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On Mobile Robot Localization From Landmark Bearings

Ilan Shimshoni

Abstract—This paper deals with the problem of robot localization from
noisy landmark bearings measured by the robot. We present a new localiza-
tion method which is based on linear constraints, one due to each bearing
measurement. This linear system can be solved at low computational cost
but yields not very accurate results. Therefore, we transform the system
to an equivalent linear system which yields virtually optimal results at a
small fraction of the cost of a nonlinear optimization method, which usu-
ally achieves the optimal result. Experimental results showing the quality
of the results and the low computational cost are presented.

Index Terms—Angle measurements, landmarks, robot localization.

I. INTRODUCTION

When mobile robots or automated guided vehicles (AGVs) are
moving in their workspaces, one of the basic problems which needs
to be solved is for the robot to know its position and orientation in
the plane as accurately as possible. One of the standard methods for
performing this task is to put landmarks in known locations in the
workspace. In any place in the workspace, the robot is able to measure
the bearings to a sufficient number of these landmarks. Using three or
more such measurements, the robot is able to estimate its position and
orientation in the plane [1]–[4].

The most widely used method for computing this estimate is a
geometric method based on the idea that the angle between two such
bearing measurements yields the constraint that the robot’s position is
limited to lie on a circle. Adding an additional bearing measurement
yields two more circles whose intersection is the desired location.
The problem begins when there are errors in the measurements. To
overcome this problem, more than three landmarks are placed in the
workspace, and all the measured bearings have to be used to get the
optimal estimate for the robot’s position. The geometric method does
not lend itself naturally to more than three bearing measurements.
Thus, costly nonlinear minimization techniques with their known
problems have to be employed.

We would like, therefore, to take a different approach, which has
been presented in [5], but without dealing with the accuracy problems.
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We will use each bearing measured to define a constraint on the po-
sition and orientation of the robot. These will be linear constraints.
When given three or more bearing measurements, we have that number
of constraints, and using numerical linear algebra techniques [singular
value decomposition (SVD)] we are able to solve this linear system and
find the best solution for this system very efficiently.

The problem is, however, that when there is uncertainty in the
bearing measurements, the solution to this linear system is not the
optimal solution to the original problem. We, therefore, present several
transformations of the linear system yielding more accurate results. All
these transformations have negligible computational cost, but improve
the accuracy of the results considerably. In the final algorithm, we
present a simple optimization procedure whose computational cost is
twice or three times more than the previous algorithm, which further
improves the accuracy. The quality of the results are essentially equal
to the optimal results which can be achieved by nonlinear optimization
but at a much higher cost.

For many applications, it is very important not only to estimate the
position and orientation of the robot, but also to estimate the accuracy
of the estimate by estimating its covariance matrix. Without these es-
timates, it is impossible to guarantee robustness of motion planning
algorithms which use the localization algorithm. The covariance ma-
trix is estimated by simply conducting several dozen experiments on
input with synthetically added noise. This method is different than the
method presented in [6], which computes a worst-case estimate of the
uncertainty region when bounded error is assumed. We compute the es-
timated accuracy over all locations in several examples of workspaces.

This can then be used to plan robust safe and fast motion plans for
the robot as shown in [7]–[13], and to plan optimally the placement
of the landmarks in the environment when given the accuracy require-
ments on the robot’s localization at certain positions in the workspace
[14]. Another extension of this work could be to deal with the case in
which the locations of the landmarks are unknown. This problem has
been addressed in [5], and more generally in works dealing with simul-
taneous localization and map-building problems (SLAM) [15], [16].

The paper continues as follows. In Section II, we review the
geometric method for estimating the robot’s position and orientation
and also show the algebraic method. In Section III, we describe the
requirements needed to produce more accurate results and present
transformations to the derived constraints which improve the accuracy
of the results. These algorithms are then run and experimental results
are presented. In Section IV, we conclude the paper by discussing
applications for this algorithm and further research directions.

II. BASIC METHODS

A. Problem Statement

We are given a set ofn landmarks whose positionsPi 2 R
2 are

known. The robot is at an unknown positionP and orientation�. The
bearing measurements by the robot to these landmarks are�i.

The problem is illustrated in Fig. 1. Here, three two-dimensional
(2-D) pointsP1, P2, andP3 are viewed by the robot in directions
�1, �2, and�3, respectively. The goal is to find the positionP and
orientation� of the robot.

B. Geometric Method

The geometric method is based on the following constraint. When
given two landmarks in positionsPi andPj and whose measured bear-
ings are�i and�j , there exists a circle going throughPi andPj such
that the angle difference between the directions of the two bearings is
�i��j (see Fig. 2). When given three such landmarks, the intersection
of the three circles, which are due to the three pairs of measurements,

Fig. 1. Illustration of a planar mobile robot which detects three known
landmarks in directions� , � , � . The goal is to find the robot’s position and
orientation in the plane.

Fig. 2. Given two landmarksP andP whose bearing measurements are�

and� , respectively. The possible robot positions lie on a circle illustrated in
the figure.

yield the unique solution to the problem. There exists an inherent am-
biguous situation when the robot’s position is cocircular with the posi-
tions of the three landmarks. In this case, the robot’s position can only
be estimated to lie anywhere on the circle on which the landmarks lie,
and additional landmark bearing measurements are needed to disam-
biguate the robot’s position.

C. Algebraic Method

In this method, we will look at the problem as a coordinate transfor-
mation problem from the global coordinatesPi to the robot coordinates
Mi. The change is due to the robot’s positionP and orientation�. Ap-
plying the transformation to a single bearing measurement yields the
following:

Mi = li(cos�i; sin�i) = R(Pi �P) = RPi +T (1)

whereR is a planar rotation matrix by�, T = �RP, andli is the
unknown distance fromP toPi. This can be written as the following
two equations:

li cos�i =(cos �; sin �) �Pi +Tx

li sin�i =(� sin �; cos �) �Pi +Ty: (2)

li can be eliminated, yielding

(cos �; sin �) �Pi +Tx = ((� sin �; cos �) �Pi +Ty) � cot�i:

(3)

This is a homogeneous linear equation in four unknowns

(Pix �Piy cot�i;Piy +Pix cot�i; 1;� cot�i) �

cos �

sin �

Tx

Ty

= 0:
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We will denote byAi the coefficient vectors which are computed from
Pi andcot�i, and byW the vector of the unknown parameters. Taking
equations for three such points yields the following:

AW =

AT
1

AT
2

AT
3

W = 0:

In order to findW , we apply SVD toA [17] (Ch. 2.6). This decomposes
A into

A = USV T

whereU andV are orthogonal matrices, andS is a diagonal matrix
whose diagonal elements are nonnegative numbers sorted by size. The
last (fourth) vector of matrixV which corresponds to the smallest ele-
ment in the diagonal ofS is the solution to the problem.

As this is an homogeneous set of equations, the solution forW is
determined up to a scale factor. This scale factor can be determined by
exploiting the fact thatW1 andW2 arecos � andsin �, respectively,
and should, therefore, satisfyW 2

1 +W 2
2 = 1. Thus,W is recovered.

However, also�W could be the solution. To verify which of them is
the correct solution, we substitute the solution into the initial set of (2),
and check if the right-hand sides of the equations have the same sign as
thecos�i andsin�i, whose sign is known but was lost in the derivation
step from (2) to (3). Only one of theW ’s will satisfy these constraints.

If there are additional bearing measurements, each of them will add
an additional row toA. Then the solution mentioned above will yield
the optimal least-squares solution to this linear system, i.e.,

argmin
W

kAWk2 subject tokWk2 = 1:

III. I MPROVED LINEAR SYSTEMS

Using SVD to solve our problem is very appealing because it is very
efficient and has a linear computational complexity in the number of
landmarks. The problem is that the solution obtained by SVD is not the
optimal solution for the original problem we were trying to solve. The
optimal solution we are seeking is the positionP and rotation angle
� such that the bearings measured from that position and orientation
�̂i(P;�) are closest to the�i ’s we measured in the experiment, and ac-
counting for the fact that the variance of each measurement is�2

i . These
requirements yield

argmin
P;�

i

(�i � �̂i(P;�))
2

�2
i

: (4)

For our linear system to yield close to optimal results, we should try to
make it fulfill the following three requirements. The first requirement is
that in a total least-squares problem (like the one we are solving), each
entry in the matrixA should have the same variance [18] (Ch. 12.3).
This variance is due to measurement errors. The second requirement is
that

jAT
i W j2 =

j�i � �̂i(P;�)j
2

�2
i

: (5)

Thus, the solution will satisfy (4). That is, the error (as measured in
standard deviations�i) in each measurement�i will have the same
effect on the solution. The last requirement is that each of the entries
of the matrixA be independent of the others. This requirement can not
be fulfilled for entries in the same row of the matrix, as they are all
functions of a certain�i, but it is fulfilled for entries from different
rows as we assume that the measurements are independent.

We will first deal with the first requirement. Looking at the definition
ofAi, it is obvious that this requirement is not fulfilled. The variance of

each elementAi;j is approximately((@Ai;j=@�i)�i)
2. Thus, looking

at
@Ai

@�i
= Piy(cot�

2
i + 1);�Pix(cot�

2
i + 1); 0; (cot�2

i + 1) :

We can see that the variance values are very nonuniform, both within a
row ofA and between the rows. The third element has variance 0 and
the others are multiples of�(cot�2

i + 1), which can be unlimited in
magnitude. Thus, a small measurement error can cause errors in dif-
ferent magnitudes for�i ’s of different values.

The first step is to make the variance bounded. We will multiply each
row by sin�i, yielding

Ai = (Pix sin�i �Piy cos�i;Piy sin�i +Pix cos�i;

sin�i;� cos �i): (6)

This makes the variance bounded
@Ai

@�i
= (Piy sin �i +Pix cos�i;Piy cos�i �Pix sin �i;

cos �i; sin�i):

The variance is bounded byjPij
2�2

i for the first two entries, but by�2
i

for the second two entries. To make the first two entries have similar
values to the other two, we apply a transformation to the world coor-
dinates of the landmark positionsPi. Once the solution is found, the
inverse transformation will be applied to it, yielding the position in the
original world-coordinate system. This transformation is very similar
to the one used in [19] and for the same reason, which is to improve the
quality of the result obtained from solving a linear system. The problem
addressed in [19] was, of course, a different one.

Thus, we compute the centroidC of the Pi ’s, and SZ =
maxi jPi �Cj and apply the following transformation to thePi ’s:

P
0

i =
(Pi �C)

SZ
:

As a result of this transformation,jP0

ij � 1. Now the variances of all
the entries have similar magnitudes. Applying these transformations to
the original set of equations has a negligible computational cost, but
improves the quality of the estimates considerably.

The last step in our algorithm is to ensure that the (5) is enforced.
This constraint is equivalent to

@AiW

@�i
=

1

�i
:

However,W is unknown. Therefore, we run SVD on the matrixA we
just obtained and use theW obtained to compute

di =
@AiW

@�i
�i:

We then multiply each rowAi by 1=di and reapply the SVD on the
new weighted version ofA. This operation is repeated two or three
times until the process converges. Thus, at a cost two or three times as
much as the original computation, another improvement is achieved.

The algorithm can also be run incrementally. Given an estimate for
W due to a previous running of the algorithm and dead-reckoning,
and a single bearing measurement, a new estimate ofW can be
obtained by projectingW to the closest point which satisfies the
new constraint of type (6). If variance estimates of the previous
estimate ofW and the current measurement are available, aW on
the line between the previous estimate and closest point mentioned
above can be chosen, yielding the most probable estimate forW .
This algorithm is not as accurate as the algorithm which deals with
all the constraints simultaneously, but can be used when not all
bearing measurements are available at the same time.

A. Experimental Results

To test our algorithms we have implemented them using Matlab. To
demonstrate the improvement achieved by the transformation steps, we
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Fig. 3. For each of the five algorithms, we present the distribution of the results obtained from running it on 500 experiments. The correct answer is (4, 4) the
landmarks lie within a circle of radius 100, and the measurement error is normally distributed with standard deviation of 5. The results are plotted three times in
different scales.

TABLE I
FOR EACH ALGORITHM THE TABLE SHOWS THEMEAN POSITION OBTAINED BY THE ALGORITHM [SHOULD BE (4,4)], THE VARIANCE IN THE x AND y

COORDINATES, AND THE AVERAGE RUNNING TIME IN SECONDS FORRUNNING EACH EXPERIMENT. THE QUALITY OF THE RESULTSIMPROVE FROM

ONE ALGORITHM TO THE NEXT. THE FOURTH ALGORITHM GETS APPROXIMATELY THE SAME RESULTS AS THENONLINEAR OPTIMIZATION

ALGORITHM BUT AT 1% OF THE COMPUTATIONAL COST!!!. T HUS IT SHOULD BE USED INSTEAD OF THENONLINEAR OPTIMIZATION

ran an experiment in which several hundred sets of measurements with
random noise were given to the different variants of the algorithm and
a nonlinear optimization algorithm. The difference in the measurement
sets were only due to the random noise. The obtained robot positions
computed by the different algorithms are presented in Fig. 3, drawn
to the same scale. As the difference in the quality of the different al-
gorithms is so significant, we had to plot each of the results at three
different scales so the results of the different algorithms can be ap-
preciated. The reduction in the scattering of the results demonstrates
the quality of the last two algorithms. The results are also presented in
Table I, showing the mean and variance of the results of the different al-
gorithms and their running times. The difference in variance between
the first and last algorithm is a factor of 5400 (factor of the standard
deviations is 73.6)!!! Our final algorithm achieves results which are
nearly identical to those of the nonlinear optimization technique but at
1% of the running time!

We also tested the convergence rate of the iterative algorithm.
Out of 10 000 random experiments performed with this algorithm, it
converged after two applications of SVD in 92% of the time, three
applications of SVD in 8% of the time, and only once with four
applications of SVD. The reason for this fast convergence rate is
that the initial result achieved after the first application of SVD is so
close to the final solution (as can be seen in the results shown above)

that usually no more iterations are needed, and that in all cases, the
algorithm converges due to the accuracy of this initial result.

The accuracy of the estimates (the covariance matrix) can be also
estimated directly by estimating the derivatives of the estimating func-
tion with respect to the input and output parameters. The details of this
method are presented in [20] and [21].

Now that we have chosen an algorithm, we would like to show some
results of running it in several environments. In each environment, the
landmarks have been placed in certain positions, and we measure the
accuracy of the estimate in each position in the workspace by repeating
the experiment several dozen times and assessing the accuracy as the
square root of the determinant of the covariance matrix or its trace.
The values are displayed on a log scale. In the first example, shown in
Fig. 4, the landmarks are arranged in two circles of the same radius, one
with ten landmarks, and the other with five. The most accurate results
are achieved near the landmarks. The results become less accurate as
we approach the centers of the circles. When we move away from the
circle, the accuracy again is reduced. Obviously, the circle with more
landmarks yields better results. Had there been only one circle in the
workspace, very inaccurate results would have been obtained close to
the circle due to the inherent ambiguity mentioned above.

In the second example shown in Fig. 5, we positioned the landmarks
randomly. The best results are obtained close to two landmarks which
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Fig. 4. Scene with two circles of landmarks with ten and five landmarks each, landmarks are marked withx’s. (a) Contour map of the log of the trace of the
covariance map. (b) Contour map of the log of the determinant of the covariance map. (c) and (d) Surfaces of these two uncertainty functions. Best results obtained
near the landmarks of the circle with more landmarks.

Fig. 5. Scene with a set of randomly placed landmarks. (a) Contour map of the log of the trace of the covariance map. (b) Contour map of the log of the determinant
of the covariance map. (c) and (d) Surfaces of these two uncertainty functions. The localization algorithm does best close to two very close landmarksand does
also well next to four landmarks a bit further apart.

were positioned very close to each other, and another accurate position
was determined near a cluster of four landmarks.

IV. A PPLICATIONS AND FUTURE DIRECTIONS

In conclusion, we have presented a new efficient localization
algorithm for a mobile robot from noisy bearing measurements.
We presented our algebraic solution and explained why several
transformations should be applied to the linear system of equations
in order to improve the accuracy of the solution, and showed
experimentally that these transformations indeed improve the accuracy,
yielding results which are very close to the optimal results, which
usually require nonlinear optimization techniques. Our final algorithm
is also very efficient, running more than a hundred times faster
than the nonlinear optimization technique. We therefore recommend
that our algorithm be used for robot localization from landmark
bearing measurements.

The analysis presented here can be used to develop more accurate
algorithms and study others. For example, in studying the algorithm
to solve the problem in computer vision of estimating the fundamental
matrix [19]. We can see that the scaling of the input that was performed
there causes the variances between the different entries in the coeffi-
cient matrix to be more similar, improving the quality of the results.
However, as one of the columns in the matrix is a constant 1 (variance
0), not all entries in the matrix have similar variances, and thus, the
solution that this algorithm achieves is not as close to the optimal so-
lution as we achieved. This is obviously due to the difference between
the problems solved.

The main use of this algorithm is to accurately recover the position
and orientation of the robot at very low computational cost. As shown
above, we can also estimate the accuracy of our estimate over the entire
workspace. This can be used to compute optimal motion plans which
take into account not only the distance to the goal, but also the number
of times the robot’s position must be estimated. This number is de-
termined by the accuracy of each estimate (from the value we have
computed at the position the measurement was made) and how accu-
rately does the robot need to know its location (less accurate when it is
far from an obstacle, and more accurate when it is near an obstacle or
close to a goal position that has to be reached at a certain precision).
This problem is discussed in detail in [12] and [13].

The inverse problem is also interesting. In this case, requirements are
made on the accuracy of the robot’s position at certain places and on
certain paths in the workspace. The task is to determine where to place
the landmarks in the workspace. This problem has been investigated in
[14]. Our method can be used as the basic building block in research
on these types of problems.
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Characterizations of Localization Accuracy of Fixtures

Michael Yu Wang

Abstract—In this paper, an analysis is presented of the problem of
characterizing the accuracy of deterministic localization of fixtures. In a
statistical framework, the positioning accuracy of the workpiece localized
by the locators of a fixture is described by a symmetric, positive definite
accuratenessmatrix (or variance matrix). The accurateness (variance)
matrix is identified as having similar structural properties to the
stiffness (compliance) matrix of an unloaded, stable robot grasp. This
connection leads us to describe a set of frame-invariant characteristic
parameters with geometric interpretation. The principal translational
accuratenesses and rotational variances are defined for constructions
of frame-invariant quality measures for a meaningful comparison of
different locating schemes. Examples are presented to illustrate the
concept and usefulness of the characterizing properties in optimizing
a fixture layout.

Index Terms—Accurateness, fixture localization, fixturing, grasping,
stiffness.

I. INTRODUCTION

Proper fixture design is crucial to product quality in terms of
precision and accuracy in part fabrication and assembly. Fixtures,
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usually consisting of clamps and locators, must be capable of
positioning, holding, and supporting a workpiece during machining,
assembly, or inspection. Among the three major functions, positioning
or localization is the primary function, and the positioning accuracy
is an essential measure of the performance quality of a fixture. This
paper focuses on the aspect of localization accuracy and describes
various characterizations with frame-invariant quality measures. The
measures may be used to quantify or evaluate different locating
schemes in optimal design of fixtures.

Literature on general fixturing techniques is substantial [1]. There
are several formal methods for analyzing performance of a fixture
based on the popular screw theory, dealing with issues such as
kinematic closure [2], [3], contact types, and friction effects [4]. The
focus is usually on the century-old concept ofform (force) closure[5],
which has been extensively studied in the field of robotics in recent
years [6]–[8]. The problem of designing modular fixtures has gained
extensive attention recently [9].

Prior work on quantifying effectiveness of a robotic grasp or a
fixture has mostly focused on thestate of equilibrium. Equilibrium is
involved in the total restraint (or closure) of the object or workpiece.
There are two major ways to quantify an equilibrium grasp or fixture.
In considering the rigid-body mechanics only, measures of the contact
constraints provided by robot figures or fixture contacts may be
expressed in terms of the contact force such as the maximum of the
normalized equilibrium forces [7], [10], [11]. Such measures are
usually dependent on the choice of coordinate frames—an optimal
grasp or fixturing scheme under one choice of reference frame may
become nonoptimal under another. Another approach is to consider
the stiffness matrix of a grasp or fixture with an elastic contact
model [6], [12]–[14]. In recent years, it has been realized that the
stiffness matrix of anunloaded equilibriumhas a special structure
defining the elastic couplings [14]–[17]. A proper characterization
of the stiffness matrix has been shown to have strong implications
in practice [17].

The functional requirement considered in this paper is the workpiece
localization, which is different from the concept of equilibrium.
Localization establishes a desired spatial relationship of the workpiece
with respect to a fixture reference frame withuniqueand accurate
location (both position and rotation). For a fixture, locators are used
primarily for this function to eliminate the six degrees of freedom of
the workpiece, which is often referred to asdeterministic localization
[2]. But, as passive elements, the locators in deterministic localization
do not necessarily form an equilibrium [18]. Once positioning of
the workpiece is accomplished by the locators, a clamping device
must be applied to provide a complete restraint (or force closure) of
the workpiece against any external forces on the workpiece. Only
then is a stable equilibrium established. Our focus here is on the
accuracy of thedeterministic localization.

The localization accuracy is subject to positioning variability of
the locators and geometric variability of the workpiece. Its proper
qualification is an important issue in fixture design, as it may be
considered as a major criterion for the designer to use in choosing
from a large number of feasible locating schemes. The prior research
on this issue is scarce, with some case-specific and limited measures
available [19], [20]. This paper builds on a statistical framework of
fixture analysis and presentsframe-invariantcharacterizations of the
localization accuracy. First, a general representation of localization
accuracy is described by anaccurateness matrix. Then, we recognize
some key similarities of this matrix with the stiffness matrix of an
unloaded stable equilibrium in grasping or fixturing. This realization
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