
1

6SHFLILFDWLRQ�7HFKQLTXHV�IRU�:HE�$SSOLFDWLRQ�'HYHORSPHQW�±$�&RPSDULVRQ�
By Iris Reinhartz-Berger

�� 6SHFLILFDWLRQ�7HFKQLTXHV�IRU�:HE�$SSOLFDWLRQ�'HYHORSPHQW
The development of Web applications can be approached from two different

viewpoints: the hypermedia authoring approach and the system and software

development approach. The system and software development approach can be

further divided into two subgroups: the object-oriented approach and the behavioral-

oriented approach. An integrated approach to system development that integrates

concepts from both the object-oriented approach and the behavioral-oriented approach

is called Object-Process Methodology (OPM) and is discussed in Section 2.

��� 7KH�+\SHUPHGLD�$XWKRULQJ�$SSURDFK�
The techniques that follow the hypermedia authoring approach are either based on

the Entity-Relation (E-R) model (the Hypertext Design Model and the Relationship

Management Methodology), or on the Object-Oriented (OO) model (the Object-

Oriented Hypertext Design Model and the Enhanced Object Relationship Model).

The +\SHUWH[W� 'HVLJQ� 0RGHO� �+'0� [GM93, GPS93] shifts the focus from

hypertext data models as a means to capture the structuring primitives of hypertext

systems, to hypertext models as a means for capturing the semantics of a hypermedia

application domain. It prescribes the definition of an application schema, which

specifies classes of information elements in terms of their common presentation

characteristics, their internal organization structure, and the types of their mutual

interconnections. Web structure is expressed by means of entities, sub-structured into

a tree of components. Navigation can be internal to entities (along part-of links),

cross-entity (along generalized links), or non-contextual (using access indexes, called

collections). HDM is concerned with representational and navigational issues, rather

than with behavioral aspects of hypertext and operational features. Furthermore, it

provides little information on the procedures for using its representation schemes in

the design process. It is therefore not a complete hypermedia design and development

methodology.

2

The 5HODWLRQVKLS�0DQDJHPHQW�0HWKRGRORJ\��500� [ISB95] evolves HDM by

embedding its hypermedia design concepts into a structured methodology, splitting

the development process into seven distinct steps and giving guidelines for the tasks.

The development cycle steps in RMM are E-R design, slice design, navigation design,

conversion protocol design, user-interface design, runtime behavior design, and

construction & testing.

The 2EMHFW�2ULHQWHG�+\SHUWH[W�'HVLJQ�0RGHO� �22+'0� [SRB96, SR98] is a

direct descendant of HDM. It differs from HDM in its object-oriented nature, and in

that it includes special-purpose modeling primitives for both navigational and

interface design. OOHDM comprises four different activities: conceptual design,

navigational design, abstract interface design, and implementation. During each

activity, except for the implementation, a set of object-oriented models describing

particular design concerns are built or enriched from previous iterations.

The (QKDQFHG� 2EMHFW� 5HODWLRQVKLS� 0RGHO� �(250� [LA96] is defined as an

iterative process concentrating on the enrichment of the object-oriented model by the

representation of relations between objects (links) as objects. The technique is based

on three frameworks of reusable libraries: one for class definition, one for

composition (link class definition) and one for GUIs.

EORM differs from OOHDM mainly in that OOHDM clearly separates navigational

from conceptual design concerns by defining different modeling primitives for each

step, while EORM combines them all together. The advantages of EORM over

OOHDM are that relations become semantically rich as they are extensible constructs,

they can participate in other relations, and they can be part of reusable libraries.

��� 7KH�2EMHFW�2ULHQWHG�'HYHORSPHQW�$SSURDFK
The most common object-oriented methods for system development in general and

Web applications in particular are UML and OPEN.7KH� 8QLILHG� 0RGHOLQJ� /DQJXDJH� �80/� [UML99], which is the industry

standard object-oriented modeling language, is a general-purpose visual modeling

language for specifying, constructing, and documenting the artifacts of software

systems, as well as for business modeling and other non-software systems. UML

combines ideas from three previously leading object-oriented methods: OOSE

(Object-Oriented Software Engineering) [JA92], OMT (Object Modeling Technique)

[RU91], and Booch’93 [BO94]. UML captures information about the static structure

3

and dynamic behavior of a system. The VWUXFWXUDO�FODVVLILFDWLRQ defines the classes of

objects important to a system and to its implementation, as well as the relationships

among the classes. The G\QDPLF�EHKDYLRU defines the history of objects over time and

the communications among them to accomplish goals.

Web applications, like other software-intensive systems, are typically represented by a

set of models: a use-case model, an implementation model, a deployment model, a

security model, and so forth. An additional model used exclusively by Web

information systems is the site map, an abstraction of the Web pages and navigation

routes throughout the system. Since UML version 0.91, the developer is able to model

Web applications using the built-in extension mechanisms, which are tagged values,

stereotypes and constraints, in addition to the above models. The stereotypes UML

offers for Web application designers are elaborated in [CO99a, CO99b].

The 2EMHFW� 3URFHVV�� (QYLURQPHQW� DQG� 1RWDWLRQ� �23(1� [OPN99] is a third

generation, public domain, object-oriented methodology that focuses on the

development process specification. It was initially created by a merger of MOSES

[HSE94], SOMA [GR95] and Firesmith [FI93] methods, commencing at the end of

1994. In addition to synthesizing the ideas and practices from those methods, OPEN

also offers a set of principles for modeling all aspects of software development across

the full lifecycle. The development process is described by a contract-driven lifecycle

model, which is complemented by a set of techniques and a formal representation

using a modeling language such as OML (OPEN Modeling Language) [HS98] or

UML. In the OPEN architecture, a modeling process consists of one or more

activities, each consisting of one or more tasks. Tasks are carried out by agents

(people) using techniques. A two-dimensional matrix links the task (which provides

the statement of goals, i.e. the “what”) to the techniques (which provide the way the

goal can be achieved, i.e. the “how”).

Because it concentrates on the development process, OPEN attempts to solve the

following deficiencies in the Web application development process [LHS99]: lack of

documented process, lack of non-code deliverables, lack of object orientation in the

design phase, lack of metrics, and lack of CASE/support tools.

��� 7KH�%HKDYLRUDO�2ULHQWHG�'HYHORSPHQW�$SSURDFK
The term ‘behavioral-oriented’ can be interpreted in several ways. Here it pertains

to approaches that specify the conditions or constraints to activate some (perhaps

4

partly specified) functionality at a desired moment. Three of the behavioral-oriented

design techniques, which deal also with the development of Web applications and

distributed systems, are the superimposition approach, Aspect-Oriented Design and

the Event-Condition-Action paradigm.

The VXSHULPSRVLWLRQ� DSSURDFK [KA93] introduces a procedure-like control

structure (called a superimposition) that allows convenient expression of the

superimposition of one algorithm on another. In this construct, both formal processes

and schematic abstractions (called roletypes) are declared, each with formal

parameters and a sequential communicating algorithm using those parameters. The

declaration captures a distributed algorithm that is separately designed, but is intended

to be executed in conjunction to other activities in the same state space. The construct

is combined with an existing collection of communicating processes by instantiating

the formal processes and associating each process of the collection with one roletype.$VSHFW�2ULHQWHG� 'HVLJQ� �$2'� [AOP00, BE98, CBE99] is an abstraction

principle intended to help software developers more cleanly separate concerns in their

design and source code. An aspect modularizes the features for a particular concern

and describes how those features should be integrated (woven) into the system design.

In object-oriented methods, an aspect is typically spread across multiple methods in

multiple classes. In AOD, an aspect can be separated from the classes to which it

applies. The aspect-oriented approach emerged through the development of AspectJ, a

programming language based on Java. This was followed by attempts to percolate this

concept to earlier stages in the application development lifecycle, i.e., to the design

stage. At present, there are two main modeling techniques that use aspects, both based

on UML. The first one extends the UML metamodel with another classifier element

(like Class, Interface, Component and Node), called $VSHFW� [SY99]. The second

technique introduces the aspect notion as a new notation – a diamond and an

associated rectangle, which consists of four sections: attributes, operations, introduce

members and advice methods [KM99].

The (YHQW�&RQGLWLRQ�$FWLRQ� 3DUDGLJP� �(&$� [CH93] is used in information

systems in general and database systems in particular in order to apply the concept of

triggers in specifying the behavior of a system. A trigger is a procedural processing

element, stored in the database and executed automatically by the DBMS server under

specific conditions. A trigger is composed of three components: Event, Condition and

Action. It might also have an “Event Condition then Action else Action” form (also

5

called ECAA principle). In Web applications those principles can be used, for

example, for modeling business rules [PE98]. These rules are expressed by an object-

oriented meta-language, which is XML-like.

�� 7KH�2EMHFW�3URFHVV�0HWKRGRORJ\
The Object-Process Methodology (OPM) [DO95, DG96, DO01] is an integrated

approach to the study and the development of systems in general and information

systems in particular. The basic premise of OPM is that objects and processes are two

types of equally important classes of things, that together faithfully describe the

structure, function and behavior of systems in a single framework in virtually any

domain. OPM unifies the system specification, design and implementation within one

frame of reference, using a single diagramming tool – the Object-Process Diagram

(OPD) and a corresponding, English-like language – the Object-Process Language

(OPL). OPM has been implemented successfully in various industrial applications,

including microprocessor manufacturing, metal cutting technology, real-time systems

[PD99], and ERP [SDG00], because of its structure modeling preciseness, its behavior

modeling flexibility, its scalability and complexity management abilities, and its

single framework.

In OPM, system classes, class features, physical devices, and environmental

interfaces are all modeled as object classes. An object class can be either internal or

environmental, and (orthogonally) either physical or informatical (logical). In

addition, an object class can have several states, which represent the possible internal

status values of the class. At any point in time, each object is in some state, and object

states are transformed through the activation of a process. All these structural features

increase the precision of the model, as a process can affect (change the state of) an

environmental or a physical device, or an attribute of an object class (rather than the

state of the entire class, as in object-oriented methods).

Unlike in the object-oriented approach, behavior in OPM is not necessarily

encapsulated within the object class construct, but one can model a crosscut behavior

that bisects the object classes and the system structure. This modeling is done by

using stand-alone processes which make the behavior modeling more flexible and can

be connected to the involved object classes through one or more of the procedural

links. The procedural links can be divided, according to their functionality, into three

groups, which are enabling links, transformation links, and event links.

6

The large number of constructs (objects, processes, structural relations, and

procedural links) resulting in a complex system model and the intersections among

them is managed by using OPM’s build-in scaling mechanisms, which are

unfolding/folding and zooming-in/zooming-out. The unfolding/folding mechanism

uses structural relations for detailing/hiding the structural parts of a thing. For

example, in Figure 1a, the process P1 is unfolded to its parts, processes P1.1 and P1.2,

and to its feature, object B1.1. The zooming-in/zooming-out mechanism exposes/

hides the inner details of a thing within its frame. In Figure 1b, the process P1 is

zoomed-in, showing the process flow – first P1.1 is executed and creates object B1.1,

and then process P1.2 is activated, consuming object B1.1.

This way OPM facilitates focusing on a particular subset of things (objects and/or

processes), elaborating on the details of each one by scaling up each thing to any

desired level, and managing the complexity of a system model.

Figure 1. Applying OPM scaling mechanisms to process P1.

(a) Process P1 is unfolded. (b) Process P1 is zoomed-in.

The ability to use a single OPM framework in order to specify all the system

aspects, including structure, functionality and dynamics, prevents compatibility and

integration problems among the different diagram types. The OPM framework is

expressed visually by an OPD-set and textually by an OPL script and provides the

ability to grasp the entire system through one visual language (for system developers)

and one textual language (for managers and other non-experts in system development

tools).

P1

P1.1

a

P1

B1.1

b

P1.2 B1.1

P1.1

P1.2

/(*(1'
Informatical object

Informatical process

Aggregation

Characterization

Result/consumption

link

7

�� &RPSDULVRQ�RI�:HE�$SSOLFDWLRQ�0HWKRGRORJLHV�
In this section I examine the reviewed modeling techniques according to the

domain of Web applications. The evaluation criteria include level of structuredness,

modularity and reusability, physical architecture representation, user interface

modeling, dynamic behavior modeling, and security and privacy management. The

results of this comparison are shown in Table 1.&ULWHULRQ +\SHUPHGLD�$XWKRULQJ�DSSURDFKHV
2EMHFW�2ULHQWHG�DSSURDFKHV

%HKDYLRUDO�2ULHQWHG�DSSURDFKHV
2EMHFW�3URFHVV�0HWKRGRORJ\

Level of Structuredness average good poor good
Modularity and Reusability poor average average+ average+
Physical Architecture
Representation

poor average poor average

User Interface Modeling average average poor average
Dynamic Behavior
Modeling

poor average average good

Security and Privacy
Management

poor average poor average

Table 1. Comparison of Web application modeling techniques by quality of various

criteria

��� /HYHO�RI�6WUXFWXUHGQHVV
In the EHKDYLRUDO�RULHQWHG� DSSURDFK, the structure of the application is not

specified, so they must rely on combining other approaches (E-R or OO) to

complement their modeling.

The K\SHUPHGLD�DXWKRULQJ� WHFKQLTXHV that are based on the E-R model are suited

for simple structured data, but not for complex or unstructured data. They do not

provide for complexity management facilities, such as hierarchy and aggregation.

RMM introduces the “slice” concept for categorizing the entities, but this provision is

quite limited.

The REMHFW�RULHQWHG�PHWKRGV�DQG�230 can model complex structured data by using

attributes, aggregation, inheritance, and other structural relations. In addition those

approaches can better model unstructured data or semi-structured data, by using the

multiplicity property similar to the way XML uses regular expressions. Nevertheless,

object-oriented methods, unlike OPM, cannot easily model complex features of object

classes and their changes over time.

8

��� 0RGXODULW\�DQG�5HXVDELOLW\
The REMHFW�RULHQWHG�GHYHORSPHQW�PHWKRGV apply modularity and reusability through

packages and class hierarchy. Yet they do not support crosscut modularity among

objects, i.e., concepts that are shared by different object classes. Therefore, adding

functionality to the system might affect several different object classes. To tackle this

problem, $2' suggests aspects as a new unit of software modularity which attempts

to provide a better handle on managing crosscut concerns. This kind of modularity

can be adopted by 230, but it has not been checked yet.

��� 3K\VLFDO�$UFKLWHFWXUH�5HSUHVHQWDWLRQ
None of the reviewed techniques regards the dynamic architecture behavior and

Web programming concepts such as worms, cookies, Java applets, etc.

The REMHFW�RULHQWHG� GHYHORSPHQW�PHWKRGV� DQG�230 are the only ones that are at

least partially concerned with the physical architecture aspect. 80/ has a special

diagram type, the deployment diagram, for representing these concepts. This type of

diagram, whose purpose is to consider the load for building effective applications,

models only the structural part of the system architecture, i.e., the system components

and their links (connectors). In OPM the structure of the physical architecture is

modeled using physical and informatical things. A physical object consists of matter

and/or energy, is tangible in the broad sense and can be detected by one or more of

our senses, while an informatical object is a piece of information. A physical process

is a change that a physical object undergoes and similarly an informatical process is

some transformation (or manipulation) of an informatical object.

��� 8VHU�,QWHUIDFH�0RGHOLQJ
The EHKDYLRUDO�RULHQWHG� WHFKQLTXHV focus on the functionality of the application

and pay little or no attention to the user interface.

In contrast, the REMHFW�RULHQWHG� GHYHORSPHQW� PHWKRGV� DQG� 230 allow some user

interface modeling by using classes for this purpose. Some of these classes are pre-

defined in programming languages like JDialog and JMenu in the Java Swing library.

Nevertheless, they neglect basic, commonly used navigational structures, such as

index guides and paths, and do not connect the user interface and the user actions to

the functionality occurring in the system afterwards.

9

The K\SHUPHGLD�DXWKRULQJ� WHFKQLTXHV introduce only three simple user interfaces:

grouping, conditional index and conditional guided tour, which are insufficient to

model the large variety of navigation possibilities and user interfaces in Web

applications. The hypermedia authoring techniques which are based on the E-R model

also neglect the complexity management of the user interface.

��� '\nDPLF�%HKDYLRU�0RGHOLQJ+\SHUPHGLD�DXWKRULQJ� WHFKQLTXHV model the structure and navigational aspects of

the application, but not its functionality.

The REMHFW�RULHQWHG� GHYHORSPHQW� PHWKRGV enable modeling application

functionality through class services and message passing among the objects, but they

are not capable of modeling independent, stand-alone processes, which cannot be

affiliated with one specific class, as opposed to 230.

The EHKDYLRUDO�RULHQWHG�WHFKQLTXHV model the system functionality separately from

the application structure, making it very difficult to model data processing.

Furthermore, none of the techniques provides code migration modeling, such as in

Java applets and cookies.

��� 6HFXULW\�DQG�3ULYDF\�0DQDJHPHQW
Most Web application development techniques do not address at all security and

privacy issues during the design phase, leaving it to the implementation stage. 80/DQG�230�enable partial authentication and access control by use case diagrams and

agent links, respectively. 80/� also supports data integrity by using the Object

Constraint Language, OCL [WA99], along with the class diagram.

10

�� 5HIHUHQFHV
[AOP00] The AOP Web site, http://www.parc.xerox.com/csl/projects/aop/

[BE98] U. Becker, D2AL – A design-based aspect language for distribution control,

proceedings of the Europe Conference on Object-Oriented Programming (ECOOP),

1998.

[BO94] G. Booch, Object-Oriented Analysis and Design with Applications,

Benjamin/Cummings, 1994.

[CBE99] C. A. Constantinides, A. Bader, and T. Elrad, An Aspect-Oriented Design

Framework for Concurrent Systems, proceedings of the Europe Conference on

Object-Oriented Programming (ECOOP), 1999, pp. 340-352.

[CH93] S. Chakravarthy, SNOOP: An expressive Event Specification Language for

Active Databases, Technical Report UF-CIS-TR-93-007, 1993, pp. 1-25.

[CO99a] J. Conallen, Modeling Web Application Architectures with UML,

Communication of the ACM vol. 42 no. 10, 1999.

[CO99b] J. Conallen, Building Web Applications with UML, the Addison-Wesley

Object Technology Series, 1999.

[DG96] D. Dori and M. Goodman, From Object-Process Analysis to Object-Process

Design, Annals of Software Engineering, vol. 2, 1996, pp. 25-40.

[DO01] D. Dori, Object-Process Methodology Applied to Modeling Credit Card

Transactions, Journal of Database Management, vol. 12, no.1, pp. 2-12, 2001 (to

appear), http://iew3.technion.ac.il:8080/Home/Users/dori/JDM-Dori-OPM.pdf.

[DO95] D. Dori, Object-Process Analysis: Maintaining the Balance between System

Structure and Behavior, Journal of Logic and Computation, vol. 5, no. 2, 1995, pp.

227-249.

[FI93] D. G. Firesmith, Object-Oriented Requirements, Analysis, and Logical Design:

a Software Engineering Approach, John Wiley & Sons, 1993.

[GM93] F. Garzotto and L. Mainetti, HDM2: Extending the E-R approach to

hypermedia aoolication desugn, Proceeding of the 12th International Conference on

Entity Relationship Approach, 1993, pp. 178-189.

[GPS93] F. Garzotto, P. Paolini, and D. Schwabe, HDM – A Model Based Approach

to Hypertext Application Design, ACM Transactions on Information Systems, Vol.

11, No. 1, 1993, pp. 1- 26.

[GR95] I.S. Graham and A. Graham, Migrating to Object Technology, Addison-

Wesley Publication Corporation, 1995.

11

[HS98] B. Henderson-Sellers, OML: proposals to enhance UML, UML'98, Lecture

Notes in Computer Science vol. 1618, Springer-Verlag, pp. 349-364.

[HSE94] B. Henderson-Sellers and J.M. Edwards, Booktwo of Object-Oriented

Knowledge: The Working Object, Prentice Hall, 1994.

[ISB95] T Isakowitz, E. A. Stohr, and P. Balasubramanian, RMM: A Methodology

for Structured Hypermedia Design, Communication of the ACM, Vol. 38, No. 8,

1995, pp. 34-44.

[JA92] I. Jacobson, Object-Oriented Software Engineering, Addison-Wesley, 1992.

[KA93] S. Katz, A Superimposition Control Construct for Distributed Systems, ACM

Transactions on Programming Languages and Systems, vol. 15, No. 2, 1993, pp.

337-356.

[KM99] M. Kersten and G. C. Murphy, Atlas: A Case Study in Building a Web-Based

Learning Environment using Aspect-Oriented Programming, Conference on

Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),

1999.

[LA96] D. Lange, An Object-Oriented Design Approach for Developing Hypermedia

Information Systems, Journal of Organizational Computing, 1996.

[LHS99] M. Lin and B. Henderson-Sellers, Adapting the OPEN methodology for

Web development, Methodologies for Developing and Managing Emerging

Technology Based Information Systems, Proceedings of the Sixth Annual

Conference of BCS Information Systems Methodology Specialist Group, Springer-

Verlag, 1999, pp. 117-129.

[OPN99] The OPEN Web site, http://www.open.org.au/

[PD99] M. Peleg and D. Dori, Extending the Object-Process Methodology to Handle

Real-Time Systems, Journal of Object-Oriented Programming, vol. 11, no. 8, 1999,

pp. 53-58.

[PE98] D. Perrault, A Study of Business Rules Concept For Web Application, degree

thesis, the faculty of engineering, Politecnico di Milano, 1998,

http://www.ing.unico.it/autoWeb/

[RU91] J. Rumbaugh, Object-Oriented Modeling and Design, Prentice Hall, 1991.

[SDG00] P. Sofer, D. Dori and B. Golany, Closing the Gap Between Enterprise Needs

and BRP System Capabilities: An Object-Process Based Approach, submitted for

publication, 2000.

12

[SR98] D. Schwabe and G. Rossi, Developing Hypermedia Applications using

OOHDM, Workshop on Hypermedia Development Processes, Methods and

Models, Hypertext'98, 1998, http://heavenly.nj.nec.com/266278.html

[SRB96] D. Schwabe, G. Rossi, and S. Barbosa, Systematic Hypermedia Application

Design with OOHDM, Proceedings of the seventh ACM conference on Hypertext�
1996, pp.116 – 128.

[SY99] J. Suzuke and Y. Yamamoto, Extending UML with Aspects: Aspect Support

in the Design Phase, proceedings of the Europe Conference on Object-Oriented

Programming (ECOOP), 1999.

[UML99] OMG Unified Modeling Language Specification – version 1.3, 1999,

http://www.rational.com/media/uml/resources/documentation/ad99 -06-08-ps.zip.

[WA99] J. B. Warmer, A. G. Kleppe, The Object Constraint Language: Precise

Modeling With UML, Addison-Wesley Object Technology Series, 1999.

