumen candidates from the previous step,
and the external force on the evolving contour is determined according
to the classified pixels from the first step. To overcome the two major
classification error types, the segmentation step uses a higher level of
information – the crypt model (inner crypt area with nuclei layer sur-
rounding it). The external forces are calculated at each iteration using
the state of the contour with respect to this model.

3. False positive crypt elimination. Due to incorrect selection of lu-
men candidates or incorrect segmentation, false positive crypts are re-
turned by the previous step. Features describing the shape of the crypt
and the distribution of the pixel classes within the crypt are extracted
from each candidate crypt. A RandomForest classifier trained on these
features eliminates the segments that do not satisfy the crypt model
(as shown in Figure 1).

3. Random Forest Classifier

The proposed method uses a very large dataset with multiple classes and
numerous features in the classification steps. Thus, the requirements for the
classifier are: multi-class classifier, the training step of the classifier should
be fast even with a large training-set, and because we want to define as
many features as we can without the need to perform feature selection, the
classifier should use only the “strongest” features in the training phase and
its accuracy should not degrade in the presence of “weak” features.

In Breiman (2001) random forests were proposed, which adds an ad-
ditional layer of randomness to bagging (Bootstrap aggregating (Breiman,
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Figure 3: Overview of the proposed segmentation method. The first step is the classifi-
cation of the pixels. The second step is the segmentation of the crypts using novel active
contour algorithm. Finally, the third step is the false-positive crypts removal.

1996)) using a decision tree classifier. Decision tree learning is a method
commonly used in data mining. The goal is to create a model that predicts
the value of a target variable based on several input variables (features).
Each interior node corresponds to one of the input variables; there are edges
to children for each of the possible values of that input variable. Each leaf
represents a value of the target variable (the class) given the values of the
input variables represented by the path from the root to the leaf.

In addition to constructing each tree using a different bootstrap sample of
the data, random forests change how the classification trees are constructed.
In standard trees, each node is split using the best split (condition on one of
the features) among all variables. In a random forest, each node is split using
the best among a subset of predictors randomly chosen at that node. This
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(a) (b) (c)

Figure 4: Artifacts and variances in tissue sections. (a) The lumen (in red) is similar in
color to the artifacts (in black) resulting from the sectioning process. (b) Difference in
color of nuclei between cancerous and healthy crypts. (c) Broken nuclei layer.

somewhat counterintuitive strategy turns out to perform very well compared
to many other classifiers.

Unlike single decision trees which are likely to suffer from high variance or
high bias, Random Forests use averaging to find a natural balance between
the two extremes. Random Forest has many additional advantages that meet
our requirements:

• Multi-class classifier - The Random Forest classifier uses a decision tree
classifier as its main component, which is a multi-class classifier.

• Insensitive to “weak features” - Contrary to other classifier models, the
Random Forest gives very high accuracy rates even if the training set
contains many “weak features”. Hence, Random Forest classifier does
not need a preprocessing step of feature selection.

• Fast training and classification - As described above, the Random For-
est is trained by building many inner decision tree classifiers whose
training is linear and fast. The classification of a test sample is to run
all the decision trees and the class is according to the majority. This
process can be done in parallel, which makes the classification process
even faster.

In conclusion, Random Forest classifier is the classifier that has the char-
acteristics that can handle this challenging dataset while giving high classi-
fication accuracy.
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4. Pixel-Level Classification

The pixels are classified in two steps (as described in Figure 5): First, a
dedicated classifier is created for immune system cells and nuclei, with an-
other class representing the other types. This classifier is based on the image
features. Then, another dedicated classifier is created for lumen, stroma,
goblet cells and cytoplasm for the pixels from the third class. The classifier
uses features from the image to classify and features based on the classified
nuclei-immune system cells pixels from the first step. The final PLC image
is created by setting these pixels with their classes from the second classifier.

Figure 5: PLC overview. First, classifying the pixels as nuclei, immune system cells, and a
third class representing the other types. Then, the pixels that were classified as the third
class are classified using another classifier as lumen, stroma, goblet cells and cytoplasm.
The second classifier uses features based on the nuclei-immune system cells classification
result.
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4.1. Immune system cell and nucleus classifier

The classifier is trained on 39,000 nucleus samples and 38,000 immune
system cell samples, along with 49,000 samples from the third class, which
represents the remaining classes that the second classifier will handle. All
these samples are taken from 11 different tissue examples. The classifier uses
more than 180 features:

• The pixel values from the RGB, YcBcr, HSL, Lab and YIQ channels.
• On each channel of the RGB, YcBcr, HSL, Lab and YIQ color spaces,

the median and the standard deviation are computed on windows of
width 3, 5 and 9.
• On the normalized RGB, YcBcr, HSL, Lab and YIQ color spaces, the

median and the standard deviation are computed on windows of width
3, 5 and 9. (The normalization method is described below.)

To overcome the variations in colors of nucleus and immune system cell pixels,
in the same tissue (Figure 4b) and between different tissues (Figures 1 and 2),
the image is divided into tiles and each tile is normalized according to the
minimal and maximal values in the tile. By normalizing in a small region
and not over the entire image, artifacts or variations in color are contained
within the tile (Figure 6).

(a) (b)

Figure 6: Normalization method. (a) Normalization of the entire image. (b) Tile image
normalization: the image is divided into tiles and each tile is normalized. In the normalized
tile image the nucleus and immune system cell pixels are more prominent than in the entire
normalized image.

The features are calculated on small windows (3× 3 up to 9× 9) because
the nuclei and immune system cells are small relative to the size of a crypt
(which is about 100×100 pixels), and we do not want to compute the feature
on a window that contains structures other than those the pixel belongs to.

The classifier was tested using 5-fold cross-validation and gave 87.62%
accuracy. Table 1 displays the confusion matrix of the classifier. As demon-
strated in Figure 4, the major classification errors are between the nucleus
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and the immune system cell pixels. Although the classifier gives quite accu-
rate results, these errors will have to be taken into account in the segmenta-
tion stage.

Table 1: Confusion matrix for the nuclei-immune system cells and the other types, which
are classified by the next classifier.

XXXXXXXXXXXXClass
Classified as

Other Nuclei Immune system cells

Other 90.7% 3.8% 5.5%

Nuclei 1.5% 88% 10.5%

Immune system cells 1.8% 14.7% 83.5%

4.2. Lumen–stroma–goblet-cell–cytoplasm classifier

The classifier is trained on 23,500 stroma samples, 31,000 lumen samples,
26,000 cytoplasm samples, 25,000 goblet cells and 22,000 samples of immune
system cells and nuclei represented as another class. All these samples are
taken from 11 different tissue examples.

The classifier uses more than 70 features:

• On the RGB, YcBcr, HSL, Lab and YIQ color spaces, the average,
median and smoothing filters are computed on windows of width 3, 5,
7 and 31.

• On the normalized RGB, YcBcr, HSL, Lab and YIQ color spaces, the
average, median and smoothing filters are computed on windows of
width 3, 5, 7 and 31.

• The percentage of nucleus pixels and the percentage of immune system
cell pixels are computed in windows of width 3, 5 and 15. The pres-
ence of immune system cells indicates that the surrounding area is the
stroma and the presence of nuclei indicates that the surrounding tissue
belongs to the inner layers of the crypt.

Because these tissue components are larger than the nuclei and the immune
system cells, we use larger windows for these features. The filter window sizes
were selected from a range of window sizes, where a classifier using features
from the maximal window size yields better accuracy than a classifier trained
using only features of the pixel.

12



Table 2: Confusion matrix for the stroma, lumen, cytoplasm, and goblet cells.
XXXXXXXXXXXXClass

Classified as
Stroma Lumen Cytoplasm Goblet cells

Stroma 93.8% 0.7% 4.8% 0.7%

Lumen 0.3% 91.4% 0.9% 7.4%

Cytoplasm 2.5% 4.5% 85.6% 7.4%

Goblet cells 0.3% 9.2% 3.7% 86.8%

The classifier was tested using 5-fold cross-validation and gave 91.3% ac-
curacy. Table 2 displays the confusion matrix of the classifier. The confusion
between lumen, cytoplasm and goblet cells is not problematic because all
these classes compose the inner area of the crypt; in the segmentation stage,
only this is relevant and not its content. The only problem is the possi-
ble confusion between these inner area classes and the stroma, where any
misclassification can cause incorrect segmentations or false positive crypts.
The classification accuracy is lower when classifying a biopsy image that the
classifier was not trained on some of its pixels. We describe an experiment
demonstrating this in Section 7.2. Overcoming classification errors of this
sort is described in the segmentation step.

5. Crypt Segmentation

Segmentation using active contours has to be initialized with a contour.
In our case, the crypt lumen serves this purpose. For each lumen candidate,
our memory-based active contour algorithm is run.

5.1. Lumen Candidates

At this stage, there is a PLC image in which crypt lumina are found. The
active contour will start from the inside of the crypt and evolve towards the
nuclei layer. Since not every crypt has a lumen or goblet cells or cytoplasm,
the inside of the crypt is represented by connected components built from
the union of the lumen, goblet cells, and cytoplasm pixels.

Misclassifying cytoplasm as the stroma creates holes in the connected
component (see Figure 7a), while misclassifying the stroma as cytoplasm can
create small, false-positive candidates (see Figure 7b). To handle the holes in
the connected component of the lumen, a morphologic hole-filling operation

13



is performed. In addition, all connected components whose number of pixels
is under an empirical threshold (selected to be 50 pixels) are discarded.

(a) (b)

Figure 7: Classification mistakes can result in incorrect or false-positive crypt lumina
candidates. (a) Holes in the connected component of the lumen. (b) False positive lumen
candidate.

5.2. Crypt Segmentation Using Active Contour Modification

In the original active contour segmentation method introduced in Kass
et al. (1988), the contour deforms to minimize the contour energy, which
includes the internal energy from the contour, denoted by Eint, and the
external energy from the image, denoted by Eext.

Esnake =

1∫
0

Eint(v(s)) + Eext(v(s)) ds, (1)

where v(s) is the parametric representation of the contour:

v(s) = (x(s), y(s)). (2)

Using a variational method, the internal and external energy are converted
to internal and external forces to deform the contour. During the contour
deformation process, the curvature-based internal force maintains contour
smoothness, while the gradient-based external force attracts the contour to
the desired boundaries in the image. The deformation finally stops when the
contour reaches an energy minimum (force balance). In every iteration of
the active contour, the contour is evolved according to the external forces at
the position of each contour point.

Unlike other, low-level segmentation techniques such as thresholding, k-
means, or edge detection based, active contour models can achieve subpixel
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(a) (b) (c)

Figure 8: Calculating the active contour and its external forces from the PLC image. (a)
The active contour is initialized with the edge of its inner area found in the previous step.
(b) For each pixel, P corresponds to the closest active contour pixel, S, using distance
transformation. (c) The external force in each pixel is calculated using the pixel class
and its distance from its corresponding active contour pixel. The purple arrows are the
attraction forces and the red arrows are the repulsion forces.

accuracy and always provide closed and smooth contours, thus avoiding post-
processing after edge detection.

In this paper we suggest a new active contour method. Instead of using
a variation of image gradients as the external force, which is not suitable for
the complex structure of crypts, we suggest using an external force that is
based on the semantics of each pixel and the model of the segmented object.
The crypt’s inner area is modeled as being composed of goblet cells, a lumen,
and cytoplasm, surrounded by a nuclei layer. The crypts lie within a stromal
intermedium containing immune system cells.
The external force of a pixel, P , attracts or repels according to the pixel
class, PC :

ForceDir (PC) =

{
1 C is nuclei
−1 else

. (3)

Nucleus pixels are assigned an attraction force so the active contour will
be attracted to them while the stroma and immune system cells pixels are
assigned with repulsion forces so the active contour will stop at the edge of
the nucleus layer.

The active contour is initialized at the edge of the crypt’s inner area,
located in the previous step (see Figure 8a). To calculate the direction of
the external forces, each pixel, P corresponds to the closest active contour
point, S(P ) which is assigned using distance transformation (see Figure 8b).
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These pixels apply forces on their corresponding active contour points. Let

−−−→
V (P ) = ((

−→
P −

−−−→
S(P ))/||(

−→
P −

−−−→
S(P ))||, (4)

where V (P ) is the unit vector in the direction from S(P ) to P . When P is
the active contour point then V (P ) is the normal to the active contour at
that point. The external force of a pixel P is:

−→
PF =

−−−→
V (P ) ForceDir (PC). (5)

In active contour segmentation the contour is influenced only by the forces
of the pixels that it is on. Therefore the relevant external forces are on the

active contour. Due to the definition of
−→
PF the external forces are computed

before every active contour iteration.
Figure 8c displays the external forces for each pixel according to Equa-

tion 5.
Given a perfect PLC image, assigning force to each pixel as described

above will suffice and result in excellent segmentation of the crypts. But as
can be seen in Table 2, when pixels representing the inner areas of the crypts
(cytoplasm, lumen and goblet cells) are misclassified as stroma pixels (see
Figure 9a), repulsion forces will be applied before the nuclei layer has been
reached, thus preventing the active contour from reaching it (see Figure 9b).
This will result in inaccurate segmentation.

(a) (b)

Figure 9: (a) Pixel representing the inner areas of the crypts (cytoplasm, lumen and goblet
cells) are misclassified as stroma pixels. (b) Repulsion forces applied before the nucleus
layer prevent the active contour from reaching the nuclei.
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In addition, when the nucleus layer is broken (see Figure 4c) and when
nuclei are misclassified as immune system cell pixels (see Table 1), a broken
nucleus layer will be seen in the PLC image (see Figure 10a).

(a) (b)

Figure 10: (a) Broken nuclei layer. (b) After several iterations of the active contour,
the active contour point S has not yet reached a nucleus. Thus, the stroma pixels are
converted to attraction forces, as are the nuclei of the neighboring crypts.

To overcome these misclassifications, a higher level of knowledge is used:
the crypt model. Unless the crypt has a broken nucleus layer, the active
contour should reach it. But if the nucleus layer is broken, we want to avoid
overgrowing the active contour during its search for the crypt’s nuclei (see
Figure 10b).

To enable the active contour to reach the nuclei layer, no repulsion forces
should exist on an active contour point before it reaches a nucleus. Only
then are the repulsion forces enabled. But to prevent associating nuclei
pixels of other crypts with the active contour and to prevent overgrowing,
the repulsion forces are discarded only if the active contour point has a
corresponding nucleus at a distance under an empirically selected threshold
MIN DIST (see Figure 11). The value of this threshold is 10 pixels, it
was chosen such that it would be large enough so that the nuclei of the
segmented crypt would not be discarded, but small enough so that the nuclei
of neighboring crypts will not affect the algorithm.

In order to implement this logic, the näıve active contour is modified to
a memory based active contour (as described in Algorithm 1). Each active
contour point, S, is assigned a Boolean variable, Sm. This memory variable
indicates whether S has already reached a nucleus. The Sm variables are
initialized to false. In each iteration of the active contour algorithm, for
each active contour point S for which Sm is false and has a corresponding
nucleus in close range, all the stroma pixels that belong to it (as described
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Figure 11: A nucleus is considered to belong to an active contour point only if its distance
from the point is less than a threshold. Thus, if the nuclei layer is broken, the nuclei of
the neighboring crypts will not be considered and the active contour will not overgrow (as
in Figure 10b)

in Figure 8b) are converted to attraction forces (see Figure 12a). When the
active contour point reaches a nucleus, Sm is assigned to true so that in the
following iterations the stroma will apply repulsion forces (see Figure 12b).

Confusing stroma pixels with crypt inner area pixels can cause incorrect
active contour initialization. In this case, the active contour might be located
outside the nucleus layer, and the assumption that the active contour starts
before it will fail. This will result incorrect segmentation (see Figure 13a).
To ensure that the active contour is initialized inside the crypt, erosion op-
erations are performed on the connected component of the crypt’s inner area
(see Figure 13b).

6. False-Positive Crypt Elimination

The result of the previous step is the crypt segmentation map. Incorrect
selection of lumen candidates (see Figure 14a) and incorrect segmentations
(see Figure 14b) result in false-positive crypt segments that need to be elim-
inated. To classify the segmented crypts as false-positive and true-positive
crypts, a RandomForest classier was trained. The features of the classifier
were defined according to the histological characteristics of the crypts. Two
feature types were used in the classification process:

• Appearance — features based on the distribution of the classified pixels
of the segmented crypt and the location of each type of pixel.

• Shape — features of the shape of the segmented crypt.
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Input: PLC image, Crypt inner area connected component
Output: The crypt segment
initialization;
erode the crypt inner area connected component;
initialize the active contour (AC) with the edge of the crypt inner area
connected component;
for every AC point, S do

Sm = false;
end
active contour iterations;
for N iterations do

Find for each pixel its corresponding AC point using distance
transformation;
For each pixel assign its external force using Equation 5;
for every AC point, S do

if S has corresponding nuclei pixel then
Sd = distance from the closest corresponding nuclei pixel;

else
Sd =∞;

end
if Sc is a nucleus then

Sm = true;
end
if (!Sm) & (Sd < MIN DIST ) then

Convert S repulsion forces to attraction forces;
end

end
Evolve the active contour using the calculated external forces;

end
Algorithm 1: Memory based active contour segmentation
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(a) (b)

Figure 12: (a) Stroma pixels whose active contour point has not reached a nucleus are
converted to attraction forces. (b) When an active contour point has reached a nucleus,
it is marked so that in the following iterations the stroma pixels will be repulsion forces.
The image displays the active contour after several iterations. Active contour point S1
has not yet reached a nucleus; its stroma pixels are converted to attraction forces. But
active contour point S2 already reached a nucleus in the previous iteration, so its stroma
pixels become repulsion forces.

(a) (b)

Figure 13: (a) Stroma pixels misclassified as crypt inner area pixels cause incorrect active
contour initialization. (b) Erode operations are performed on the connected component
of the crypt’s inner area to ensure correct initialization of the active contour.

The appearance-based characteristics of a crypt (normal or cancerous)
are a nucleus layer, cytoplasm, a lumen and goblet cells. To measure the
compliance of the segmented crypt to these characteristics, the following
features are calculated:
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(a) (b)

Figure 14: (a) False-positive crypts can occur due to incorrect selection of lumen candi-
dates. For example, crypts 6,7,8,13 are false positives. (b) False-positive crypts can occur
due to incorrect segmentation.

• The percentage of each type of pixel out of the total number of pixels
that define the crypt: nuclei, cytoplasm, lumen, goblet cells.

• Thickness of the nucleus layer.

• The distribution of distances of the nuclei from the edge of the crypt
and the distribution of distances of the inside of the crypt (cytoplasm,
lumen, goblet cells). A valid crypt is composed of an even nucleus
layer. There are more nucleus pixels near the edge of the crypt than
at a distance from it (see Figure 15).

The shape-based characteristics of a crypt (normal or cancerous) are an
edge that changes smoothly and the resemblance to an ellipse (or a circle).
To measure the compliance of the segmented crypt to these characteristics,
the radius at an edge point is defined as the shortest distance from it to the
skeleton of the segment (see Figure 16). The following features are calculated
based on the radii when they are normalized according to the minimal and
maximal radius (denoted as normalized radius):

• average radius

• median radius

• average normalized radius

• median normalized radius
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Figure 15: Appearance features of a crypt. Calculating the distribution of the distances of
the nuclei from the edge of the crypt (green plot). The image on the top is of a correctly
segmented crypt; hence its histogram of distances is as expected for a valid crypt. The
image on the bottom is of an incorrectly segmented crypt: the active contour evolved too
much. This resulted in a crypt with many nuclei at medium distance from the edge, unlike
the histogram of a valid crypt.

• std normalized radius

• variance normalized radius

The classifier was trained on 6530 false-positive crypts and 5487 true-
positive crypts, of which 3980 were healthy crypts and 1507 were cancerous.

Figure 17 gives examples of the final result of the entire process on healthy
and cancerous sub-images. In the healthy biopsy Figure 17a all of the crypts
were segmented but two of them were incorrectly eliminated during the false-
positive elimination process. In the cancerous biopsy Figure 17b two crypts
were segmented correctly but falsely eliminated. In the healthy biopsy Fig-
ure 17c five crypts are not segmented, and five crypts were correctly seg-
mented but eliminated during the false-positive elimination process. There-
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Figure 16: Spatial features of the shape of the crypt. Calculating the statistics of the
radius defined as the distance of the edge to the skeleton of the crypt. On the left, a valid
crypt. The distance of its edge (red line) to the skeleton (black line) changes smoothly.
On the right, an invalid crypt.

fore, ten crypts are false-negative. In the cancerous biopsy Figure 17d about
six crypts in the sub-image are false-negative, while only one of them was
not segmented.

7. Results and Discussion

The proposed method is built from three phases (PLC, crypt segmenta-
tion, and elimination of false positive crypts), where each phase relies on the
previous phases and the quality of the results of the entire process depends
on the quality of the results of each phase.

7.1. Dataset

Since a database with ground truth segmentation of crypts does not yet
exist, a database of healthy and cancerous colon biopsies was built. The
biopsies for the database were randomly chosen by E. Sabo MD, a pathologist
from the Gyneco-oncology Unit at Rambam Hospital. The database was
created by scanning the biopsies under a microscope at ×200 magnification.
From each scanned biopsy image, sub-images were taken at a ×5 zoom out
from the original scanned image (i.e. ×40 zoom). By that we achieve a
balance between the need for a good resolution and the computation time.
The average size of a sub-image is 800×500 pixels. There were 109 sub-images
of healthy colons taken from 33 biopsies and 91 sub-images of cancerous
colons taken from 21 biopsies. The segmentation and classification of these
sub-images was confirmed by him. From these sub-images, a ground truth
database of segmented crypts was created. This database contains 4944
healthy crypts and 2236 cancerous crypts.
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(a) (b)

(c) (d)

Figure 17: Final result of the entire process on a sub-images. The overlaid connected
components mark the segmentation results. The green overlay indicates that the crypt is
valid, gray indicates that the crypt is invalid (false positive). (a) Sub-image containing
healthy crypts. (b) Sub-image containing cancerous crypts. (c) Sub-image containing
healthy crypts. (d) Sub-image containing cancerous crypts.

7.2. Pixel-level Classification

To build a training set for the pixel level classifier, 11 sub-images were
selected and their pixels were classified manually. Two types of tests were
performed. First, the classifiers were evaluated using 5-fold cross-validation
on the pixels training data. Taking in each fold 80% of the data as the
training set and the rest of the data as the test set. The nuclei-immune
system cells classifier gave 87.62% accuracy and the lumen, stroma, goblet
cells and cytoplasm classifier gave 91.3% accuracy.

In order to show that the two step PLC is better than only one classifier
for all the type of classes, a classifier trained with the same features as the
Lumen–stroma–goblet-cell–cytoplasm classifier was trained but without the
features that use the nuclei–immune system cells classifier result. The classi-
fier was evaluated using 5-fold cross-validation, and gave only 87% accuracy.

To test the classification of pixels of an image without training on any
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pixels of it, a 11-fold cross-validation was performed, where in each fold the
pixels of one of the sub-images were used as the test set and pixels of the
other 10 sub-images were used as the training set. The classification accuracy
of the PLC image was 80%. This is the classification performance expected
in real testing.

7.3. Crypt Segmentation

7.3.1. Lumen Candidates

The purpose of this phase is to find the candidates for crypts. The method
succeeds when it finds a compatible candidate for a crypt.

The evaluation method is as follows: Given an image, we run the seg-
mentation process without false positive crypt elimination (PLC, lumen can-
didate retrieval, modified active contour). At the end of this process a list of
connected components is available. For each crypt in the ground truth im-
age, we find its compatible segmented crypt by finding the segmented crypt
that gives the highest F-measure for the ground truth crypt.

The F-measure is the harmonic mean of recall and precision measures:

Fmeasure = 2× Recall × Precision

Recall + Precision
, (6)

where

Precision =
tp

tp + fp
, (7)

Recall =
tp

tp + fn
. (8)

Ground truth crypts that do not have compatible segmented crypts are
considered false negatives. This means that the crypt in the image has not
been retrieved. Ground truth crypts that have a compatible segmented crypt
are considered as true positives. This means that a crypt in the image has
been segmented (but the quality of the segmentation and whether it will
be eliminated depends on the next phases). Table 3 presents the results of
lumen candidate retrieval.

Table 3 shows that the lumen candidate phase gives high recall (low false
negative percentage) but low precision (high false positive percentage). This
is preferred because in this case we will segment nearly all the crypts and
eliminate the false positives in the FP elimination phase, rather than not
retrieving all the crypts.
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Table 3: Lumen Candidate Results

Number of crypts FP FN

Healthy 4944 57.8% 1.1%

Cancerous 2236 71.8% 1.1%

Total 7180 63.6% 1.2%

7.3.2. Segmentation Quality

We evaluate crypt segmentation quality by running the entire process
(as described in Section 5) and take statistics on the ground truth crypts
that have a compatible segmented crypt. Table 4 present the results of
segmentation of healthy and cancerous crypts.

Table 4: Crypt Segmentation Quality Results

Number of crypts F-measure
Healthy 4944 94.7%
Cancerous 2236 93.8%
Total 7180 94.3%
* The segmentation accuracy of the true pos-

itive crypts before false-positive crypt elim-
ination

To demonstrate that the proposed memory-based active contour method
gives more accurate results than the näıve active contour algorithm that
relies only on the PLC, the näıve active contour was ran on the same dataset
and gave lower segmentation accuracy (see Table 5). For example, the total
F-measure deteriorated from 94.3% to 85.3%. In addition, the näıve active
contour is based on a very similar approach as Naik et al. (2007, 2008) - that
evolves the contour according to external forces calculated from the PLC.
This test shows that an approach that relies on the PLC to be accurate is
not enough and using the logic based on the crypt model improves the results
in cases of imperfect PLC.

7.4. False-Positive Crypt Elimination

To reduce the percentage of false positive crypts (as described in Table 3),
the segmented crypts are classified as valid or invalid. The crypt classification
was evaluated using 5-fold cross-validation. Table 6 presents the results of
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Table 5: Crypt Segmentation Quality Results

Number of crypts F-measure
Healthy 4944 86.7%
Cancerous 2236 83.7%
Total 7180 85.3%
* The segmentation accuracy of the true pos-

itive crypts before false-positive crypt elim-
ination using the PLC based näıve active
contour algorithm

segmentation of healthy and cancerous crypts after the removal of the false
positives. It can be seen that the segmentation accuracy of the cancerous
crypts is high. This is in contrast to other segmentation techniques that are
not general enough to segment cancerous crypts.

Table 6: False Positive Crypt Elimination Results

Number of crypts F-measure FP FN
Healthy 4944 95.5% 9.9% 13.2%
Cancerous 2236 98.1% 7.4% 11.9%
Total 7180 96.2% 9.3% 12.9%
* The results after false positive crypt elimination. It can

be seen that the percentage of false positive crypts has
dropped. Due to the removal of inaccurately segmented
crypts, overall accuracy has improved slightly and the false
negative percentage has increased.

The segmentation quality (F-measure) of the crypts improved after the
removal of false positives. This is because a poorly segmented crypt will
not comply with the characteristics of the model and will be eliminated. Al-
though the rate of false negatives (crypts that were segmented but eliminated
in the false-positive crypt elimination process) increased for the same reason,
the false negative rate is very low and almost 90% of the crypts were retrieved
from the biopsy image. This is enough to enable classification of the biopsy.
In addition, the false positive crypt rate dropped from more than 60% to 9%.
This means that the vast majority of the retrieved crypts are valid.
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8. Conclusions And Future Work

Biopsy segmentation is a fundamental step in cancer diagnosis. In this
paper a novel colon crypt segmentation method was introduced. This method
segments the crypts in the biopsy image after classifying each pixel. The
PLC enables a more robust and accurate segmentation and elimination of
false positive segmented crypts.

The main contribution of this work are:

• Novel two step pixel-level classification that improves the accuracy of
the one classifier approach.

• Memory based active contour algorithm that is more robust to PLC
errors as opposed to näıve active contour that relies on perfect PLC
(such as in Naik et al. (2007, 2008)).

The introduced segmentation method detects 87% of the crypts with 9%
of false positive segments (segments that do not represent a crypt). The
segmentation accuracy of the true positive segments is 96%. These results
are based on 7180 crypts from 54 biopsies. This segmentation method can
accurately segment cancerous crypts, whose shape is characteristically more
complex than than that of healthy crypts. As far as we know, this is the first
paper that tests a crypt segmentation method on a very large data set.

The method has two limitations:

• The quality of the segmentation relies on the quality of the PLC; thus,
when the PLC fails, the segmentation accuracy will deteriorate (see
Figure 18a).

• During segmentation the active contour is attracted to nucleus pixels.
This logic results in inaccurate segmentation when the segmented crypt
is attached to another crypt (see Figure 18b).

This method is general and can be applied to other types of biopsies with
glandular objects. Moreover, this method can be used in any context where
each pixel has a meaning. For each such case, the rules that guide the active
contour can be modified to fit the characteristics of the segmented object.
There are many future directions and applications for this work:

• As mentioned above, this segmentation method is based on a general
infrastructure of PLC, lumen candidate identification, segmentation,
and false positive segment removal. Each step in this method can be
improved or modified.
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(a) (b)

Figure 18: (a) Failed segmentation due to PLC errors: the lumen of the crypt was not
classified correctly. (b) Failed segmentation due to attached crypts: the active contour is
attracted to the neighboring crypts’ nuclei.

• To evaluate this segmentation method, a very large data set was built.
It can be used as a benchmark for testing crypt segmentation tech-
niques.

• The segmentation of crypts in a biopsy is the first step in the classifica-
tion of the biopsy as normal or cancerous. The presented method can
be used to retrieve the crypts in the biopsy to be classified to normal
and cancerous and thus to segment the biopsy to cancerous and healthy
regions.

• Several types of tissue such as prostate, breast, and thyroid also include
glandular structures (see Figure 19). We believe this method is general
and therefore can be applied on these biopsies.

(a) Breast biopsy (b) Thyroid biopsy (c) Prostate biopsy

Figure 19: Examples of other types of biopsies that contain glandular structures.
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