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Abstract. The performance of the k Nearest Neighbor (kNN) algorithm
depends critically on its being given a good metric over the input space.
One of its main drawbacks is that kNN uses only the geometric dis-
tance to measure the similarity and the dissimilarity between the objects
without using any statistical regularities in the data, which could help
convey the inter-class distance. We found that objects belonging to the
same cluster usually share some common traits even though their geo-
metric distance might be large. We therefore decided to de�ne a metric
based on clustering. As there is no optimal clustering algorithm with
optimal parameter values, several clustering runs are performed yielding
an ensemble of clustering (EC) results. The distance between points is
de�ned by how many times the objects were not clustered together. This
distance is then used within the framework of the kNN algorithm (kNN-
EC). Moreover, objects which were always clustered together in the same
clusters are de�ned as members of an equivalence class. As a result the
algorithm now runs on equivalence classes instead of single objects. In
our experiments the number of equivalence classes is usually one tenth
to one fourth of the number of objects. This equivalence class represen-
tation is in e�ect a smart data reduction technique which can have a
wide range of applications. It is complementary to other data reduction
methods such as feature selection and methods for dimensionality re-
duction such as for example PCA. We compared kNN-EC to the original
kNN on standard datasets from di�erent �elds, and for segmenting a real
color image to foreground and background. Our experiments show that
kNN-EC performs better than or comparable to the original kNN over
the standard datasets and is superior for the color image segmentation.

Keywords: Clustering, Classi�cation, Ensemble Clustering, Unsuper-
vised Distance Metric Learning.

1 Introduction

The performance of many learning and data mining algorithms depend critically
on there being given a good metric over the input space. Learning a "good" met-
ric from examples may therefore be the key of a successful application of these
algorithms. For instance, many researchers have demonstrated that k-nearest
neighbor (kNN) [8] classi�cation can be signi�cantly improved by learning a
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distance metric from labeled examples [5,10,14,16]. However, like any classi�er
kNN has some drawbacks. One of its main drawbacks is that most implemen-
tations of kNN use only the geometric distance to measure the similarity and
the dissimilarity between the objects without using any statistical regularities in
the data. Thus, it does not always convey the inter-class distance. The following
example illustrates this situation. Given the dataset in Figure 1(a) with two la-
beled points. When the classi�er uses the Euclidean distance, it works "poorly"
and many points belonging to the green class were classi�ed to be black (b).
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Fig. 1. Euclidean distance does not re�ect the actual similarity.

To overcome this problem we turned to clustering for de�ning a better met-
ric. As there is no optimal clustering algorithm with optimal parameter values,
several clustering runs are performed yielding an ensemble of clustering results.
The distance between points is de�ned by how many times the points were not
clustered together. This distance is then used within the framework of the kNN
algorithm (kNN-EC). Returning to the previous example in Figure 1(a), we can
see that it worked very well (c). Moreover, points that are always clustered
together in the same cluster (distance= 0) are de�ned as members of an equiv-
alence class. As a result, the algorithm now runs on equivalence classes instead
of single points. In our experiments the number of equivalence classes is usually
less than one tenth to one fourth of the number of points. This equivalence class
representation is in e�ect a novel data reduction technique which can have a wide
range of applications. It is complementary to other data reduction methods such
as feature selection and methods for dimensionality reduction such as the well
known Principal Component Analysis (PCA).

This paper is organized as follows: Related work on distance metric learning is
discussed in Section 2. The distance metric using ensemble clustering is described
in Section 3. Section 4 describes the ensemble clustering method using the mean
shift and the k-means clustering algorithms. Experimental results are presented
in Section 5. Finally, our conclusions are presented in Section 6.

2 Related work

A large body of work has been presented on the topic of distance metrics learning,
and we will just brie�y mention some examples. Most of the work in distance met-
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ric learning can be organized into the following two categories: Supervised/semi-
supervised distance metric learning and unsupervised distance metric learning.

Most supervised/semi-supervised distance metric learning attempt to learn
metrics that keep data points within the same classes close, while separating data
points from di�erent classes [5,16]. Goldberger et. al [14] provided a distance met-
ric learning method to improve the classi�cation of the kNN algorithm. They
use a gradient decent function to reduce the chance of error under the stochas-
tic neighborhood assignments. Domeniconi et. al [10] proposed to use a locally
adaptive distance metric for kNN classi�cation such as the decision boundaries
of SVMs. Shalev-Shwartz et. al [22] considered an online method for learning
a Mahalanobis distance metric. The goal of their method is to minimize the
distance between all similarity labeled inputs by de�ning margins and inducing
hinge loss functions. Recently, a similar method was presented by Weinberger et.
al [24] which uses only the similarly labeled inputs that are speci�ed as neighbors
in order to minimize the distance.

The unsupervised distance metric learning takes an input dataset, and �nds
an embedding of it in some space. Many unsupervised distance metric learn-
ing algorithms have been proposed. Gonzales and Woods [15] provided the well
known PCA which �nds the subspace which best maintains the variance of the
input data. Tenenbaum et. al [23] proposed a method called ISOMAP which
�nds the subspace which best maintains the geodesic inter-point distances. Saul
et. al [21] provided a locally linear embedding (LLE) method to establish the
mapping relationship between the observed data and the corresponding low di-
mensional data. Belikin et. al [1] presented an algorithm called the Laplacian
Eigenamp to focus on the maintenance of local neighbor structure.

Our method falls into the category of the unsupervised distance metric learn-
ing. Given an unlabeled dataset, a clustering procedure is applied several times
with di�erent parameter values. The distance between points is de�ned as a
function of the number of times the points belonged to di�erent clusters in the
di�erent runs.

A clustering based learning method was proposed in Derbeko, El-Yaniv, and
Meir [9]. There, several clustering algorithms are run to generate several (unsu-
pervised) models. The learner then utilizes the labeled data to guess labels for
entire clusters (under the assumption that all points in the same cluster have
the same label). In this way the algorithm forms a number of hypotheses. The
one that minimizes the PAC-Bayesian bound is chosen and used as the classi�er.
They assume that at least one of the clustering runs produces a good classi�er
and that their algorithm �nds it.

Our work is di�erent from these techniques in several ways especially on
the assumptions that they made. Unlike other techniques, we only assume that
the equivalence classes, which were built by running the clustering algorithm
several times, are quite pure. We also did not assume that at least one of the
clustering runs produces a good classi�er. Rather that the true classi�er can
be approximated quite well by a set of equivalence classes (i.e the points which
always belong to the same clusters in the di�erent clustering iterations will de�ne
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an equivalence class) instead of single points and the distance metric de�ned
between these equivalence classes.

3 Distance Metric Learning using Ensemble Clustering

Consider the following paradigm. Let X be the unlabeled data - a set of un-
labeled instances where each xi is a vector in some space χ. Instances are as-
sumed to be i.i.d. distributed according to some unknown �xed distribution
ρ. Each instance xi has a label wi ∈ W (where in our case W = {0, 1})
distributed according to some unknown conditional distribution P (w|x). Let
D = {⟨xi, f(xi)⟩ : xi ∈ X, i = 1, ..., ND} be the training data�a set of labeled
examples already known.

The Euclidean distance does not always re�ect the actual similarity or dis-
similarity of the objects to be classi�ed. We found that on the other hand points
belonging to the same cluster usually share some common traits even though
their geometric distance might be large.

The main problem with such an approach is that there is no known method
to choose the best clustering. There have been several attempts to try to select
the optimal parameters values of the clustering algorithms in supervised and
unsupervised manners mainly within the range image and color image domain,
but a general solution to this problem has not been found [19,3,25]. We there-
fore decided to run di�erent clustering algorithms several times with di�erent
parameter values. The result of all these runs yields a cluster ensemble [11].

The clustering results are stored in a matrix denoted the clusters matrix

C ∈ MatN×K , where K is the number of times the clustering algorithms
were run. The ith row consists of the cluster identities of the ith point in
the di�erent runs. This results in a new instance space χcl = ZK which con-
tains the rows of the clusters matrix. Let Xcl be an unlabeled training set,
a set of objects drawn randomly from χcl according to distribution ρ. Let
Dcl = {⟨xi, f(xi)⟩ : xi ∈ X, i = 1, ..., ND} be the training data�a set of labeled
examples from Xcl.

The goal now is to adapt the kNN classi�er to work with a distance func-
tion based on the new instance space. The new distance between points from
this space should be de�ned in such a way as to re�ect our intuitive notion on
proximity among the corresponding points.

Given two points x, y ∈ χcl we de�ne a new distance function dcl as:

dcl(x, y) =
K∑
i=1

dis(xi, yi), (1)

where dis(xi, yi) =

{
1 xi ̸= yi

0 xi = yi
be the metric of a single feature. This metric

is known as the Hamming distance. Over this metric we de�ne the following
equivalence relation.
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Let E be a binary relation on χcl, where E de�ned as

∀x, y ∈ χcl, (x, y) ∈ E ⇔ dcl (x, y) = 0.

The relation E is an equivalence relation on χcl. By this relation, points which
always belong to the same clusters in the di�erent clustering iterations will de�ne
an equivalence class [·]E . Thus, all the equivalent points will be represented by
a single point in the quotient set and we can work with X/E yielding C ′ ∈
MatM×K , where M = |X/E|. On the other hand, points which always belong
to di�erent clusters in all the clustering iterations will be in�nitely distant (i.e.
dcl(x, y) = ∞ if and only if x and y always belong to di�erent clusters in all the
clustering iterations). Thus, x is a neighbor of y if and only if dcl(x, y) < ∞.
The set of the neighbors of x will be de�ned as: Nx = {y|dcl(x, y) < ∞}.
For each x ∈ X Nx ̸= ∅, since by using the re�exive property of E, we get
dcl(x, x) = 0 < ∞, thus, x ∈ Nx.

This new metric is used in the kNN classi�er instead of the Euclidean dis-
tance. In this setting all the unlabeled points in Xcl will be labeled according
to a given training dataset Dcl. Experiments using this method are presented in
Section 5.

The main presumption made by the algorithm is that equivalent points have

the same label but this assumption does not always hold in practice. To over-
come this hurdle several possible options exist. One possibility is that for each
equivalence class xcl ∈ Dcl several points from its equivalence class are labeled
and xcl will then be labeled according to the majority voting. Another option
is to label xcl according to its center point. Thus, with high probability a point
will be selected from the majority class of the equivalence class. It is also pos-
sible to run the clustering algorithms more times, increasing the number of the
equivalence classes yielding smaller but hopefully purer equivalence classes.

4 Ensemble clustering using mean shift and k means

algorithms

As mentioned above the main problem with an approach based on clustering is
that there is no known method to choose the best clustering. It is unknown how
many clusters should be, their shapes, which clustering algorithm is best, and
which parameter values should be used? We therefore decided to run di�erent
clustering algorithms several times with di�erent parameter values.

Our algorithm however is general and any good clustering algorithm could
be used. We decided to work with the well known k-means algorithm [18] and
the mean shift clustering algorithm [13,7] in order to build the clusters matrix.

For completeness we will now give a short overview of the mean shift algo-
rithm. Mean shift is a non-parametric iterative clustering algorithm. The fact
that mean shift does not require prior knowledge of the number of clusters, and
does not constrain the shape of the clusters, makes it ideal for handling clusters
of arbitrary shape and number. It is also an iterative technique, but instead of
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the means, it estimates the modes of the multivariate distribution underlying
the feature space. The number of clusters is obtained automatically by �nding
the centers of the densest regions in the space (the modes). The density is evalu-
ated using kernel density estimation which is a non-parametric way to estimate
the density function of a random variable. This is also called the Parzen win-
dow technique. Given a kernel K, bandwidth parameter h, which is a smoothing
parameter of the estimated density function, the kernel density estimator for a
given set of d-dimensional points is:

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi

h

)
. (2)

For each data point, a gradient ascent process is performed on the local
estimated density until convergence. The convergence points represent the modes
of the density function. All points associated with the same convergence point
belong to the same cluster.

We worked with the two mean shift algorithm types; the simple, and the
adaptive (more details in [13,7]). The simple mean shift works with a �xed
bandwidth h. We chose 80 di�erent values of h with �xed intervals from 0.1 to
0.9 of the space size. The adaptive mean shift algorithm is given the number of
neighbors k as a parameter and the bandwidth is determined for each point in
the data as the distance to its k'th neighbor. We chose 30 di�erent values of k
with �xed intervals between 1% to 30% of N (for more details see Section 5).

Some clustering algorithms work with continuous parameters, like the mean
shift algorithm described above, or with continuous weights over the features,
like the EDISON program which will be discussed in Section 5.2. In these cases
the di�erences between two consecutive iterations might be small. There are two
possibilities to deal with these similar clusterings: The �rst one is to eliminate
the similar clustering results or simply take all of them. We preferred the second
one because if a set of samples were together in several clustering runs it means
that they might have some common features. So if we eliminate them we stand to
loose this information. However, it is not e�cient to preserve similar clustering
runs. Therefore, we decided to join them, as a result the dimensionality of the
data is reduced. We use the Rand index [20] which is a measure of similarity
between two data clusterings. Let C1, C2 be two clustering iterations, then the
measure between them is:

R(C1, C2) =
α+ β

α+ β + γ + δ
=

α+ β(
n
2

) , (3)

where α describes the number of pairs of elements in the instance space that are
in the same set (i.e cluster) in C1 and in the same set in C2, β describes the
number of pairs of elements in the instance space that are in the di�erent set in
C1 and in the di�erent set in C2, γ describes the number of pairs of elements in
the instance space that are in the same set in C1 and in the di�erent set in C2
and δ describes the number of pairs of elements in the instance space that are
in the di�erent set in C1 and in the same set in C2.
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Similar clusterings are represented by a single column, weighted by the num-
ber of clustering it represents. Accordingly, the metric function has become:

dcln(x, y) =

q∑
i=1

nidis(xi, yi), (4)

where x, y ∈ χcln are two points in the new weighted space, q is the dimension
of χcln, and ni is the weight of each representative column.

The advantage of this method is that it maintains the relation between the
samples according to the clustering results, while maintaining a relatively small
dimension of the clustering matrix.

This method worked quite well for mean shift clustering as the bandwidth
acts as a smoothing parameter for the density estimation. However, for k-means
the di�erences between consecutive runs of the algorithm were signi�cant and
thus columns could not be joined.

5 Experiments

To validate the e�ciency of kNN-EC we conducted a series of experiments using
standard datasets from di�erent �elds. An additional experiment was conduct
on a color image, where the mission is to classify each pixel as a foreground or
background pixel. We compare the performance of kNN-EC to that of kNN on
the same datasets. Both algorithms were implemented in Matlab.

5.1 Datasets

In order to evaluate the performance of kNN-EC we ran experiments on four
datasets; the image segmentation dataset (UCI Machine Learning Repository [12]),
the breast cancer dataset (LIBSVM library [4]), Leo Breiman's ringnorm [2], and
a real color image. The image segmentation dataset contains 2310 instances,
which are divided into 7 classes. Since we choose to work with a binary kNN,
the classes were joined to create two class labels (as was done in [17]) one corre-
sponding to BRICKFACE, SKY and FOLIAGE and the other corresponding to
CEMENT, WINDOW, PATH and GRASS. The breast cancer dataset contains
683 instances, which are divided into two class labels, such that 444 points are
from the �rst class and the rest are from the second. Leo Breiman's ring norm
dataset contains 7400 instances, two-class classi�cation problem. Each class is
drawn from a multivariate normal distribution. The last dataset is a color im-
age. More details on this experiment will be described in Section 5.2. All these
datasets were labeled, but this knowledge was used only to evaluate the quality
rate of the resulting classi�er. In all experiments the algorithm assumes that
these datasets are unlabeled.

The mean shift algorithm was run with the k or h values, described above.
For the breast cancer and ring norm datasets the mean shift algorithm did not
yield good clustering (i.e one cluster or the same clustering for all runs). So
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we use the k-means algorithm for these two datasets. For the breast cancer the
k-means algorithm was run with k = 3..15 and for the ring norm dataset the
k-means algorithm was run with k = 3..30. The results are stored in the clusters
matrix C. The equivalence relation E was employed to build the equivalence
matrix C ′. As can be seen in Table 1, the new space is usually smaller than the
original space without the equivalence classes. The ratio between the sizes of the
two spaces is given in the fourth column. Our algorithm assumes that points
belonging to the same equivalence class have the same label. However, as can be
seen from the last column the equivalence classes are not perfectly pure.

Table 1. Numerical Datasets properties

Dataset Dataset size Cluster
matrix size

Equivalence
matrix size

Ratio % Purity

Image Segmentation 2310× 19 2310× 38 548× 38 24% 97%

Breast Cancer 683× 8 683× 13 160× 13 23% 98%

Ring Norms 7400× 20 7400× 28 7400× 28 100% 100%

At the �rst stage of each algorithm a training set of size 20% to 40% of the
dataset is randomly drawn and labeled. For each training dataset the algorithms
run with di�erent numbers of neighbor values (i.e k = 3, 5, 7). For each k the
quality was evaluated by the ability of the classi�er to label the rest of the
unlabeled points. The results are averaged over 10 di�erent runs on each dataset.
A resulting curve was constructed for each dataset which evaluated how well the
algorithm performed.

Results As can be seen from Figure 2, the kNN-EC performs better than or
comparable to the kNN with the Euclidean distance. The learning curves, which
describe the accuracy for each classi�er by computing the ratio of the correct clas-
si�ed instances to the whole unlabeled data, of the image segmentation dataset
and that of the Breast Cancer datasets show that kNN-EC is comparable to the
kNN while glancing at the learning curves of the ring norm dataset depict the
superiority of kNN-EC. As Figure 2 shows the quality of kNN-EC is about 85%
while the kNN quality is about 65%. Moreover we compute the runtime of the
two algorithms when the training dataset includes 30% of the points, and k = 5.
The runtime results are shown in Table 2.

Table 2. Runtime of the algorithms in seconds

Dataset kNN kNN-EC

Image Segmentation 0.45 0.15

Breast Cancer 0.15 0.01

Ring Norms 2.4 3.9
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Fig. 2. Results of kNN and kNN-EC for the three datasets. The �rst row shows the
learning curves of the Image Segmentation dataset, the second shows Breast Cancer
dataset, and the third one shows the Ring Norm dataset. The columns show the learning
curves for the di�erent k's values.

The e�ect of the purity of the equivalence classes As shown in the pre-
vious subsection, the performance of the kNN-EC is not always superior. In
this section we carried out an experiment in order to determine how much our
algorithm depends on the purity of the equivalence classes. In the original exper-
iments the equivalence classes were not pure, for instance the purity of the image
segmentation dataset was 97%. In this experiment the classes were changed until
the equivalence classes were pure (i.e 100%). As shown in this Figure 3 there is
a linear trade o� between the quality and the purity of the equivalence classes.
The quality increased by about 3% while the purity increased from 97% to 100%.

The e�ect of number of the clustering iterations on the performance

of kNN-EC algorithm Another experiment was performed to determine how
much our algorithm depends on the number of clustering iterations. In this ex-
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Fig. 3. Results of kNN and kNN-EC for the image segmentation dataset with the
di�erent k's values.

periment we evaluate the performance of the 5NN-EC classi�er on the ring norm
dataset given 20% of the dataset as a training set. We run the k-means algorithm
on three di�erent ranges k = 3..10, k = 3..20 and k = 3..30 as shown in Table 3.
As the number of the clustering runs increases, the purity of the equivalence
classes increases, and the number of the equivalence classes increases dramati-
cally. (When the clustering runs increased from 8 to 18 runs the purity increased
from 93 to 99.8 and the equivalence classes increased from 3351 equivalence
classes to 7171 equivalence classes). However, the performance of the algorithm
preserves it stability (i.e the quality increased from 81% to 83%). This occurred
because the distance function metric based on ensemble clustering is stable, and
if for example an equivalence class was partitioned then the distance between
the instances which were equivalent will be 1 instead of zero. Thus with hight
probability they will still be classi�ed to the same class.

Table 3. The e�ect of the number of the clustering iterations

k-Means Equivalence
matrix size

Purity % Quality %

k = 3..10 3351× 8 93 81

k = 3..20 7171× 18 99.8 83

k = 3..30 7400× 28 100 85

5.2 Experiments with Images

In a �nal set of experiments we tested our algorithm using a real color image.
We use images for two reasons, �rst images provide large complex datasets and
second that the results obtained by applying classi�cation algorithms on images
can be easily viewed and evaluated. This image contains three birds (shown
in Figure 4(a)). It was manually segmented into two classes, the foreground
(birds) and the background yielding the ground truth (as shown in Figure 4(b)).
The reader can appreciate that segmenting these images using a color based
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(a) (b) (c) (d)

Fig. 4. (a) The original image with three birds. (b) The classi�ed image (the goal).
(c),(d) The output of the EDISON system

segmentation algorithm into foreground and background images will not be an
easy task.

We chose to work with the Edge Detection and Image Segmentation (EDI-
SON) System. This program implements the mean shift image segmentation
algorithm described in [6,7]. Each pixel in the image is represented by its two
image coordinates and RGB color values yielding a 5D dataset. The user is asked
to provide the algorithm with values for two bandwidths, one for the spatial do-
main hs (the image coordinates) and the other for the range domain hr (the
RGB values). The output of this program is a clustered image. Each cluster was
assigned a color, (i.e points in the same cluster have the same color). Figure 4
(c,d) shows some of these clustering results.

In our experiments we used the following values for the two bandwidths
hs = {5, 10, 20, 30} and hr = {10, 15, 20, 25, 30, 35} yielding 24 clustered images.
Results for which nearly the whole image belonged to a single cluster were auto-
matically discarded. It is important to note that the original kNN classi�er has
to choose values for these bandwidths (or actually their ratio) in order to de�ne
the distance metric between points. As optimal values for these bandwidths are
not available, it is not clear how this method can be compared to kNN-EC. In
the experiments we therefore ran them using all 24 bandwidth pair values.

For each image the EDISON algorithm was run with the hr and hs values,
described above, to build the clusters matrix C. We then joined clusterings
with small Rand index measures and worked with the weighted Cw matrix. The
equivalence relation E is employed to build the equivalence matrix C ′. Table 4
summarizes the information about the three birds image.

In this table we can see that the new space is about 10 times smaller than
the original space. As the complexity of the algorithm is O(N2), the running
time of kNN-EC is two orders of magnitude smaller than the running time of
kNN.

Table 4. Image properties

Dataset Picture size Cluster
matrix size

Equivalence
matrix size

Ratio % Purity Fg pixels

Three Birds 207× 352 72864× 24 8233× 18 11% 100% 14407
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The two classi�ers were evaluated on several training sets of size 40 pixels
to 200 pixels (less than 0.3% of the data), with di�erent numbers of neighbors
values (i.e k = 3, 5). As the optimal bandwidth parameters can not be found
automatically in the kNN algorithm, then in the resulting curves we compared
the kNN-EC with the best case and the worst case of the kNN for each training
dataset which evaluated how well the algorithms perform (as shown in Figure 5).
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(a) (b)

Fig. 5. Results of kNN and kNN-EC for the three birds image dataset with the di�erent
k's values.

The experimental results shown in Figure 5 show that the kNN-EC performs
better than the kNN with the Euclidean distance. Due to the learning curves
presented in the �gures below we see that our algorithm is superior, where its
quality was around 95% while the best quality of the kNN algorithm was less
than 90%. Figure 6 shows the superiority of the kNN-EC. It shows an example
of running the kNN-EC and kNN (the best and the worst cases) algorithms with
k=5, and with 120 labeled pixels as a training set.

(a) (b) (c)

Fig. 6. Results of 5NN and 5NN-EC for the three birds image dataset for given 120
labeled pixels as a training dataset. (a) The output for the worst case of kNN. (b) The
output for the best case of kNN. (c) The output for the kNN-EC. The color of the
pixels represents the results of the classi�er. Red is background, green is birds, blue is
wrong background and black is wrong birds pixels.
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6 Conclusions and future work

In this work, we have presented a new unsupervised distance metric learning
based on ensemble clustering and use it within the kNN classi�er. Each data
point is characterized by the identity of the clusters that it belongs to in several
clustering runs. The distance metric is de�ned as the Hamming distance between
these clustering results.

This new distance has two important contributions. The �rst contribution is
that this distance is more meaningful than the Euclidean distance between points
resulting in a better kNN classi�er. The second and more general contribution
results from the observation that all points which always belong to the same
cluster form an equivalence relation. Thus, the algorithm only has to consider one
member of each equivalence class. This reduces the complexity of the algorithm
considerably (by at least two orders of magnitude in our case). Our algorithm
however is only a private case of a more general concept, the concept of data
reduction. This concept is orthogonal to other methods of data reduction such
as feature selection or PCA which reduce the size of the representation of the
data points but not their number.
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