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We will use each bearing measured to define a constraint on the po-
sition and orientation of the robot. These will be linear constraints.
When given three or more bearing measurements, we have that number
of constraints, and using numerical linear algebra techniques [singular
value decomposition (SVD)] we are able to solve this linear system and
find the best solution for this system very efficiently.

The problem is, however, that when there is uncertainty in the
bearing measurements, the solution to this linear system is not the
optimal solution to the original problem. We, therefore, present several
transformations of the linear system yielding more accurate results. All
these transformations have negligible computational cost, but improve P
the accuracy of the results considerably. In the final algorithm, we
present a simple optimization procedure whose computational costig 1. lllustration of a planar mobile robot which detects three known
twice or three times more than the previous algorithm, which furth&ndmarks in directions, , 52, 3s. The goal is to find the robot's position and
. . . orientation in the plane.
improves the accuracy. The quality of the results are essentially equa‘?
to the optimal results which can be achieved by nonlinear optimization
but at a much higher cost.

For many applications, it is very important not only to estimate the
position and orientation of the robot, but also to estimate the accuracy
of the estimate by estimating its covariance matrix. Without these es-
timates, it is impossible to guarantee robustness of motion planning
algorithms which use the localization algorithm. The covariance ma-
trix is estimated by simply conducting several dozen experiments on
input with synthetically added noise. This method is different than the
method presented in [6], which computes a worst-case estimate of the
uncertainty region when bounded error is assumed. We compute the es-
timated accuracy over all locations in several examples of workspaces.

This can then be used to plan robust safe and fast motion plans#ay. 2. Given two landmarkP; andP ; whose bearing measurements dre
the robot as shown in [7]-[13], and to plan optimally the placemegnd B, respectively. The possible robot positions lie on a circle illustrated in
of the landmarks in the environment when given the accuracy requitg€ figure-
ments on the robot’s localization at certain positions in the workspace
[14]. Another extension of this work could be to deal with the case ifield the unique solution to the problem. There exists an inherent am-
which the locations of the landmarks are unknown. This problem hegjuous situation when the robot’s position is cocircular with the posi-
been addressed in [5], and more generally in works dealing with simtibns of the three landmarks. In this case, the robot's position can only
taneous localization and map-building problems (SLAM) [15], [16]. be estimated to lie anywhere on the circle on which the landmarks lie,

The paper continues as follows. In Section |l, we review thand additional landmark bearing measurements are needed to disam-
geometric method for estimating the robot’s position and orientatidriguate the robot’s position.
and also show the algebraic method. In Section Ill, we describe the
requirements needed to produce more accurate results and pre€ertlgebraic Method
transformations to the derived constraints which improve the accuracy, s method, we will ook at the problem as a coordinate transfor-

of the resuits. These algorithms are then run and experimen_tal resH‘téftion problem from the global coordinaisto the robot coordinates
are presented. In Section IV, we conclude the paper by discussjlfl The change is due to the robot's positBrand orientatiord. Ap-
applications for this algorithm and further research directions. plying the transformation to a single bearing measurement yields the

following:
Il. BASIC METHODS M; = li(cos Bi,sin3;) = R(P; —P)= RP; + T 1)
A. Problem Statement whereR is a planar rotation matrix by, T = —RP, and!; is the

unknown distance fror? to P;. This can be written as the following

We are given a set of landmarks whose positio; € R? are two equations:

known. The robot is at an unknown positi®hand orientatiord. The
bearing measurements by the robot to these landmarks are l; cos 3; =(cosf,sind) - P; + T,
The problem is illustrated in Fig. 1. Here, three two-dimensional I;sin 8; =(—sinb,cosf) - P, +T,,. 2)
(2-D) pointsP, P,, andP; are viewed by the robot in directions o L
1, 2, and 3s, respectively. The goal is to find the positidhand (i can be eliminated, yielding

orientations of the robot. (cosf,sinf)-P; + T, = ((—sinf,cosf)-P, +T,) - cot §;.

@)
B. Geometric Method o ) o
] ) ) ] This is a homogeneous linear equation in four unknowns
The geometric method is based on the following constraint. When

given two landmarks in positio; andP ; and whose measured bear- )
ings ared; andj3;, there exists a circle going through andP; such (p. _ p, cot 3;, Pi, + Py, cot Bi, 1, — cot 3;) - sin 6

that the angle difference between the directions of the two bearings is L ‘ / ‘ T.

B3: — 3; (see Fig. 2). When given three such landmarks, the intersection T,

of the three circles, which are due to the three pairs of measurements, =0.

cos ¢
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We will denote byA; the coefficient vectors which are computed fromeach elementi; ; is approximately (9A; ;/35:)o;)*. Thus, looking
P, andcot 3;, and bylV the vector of the unknown parameters. Takingt

equations for three such pomtil?elds the following: ?)j = (Piy(cot 37 + 1), =P, (cot 37 +1),0, (cot 37 +1)).
aw = AT |w=o0 We can see that the variance values are very nonuniform, both within a

AL row of A and between the rows. The third element has variance 0 and
s the others are multiples 6f(cot 3 + 1), which can be unlimited in
Inorder to findiV, we apply SVD to4 [17] (Ch. 2.6). This decomposes magnitude. Thus, a small measurement error can cause errors in dif-
Ainto ferent magnitudes fa#;’s of different values.
I The first step is to make the variance bounded. We will multiply each
A=USV row by sin 3, yielding

whereU andV are orthogonal matrices, arfilis a diagonal matrix i = (P sin fi — Piy cos i, Piy sin §i + P cos i,
whose diagonal elements are nonnegative numbers sorted by size. The sin 3;, —cos 3;). (6)
last (f(_)urth) v_ector of ma_tri>V which_corresponds to the smallest ele1is makes the variance bounded
ment in the diagonal of is the solution to the problem. 4, ] ) ) )

As this is an homogeneous set of equations, the solutiofiffds - = (Piysin 8 + Pis cos 3, Piy cos 8 — Pissin 3,
determined up to a scale factor. This scale factor can be determined by
exploiting the fact that’; andW, arecos 6 andsin 8, respectively, L ]
and should, therefore, satisfy/2 + W2 = 1. Thus, IV is recovered. The variance is bounded §?;|*o7 for the first two entries, but by?
However, also-W could be the solution. To verify which of them isfor the second two entries. To make the first two entries have similar
the correct solution, we substitute the solution into the initial set of (2yalues to the other two, we apply a transformation to the world coor-
and check if the right-hand sides of the equations have the same sigdiagtes of the landmark positiod;. Once the solution is found, the
thecos /3; andsin 3;, whose sign is known but was lost in the derivatiorinverse transformation will be applied to it, yielding the position in the
step from (2) to (3). Only one of thHé’s will satisfy these constraints. original world-coordinate system. This transformation is very similar

If there are additional bearing measurements, each of them will aiddthe one used in [19] and for the same reason, which is to improve the
an additional row tod. Then the solution mentioned above will yieldquality of the result obtained from solving a linear system. The problem
the optimal least-squares solution to this linear system, i.e., addressed in [19] was, of course, a different one.

2 . 2 Thus, we compute the centroi€@ of the P;’s, and SZ =
AW|? subject to|W|* = 1. max; |P; — C| and apply the following transformation to ti's:

p =P -C)
IIl. | MPROVED LINEAR SYSTEMS ' 57
) ) ] o As aresult of this transformatiof;| < 1. Now the variances of all

Using SVD to solve our problem is very appealing because itis Vefiye entries have similar magnitudes. Applying these transformations to
efficient and has a linear computational complexity in the number gfe original set of equations has a negligible computational cost, but
landmarks. The problem is that the solution obtained by SVD is not thproves the quality of the estimates considerably.
optimal solution for the original problem we were trying to solve. The Tne |ast step in our algorithm is to ensure that the (5) is enforced.
optimal solution we are seeking is the positiBnand rotation angle Thjs constraint is equivalent to
¢ such that the bearings measured from that position and orientation AW 1
Bicp,0) are closest to the;’s we measured in the experiment, and ac- a5 = P
counting for the fact that the variance of each measuremefit Ehese However IV is unknown. Therefore, we run SVD on the matixwve

requirements yield just obtained and use th& obtained to compute

. (Bi — B, Po)) JAW
arg win Z 7;) (4) d; =

cos 3;,sin 3;).

arg min
&

o2 = o 0"

. . . We then multiply each rowA; by 1/d; and reapply the SVD on the
For our linear system to yield close to optimal results, we should try faw weighted version ofl. This operation is repeated two or three
make it fulfill the following three requirements. The first requirement iﬁrﬁes until the process converges. Thus, at a cost two or three times as

that in_ atotal Iea§t-squares problem (like the one we are solving), €3fitlch as the original computation, another improvement is achieved.
entry in the matrix4 should have the same variance [18] (Ch. 12.3). 1, algorithm can also be run incrementally. Given an estimate for

This variance is due to measurement errors. The second requiremeqtisy ;o o previous running of the algorithm and dead-reckoning
that '

and a single bearing measurement, a new estimatd’otan be
obtained by projecting? to the closest point which satisfies the
(5) new constraint of type (6). If variance estimates of the previous
’ estimate ofi¥” and the current measurement are availabl&} 2on
Thus, the solution will satisfy (4). That is, the error (as measured i€ line between the previous estimate and closest point mentioned
standard deviations;) in each measurement will have the same above can be chosen, yielding the most probable estimatélior
effect on the solution. The last requirement is that each of the entriEdis algorithm is not as accurate as the algorithm which deals with
of the matrix4 be independent of the others. This requirement can n@ the constraints simultaneously, but can be used when not all
be fulfilled for entries in the same row of the matrix, as they are di€aring measurements are available at the same time.
functions of a certair;, but it is fulfilled for entries from different
rows as we assume that the measurements are independent.
We will first deal with the first requirement. Looking at the definition  To test our algorithms we have implemented them using Matlab. To
of A;, itis obvious that this requirement is not fulfilled. The variance oflemonstrate the improvement achieved by the transformation steps, we

: 3 — B °
afw: = = heal

A. Experimental Results
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Fig. 3. For each of the five algorithms, we present the distribution of the results obtained from running it on 500 experiments. The correct aréeeis (4
landmarks lie within a circle of radius 100, and the measurement error is normally distributed with standard deviatidmefrBsults are plotted three times in
different scales.

TABLE |

FOR EACH ALGORITHM THE TABLE SHOWS THEMEAN POSITION OBTAINED BY THE ALGORITHM [SHOULD BE (4,4)], THE VARIANCE IN THE = AND y
COORDINATES AND THE AVERAGE RUNNING TIME IN SECONDS FORRUNNING EACH EXPERIMENT. THE QUALITY OF THE RESULTS IMPROVE FROM
ONE ALGORITHM TO THE NEXT. THE FOURTH ALGORITHM GETS APPROXIMATELY THE SAME RESULTS AS THENONLINEAR OPTIMIZATION
ALGORITHM BUT AT 1% OF THE COMPUTATIONAL COST!!. THUS IT SHOULD BE USED INSTEAD OF THENONLINEAR OPTIMIZATION

Method Mean Variance Running
Position Time
Initial Algorithm (18.04,35.108) (14733,12844) 0.0084476
Bounded Variance (20.594,-1.7789) (355,639.2) 0.0065014
Scaled data (4.3223,3.8965) (7.6949,6.6746) | 0.0070153
Iterative weighted rows (3.9996,3.9624) | (2.7276,0.70346) | 0.011813
Non-Linear Optimization | (3.9307,3.9347) (2.7204,0.7094) 1.4277

ran an experiment in which several hundred sets of measurements whtit usually no more iterations are needed, and that in all cases, the
random noise were given to the different variants of the algorithm aathorithm converges due to the accuracy of this initial result.
a nonlinear optimization algorithm. The difference in the measurementThe accuracy of the estimates (the covariance matrix) can be also
sets were only due to the random noise. The obtained robot positi@stimated directly by estimating the derivatives of the estimating func-
computed by the different algorithms are presented in Fig. 3, drawian with respect to the input and output parameters. The details of this
to the same scale. As the difference in the quality of the different ahethod are presented in [20] and [21].
gorithms is so significant, we had to plot each of the results at threeNow that we have chosen an algorithm, we would like to show some
different scales so the results of the different algorithms can be apsults of running it in several environments. In each environment, the
preciated. The reduction in the scattering of the results demonstrdesimarks have been placed in certain positions, and we measure the
the quality of the last two algorithms. The results are also presentedaiccuracy of the estimate in each position in the workspace by repeating
Table I, showing the mean and variance of the results of the different tile experiment several dozen times and assessing the accuracy as the
gorithms and their running times. The difference in variance betwesquare root of the determinant of the covariance matrix or its trace.
the first and last algorithm is a factor of 5400 (factor of the standafthe values are displayed on a log scale. In the first example, shown in
deviations is 73.6)!!! Our final algorithm achieves results which arg€ig. 4, the landmarks are arranged in two circles of the same radius, one
nearly identical to those of the nonlinear optimization technique butwaith ten landmarks, and the other with five. The most accurate results
1% of the running time! are achieved near the landmarks. The results become less accurate as
We also tested the convergence rate of the iterative algorithme approach the centers of the circles. When we move away from the
Out of 10000 random experiments performed with this algorithm, dircle, the accuracy again is reduced. Obviously, the circle with more
converged after two applications of SVD in 92% of the time, threlandmarks yields better results. Had there been only one circle in the
applications of SVD in 8% of the time, and only once with fouworkspace, very inaccurate results would have been obtained close to
applications of SVD. The reason for this fast convergence rate the circle due to the inherent ambiguity mentioned above.
that the initial result achieved after the first application of SVD is so Inthe second example shown in Fig. 5, we positioned the landmarks
close to the final solution (as can be seen in the results shown abawajdomly. The best results are obtained close to two landmarks which
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Fig. 4. Scene with two circles of landmarks with ten and five landmarks each, landmarks are markets wih Contour map of the log of the trace of the
covariance map. (b) Contour map of the log of the determinant of the covariance map. (c) and (d) Surfaces of these two uncertainty functiorts. deatmedul
near the landmarks of the circle with more landmarks.

/V—/—’/_\
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Fig.5. Scene with a set of randomly placed landmarks. (a) Contour map of the log of the trace of the covariance map. (b) Contour map of the log afitmt determ
of the covariance map. (c) and (d) Surfaces of these two uncertainty functions. The localization algorithm does best close to two very closealzhdoesks
also well next to four landmarks a bit further apart.

were positioned very close to each other, and another accurate positiofihe inverse problemis also interesting. In this case, requirements are

was determined near a cluster of four landmarks. made on the accuracy of the robot’s position at certain places and on
certain paths in the workspace. The task is to determine where to place
IV. APPLICATIONS AND FUTURE DIRECTIONS the landmarks in the workspace. This problem has been investigated in

) o ~_[14]. Our method can be used as the basic building block in research
In conclusion, we have presented a new efficient localizatiqs, these types of problems.

algorithm for a mobile robot from noisy bearing measurements.
We presented our algebraic solution and explained why several
transformations should be applied to the linear system of equations
in order to improve the accuracy of the solution, and showed [1] U- Wiklund, U. Anderson, and K. Hyyppa, "AGV navigation by angle
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is also very efficient, running more than a hundred times faster[3] U. D. Hanebeck and G. Schmidt, “Set theoretic localization of fast
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: At Robotics and Automatiqri996, pp. 1387-1394.
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termined by the accuracy of each estimate (from the value we have Proc. IEEE Int. Conf. Robotics and Automatjdr999, pp. 1960—1965.
computed at the position the measurement was made) and how acd&2] A.Adam, E. Rivlin, and I. Shimshoni, “On designing meta motion plan-
rately does the robot need to know its location (less accurate when itis ~ 1ers A Model and framework,” iroc. IEEE Int. Conf. Robotics and
. Automation vol. 1, 2001, pp. 285-290.
far from an obstacle_,_ and more accurate when it is near an obstqc!e R3] ——, *On designing meta motion planners B: Algorithm and applica-
close to a goal position that has to be reached at a certain precision). ~ tions,” in Proc. IEEE Int. Conf. Robotics and Automatjol. 1, 2001,

This problem is discussed in detail in [12] and [13]. pp. 291-298.
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Prior work on quantifying effectiveness of a robotic grasp or a
fixture has mostly focused on ttstate of equilibriumEquilibrium is
involved in the total restraint (or closure) of the object or workpiece.
There are two major ways to quantify an equilibrium grasp or fixture.
In considering the rigid-body mechanics only, measures of the contact

Characterizations of Localization Accuracy of Fixtures  constraints provided by robot figures or fixture contacts may be

expressed in terms of the contact force such as the maximum of the

normalized equilibrium forces [7], [10], [11]. Such measures are
usually dependent on the choice of coordinate frames—an optimal
Abstract—in this paper, an analysis is presented of the problem of 9raSP OF fixturing scheme under one choice of reference frame may
characterizing the accuracy of deterministic localization of fixtures. In a become nonoptimal under another. Another approach is to consider
statistical framework, the positioning accuracy of the workpiece localized the stiffness matrix of a grasp or fixture with an elastic contact
by the locators of_a fixture i; describe(_j by a symmetric, positive qefinite model [6], [12]-[14]. In recent years, it has been realized that the

accuratenessmatrix (or variance matrix). The accurateness (variance) . . I .

matrix is identified as having similar structural properties to the stlff_ngss matrix Of_ arunlogded equilibriurhas a special Strugturg

stiffness (compliance) matrix of an unloaded, stable robot grasp. This defining the elastic couplings [14]-[17]. A proper characterization

connection leads us to describe a set of frame-invariant characteristic of the stiffness matrix has been shown to have strong implications
parameters with geometric interpretation. The principal translational practice [17].

accuratenesses and rotational variances are defined for constructions The functional requirement considered in this paper is the workpiece
of frame-invariant quality measures for a meaningful comparison of a pap p

different locating schemes. Examples are presented to illustrate the localization, which is different from the concept of equilibrium.
concept and usefulness of the characterizing properties in optimizing Localization establishes a desired spatial relationship of the workpiece

Michael Yu Wang

a fixture layout. with respect to a fixture reference frame witinique and accurate
Index Terms—Accurateness, fixture localization, fixturing, grasping, location (both position and rotation). For a fixture, locators are used
stiffness. primarily for this function to eliminate the six degrees of freedom of

the workpiece, which is often referred to @sterministic localization
[2]. But, as passive elements, the locators in deterministic localization
do not necessarily form an equilibrium [18]. Once positioning of
Proper fixture design is crucial to product quality in terms ofhe workpiece is accomplished by the locators, a clamping device
precision and accuracy in part fabrication and assembly. Fixturesust be applied to provide a complete restraint (or force closure) of
the workpiece against any external forces on the workpiece. Only
then is a stable equilibrium established. Our focus here is on the
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