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A bstract

[z this paper we introduce a rovel method for detection and segmentation of
crypts i colonr biopsies. Most of the approackes proposed i thke literature try
to segment the crypts using orly the biopsy image without understanding the
meaning of eack pixel. Hhe proposed method differs in that we segment the
crypts using ar automatically gererated pirel-level classification image of the
original biopsy image ard kandie the artifacts due to the sectioring process
and variarce in color, skape ard size of the crypts. Hhe biopsy image pixels
are classified to nuclei, immeure system, lumen, cytoplasm, stroma ard goblet
cells. Mhe crypts are then segmented using a rovel active contour approach,
where the exterval force is determined by the semantics of eack piwel and the
‘model of the crypt. Mhe active cortour is applied for every lumen carndidate
detected using the piwel-level classification. Wirally, a false positive crypt
eliminatior process is performed to remove segmentation errors. Mhis is
dore by measuring their adkerence to the crypt model usivg the pixel level
classification results. ¥he method was tested or 54 biopsy images containing
4944 healthy and 2236 carcerous crypts, resulting iv 87% detection of the
crypts with 9% of false positive segments (segments that do not represent a
crypt). Hhe segmentation accuracy of the true positive segments is 96%.
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7. Ietroductior

Cancer is a leading cause of death worldwide, accounting for 7.6 maillion
deaths (arourd 13% of all deathks) iz 2008. Murg, stomack, liver, colon ard
breast cauncer cause the most caucer deaths eack year. Deaths from cancer
woridwide are projected to contivue risieg, witk aw estimzated 13.1 millior
deaths iw 2030 (WIRO, 20i4).

Early detection of carcer development car lead to a full recovery. Cancer
car be detected iz a number of ways, including the presence of certain siges
and symptoms, screening tests, or medical imaging. Ouce a possible cancer
is detected, it is diagrosed by a biopsy — a tissue tkat is beieg removed i a
mininal ievasive way from the suspected organ. ¥he biopsy is ewamined by
a pathologist via a microscope. Due to the implications that the diagrosis
kas for the patient, this process is central.

Whe pathologist zeeds to be precise ard have the ability sift througk huge
amounts of data to detect small anomalies in the biopsy. ¥he same precision
is required urder the added pressure of a very keavy caseload. Adoreover,
it tures out, for ewample, that appromimately 80% of the I milliow prostate
biopsies performed in the U.S. every year are beuwigr. Whis suggests that
prostate pathologists ard, quite possibly, patkologists ie othker fields as well,
are sperding much of their tine sieving through benign tissue. Hhere is thus
a clear need for an automatic tool to draw the pathologist’s atteuntion to
biopsies withk a suspicious region.

A prerequisite for the diagrosis of disease iz biopsy images is ofter the
identification of certain histological structures. Mhe preseuce, extent, size,
skape, and otker morphkological ckaracteristics of these structures are impor-
tant iedicators for the presence or severity of the disease. Missue types suck
as prostate, color, breast, and thyroid ieclude glandular structures. Mhe first
step i quantifyving suck tissues, and kence in identifying the related diseases,
is to segment the glandular structures.

[2 this study we work witk colon tissue ineages. ¥he colonic biopsy inage
is composed of a stromal intermedium contaiving glards (called crypts) and
immune system cells that surround the crypts (see Wigure 1). HWhe crypts
are composed of an iever area (lumenr, goblet cells, and cytoplasm) and an
outer layer of epithkelial cell nuclei (derzoted as vuclei). Hhis composition of



tke crypt is deroted, the crypt model. Mhis model is valid for botk healthy
and cancerous crypts.

[2 cancerous colon tissue, the size of the crypts changes, as does the
thickuess of the nuclei layer, along with otker structural and visual propertnes
(Marchevsky and Bartels, 1994; Nardiei aed Rippir, 1996; Wu et al., 2004a,b;
Deligdisck et al., 1999; Butler et al., 2002; Biertko et al., 2004; Bloyet et al
1999; Deligdisck et al., 2003). Ewxamples of carcerous biopsies of colon tissue
are shown v Migure 2.

[] immune system cells
[ stroma
[] Cytoplasm

iy B Lumen
W5 [ ] Goblet cells

Wigure 1: IRealthy colom tissue amd crypt structure. MWire model of the crypt is a lumen
and goblet cells in cytoplasm, surrounded by a thim layer of epitrelial cell nuclel (denoted
as muclei). Hie crypt and immune system cells are in the stromal intermediuma.

Wigure 2: Camcerous colon tissue biopsies sub-images.

Cousiderable progress kas been made i the field of histology image anal-
ysis and many surveys on gland segmentatior kave beer corducted (Gurcan
al., 2009; Demir arnd Werer, 2005; Belsare and AMuskrif, 2012; Smockina
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et al., 2011; Bhattackarjee et al., 2014). Hhere are several approackes to this
problem. Whreskolding based methods (Weyn et al., 1998; Krtolica et al.,
2002; Albert et al., 1996, 1998; Nockett and [Rermarn, 1994) rely on the as-
sumption that au inteusity threshold determines whether a pirel belorgs to
a ruciear regiorn. ¥hese methods are generally easy to impliement, but they
are quite semsitive to color variations due to staiwing, fiwatior, sectioring
procedures, or the fadieg of the dye.

Otker studies segment the glands under the assumption of a skape using
inzage filters and morphological operatiors. [z Wu aed €il (2006), ar image
giand segmentation algorithm using biased mediar fiitering was introduced.
Whe algorithm was based onr the orientation and locatior of goblet cells. Hhe
algorithn is limited to kealthy glands, in whick the goblet cells lie side by side
and their shape car be approwimated by loug ellipses, but these properties
do rot kold in carcerous tissue, i whick the crypts might ot contain goblet
cells. [ Smochina et al. (2013), a teckrique based ou a closieg morpkological
Lierarchy was presented. Whis closieg operator fills gaps in the crypt cortour
but sometines eliminvates crypt lumina compietely.

Several studies focus or the problem of gland segmentation using the fact
tkat glands are characterized by their lumiral areas surrounded by epithelial
cells. Iz Guuduz-Demir et al. (2010), the tissue was decomposed into a
set of primitive objects (ruclei and lumen) and the glands were segmented
usirg the organizational properties of these objects. Mhis approack extracts
objects (rucleus cells ard lumiea) using a circle-fitting algoritbuoa. [t is limited
because i carcerous cells, the nuclei cells ard lumira are not always circular.
Hhis is overcome by Rathkore et al. (2013), whick models epithelial cells as
ellipses.

A more advanced approack to crypt segmentation is the usage of pirel-
level classification (whick we will derote PNC). [u Nguyen et al. (2012a,b),
each pirel is classified to ore of the classes described in Wigure 1. After that,
gland bourdary extraction is performed by urifying the nuclei pirels with the
cytoplasm piwels. Winaily, the gland is constructed by expausior of the lumen
pirels until reacking the boundary from the previous step. Whis method is
sensitive to PNC errors, and piwel unification will result ie ivaccurate gland
segmentation. Minally, this method canrnot segment high-grade carcizonea
giands, ie whick the nuclei layer is broken and the crypt skape is not circular.

Iz Waik et al. (2007, 2008), a level-set metkod to segment glands iu
prostate biopsies is presented. Wirst, a pixel-level classifier is applied to ex-
tract the lumira, ruclei, and cytoplasm. Secornd, the level-set method is
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applied witk aw irvitial contour as the lumen edge, and the attraction force
is the nuclei pirels. Whe intensities of the nuclei likelikood image form the
stoppirg gradient of the level set. Cousequently, the gland segments obtaived
ie this approack only ieclude lumer ard cytoplasm regions, while we want to
capture the entire gland area, whick also izcludes ruciei on the gland bourd-
ary. Siuce there are usually multiple layers of ruclei ou thke gland bourdary
and gaps between these layers, it is difiicult to force the level-set curve to
capture all the nuciei on the gland bourndary. AMoreover, although relying on
PRC in the segmentation process is a good approack, this method is very
seusitive to low-level classification errors. [u the case of piwel misclassifica-
tior, the conrtour might evolve incorrectly. Hhis method also does not have
a postprocessing step that elimivates false positive crypts.

Whe accuracy of segmentation methods tkat rely on PNC sigrificantly
drops when the PNC is not accurate due to classification errors, or when
tke biopsy coutaius artifacts that wiolate the crypt model. [u MWaik et al.
(2007, 2008), the segmentation relies or the PNC accuracy and thkere is o
logic izcorporated in to the algoritbm to erable accurate segmentation even
if the PNC is not perfect. Dealing witk suck problems is ore of the main
contributions of this paper. [fere we present a PNC based segmentation
simeilar iw spirit to Waik et al. (2007, 2008), show its weakuesses and develop
a more robust segmentation algorithm tkat handles PNC errors.

Whe PNC information also gives more accurate features iz the process
of eliminating false-positive segments. [ Chompkuwiset et al. (2010), bile
ducts are segmented and eack segment is classified as a bile duct or as a false
positive segment using distance histogram of eack PNC class.

[2 this paper a rovel segmentation method is presented. Mhe compiex
problem of segmenting crypts is broken into three steps. Eack step relies
ou thke resuits of the previous steps but uses a kighker level of krowledge to
overcome any errors that may have occurred. lu the first step, the pixels
are classified iz a rovel two-step metkod that first classifies the ruclei ard
imemeune system cells arvd after that the lumen, cytoplasm, goblet cells, and
stroma. [u the second step lumen candidates are selected on the basis of
the PNC. Wor every lumen candidate, ae active contour (Kass et al., 1988)
is initialized withk its edge. Hhe active cortour maintains a variable for each
of its coutour poiuts, indicating its state with respect to the crypt model.
Hke calculation of the external forces is based or these variables and the
PNC image. Whis vew, memory-based active cortour metkod kelps overcome
1misciassifications in the PNC. Whe fival step is verification. [nvalid crypts



tkat do rot comply witk the model are eliminated using the following feature
types extracted from the crypt candidates: the skape of the segmented crypt
ard the distributior of the pixel classes.

Hhe paper is organized as follows. Section 2 presents ar overview of our
method. [ Sectior 3 we explain the choice of usieg the Rardonm Worest
classifier. Section 4 presents the first step of this metkod, the PNC of the
biopsy image. Sectior 5 explairs how crypts are segmented using ar active
cortour method that relies ou the PNC image. Section 6 preseuts the final
step, the elimination of faise positive segmented crypts. Sectior 7 presents
the evaluatior method and resuits of eack step of the proposed segmentation
‘method on tkousands of healthy and carcerous crypts. Winally, Section 8
discusses the limitations of this metkod and future researck directious.

2. Metkod Overview

¥he proposed active contour segmentatior approach relies o the charac-
teristics of the crypt structure: a lumer with a layer of nuclei, surrounded by
the stroma. Mhe design of this segmentation method is based on two layers of
information, where the computation i eack layer relies or the layers beueath
it, while exploiting kigher levels of knowledge. Hhe third step automatically
analyzes the results. Whe segmentation architecture is shown iz Kigure 3 and
cousists of the following steps:

1. PRC. ¥o find tke characteristics of the crypts in the biopsy image,
the image pirels need to be classified into the following types: lumen,
cytoplasme, goblet cells, rucieus layer, stroma and ineneure system celis
(see Wigure 1). According to the color biopsy structure, the crypts are
surrourded by a layer of nvuclei and located i a stromal intermediune
with imemune system cells. Wherefore, the nuclei and immure systen
cells give a very good irdicatior whetker their surrourding tissue is
stromal or belongs to the inuer layers of the crypt. Mo use this keuristic,
a two step-pirel classification process using a RardomMorest (Breiman,
2001) is performed to establisk the ewtire PNC image. Wirst, nuclei
and immune system cell classification is performed. Mhen the resuits
are used to classify the lumen, stroma, cytoplasm, ard goblet cells.
Winally, the results of the two classifiers are merged.

2. Crypt segmertatior. Although PNC gives impressive results, two
types of classification errors might occur: nuclei might be corfused



with ineneune system cells and the stroma might be corfused with the
ivrer area of the crypt.
Errors in the PNC car occur for several reasouws. Wirst, the stain fades
over time: the thickuess of a tissue section and the fading of the dye
cause variations iz the inteusity distribution of a tissue image (see the
different colors ie Wigures I and 2). Secord, sectioning artifacts are
similar iz color to the crypt lumina (see Wigure 4a). HWhird, tke color
of kealthy crypt vuclei differs from that of cancerous crypt vuclei (Wig-
ure 4b). Wourth, the crypt model is ot always satisfied; the layer of
nuclei car be brokern. See for ewampie Higure 4c.
Whe crypts are therefore segmented using ar active contour that is ii-
tialized to the edge of the lumen candidates from the previous step,
and the external force on the evolving contour is determined according
to the classified pirels from the first step. Mo overcome the two major
classification error types, the segmentation step uses a higher level of
information — the crypt model (ierer crypt area with wuclei layer sur-
rounding it). Hhe external forces are calculated at eack iteration usieg
the state of the coutour with respect to this meodel.

3. Walse positive crypt elimivatiorz. Due to ircorrect selectior of lu-
‘men cardidates or ivcorrect segmentation, false positive crypts are re-
tureed by tke previous step. Weatures describing the skape of the crypt
arnd the distribution of the pixel classes within the crypt are extracted
from eack candidate crypt. A RardomWorest classifier traived o these
features eliminates the segments that do ot satisfy the crypt model
(as shown in Wigure 1).

3. Rardom Worest Classifier

ke proposed method uses a very large dataset withk muitiple classes ard
rumerous features ie the classification steps. ¥hus, the requirements for the
classifier are: multi-class classifier, the training step of the classifier skould
be fast ever with a large training-set, and because we want to defive as
many features as we car without the need to perform feature selection, the
classifier should use only the “strongest” features in the traivieg phase and
its accuracy skould not degrade in the presence of “weak” features.

[z Breiman (2001) random forests were proposed, whick adds aw ad-
ditional layer of randomuess to bagging (Bootstrap aggregating (Breiman,
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Wigure 3: Overview of the proposed segmentation method. HWee first step is the classifi-
catiom of the piwels. Mie secomd step is the segmentation of the crypts using movel active
comtour algoritama. Wimally, the third step is the false-positive crypts removal.

1996)) using a decision tree classifier. Decision tree learriug is a method
commonly used in data mining. Whe goal is to create a model that predicts
the value of a target variable based ou several input variables (features).
Eack interior rode correspords to ore of the input variables; there are edges
to children for eack of the possible values of that input variable. Eachk leaf
represents a value of the target variable (the class) giver the values of the
ieput variables represented by the path from the root to the leaf.

[2 additior to corstructing eack tree using a different bootstrap sample of
the data, random forests change how the classification trees are constructed.
Iz standard trees, eack rode is split usiug tke best split (corditior or ore of
the features) among all variables. I2 a random forest, eack node is split usieg
the best among a subset of predictors randomly chosen at that node. Whis



Wigure 4: Artiflacts and variamces im tissue sectioms. (a) Hhe lumen (im red) is simailar in
color to the artifacts (im black) resulting from the sectiomimg process. (b) Differemce in
color of muclel between camcerous and wealthy crypts. (c) Broden muclei layer.

somewbhat counterintuitive strategy turus out to perform very well compared
to many other classifiers.

Uulike single decision trees whick are likely to suffer from high variance or
higk bias, Rardom Worests use averaging to find a natural balance between
the two extremes. Random Worest has many additional advartages that neeet
our requirenents:

e Alulti-class classifier - Hhe Random Worest classifier uses a decision tree
classifier as its maie comporent, whick is a multi-class classifier.

e [nsensitive to “weak features” - Contrary to otker classifier models, the
Random Worest gives very kigh accuracy rates even if the traiving set
countains many “weak features”. [Mence, Random Worest classifier does
not reed a preprocessing step of feature selection.

e Wast traivivg and classification - As described above, the Randon Wor-
est is traized by buildieg many ivver decision tree classifiers whose
traiwing is livear and fast. Whe classification of a test sample is to run
all the decision trees ard the class is according to the majority. Mhis
process car be dore ie parallel, whick makes the classificatior process
even faster.

[2 corclusior, Random Worest classifier is the classifier that kas the char-
acteristics that can handle this challenging dataset while givieg high classi-
fication accuracy.



4, Pirel-Neve!l Classificatior

"Hhe pirels are classified iz two steps (as described in Figure 5): Wirst, a
dedicated classifier is created for immune system cells ard nuclei, with aw-
otker class representing the other types. Hhis classifier is based ou the image
features. Whew, avothker dedicated classifier is created for lumen, stroma,
goblet cells and cytoplasm for the pirels from the third class. Whe classifier
uses features from the image to classify and features based on the classified
nuclei-immure system cells pirels from the first step. Whe fival PNC image
is created by setting these pirels with their classes from the second classifier.

| 1. Mucleus — Immune | 2. Lumen - Cytoplasm —
system Cell Classification Goblet Cell - Stroma
O e W g B

P
3. Merged final
_classification

Wigure 5: PNC overview. Wirst, classifying the pirels as muclel, immune systema cells, and a
third class representing the other types. Wien, the pirels that were classified as the third
class are classified using amotker classifier as lumen, stromaa, goblet cells and cytoplasma.
THee secomd classifier uses features based om the muclei-imamaume systema cells classification
result.



4.7. Immune system cell and nucleus classifier

Whe classifier is traized or 39,000 rucleus samples ard 38,000 immune
system cell sampies, along with 49,000 samples from the third class, whick
represents the remaining classes that the second classifier will bandie. All
these samples are taken from 11 different tissue ewamples. Whe classifier uses
“more thaw 180 features:

e WLe pirel values from the REB, WcBer, RSN, Nab and WIQ chavrels.

e Ou eack channel of the REB, WcBer, RSN, Nab ard WIQ color spaces,
the median and the standard deviatior are computed or wirdows of
widtk 3, 5 ard 9.

e Oun the vormalized REB, WcBer, RSN, Nab and WIQ color spaces, the
median and tke standard deviation are computed or wirdows of width
3, 5 and 9. (Hhe vormalization metkod is described below.)

Mo overcome the variations in colors of rucieus ard imnaure system cell pirels,
i the same tissue (Wigure 4b) and between different tissues (Wigures 1 and 2),
the image is divided into tiles and eack tile is rormalized according to the
minineal arnd neawineal values ie the tile. By rormalizing in a small regior
and not over the entire image, artifacts or variatious in color are contaired
within the tile (Wigure 6).

Wigure 6: Wormalization method. (a) Wormalization off thke emtire image. (b) Hile image
mormalization: the image is divided imto tiles and eack tile is mormaalized. [w the moxrmalized
tile image the nucleus and imamaune systema cell pirels are more prominent tham in the entire
mormalized image.

Whe features are calculated or small wizdows (3 x 3 up to 9 x 9) because
the nuclei and immure system cells are small relative to the size of a crypt
(whick is about 100 x 100 pirels), and we do rot want to compute the feature
or a wirdow that contains structures other thawn those the pirel belorgs to.

Hhe classifier was tested usieg 5-fold cross-validation awd gave 87.62%
accuracy. H¥able I displays tke confusion matrix of the classifier. As demoun-
strated ie Wigure 4, the major classification errors are between the nucleus
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and the inmaure system cell pirels. Although the classifier gives quite accu-
rate resuits, these errors will have to be taken into account in the segmenta-
tior stage.

Hable 1: Confiusion maatrix for the nuclei-imamaune system cells and the othrer types, whick
are classified by the mext classifier.

s Classified as Otker | Nuclei | lmmune system cells
Otker 90.7% | 3.8% 5.5%
Nuclei 1.5% | 8% 10.5%
[enune system cells || 1.8% | 14.7% 83.5%

4.2. Lumen—stroma—qoblet-cell-cytoplasm classifier

Whe classifier is traived on 23,500 stroma samples, 31,000 lumer samples,
26,000 cytoplasm samples, 25,000 goblet cells and 22,000 samples of immune
system cells ard vuclei represented as awother class. All these samples are
taken from 11 different tissue ewamples.

Hhe classifier uses more than 70 features:

e On the REB, WcBer, @SN, Nab and WIQ color spaces, the average,
mediar ard smoothing filters are computed on wirdows of width 3, 5,
7 and 31.

e Oun the vormalized RCB, WcBer, RSN, Nab and WIQ color spaces, the
average, mediae ard smoothing fiiters are computed or windows of
widthk 3, 5, 7 and 31.

e Whe percentage of nucleus pirels arnd the percentage of immure system
cell pixels are computed i wiedows of widtk 3, 5 and 15. Whke pres-
ence of immure system cells indicates that the surrounding area is the
stroma and the preserce of nuclei indicates that the surrounding tissue
belorgs to the inuer layers of the crypt.

Because these tissue componrents are larger thar the nuciei and the inemune
system cells, we use larger windows for these features. Whe filter window sizes
were selected from a range of window sizes, where a classifier using features
from the mawineal window size vields better accuracy than a classifier traived
usirg only features of the pirel.



Hable 2: Comfusion matrix for the stroma, lumen, cytoplasma, and goblet cells.

s Classified as Stroma | Bumen | Cytoplasm | Goblet cells
Stroma 93.8% | 0.7% 4.8% 0.7%
Numen 0.3% | 91.4% 0.9% 7.4%
Cytoplasm 2.5% | 4.5% 85.6% 7.4%
Coblet cells 0.3% 9.2% 3.7% 86.8%

The classifier was tested using 5-fold cross-validatior ard gave 91.3% ac-
curacy. Mable 2 displays the corfusion matrix of the classifier. ¥he confusion
betweer lumen, cytoplasm ard goblet cells is rot problematic because ail
these classes compose the inuer area of the crypt; in the segmentation stage,
ounly this is relevant and wvot its content. Mhe ourly problem is tkhe possi-
ble confusion between these inuer area classes and the stroma, where any
‘misclassification car cause ircorrect segmentations or false positive crypts.
ke classification accuracy is lower when classifyieg a biopsy image that the
classifier was not traized or some of its piwels. We describe an experiment
demonstrating this iz Section 7.2. Overcoming classification errors of this
sort is described in the segmentation step.

5. Crypt Segmentatior

Segmentation using active cortours kas to be initialized with a coutour.
[2 our case, the crypt lumen serves this purpose. Wor eack lumen carndidate,
our memory-based active contour aigorithne is run.

5.7. Lumen Candidates

At this stage, there is a PNC image ie whick crypt lumica are found. Hhe
active cortour will start from thke inside of the crypt ard evolve towards the
ruclei layer. Siuce rot every crypt bas a lumen or goblet cells or cytoplasme,
the inside of the crypt is represented by couuected comporents built from
the umion of the lumen, goblet cells, and cytoplasm pikels.

Misclassifying cytoplasm as the stroma creates holes in the conrnected
comporent (see Wigure 7a), while misclassifying the stroma as cytoplasm can
create small, false-positive cardidates (see Wigure 7b). Ho handle the koles i
the conrected component of the lumen, a morphologic kole-filling operation



is performed. [ additior, all corrected componrents whose number of pirels
is urder an empirical threskold (selected to be 50 pixels) are discarded.

Wigure 7: Classification maistakes cam result im imcorrect or false-positive crypt lumina
candidates. (a) loles in the conmected component of the lumen. (b) Walse positive lumen
candidate.

5.2. Crynt Segmentation Osing dctive Contour Modification

[z the origival active contour segmentation method ivtroduced in Kass
et al. (1988), the contour deforms to miuimize the contour ewergy, whick
izciudes the internal ewergy from the coutour, dewoted by FE;,;, ard the
external evergy from the image, devoted by F.,.

T
-
~—

Esnake = /Eznt(v(s)) + Eext(v(s)) dS,

where v(s) is the parametric representation of the covtour:

v(s) = (x(s),y(s))- (2)

Using a variatioral method, the interval and exterval ewergy are couverted
to internal and external forces to deform tke countour. During the conrtour
deformation process, the curvature-based interval force maintains contour
smoothress, while the gradient-based exterral force attracts the cortour to
tke desired boundaries iz the image. Whe deformation fivally stops when the
cortour reackes an eunergy mirinum (force balance). I[u every iteration of
the active contour, the contour is evolved according to the external forces at
tke positior of eack cortour point.

Unlike otker, low-level segmentation teckriques suck as threshoiding, k-
1means, or edge detectior based, active contour models car ackieve subpixel
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Wigure 8: Calculating the active comtour and its extermal forces firom the PNC image. (a)
Wre active comtour is imitialized with the edge off its inmer area found im the previous step.
(b) Wor each pirel, P correspomnds to the closest active comtour piwel, S, using distamce
transformation. (c) Hie extermal force im each piwel is calculated using the pirel class
amd its distamce from its correspomdimg active comtour piwel. Hwe purple arrows are the
attraction forces amd tke red arrows are tire repulsion forces.

accuracy ard always provide closed ard smooth cortours, thus avoidieg post-
processing after edge detection.
[z this paper we suggest a vew active contour method. [ustead of using
a variation of image gradients as the external force, whick is ot suitable for
the complex structure of crypts, we suggest using auw external force that is
based or the semantics of eack pixel and the model of the segmented object.
Whe crypt’s iveer area is modeled as beirg composed of goblet cells, a lumen,
and cytoplasm, surrourded by a nuciei layer. ¥he crypts lie within a stromal
irtermedium cortaining immeune system cells.
Whe exterval force of a piwel, P, attracts or repels according to the pirel
class, Po:
, . -
WorceDir (Py) — b q iis ruclei
—1 else

(3)

Mucleus pirels are assigred aw attraction force so the active coutour will
be attracted to them while the stroma arnd imneure system cells pixels are
assigred witk repulsion forces so the active contour will stop at the edge of
tke nucleus layer.

Hhe active contour is initialized at the edge of the crypt’s inner area,
located in the previous step (see Wigure 8a). Mo calculate the direction of
the external forces, eack pixel, P correspords to the closest active courtour
poiut, S(P) whick is assigred using distance travsformation (see Wigure 8b).



Hhese pirels apply forces on their correspording active contour poirts. Net

V(P = (P = S(PY/II(B = SR (4)

where V (P) is the urit vector in the direction from S(P) to P. When P is
the active cortour point ther V(P) is the normal to tke active contour at
tkat point. ke external force of a pixel P is:

]7; = mporceDﬂr (Pe). (5)

[2 active cortour segmentation the contour is irfiuenced oniy by the forces

f the pirels that it is on. Wherefore the relevant external forces are on the
active cortour. Due to the definition of ]?}F the external forces are computed
before every active contour iteration.

Wigure 8c displays the external forces for eack piwel according to Equa-
tion 5.

Given a perfect PNC image, assigring force to eack pixel as described
above will suflice and resuit in excellent segmentation of the crypts. But as
can be seen in Hable 2, when pirels representing the ieuver areas of the crypts
(cytoplasm, lumen and goblet cells) are misclassified as stroma pikels (see
Wigure 9a), repulsion forces will be applied before the nuclei layer has been
reacked, thus preventing the active contour from reaching it (see Wigure 9b).
Whis will result i ivaccurate segmentation.

Wigure 9: (a) Pixel representing the inmer areas off the crypts (cytoplasm, lumen and goblet
cells) are misclassified as stroma pirels. (b) Repulsion forces applied befiore the nucleus
layer prevemt the active comtour from reacking the muclei.



Iz additior, wher the nucleus layer is broken (see Wigure 4c) and when
ruclei are misclassified as immure system cell pirels (see Hable 1), a broken
rucleus layer will be seer iz the PNC image (see Wigure 10a).

Pigure 10: (a) Brokem muclei layer. (b) After several iteratioms of tke active comtour,
the active comtour point S Ras mot yet reacked a mucleus. HWwus, the stroma pirels are
comverted to attractiom forces, as are the muclei of the meighboring crypts.

Ho overcome these misclassifications, a kigher level of knowledge is used:
the crypt model. Unless the crypt has a brokem nucieus iayer, the active
contour skould reack it. But if tke vucleus layer is broken, we want to avoid
overgrowing the active contour during its search for the crypt’s nuclei (see
Wigure 10b).

Mo enable the active cortour to reack the nuciei layer, no repulsior forces
skould exist or ar active contour point before it reackes a nucieus. Ounly
then are the repulsion forces enabled. But to prevent associating nuclei
piels of otker crypts witk the active contour ard to prevent overgrowing,
the repulsion forces are discarded ouly if the active cortour point has a
correspording vucleus at a distarce urder aw empirically selected threshkold
MIN_DIST (see Wigure 11). Hhe value of this threskold is L0 pixels, it
was choser suck thkat it would be large enougk so tkat the nuclei of the
segmented crypt would not be discarded, but small enough so tkat the ruciei
of neighboring crypts will vot affect the algorithna.

[z order to implement this logic, the naive active cortour is modified to
a memory based active cortour (as described in Algoritbm 1). Eack active
contour point, S, is assigeed a Boolean variable, .S,,. Hhis memory variable
izdicates whetker S has already reacked a nucleus. Whe S, variables are
initialized to false. I eack iteration of the active coutour algorithme, for
eack active coutour point S for whick S, is false and kas a corresponding
nucleus in close range, all the stroma pirels that belorg to it (as described
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Wigure 11: A mucleus is comsidered to belong to an active comtour point omly if its distamce
from the poimt is less tham a threshold. Whus, if the nuclei layer is brokem, the muclei of
the meighboring crypts will mot be comsidered and the active comtour will mot overgrow (as
in Migure 10Db)

iz Migure 8b) are converted to attraction forces (see Wigure 12a). When the
active contour point reackes a rucleus, S, is assigred to true so that in the
following iterations tke stroma will apply repulsior forces (see Migure 12b).

Corfusing stroma pirels with crypt inuer area pirels car cause ircorrect
active contour izitialization. [ this case, the active contour might be located
outside the nucleus layer, and the assumptior that the active contour starts
before it will fail. HWhis will result iecorrect segmentation (see Wigure 13a).
Wo ensure that the active contour is initialized ieside the crypt, erosior op-
erations are performed or the cornected comporent of the crypt’s inver area
(see Wigure 13b).

6. Walse-Positive Crypt Elinzizatior

Hhe result of the previous step is the crypt segmentation map. [rcorrect
selection of lumen carndidates (see Wigure 14a) and incorrect segmentations
(see Migure 14b) result in false-positive crypt segments that zeed to be elim-
ivated. Mo classify the segmented crypts as false-positive and true-positive
crypts, a RandomMorest classier was traived. Whe features of the classifier
were defived according to the histological characteristics of the crypts. Hwo
feature types were used i the classificatior process:

e Appearance — features based or the distributior of tke classified pixels
of the segmented crypt and the location of eack type of pixel.

e Shape — features of the shape of the segmented crypt.



[zput: PNC image, Crypt ierer area corrected component
Output: ¥he crypt segment
izitialization;
erode the crypt inrer area corrected component;
initialize the active contour (AC) with the edge of the crypt inuer area
corrected component;
for every 4C point, S do
‘ Sm = false;
erd
active contour iterations;
for & iterations do
Wind for eack pixel its correspording AC point usivg distarce
trapsformation;
Wor each pirel assigu its external force using Equation 5;
for every 4C point, S do
iwf S has corresponding nuclei pizel ther
‘ Sy = distarnce from the closest corresponding nuclei pirel;

else
‘ Sd = 00}

erd

iwf S, 1s a nucleus ther
‘ Sy = true;

erd

if (1S,,) & (Sq < MIN_DIST) tkexn
‘ Convert S repulsion forces to attraction forces;
erd

erd

Evolve the active contour using the calculated external forces;
erd
_Algoritkm 1: AMemory based active cortour segmentation



Wigure 12: (a) Stromaa piwels whose active comtour poimt Ras mot reacked a mucleus are
comverted to attraction forces. (b) Whem an active comtour poimt Ras reacked a mucleus,
it is marked so that im the followimg iteratioms the stroma pirels will be repulsiom forces.
e image displays the active comtour after several iteratioms. Active comtour poimt SI
‘eas mot yet reacked a mucleus; its stroma pirels are comverted to attractiom forces. But
active comtour point S2 already reacked a mucleus im the previous iteratiom, so its stroma
pirels becomae repulsion forces.

Wigure 13: (a) Stroma pirels misclassified as crypt inmer area pixels cause incorrect active
comtour imitialization. (b) Erode operations are performed on the commected compoment
ofi the crypt’s immer area to emsure correct imitializatiom of thke active comtour.

ke appearance-based characteristics of a crypt (rvormal or cawcerous)
are a rucleus layer, cytoplasm, a lumen ard goblet cells. Mo measure the
compliance of the segmented crypt to tkese characteristics, the following

features are calculated:
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Wigure i4: (a) Walse-positive crypts cam occur due to imcorrect selection of lumen camdi-
dates. Wor examaple, crypts 6,7,8,13 are false positives. (b) Walse-positive crypts cam occur
due to imcorrect segmentation.

e Whe percentage of each type of pixel out of the total number of pirels
that defive the crypt: nuclei, cytoplasm, lumen, goblet cells.

e Whickuess of the nucleus layer.

e Whe distributior of distarces of the ruclei from the edge of the crypt
and tke distribution of distances of the izside of the crypt (cytoplasme,
lumen, goblet cells). A walid crypt is composed of ar ever nrucleus
layer. Mhere are more nucleus pirels vear the edge of the crypt than
at a distarce from it (see Wigure 15).

Hke shape-based characteristics of a crypt (wormal or cancerous) are an
edge that changes smoothly ard the resemblance to au ellipse (or a circle).
Ho measure the compliance of the segmented crypt to these characteristics,
the radius at ar edge point is defived as the shortest distance from it to the
skeletor of the segment (see Wigure 16). Hhe following features are calculated
based or the radii wken they are normalized according to the nainimeal and
‘mawinal radius (deroted as vormalized radius):

e average radius
e mediar radius
e average rormalized radius

o median normalized radius
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Wigure 15: Appearamnce features off a cxypt. Calculating the distributiom of tke distamces of
the muclel from the edge of the crypt (greem plot). Hie image on the top is of a correctly
segmented crypt; Remce its Ristograma off distamces is as expected for a valid crypt. Hie
imaage om the bottoma is of am imcorrectly segmented crypt: the active comtour evolved too
mauck. Hiis resulted im a crypt withk many muclei at medium distamce from the edge, umnlide
the Wistogram of a valid crypt.

o std vormalized radius
) .. )
e variarce rormalized radius

Hhe classifier was traived or 6530 false-positive crypts and 5487 true-
positive crypts, of whick 3980 were kealthy crypts and 1507 were carcerous.

Wigure 17 gives ewamples of the final result of the entire process o healthy
ard carcerous sub-images. [z the healthy biopsy Wigure 17a all of the crypts
were segmented but two of them were incorrectly elimivated during the false-
positive elimivatior process. [n the carcerous biopsy Wigure 17b two crypts
were segmented correctly but falsely elimivated. [n the healthy biopsy Wig-
ure 17c five crypts are not segmented, and five crypts were correctly seg-
mented but elimivated durieg the false-positive elimiration process. Where-
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FWigure 16: Spatial features of tike skape of the crypt. Calculatimg the statistics of the
radius defined as the distance of the edge to the skeletom of the crypt. On the left, a valid
crypt. Hie distamce of its edge (red lime) to the skeletom (black line) chamges smootily.
On the right, an invalid crypt.

fore, ten crypts are false-negative. [u the cancerous biopsy Wigure 17d about
sic crypts i the sub-image are false-uegative, while orly ore of them was
not segmented.

7. Results ard Discussior

ke proposed method is built from three phkases (PNC, crypt segmenta-
tior, ard elimination of false positive crypts), where eack phase relies on the
previous pkases ard the quality of the results of the entire process depends
ou the quality of the results of eack phase.

7.1. Dataset

Siuce a database with ground truth segmentation of crypts does not yet
exist, a database of healthy ard carcerous colow biopsies was built. Whke
biopsies for the database were rardomly ckoser by E. Sabo AID, a patkologist
from the Gyreco-oncology Unit at Rambam [Eospital. Mke database was
created by scaruing the biopsies urder a microscope at x200 magrification.
Wrom eack scanned biopsy image, sub-images were taken at a x5 zoom out
from the origival scanued image (i.e. x40 zoom). By that we achieve a
balance between the need for a good resolution and the computation time.
Hhe average size of a sub-image is 800x 500 pirels. Where were 109 sub-images
of kealthy colons taken from 33 biopsies ard 91 sub-images of carcerous
colous taken from 21 biopsies. Whe segmentation and classification of these
sub-images was confirmed by him. Wrom these sub-images, a ground truth
database of segmented crypts was created. Whis database contaies 4944
healthy crypts and 2236 carcerous crypts.
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Wigure 17: Wimal result of the emtire process om a sub-imaages. MWie overlaid commected
componrents mark the segmentation results. Hie green overlay imdicates that the crypt is
valid, gray imdicates that the crypt is imvalid (false positive). (a) Sub-image comtaimning
Jealthy crypts. (b) Sub-image comtaiming camcerous crypts. (¢) Sub-image comtaining
Teealthy crypts. (d) Sub-image comntaimning cancerous crypts.

7.2. Pizel-level Classification

o build a traiving set for the piwel level classifier, 11 sub-images were
selected and their pirels were classified manually. Wwo types of tests were
performed. Wirst, the classifiers were evaluated usieg 5-fold cross-validation
or the pixels traivieg data. Hakivg ie eack fold 80% of tke data as the
traiming set and the rest of the data as the test set. Whe nuciei-immure
system cells classifier gave 87.62% accuracy and the lumen, stroma, goblet
cells ard cytoplasm classifier gave 91.3% accuracy.

[z order to show that the two step PNC is better than ouly ore classifier
for all the type of classes, a classifier traived with the same features as the
Mumeen—stroma—gobiet-cell—cytoplasm classifier was traized but witkout the
features that use the nuclei-immure system cells classifier result. ¥he classi-
fier was evaluated usieg 5-fold cross-validation, and gave ouly 87% accuracy.

Ho test the classification of pirels of ar image without traiving on any
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pirels of it, a 11-fold cross-validation was performed, where in eack fold the
pirels of one of the sub-images were used as the test set and pirels of the
otker 10 sub-images were used as the traiving set. Whe classification accuracy
of the PNC image was 80%. Hhis is the classification performance expected
ie real testing.

7.3. Crypt Segmentation

7.8.1. Lumen Candidates

"Whe purpose of this pkase is to find the candidates for crypts. Hhe method
succeeds when it finds a compatible cardidate for a crypt.

Whe evaluation method is as follows: Civer anr image, we rur the seg-
mentation process witkhout false positive crypt elimivation (PNC, lunen can-
didate retrieval, modified active contour). At the end of this process a list of
counected comporuents is available. Wor eack crypt in the ground truth ine-
age, we find its compatible segmented crypt by finding the segmented crypt
that gives the highest ¥-measure for the ground truth crypt.

Whe W-measure is the harmonic mear of recall ard precisior measures:

Recall x Precision

F =2 "
measure % Recall + Precision’ 8

where ;
.. p
Precision = ———, 7
tp+ fp @)
tp
ll=——.
Reca D n (8)

Ground trutk crypts that do ot kave compatible segmented crypts are
cousidered false negatives. Whis means that the crypt in the image kas not
been retrieved. €round truth crypts that kave a compatible segnented crypt
are counsidered as true positives. Whis means that a crypt i the image kas
beer segmented (but the quality of the segmentation and whether it will
be eliminated depends on the vext phases). Wable 3 presents the results of
lumen candidate retrieval.

Hable 3 shows that the lumen cardidate pkase gives high recall (low false
regative percentage) but low precision (kigh false positive percentage). Hhis
is preferred because in this case we will segment nearly all the crypts and
elimivate the false positives in the WP elimivation pkase, rather than not
retrieving all the crypts.
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THable 3: Bumen Candidate Results

Mumber of crypts | WP WK
IEealthy 4944 57.8% | 1.1%
Cancerous 2236 71.8% | 1.1%
Hotal 7180 63.6% | 1.2%

7.3.2. Segmentation Quality

We evaluate crypt segmentation quality by ruwring the entire process
(as described in Section 5) ard take statistics on tke ground truth crypts
that kave a compatible segmented crypt. Mable 4 present the resuits of
segmentation of kealtbhy and carcerous crypts.

Hable 4: Crypt Segmentation Quality Results

Number of crypts | W-measure
[Realthy 4944, 94.7%
Cancerous 2236 93.8%
Hotal 7180 94.3%

* .
Whe segmentation accuracy of the true pos-
itive crypts before false-positive crypt eline-
izatior

Ho demoustrate that the proposed memory-based active contour method
gives more accurate resuits thaun the naive active cortour algorithm that
relies orly or the PNC, the naive active cortour was raw or the same dataset
and gave lower segmentation accuracy (see Hable 5). Wor example, the total
W-measure deteriorated from 94.3% to 85.3%. Iu addition, the raive active
cortour is based or a very similar approack as Maik et al. (2007, 2008) - that
evolves the cortour according to external forces calculated from the PNC.
"Mhis test shows that an approack that relies or the PNC to be accurate is
rot erough and using the logic based on the crypt model improves the results
ie cases of imperfect PNC.

7.4. False-Positive Crypt Elimination

o reduce the percentage of false positive crypts (as described iz Hable 3),
the segmented crypts are classified as valid or invalid. ¥hke crypt classification
was evaluated usieg 5-fold cross-validation. Wable 6 presents the results of
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Hable 5: Crypt Segmentation Quality Results

Mumber of crypts | ¥-measure
Realthy 4944 86.7%
Cancerous 2236 83.7%
Hotal 7180 85.3%

" Whe segmentation accuracy of the true pos-
itive crypts before false-positive crypt eline-
ization using the PNC based naive active
contour algorithne

segmentation of bealthy ard carcerous crypts after the removal of the false
positives. [t car be seen that the segmentation accuracy of the carcerous
crypts is kigh. Whis is ie contrast to other segmentation techuiques that are
rot gereral enough to segment carcerous crypts.

Hable 6: Walse Positive Crypt Elimination Results

Mumber of crypts | W-measure | WP WK
Realthy 4944 95.5% 9.9% | 13.2%
Cancerous 2236 98.1% 7.4% | 11.9%
Hotal 7180 96.2% 9.3% | 12.9%

* Hhe results after false positive crypt elimivation. [t can
be seen that the perceuntage of false positive crypts has
dropped. Due to thke removal of inaccurately segmented
crypts, overall accuracy kas improved slightly and the false
negative percentage has increased.

Whe segmentation quality (W-measure) of the crypts improved after the
removal of false positives. Whis is because a poorly segmented crypt will
ot comply with the characteristics of the model and will be elimivated. Al-
thoughk the rate of false vegatives (crypts that were segmented but elinizated
i the false-positive crypt elimination process) iecreased for the same reason,
the false negative rate is very low and almost 90% of tke crypts were retrieved
from the biopsy image. Whis is enough to evable classificatior of the biopsy.
[z additior, tke false positive crypt rate dropped from more thar 60% to 9%.
Whis means that the vast majority of the retrieved crypts are valid.
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8. Coxrclusiors A rd Future Work

Biopsy segmeuntation is a fundamental step in carcer diagrosis. [u this
paper a novel color crypt segmentation metkhod was introduced. Hhis method
segments the crypts in the biopsy image after classifying eack pirxel. Whe
PRNC enables a more robust and accurate segmentation and elimivation of
false positive segmented crypts.

Whe main coutribution of this work are:

e Novel two step pirel-level classification that improves the accuracy of
the ore classifier approach.

o ilemory based active cortour algorithne that is more robust to PNC
errors as opposed to raive active cortour that relies ou perfect PNC
(suck as in Waik et al. (2007, 2008)).

Whe introduced segmentation metkod detects 87% of the crypts with 9%
of false positive segments (segments that do not represent a crypt). Mhe
segmentatior accuracy of the true positive segments is 96%. Hhese results
are based on 7180 crypts from 54 biopsies. Whis segmentation metkod can
accurately segment carcerous crypts, whose skape is characteristically more
complex than than that of healthy crypts. As far as we know, this is the first
paper that tests a crypt segmentation method on a very ilarge data set.

Whe method kas two limitatiors:

e Whe quality of the segmentation relies or the quality of the PNC; thus,
when the PNC fails, the segmentation accuracy will deteriorate (see
Wigure 18a).

e During segmentation the active contour is attracted to rucieus pirels.
Whis logic results in iraccurate segmentation when the segmented crypt
is attacked to avother crypt (see Wigure 18b).

Whis method is general and car be applied to otker types of biopsies with
giandular objects. AMoreover, this method can be used ie ary coutext where
eack pirel bas a meaning. Wor eack such case, the rules that guide the active
cortour car be modified to fit the characteristics of the segmented object.
Hhere are many future directions and applications for this work:

e As mentioved above, this segmentation method is based or a general
iefrastructure of PNC, lumen carndidate identification, segmentation,
and false positive segment removal. Each step in this method car be
improved or modified.
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Wigure 18: (a) Wailed segmentation due to PNC errors: the lumen of the crypt was mot
classified correctly. (b) Wailed segmentation due to attacked crypts: the active contour is
attracted to tike meigkboring crypts’ muclei.

e Mo evaluate this segmentatior metkod, a very large data set was built.
It car be used as a beuchmark for testing crypt segmentation tech-
Rigues.

e Hhe segmentation of crypts in a biopsy is the first step in the classifica-
tior of the biopsy as normal or cancerous. Whe presented method can
be used to retrieve the crypts in the biopsy to be classified to normail
and carcerous and thus to segment the biopsy to carcerous and kealthy
regions.

e Several types of tissue suck as prostate, breast, and thyroid also izclude
glandular structures (see Wigure 19). We believe this method is gereral
and therefore can be applied or these biopsies.

Needlebiop:y:h‘omlpmgl:_hc_’ .

(b) Thyroid biopsy (c) Prostate biopsy

Wigure 19: Examaples off other types ofl biopsies that comtain glandular structures.
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