Specification Techniques for Web Application Development —

A Comparison

By Iris Reinhartz-Berger

1. Specification Techniques for Web Application Development

The development of Web applications can be approached from two different
viewpoints: the hypermedia authoring approach and the system and software
development approach. The system and software development approach can be
further divided into two subgroups: the object-oriented approach and the behavioral-
oriented approach. An integrated approach to system development that integrates
concepts from both the object-oriented approach and the behavioral-oriented approach

is called Object-Process Methodology (OPM) and is discussed in Section 2.

1.1 The Hypermedia Authoring Approach

The techniques that follow the hypermedia authoring approach are either based on
the Entity-Relation (E-R) model (the Hypertext Design Model and the Relationship
Management Methodology), or on the Object-Oriented (OO) model (the Object-
Oriented Hypertext Design Model and the Enhanced Object Relationship Model).

The Hypertext Design Model (HDM) [GM93, GPS93] shifts the focus from
hypertext data models as a means to capture the structuring primitives of hypertext
systems, to hypertext models as a means for capturing the semantics of a hypermedia
application domain. It prescribes the definition of an application schema, which
specifies classes of information elements in terms of their common presentation
characteristics, their internal organization structure, and the types of their mutual
interconnections. Web structure is expressed by means of entities, sub-structured into
a tree of components. Navigation can be internal to entities (along part-of links),
cross-entity (along generalized links), or non-contextual (using access indexes, called
collections). HDM is concerned with representational and navigational issues, rather
than with behavioral aspects of hypertext and operational features. Furthermore, it
provides little information on the procedures for using its representation schemes in
the design process. It is therefore not a complete hypermedia design and development

methodology.

The Relationship Management Methodology (RMM) [ISB95] evolves HDM by
embedding its hypermedia design concepts into a structured methodology, splitting
the development process into seven distinct steps and giving guidelines for the tasks.
The development cycle steps in RMM are E-R design, slice design, navigation design,
conversion protocol design, user-interface design, runtime behavior design, and
construction & testing.

The Object-Oriented Hypertext Design Model (OOHDM) [SRB96, SR98] is a
direct descendant of HDM. It differs from HDM in its object-oriented nature, and in
that it includes special-purpose modeling primitives for both navigational and
interface design. OOHDM comprises four different activities: conceptual design,
navigational design, abstract interface design, and implementation. During each
activity, except for the implementation, a set of object-oriented models describing
particular design concerns are built or enriched from previous iterations.

The Enhanced Object Relationship Model (EORM) [LA96] is defined as an
iterative process concentrating on the enrichment of the object-oriented model by the
representation of relations between objects (links) as objects. The technique is based
on three frameworks of reusable libraries: one for class definition, one for
composition (link class definition) and one for GUIs.

EORM differs from OOHDM mainly in that OOHDM clearly separates navigational
from conceptual design concerns by defining different modeling primitives for each
step, while EORM combines them all together. The advantages of EORM over
OOHDM are that relations become semantically rich as they are extensible constructs,

they can participate in other relations, and they can be part of reusable libraries.

1.2 The Object-Oriented Development Approach

The most common object-oriented methods for system development in general and
Web applications in particular are UML and OPEN.

The Unified Modeling Language (UML) [UML99], which is the industry
standard object-oriented modeling language, is a general-purpose visual modeling
language for specifying, constructing, and documenting the artifacts of software
systems, as well as for business modeling and other non-software systems. UML
combines ideas from three previously leading object-oriented methods: OOSE
(Object-Oriented Software Engineering) [JA92], OMT (Object Modeling Technique)
[RU91], and Booch’93 [BO94]. UML captures information about the static structure

and dynamic behavior of a system. The structural classification defines the classes of
objects important to a system and to its implementation, as well as the relationships
among the classes. The dynamic behavior defines the history of objects over time and
the communications among them to accomplish goals.

Web applications, like other software-intensive systems, are typically represented by a
set of models: a use-case model, an implementation model, a deployment model, a
security model, and so forth. An additional model used exclusively by Web
information systems is the site map, an abstraction of the Web pages and navigation
routes throughout the system. Since UML version 0.91, the developer is able to model
Web applications using the built-in extension mechanisms, which are tagged values,
stereotypes and constraints, in addition to the above models. The stereotypes UML
offers for Web application designers are elaborated in [CO99a, CO99b].

The Object Process, Environment and Notation (OPEN) [OPN99] is a third
generation, public domain, object-oriented methodology that focuses on the
development process specification. It was initially created by a merger of MOSES
[HSE94], SOMA [GR95] and Firesmith [FI93] methods, commencing at the end of
1994. In addition to synthesizing the ideas and practices from those methods, OPEN
also offers a set of principles for modeling all aspects of software development across
the full lifecycle. The development process is described by a contract-driven lifecycle
model, which is complemented by a set of techniques and a formal representation
using a modeling language such as OML (OPEN Modeling Language) [HS98] or
UML. In the OPEN architecture, a modeling process consists of one or more
activities, each consisting of one or more tasks. Tasks are carried out by agents
(people) using techniques. A two-dimensional matrix links the task (which provides
the statement of goals, i.e. the “what”) to the techniques (which provide the way the
goal can be achieved, i.e. the “how”).

Because it concentrates on the development process, OPEN attempts to solve the
following deficiencies in the Web application development process [LHS99]: lack of
documented process, lack of non-code deliverables, lack of object orientation in the

design phase, lack of metrics, and lack of CASE/support tools.

1.3 The Behavioral-Oriented Development Approach

The term ‘behavioral-oriented’ can be interpreted in several ways. Here it pertains

to approaches that specify the conditions or constraints to activate some (perhaps

partly specified) functionality at a desired moment. Three of the behavioral-oriented
design techniques, which deal also with the development of Web applications and
distributed systems, are the superimposition approach, Aspect-Oriented Design and
the Event-Condition-Action paradigm.

The superimposition approach [KA93] introduces a procedure-like control
structure (called a superimposition) that allows convenient expression of the
superimposition of one algorithm on another. In this construct, both formal processes
and schematic abstractions (called roletypes) are declared, each with formal
parameters and a sequential communicating algorithm using those parameters. The
declaration captures a distributed algorithm that is separately designed, but is intended
to be executed in conjunction to other activities in the same state space. The construct
is combined with an existing collection of communicating processes by instantiating
the formal processes and associating each process of the collection with one roletype.

Aspect-Oriented Design (AOD) [AOP00, BE98, CBE99] is an abstraction
principle intended to help software developers more cleanly separate concerns in their
design and source code. An aspect modularizes the features for a particular concern
and describes how those features should be integrated (woven) into the system design.
In object-oriented methods, an aspect is typically spread across multiple methods in
multiple classes. In AOD, an aspect can be separated from the classes to which it
applies. The aspect-oriented approach emerged through the development of Aspect], a
programming language based on Java. This was followed by attempts to percolate this
concept to earlier stages in the application development lifecycle, i.e., to the design
stage. At present, there are two main modeling techniques that use aspects, both based
on UML. The first one extends the UML metamodel with another classifier element
(like Class, Interface, Component and Node), called Aspect [SY99]. The second
technique introduces the aspect notion as a new notation — a diamond and an
associated rectangle, which consists of four sections: attributes, operations, introduce
members and advice methods [KM99].

The Event-Condition-Action Paradigm (ECA) [CH93] is used in information
systems in general and database systems in particular in order to apply the concept of
triggers in specifying the behavior of a system. A trigger is a procedural processing
element, stored in the database and executed automatically by the DBMS server under
specific conditions. A trigger is composed of three components: Event, Condition and

Action. It might also have an “Event Condition then Action else Action” form (also

4

called ECAA principle). In Web applications those principles can be used, for
example, for modeling business rules [PE98]. These rules are expressed by an object-

oriented meta-language, which is XML-like.

2. The Object-Process Methodology

The Object-Process Methodology (OPM) [DO95, DG96, DOO1] is an integrated
approach to the study and the development of systems in general and information
systems in particular. The basic premise of OPM is that objects and processes are two
types of equally important classes of things, that together faithfully describe the
structure, function and behavior of systems in a single framework in virtually any
domain. OPM unifies the system specification, design and implementation within one
frame of reference, using a single diagramming tool — the Object-Process Diagram
(OPD) and a corresponding, English-like language — the Object-Process Language
(OPL). OPM has been implemented successfully in various industrial applications,
including microprocessor manufacturing, metal cutting technology, real-time systems
[PD99], and ERP [SDGO00], because of its structure modeling preciseness, its behavior
modeling flexibility, its scalability and complexity management abilities, and its
single framework.

In OPM, system classes, class features, physical devices, and environmental
interfaces are all modeled as object classes. An object class can be either internal or
environmental, and (orthogonally) either physical or informatical (logical). In
addition, an object class can have several states, which represent the possible internal
status values of the class. At any point in time, each object is in some state, and object
states are transformed through the activation of a process. All these structural features
increase the precision of the model, as a process can affect (change the state of) an
environmental or a physical device, or an attribute of an object class (rather than the
state of the entire class, as in object-oriented methods).

Unlike in the object-oriented approach, behavior in OPM is not necessarily
encapsulated within the object class construct, but one can model a crosscut behavior
that bisects the object classes and the system structure. This modeling is done by
using stand-alone processes which make the behavior modeling more flexible and can
be connected to the involved object classes through one or more of the procedural
links. The procedural links can be divided, according to their functionality, into three

groups, which are enabling links, transformation links, and event links.

5

The large number of constructs (objects, processes, structural relations, and
procedural links) resulting in a complex system model and the intersections among
them is managed by using OPM’s build-in scaling mechanisms, which are
unfolding/folding and zooming-in/zooming-out. The unfolding/folding mechanism
uses structural relations for detailing/hiding the structural parts of a thing. For
example, in Figure 1a, the process P1 is unfolded to its parts, processes P1.1 and P1.2,
and to its feature, object B1.1. The zooming-in/zooming-out mechanism exposes/
hides the inner details of a thing within its frame. In Figure 1b, the process P1 is
zoomed-in, showing the process flow — first P1.1 is executed and creates object B1.1,
and then process P1.2 is activated, consuming object BI.1.

This way OPM facilitates focusing on a particular subset of things (objects and/or
processes), elaborating on the details of each one by scaling up each thing to any

desired level, and managing the complexity of a system model.

LEGEND

Informatical object

Informatical process

> m

A Aggregation
BL1 A Characterization
Pl1.1 P1.2 Bl.1 A Result/consumption
o/ |~

b
Figure 1. Applying OPM scaling mechanisms to process P1.

(a) Process P1 is unfolded. (b) Process P1 is zoomed-in.

The ability to use a single OPM framework in order to specify all the system
aspects, including structure, functionality and dynamics, prevents compatibility and
integration problems among the different diagram types. The OPM framework is
expressed visually by an OPD-set and textually by an OPL script and provides the
ability to grasp the entire system through one visual language (for system developers)
and one textual language (for managers and other non-experts in system development

tools).

3. Comparison of Web Application Methodologies

In this section I examine the reviewed modeling techniques according to the
domain of Web applications. The evaluation criteria include level of structuredness,
modularity and reusability, physical architecture representation, user interface

modeling, dynamic behavior modeling, and security and privacy management. The

results of this comparison are shown in Table 1.

Criterion Hypermedia Object- Behavioral- Object-
Authoring Oriented Oriented Process
approaches approaches | approaches | Methodology

Level of Structuredness average good poor good
Modularity and Reusability poor average average+ average+
Physical Architecture poor average poor average
Representation

User Interface Modeling average average poor average
Dynamic Behavior poor average average good
Modeling

Security and Privacy poor average poor average
Management

Table 1. Comparison of Web application modeling techniques by quality of various

criteria

3.1 Level of Structuredness

In the behavioral-oriented approach, the structure of the application is not
specified, so they must rely on combining other approaches (E-R or OO) to
complement their modeling.

The hypermedia authoring techniques that are based on the E-R model are suited
for simple structured data, but not for complex or unstructured data. They do not
provide for complexity management facilities, such as hierarchy and aggregation.
RMM introduces the “slice” concept for categorizing the entities, but this provision is
quite limited.

The object-oriented methods and OPM can model complex structured data by using
attributes, aggregation, inheritance, and other structural relations. In addition those
approaches can better model unstructured data or semi-structured data, by using the
multiplicity property similar to the way XML uses regular expressions. Nevertheless,
object-oriented methods, unlike OPM, cannot easily model complex features of object

classes and their changes over time.

3.2 Modularity and Reusability

The object-oriented development methods apply modularity and reusability through
packages and class hierarchy. Yet they do not support crosscut modularity among
objects, i.e., concepts that are shared by different object classes. Therefore, adding
functionality to the system might affect several different object classes. To tackle this
problem, AOD suggests aspects as a new unit of software modularity which attempts
to provide a better handle on managing crosscut concerns. This kind of modularity

can be adopted by OPM, but it has not been checked yet.

3.3 Physical Architecture Representation

None of the reviewed techniques regards the dynamic architecture behavior and
Web programming concepts such as worms, cookies, Java applets, etc.

The object-oriented development methods and OPM are the only ones that are at
least partially concerned with the physical architecture aspect. UML has a special
diagram type, the deployment diagram, for representing these concepts. This type of
diagram, whose purpose is to consider the load for building effective applications,
models only the structural part of the system architecture, i.e., the system components
and their links (connectors). In OPM the structure of the physical architecture is
modeled using physical and informatical things. A physical object consists of matter
and/or energy, is tangible in the broad sense and can be detected by one or more of
our senses, while an informatical object is a piece of information. A physical process
is a change that a physical object undergoes and similarly an informatical process is

some transformation (or manipulation) of an informatical object.

3.4 User Interface Modeling

The behavioral-oriented techniques focus on the functionality of the application
and pay little or no attention to the user interface.

In contrast, the object-oriented development methods and OPM allow some user
interface modeling by using classes for this purpose. Some of these classes are pre-
defined in programming languages like JDialog and JMenu in the Java Swing library.
Nevertheless, they neglect basic, commonly used navigational structures, such as
index guides and paths, and do not connect the user interface and the user actions to

the functionality occurring in the system afterwards.

The hypermedia authoring techniques introduce only three simple user interfaces:
grouping, conditional index and conditional guided tour, which are insufficient to
model the large variety of navigation possibilities and user interfaces in Web
applications. The hypermedia authoring techniques which are based on the E-R model

also neglect the complexity management of the user interface.

3.5 Dynamic Behavior Modeling

Hypermedia authoring techniques model the structure and navigational aspects of
the application, but not its functionality.

The object-oriented development methods enable modeling application
functionality through class services and message passing among the objects, but they
are not capable of modeling independent, stand-alone processes, which cannot be
affiliated with one specific class, as opposed to OPM.

The behavioral-oriented techniques model the system functionality separately from
the application structure, making it very difficult to model data processing.

Furthermore, none of the techniques provides code migration modeling, such as in

Java applets and cookies.

3.6 Security and Privacy Management

Most Web application development techniques do not address at all security and
privacy issues during the design phase, leaving it to the implementation stage. UML
and OPM enable partial authentication and access control by use case diagrams and
agent links, respectively. UML also supports data integrity by using the Object
Constraint Language, OCL [WA99], along with the class diagram.

4. References
[AOPO00] The AOP Web site, http://www.parc.xerox.com/csl/projects/aop/

[BE98] U. Becker, D’AL — A design-based aspect language for distribution control,
proceedings of the Europe Conference on Object-Oriented Programming (ECOOP),
1998.

[BO94] G. Booch, Object-Oriented Analysis and Design with Applications,
Benjamin/Cummings, 1994.

[CBE99] C. A. Constantinides, A. Bader, and T. Elrad, An Aspect-Oriented Design
Framework for Concurrent Systems, proceedings of the Europe Conference on
Object-Oriented Programming (ECOOP), 1999, pp. 340-352.

[CH93] S. Chakravarthy, SNOOP: An expressive Event Specification Language for
Active Databases, Technical Report UF-CIS-TR-93-007, 1993, pp. 1-25.

[CO99a] J. Conallen, Modeling Web Application Architectures with UML,
Communication of the ACM vol. 42 no. 10, 1999.

[CO99Db] J. Conallen, Building Web Applications with UML, the Addison-Wesley
Object Technology Series, 1999.

[DGY96] D. Dori and M. Goodman, From Object-Process Analysis to Object-Process
Design, Annals of Software Engineering, vol. 2, 1996, pp. 25-40.

[DO01] D. Dori, Object-Process Methodology Applied to Modeling Credit Card
Transactions, Journal of Database Management, vol. 12, no.1, pp. 2-12, 2001 (to
appear), http://iew3.technion.ac.il:8080/Home/Users/dori/JDM-Dori-OPM.pdf.

[DO95] D. Dori, Object-Process Analysis: Maintaining the Balance between System
Structure and Behavior, Journal of Logic and Computation, vol. 5, no. 2, 1995, pp.
227-249.

[FI93] D. G. Firesmith, Object-Oriented Requirements, Analysis, and Logical Design:
a Software Engineering Approach, John Wiley & Sons, 1993.

[GM93] F. Garzotto and L. Mainetti, HDM2: Extending the E-R approach to
hypermedia aoolication desugn, Proceeding of the 12™ International Conference on
Entity Relationship Approach, 1993, pp. 178-189.

[GPS93] F. Garzotto, P. Paolini, and D. Schwabe, HDM — A Model Based Approach
to Hypertext Application Design, ACM Transactions on Information Systems, Vol.
11, No. 1, 1993, pp. 1- 26.

[GRY5] LS. Graham and A. Graham, Migrating to Object Technology, Addison-
Wesley Publication Corporation, 1995.

10

[HS98] B. Henderson-Sellers, OML: proposals to enhance UML, UML'98, Lecture
Notes in Computer Science vol. 1618, Springer-Verlag, pp. 349-364.

[HSE94] B. Henderson-Sellers and J.M. Edwards, Booktwo of Object-Oriented
Knowledge: The Working Object, Prentice Hall, 1994.

[ISB95] T Isakowitz, E. A. Stohr, and P. Balasubramanian, RMM: A Methodology
for Structured Hypermedia Design, Communication of the ACM, Vol. 38, No. 8§,
1995, pp. 34-44.

[JA92] 1. Jacobson, Object-Oriented Software Engineering, Addison-Wesley, 1992.

[KA93] S. Katz, A Superimposition Control Construct for Distributed Systems, ACM
Transactions on Programming Languages and Systems, vol. 15, No. 2, 1993, pp.
337-356.

[KM99] M. Kersten and G. C. Murphy, Atlas: A Case Study in Building a Web-Based
Learning Environment using Aspect-Oriented Programming, Conference on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),
1999.

[LA96] D. Lange, An Object-Oriented Design Approach for Developing Hypermedia
Information Systems, Journal of Organizational Computing, 1996.

[LHS99] M. Lin and B. Henderson-Sellers, Adapting the OPEN methodology for
Web development, Methodologies for Developing and Managing Emerging
Technology Based Information Systems, Proceedings of the Sixth Annual
Conference of BCS Information Systems Methodology Specialist Group, Springer-
Verlag, 1999, pp. 117-129.

[OPN99] The OPEN Web site, http://www.open.org.au/

[PD99] M. Peleg and D. Dori, Extending the Object-Process Methodology to Handle

Real-Time Systems, Journal of Object-Oriented Programming, vol. 11, no. 8, 1999,
pp. 53-58.

[PE98] D. Perrault, A Study of Business Rules Concept For Web Application, degree
thesis, the faculty of engineering, Politecnico di Milano, 1998,
http://www.ing.unico.it/autoWeb/

[RU91] J. Rumbaugh, Object-Oriented Modeling and Design, Prentice Hall, 1991.

[SDGOO0] P. Sofer, D. Dori and B. Golany, Closing the Gap Between Enterprise Needs

and BRP System Capabilities: An Object-Process Based Approach, submitted for
publication, 2000.

11

[SR98] D. Schwabe and G. Rossi, Developing Hypermedia Applications using
OOHDM, Workshop on Hypermedia Development Processes, Methods and
Models, Hypertext'98, 1998, http://heavenly.nj.nec.com/266278.html

[SRBY96] D. Schwabe, G. Rossi, and S. Barbosa, Systematic Hypermedia Application

Design with OOHDM, Proceedings of the seventh ACM conference on Hypertext,
1996, pp.116 — 128.

[SY99] J. Suzuke and Y. Yamamoto, Extending UML with Aspects: Aspect Support
in the Design Phase, proceedings of the Europe Conference on Object-Oriented
Programming (ECOQOP), 1999.

[UML99] OMG Unified Modeling Language Specification — version 1.3, 1999,
http://www.rational.com/media/uml/resources/documentation/ad99 -06-08-ps.zip.

[WA99] J. B. Warmer, A. G. Kleppe, The Object Constraint Language: Precise
Modeling With UML, Addison-Wesley Object Technology Series, 1999.

12

