
 1

Representation of Method Fragments: A Domain Engineering
Approach

Iris Reinhartz-Berger and Anat Aharoni

Department of Management Information Systems,
University of Haifa, Haifa 31905, Israel
iris@mis.haifa.ac.il, anatah@mis.haifa.ac.il

Abstract. The discipline of situational method engineering (SME) promotes the idea of retrieving,
adapting, and tailoring fragments, rather than complete methodologies, to specific situations. In
order to succeed in creating good methodologies that best suit given situations, fragment
representation and cataloguing are very important activities. We introduce a visual SME approach,
whose roots are in domain engineering. This approach relies on the Application-based DOmain
Modeling (ADOM) approach, which provides a framework for representing both applications and
domains and validating them each against the other. Furthermore, the proposed ADOM-based
approach aims at supporting all the SME-related activities, while in this paper we focus only on its
fragment representation and cataloguing parts. The main advantages of the approach are its
expressiveness, its support for specifying, constraining, and validating fragments and fragment
types, its situational cataloguing abilities, and its accessibility to both software and method
engineers.

KEYWORDS: Method Engineering, Situational Method Engineering, Meta-modeling, UML

1. Introduction

A development methodology provides a collection of procedures, techniques, tools, and

documentation aids for helping developers in their efforts to implement a system correctly, on

time, and within budget [1]. Although sticking to an individual methodology has potential

advantages, such as reducing learning and training times and improving the expertise of

developers in the chosen methodology, there is no single methodology that can be uniquely

pointed as “the best". Hence, different types of "local" adaptations and modifications have to

be made in order to adjust a methodology to the specific requirements and constraints of a

project. Two areas have emerged for creating and maintaining methodologies: method

engineering [2, 18] aims at providing effective solutions for building, improving, and

supporting evolution of development methodologies, while Situational Method Engineering

(SME) [9, 13] mainly deals with customizing and tailoring methodologies to a specific

situation (case). These approaches refer to fragments, the building blocks of methodologies,

rather than to complete methodologies. They offer ways to represent fragments, catalogue

them according to different features, retrieve the most appropriate ones, and customize and

tailor them to complete methodologies. The quality of fragment representation and

cataloguing may significantly affect the quality of the reusing and assembling processes and

consequently the quality of the resultant situational methodologies. Hence, these activities are

essential and are the focus of this paper, which presents a domain engineering-based approach

that allows expressing a large variety of fragments and fragment types, constraining the

 2

structure and behavior of fragments, and specifying situational cataloguing information that

changes according to the fragment type. These are done using well-know modeling languages

and techniques, increasing its accessibility to various users and potentially enhancing user

involvement and commitment to the resultant situational methodologies.

The structure of the rest of the paper is as follows. Section 2 introduces and exemplifies

the approach, while Section 3 presents its supporting CASE tool. Section 4 analyzes the

proposed fragment representation approach in the light of other relevant works. Finally,

Section 5 concludes and refers to future research plans.

2. A domain engineering-based approach for fragment representation

The proposed domain-engineering approach is a holistic, visual approach for managing,

representing, retrieving, customizing, and tailoring method fragments in order to create new

methodologies that best suit a situation at hand. Its fragment representation part provides the

ability to express different types of methodologies and their fragments, their associated

characteristics and values, their pre- and post-conditions, and other fragment-related

requirements, such as mandatory participants, recommended (optional) participants, triggers,

etc. We apply the Application-based DOmain Modeling (ADOM) [14, 17] and the standard

notation of UML 2.0 [11] for these purposes.

As opposed to other domain engineering [4] and product line software engineering [12]

approaches, which are concerned with developing separate techniques and tools for building

reusable assets and components that fit to families of applications, ADOM perceives that

applications and domains are similar in many aspects, thus it enables modeling domains with

regular software engineering techniques. ADOM is based on a three layered architecture:

application, domain, and language. The application layer consists of models of particular

applications, including their structure and behavior. The language layer includes meta-models

of modeling languages, such as UML. The intermediate domain layer consists of

specifications of various domains (i.e., application families). These specifications describe the

commonality as well as the variability allowed among applications in the domain. The

application models use domain models mainly for creation (instantiation, reuse) and

validation purposes.

ADOM is a quite general architecture and can be applied to different modeling languages,

but when adopting ADOM with a specific modeling language, this language is used for both

application and domain layers, easing the task of application validation by employing the

same constructs in both application and domain layers. ADOM-UML, in which ADOM is

used in combination with UML 2.0 [11], was chosen in the context of this research due to the

familiarity and establishment of UML in the software engineering area. Section 2.1 briefly

 3

reviews the principles of ADOM-UML, more elaborated in [14, 17], while the rest of the

section focuses on its applicability for representing, cataloguing, and tailoring method

fragments.

2.1 ADOM-UML

In ADOM-UML, UML stereotypes are used both for classifying application elements

according to their relevant domain elements and for specifying the allowed variability among

applications in the domain.

In the language layer, a new <<multiplicity>> stereotype is defined in order to represent

how many times a model element of this type can appear in a specific context. This stereotype

has two associated tagged values, min and max, which respectively define the lowest and

upper most multiplicity boundaries. For clarity purposes, four commonly used multiplicity

groups are defined on top of this stereotype, as summaries in Table 1.

Table 1. Defined stereotypes in the language layer of ADOM-UML

Abbreviated notation Full notation Meaning
<<optional many>> <<multiplicity min = 0 max = ∞>> Any number (including 0) of application

elements can be classified (stereotyped) as
this domain element

<<optional single>> <<multiplicity min = 0 max = 1>> At most one application element can be
classified (stereotyped) as this domain
element

<<mandatory many>> <<multiplicity min = 1 max = ∞>> At least one application element can be
classified (stereotyped) as this domain
element

<<mandatory single>> <<multiplicity min = 1 max = 1>> Exactly one application element can be
classified (stereotyped) as this domain
element

 <<multiplicity min = n max = m>> Between n to m application elements can
be classified (stereotyped) as this domain
element

In the domain layer, the main concepts of the domain and the relations among them are

specified using UML. The allowed variability within the domain is also specified in this layer

by attaching multiplicity stereotypes to the various domain concepts and by employing the

Object Constraint Language (OCL) [10] (e.g., "or" constraints can be used to denote

variations and "exclusive or" constraints can be used to denote alternatives).

In the application layer, the stereotype mechanism is used in order to classify the

application elements according to the pre-defined domain elements. The classified application

elements are required to fulfill the constraints induced by their classifying domain elements at

the domain layer. In addition, the ADOM approach allows adding to application models non-

classified elements which are specific to the application at hand and, hence, do not appear in

the domain model. These additions are allowed as long as they do not violate the domain

constraints.

 4

2.2 Representing and cataloguing fragments in ADOM-UML

The structure and guidelines of fragments are described within the domain layer of ADOM,

while their instantiations, which specify particular situational methodologies, are defined in

the application layer. In these two layers, structural methodological parts, terms product

fragments, are described by UML class diagrams, while behavioral methodological parts,

termed process fragments, are described by UML activity diagrams. Furthermore, the

different features that characterize each fragment are represented and associated to the

fragment models as UML templates, which are parameterized elements that can be used to

generate other model elements using binding relationships. The exact lists of features that

characterize the different types of fragments can be derived from works that have been done

in the area of SME, such as [7, 8], and from practitioners.

Figures 1 and 2 respectively exemplify process and product fragments taken from the

Rational Unified Process (RUP) [6]. Figure 1 describes the "extracting requirements"

workflow, including its optional inputs, required participants, expected deliverables, skeletal

steps and flow of control. Figure 2 specifies a "requirement document", which is a special

type of product fragments, called artifacts, constraining its general structure and possible

(allowed) variability. A requirement document, for example, may relate to several business

models and business domain glossaries, which are also artifacts. Note that although

constrained, ADOM in general and ADOM-UML in particular allows additional organization-

specific features (e.g., attributes or relations) in the requirement classes as long as they do not

violate the domain constraints. Figure 2 also specifies the situations in which the usage of

requirement documents is desirable: the project life cycle is at least one year, the project size

is at least two sub systems, and the flexibility to change is low. As the relevant feature list

may become very long, the approach enables specifying the cataloguing information in a

separate XML file. However, due to space limitations, we will not elaborate on this option

here.

All the stereotypes that are used in these diagrams, except from the multiplicity stereotypes

taken from ADOM's language layer, are meaningful concepts in the method engineering area

in general and in SME in particular. Hence, they can be (and are) generalized and constrained

as more general domain models in ADOM-UML, which capture the knowledge required for

specifying particular method fragments in a uniform way. Figure 3, for example, presents a

partial model of an artifact. As can be seen, this meta-model is in yet a more abstract level

than the fragment models depicted in Figures 1 and 2, allowing its usage for different kinds of

artifacts, e.g., business models, domain glossaries, and requirement documents. Figure 2 uses

the stereotypes defined in Figure 3 and fulfills all the constraints imposed by this figure,

 5

including the requirement document attributes and structural relations to other concepts

(classes).

Figure 1. A description of the "extract requirements" process fragment of RUP in ADOM

Figure 2. A description of the "requirement document" product fragment of RUP in ADOM

2.3 Tailoring methodologies in ADOM-UML

For completeness, we will only demonstrate how the fragment representation and

cataloguing activities in ADOM-UML support the consecutive SME processes, or more

 6

precisely the tailoring operation. The example shows a simple fragment tailoring which is

needed for creating a methodology that is suitable for the Obsert Oglesby case [16].

Figure 3. A description of an artifact, which is a specialization of a product fragment

Obsert Oglesby is an art dealer who requests an information system to assist him in buying

and selling paintings for his gallery. After consulting with an independent consultant, Obsert

decided to turn to a well-known development company to buy a system which will enable him

calculating the minimal and maximal prices of a painting and will also serve in detecting new

trends in the art market as soon as possible. The development company which was chosen is

familiar with the art world and developed similar systems. It mainly works with XP [5] for

small projects which need to be developed quickly in an environment of rapidly changing

requirements and with RUP [6] for complex projects. Since Obsert's case does not completely

fit to any of these options, the development team decided to use suitable fragments from both

methodologies and to tailor them for the particular case. The process fragments which were

found as relevant to the early development stages of the requested system are "extract

requirements" and "build a business model" from RUP and "on-site customer" from XP.

These fragments were found by matching the characteristics of the situation (Obsert's case)

and his requests to the fragment characteristics. Figure 4 presents a part of the resultant

(situational) methodology that tailors the three retrieved process fragments. The "build a

business model" and "extract requirements" fragments are tailored one after the other due to

the requirement document, which is an optional input of "build a business model" and the

outcome of "extract requirements". The "on-site customer" fragment was tailored in parallel

to the two other fragments, due to the absence of common pre- and post-conditions between

them. This resultant methodology part belongs to the application layer of ADOM-UML and

satisfies all the constraints imposed by the domain models of the composing fragments. The

"Obsert requirements elicitation" activity, for example, is an "instantiation" of the "extract

 7

requirements" fragment that is detailed in Figure 1. As such, it gets "Obsert Oglesby" as its

both client and future user, the "analyst" as its both team member and system analyst, and the

"independent consultant report" as its client initial information. It also outputs an "initial

requirement comprehension" object as its requirement document and a "settled connection

contract" as its contract. However, the internal structure and flow of this "Obsert requirements

elicitation" fragment is not shown in Figure 4, as it is irrelevant for tailoring.

Figure 4. Part of the situational methodology which was created for Obsert's case

3. The supporting CASE tool

Our approach is planned to be accompanied with a CASE tool for managing the

aforementioned activities. Figure 5 is an initial design of the main user interface of this tool.

The upper part of the interface gets from the user the situation he/she is facing. It includes

sections that refer to the project and organization characteristics, as well as a section for

additional constraints, such as the type of methodologies from which the retrieved fragments

can be taken. The characteristics list will be dynamically modified, depending on the selected

fragment type and previous selections of the user. In the lower left part of the interface, the

relevant retrieved fragments are presented. Each fragment is accompanied with a number

between 0 and 1 which reflects the distance between the retrieved fragment and the given

situation in terms of their exhibited characteristics.

The user will be able to view the different fragments and their characteristics and to select

the most appropriate ones. The tool includes a user-friendly editor which basically allows

operations supported by UML activity and class diagrams for defining and representing the

 8

fragments and their characteristics. It will also support customization and tailoring operations

in the context of the new situational methodologies.

Figure 5. The supporting CASE tool interface

4. Analyzing the proposed ADOM-based approach

The ADOM-based approach represents both process and product fragments in different

granularity levels. The abilities to zoom into activities and to decompose classes in UML are

employed in order to specify particular fragments to the required level of details without

losing the "big picture" of the fragment as a whole. Weerd et al [19] have already proposed

class and activity diagrams for supporting web-based content management system

development. However, our approach refers also to fragment types, such as artifacts and

workflow fragments, and allows representing them in domain models that capture the relevant

knowledge and formally constrain the creation of specific fragments of those types. The

particular fragments are required to fulfill the constraints imposed by the relevant fragment

types. Furthermore, the usage of fragment types may help integrate, tailor, customize, and

assemble particular fragments in a more correct and convenient way.

The separation of fragments into different specifications enables using the same fragment

in several contexts, while preserving autonomy of each part. Works which tightly connect

product and process fragments into chunks (e.g., [15]) may fall short in (re)using the same

fragment in different contexts (e.g., a product that is used by two processes).

In oppose to other works in the area, such as [3] that does not clarify at all (empirically or

in other ways) which fragments are suitable and useful for specific situations, the ADOM-

based approach supports comprehensive and dynamic definition of organizational, human-

 9

related, and project-related characteristics that may be used latter for retrieving and

assembling the fragments. These characteristics can be taken, for example, from the reuse

frame suggested by [8] which aggregates various works made on methodology aspects.

However, since the lists of relevant characteristics may vary between one fragment type to

another, our approach allows associating different characteristics to each fragment type, while

a specific fragment gets only the relevant characteristics according to its type. Other works in

the area, such as [7] and [15], use static, pre-defined lists of characteristics that may be used

for all fragments, making the approaches concentrate on only few important characteristics or

reducing the ability to control and maintain these lists in the context of a specific fragment.

We chose to specifically use UML in our approach, although the approach can be applied

to other modeling languages as well, due to its accessibility to different types of users,

including software engineers and managers with technical background. This way we hope to

increase the probability of using the resultant situational methodologies and to make the

processes of learning and using the fragment representation method easy.

5. Conclusions and future work

As there is no (and probably will not be) a single universally applicable methodology, the

importance of SME in general and fragment representation approaches in particular has been

increased. We introduced an ADOM-based approach, whose roots are in domain engineering,

in order to overcome on some of the main drawbacks of existing fragment representation

approaches. In particular, the suggested approach helps identify a wide variety of fragments

and fragment types in a uniform way; it supports comprehensive and dynamic definition of

cataloguing characteristics; it guides and validates the creation of different types of

fragments; and it is accessible to different potential stakeholders, such as software engineers,

and not just to method engineers.

As for the future, we plan to define evaluation criteria for all SME activities, specify how

the ADOM-based approach supports them in a semi-automatic manner, and compare it to

other method engineering and SME approaches. We will also completely develop the

supporting CASE tool and examine its usage in industrial companies.

References

1. Avison, D., Fitzgerald, G. Information systems development: Methodologies, Technique

and Tools. Second Edition, Higher Education, 2002.

2. Brinkkemper, S. Method Engineering: Engineering of information systems development

methods and tools. Information and Software Technology, 38(4), pp. 275-280, 1996.

 10

3. Brinkkemper, S., Saeki, M., Harmsen, F. Assembly techniques for method engineering,

CAiSE'98, Lecture Notes in Computer Science 1413, pp. 381-400, 1998

4. Carnegie Mellon Software Engineering Institute. Domain Engineering: A Model-Based

Approach, http://www.sei.cmu.edu/domain-engineering, 2002.

5. Extreme Programming Web Site, http://www.extremeprogramming.org, 2006.

6. IBM Web Site, Rational Unified Process, http://www-

306.ibm.com/software/awdtools/rup/, 2007

7. Mirbel, I. Rethinking ISD methods: Fitting project team members profiles. I3S technical

report I3S/RR-2004-13-FR, 2004. Available from

http://www.i3s.unice.fr/~mirbel/publis/im-isd-04.pdf, 2007.

8. Mirbel, I., Method chunk federation. Available at

http://www.i3s.unice.fr/~mh/RR/2006/RR-06.04-I.MIRBEL.pdf, 2006.

9. Mirbel, I., Ralyté, J. Situational method engineering: combining assembly-based and

roadmap-driven approaches. Requirements Engineering 11(1), pp. 58-78, 2006.

10. OMG, "Object Constraint Language", Version 2.0, 2005,

http://www.omg.org/docs/formal/06-05-01.pdf

11. OMG, "Unified Modeling Language: Superstructure", Version 2.0, 2005,

http://www.omg.org/docs/formal/05-07-04.pdf

12. Pohl, K., Böckle, G. and van der Linden, F. J. Software Product Line Engineering:

Foundations, Principles and Techniques. Springer. 1st Edition, 2005.

13. Ralyté, J., Deneckere, R., Rolland, C., Towards a generic model for situational method

engineering, CAiSE 2003, LNCS 2681, Springer, pp. 95-110, 2003.

14. Reinhartz-Berger, I., Sturm, A. Behavioral Domain Analysis – The Application-based

Domain Modeling Approach, UML'2004, LNCS 3273, Springer, pp. 410-424, 2004.

15. Rolland, C., Plihon, V., Ralyté, J., Specifying the reuse context of scenario method

chunks, Proceedings of the 10th International Conference on Advanced Information

Systems Engineering (CAiSE'98), LNCS 1413, Springer, pp. 191, 1998.

16. Schach, S. R. An Introduction to Object-Oriented Analysis and Design with UML and the

Unified Process. McGraw-Hill/Irwin, pp. 56, 2004.

17. Sturm, A., Reinhartz-Berger, I., Applying the Application-based Domain Modeling

Approach to UML Structural Views, ER'2004, LNCS 3288, Springer, pp. 766-779, 2004.

18. Tolvanen, J. P. Incremental Method Engineering with Modeling Tools: Theoretical

Principles and Empirical Evidence. Available at

http://www.cs.jyu.fi/~jpt/doc/thesis/ime.html, 1998.

19. Weerd, I, Brinkkemper, S., Souer, J., Versendaal, J. A situational implementation method

for web-based content management system-application: method engineering and

validation in practice. Software process: improvement and practice 11(5): 521-538, 2006.

