
1

Reusing Semi-Specified Behavior Models in Systems Analysis and

Design: The Web-Based Accelerated Search Case Study

Iris Reinhartz-Berger
University of Haifa

Carmel Mountain, Haifa 31905
iris@mis.haifa.ac.il

Dov Dori

Technion – Israel Institute of Technology
Technion City, Haifa 32000

dori@ie.technion.ac.il

Shmuel Katz

Technion – Israel Institute of Technology
Technion City, Haifa 32000
katz@cs.technion.ac.il

To demonstrate the OPM-based weaving process, we present here a case study of a Web-

based accelerated search system. The system implements an algorithm for improving the

performance of a Web search engine, which employs time-consuming search algorithms. The

design of the Accelerated Search System includes two modules – the generic Acceleration

module and the target Multi Search one. The Acceleration module [1] specifies a generic

algorithm that reduces the execution time of an input-output part of a system by trying first to

retrieve the output, which is determined by the input, from a local database. We assume that

the sought Web-based items rarely change, so they are relatively static. This implies that

results of subsequent activations of a query with the same input remain valid and can

therefore be stored and retrieved to avoid executing the costly calculation each time a query

with that input is submitted. If the entry is not already in the database, the algorithm activates

a process that calculates or otherwise obtains the sought output and records it in the database

to accelerate future executions of the query with the same input. The Multi Search module

implements a new search engine that benefits from existing search engines by combining

their results and ordering them according to a weighted score. In what follows we describe

the three stages of the OPM-based weaving process for the Web-based Accelerated Search

System.

2

1. Designing the Acceleration and Multi Search Modules

 Figure 1 shows the OPM Acceleration module. At the top level system diagram shown in

 Figure 1(a), Accelerating requires Input to produce Output and affects (updates) the database

DB. According to Figure 1(b), the Accelerating process zooms into (consists of) the

subprocesses DB Searching, which searches the DB for an input-output entry, Output

Retrieving, which retrieves the output if it was found in the database, and Full Process

Activating, which activates the full-blown process of computing the output when necessary.

As Figure 1(c) shows, during Full Process Activating, Output Computing first computes the

output, and then DB Updating records the input-output pair in the database for future searches.

Figure 1. The Acceleration module. (a) SD is the top-level diagram. (b) SD1 has Accelerating

of SD in-zoomed. (c) SD1.1 has Full Process Activating of SD1 in-zoomed.

The Acceleration module contains two environmental objects, Input and Output, and one

simple (atomic) environmental process, Output Computing. The refinement rule implies that

Full Process Activating must also be environmental, since it contains an environmental

(b) SD1

(a) SD

(c) SD1.1

3

process. Following the same line of reasoning, Accelerating, which is at a yet more abstract

level, must also be environmental. All the other things, including the object DB, the Boolean

object “Input is found?,” and the processes DB Searching and Output Retrieving, are systemic.

They are internal to the Acceleration module and would not change when this module is

woven into a target module. The OPM model of the Acceleration module synthesizes two

possible scenarios (the input-output pair was found in the database and the input-output pair

was not found in the database) into one behavior, enabling the reuse of complete behaviors

rather than just structures or individual scenarios.

 Figure 2 is an OPM specification of the Multi Search algorithm, executed by the Multi

Searching process. Figure 2(a) is SD, the top-level diagram, which specifies the inputs, Term

and Query Result Message, and outputs, Query Message and Search Result, of the Multi

Search algorithm. Assuming that the algorithm operates concurrently on three different

search engines, the diagram SD1 in Figure 2(b) shows that Search Starting requires Term,

from which it creates three queries, one for each engine. Query Sending then creates from the

three queries three Query Messages, which are sent in parallel to the relevant search engines

(the sending part is not included in this model). Result Collecting waits until all three replies,

called Query Result Message 1, 2, and 3, arrive. It then outputs them as Result 1, 2, and 3,

respectively. Finally, Result Merging combines these three results to get the Search Result.

The Multi Searching process depends on the speed of each search engine, the network

response time, and the number and size of results supplied by each search engine. Any

combination of these factors can slow down the Multi Searching response time. To improve

the system’s performance, we weave the Acceleration module (Figure 1) into the Multi Search

module (Figure 2), in order for the most recently searched terms and their corresponding

4

results to be saved in a local database. For each new query, this local database is searched

before invoking the entire Multi Searching process, and only if the result is not found there,

the system will execute the Multi Searching process.

Figure 2. The Multi Search module. (a) SD is the top-level diagram. (b) SD1 has Multi

Searching of SD in-zoomed.

2. Creating the Accelerated Multi Search Module

 Figure 3 shows the generic Acceleration module, derived from SD1.1 of Acceleration in

 Figure 1(c), woven into SD of the Multi Search module in Figure 2(a) to create the woven

module, called Accelerated Multi Search.

Three generalization-specialization relations connect the things in the generic module to the

corresponding things in the target module. Two of these relations are between object classes,

specifying that Term is an Input and that Search Result is an Output. The third generalization-

specialization relation is between two process classes, specifying that the systemic Multi

Searching process specializes the environmental Output Computing process.

(b) SD1 (a) SD

Query Result
Message 2

Query Result
Message 3

Query 2 Query Result
Message 1

Result Collecting

5

In each of the three bindings, an atomic thing in the generic module generalizes a

corresponding thing in the target module: Input, Output, and Output Computing generalize

Term, Search Result, and Multi Searching, respectively. According to the intra-weaving rules,

the environmental process Full Process Activating is implicitly bound to a default systemic

process, called Concrete Full Process Activating, which includes just Multi Searching.

Figure 3. The Accelerated Multi Search module.

Merging the Acceleration and Multi Search modules would result in a complex explicit

model equivalent to the woven module in Figure 3. However, the explicit model is both

specific to the problem and harder to understand than the woven module. The generic nature

of the Acceleration module in Figure 1 makes the same core architecture reusable for a variety

SD of Multi Search

SD1.1 of Acceleration

6

of related functions. Enhancements to the (non-merged) generic Acceleration module (such as

periodic checks whether the local database values are still fresh) will automatically be

reflected in any model into which this module is woven. Physically, the Acceleration module

may reside in any repository. If continuous update of the modules is desired, new versions of

the Acceleration module can be broadcast, published, or pushed to its customer applications

whenever it is updated.

3. Refining the Woven Accelerated Multi Search Module

The equivalent semantics of the woven and the merged modules enables treating woven

modules as either generic or target OPM modules in other weaving operations. The system

architect can continue specifying the system into which a module has been woven as a

complete application. We demonstrate two refinements that enhance the woven Accelerated

Multi Search module obtained in Section 5.2. The first refinement improves the Result

Merging algorithm within Multi Searching by treating DB as an additional input, while the

second one adds to the system an entire generic Log Recording module. Any combination of

these two refinements can be part of the system design.

Improving the Result Merging process is achieved by adding the capability to retrieve

related term-result pairs from the database and use them to decide how to score the new

search results. To carry out this function, we add in Figure 4 to the Accelerated Multi Search

module an extra instrument link from DB (of the generic Acceleration module) to Result

Merging (of the target Multi Search module). This makes DB an additional input to Result

Merging. To be able to express this binding, the Multi Searching process is shown in SD1 of

the Multi Search module (see Figure 2(b)). Further zooming into Result Merging would

7

contain details specifying how the database (DB), added by the Acceleration module,

improves the merging of the query results.

Figure 4. Improving the Result Merging algorithm of the Accelerated Multi Search

module by linking it to DB.

 Figure 5 shows how the Accelerated Multi Search module is enhanced with the ability to

maintain a log file. The generic Log Recording module includes a systemic Log File along

with its Log Records and a Recording operation. The only environmental thing in this module

is the object Input. When weaving the Log Recording module into the Accelerated Multi

Search module, Term is bound to Input. The two modules are also connected with an event

SD1 of Multi Search

SD1.1 of Acceleration

8

link and an invocation link, denoting the two possible triggers of Recording: a DB change

event triggers Recording via the event link, while a Multi Searching process termination event

triggers Recording via the invocation link. The double line arc between the two events

represents a “logical-or” relation between them.

Figure 5. Reusing the Log Recording module in the Accelerated Multi Search module.

References

1 Firstenberg, Y., Katz, S. and Shmueli O. An Object-Oriented Program Accelerator Using

Impersonation, Technion Computer Science Department Technical Report, CS-2002-06, 2002.

