Conceptual Modeling of Structure and Behavior with
UML — The Top Level Object-Oriented Framework
(TLOOF) Approach

Iris Reinhartz-Berger

University of Haifa
Carmel Mountain, Haifa 31905, Israel
iris@mis.hevra.haifa.ac.il

Abstract. In the last decade UML has emerged as the standard object-oriented
conceptual modeling language. Since UML is a combination of previous
languages, such as OOSE, OMT, Statecharts, etc., the creation of multi-views
within UML was unavoidable. These views, which represent different aspects
of system structure and behavior, overlap, raising consistency and integration
problems. Moreover, the object-oriented nature of UML set the ground for
several behavioral views in UML, each of which is a different alternative for
representing behavior. In this paper | suggest a Top-Level Object-Oriented
Framework (TLOOF) for UML models. This framework, which serves as the
glue of use case, class, and interaction diagrams, enables changing the
refinement level of a model without loosing the comprehension of the system as
a whole and without creating contradictions among the mentioned structural
and behavioral views. Furthermore, the suggested framework does not add new
classifiers to the UML metamodel, hence, does not complicate UML.

1 Introduction

Conceptual modeling is fundamental to any domain where one has to cope with
complex real world systems. The real world exhibits two separate aspects: structure
(objects, nouns, etc.) and behavior (operations, verbs, etc.). Although being different
aspects, structure and behavior are highly intertwined in the real world: operations get
input objects, operation might change structures, sentences include both nouns and
verbs, and so on. In spite of the differences between these two aspects in the real
world, in the last few decades most of the modeling and programming languages are
object-oriented, encapsulating behavior (operations) in structure (objects). The most
popular, de-facto standard modeling language is Unified Modeling Language (UML)
[14], which is used for specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business modeling and other non-software
systems. UML defines ten types of diagrams, which are divided into three categories.
Four diagram types represent structure and include the class, object, component, and
deployment diagrams. Five diagram types, which represent different aspects of
dynamic behavior, include use case, sequence, activity, collaboration (called

communication diagrams in UML 2.0), and Statechart diagrams. Finally, package
diagrams represent ways to organize and manage application modules. UML 2.0 adds
two more diagram types: timing diagrams for exploring the behaviors of one or more
objects throughout a given period of time and composite structure diagrams for
exploring run-time instances collaborating over communication links. A system
modeled by UML consists of several different, but related and even overlapping,
diagrams of various types.

The popularity UML gained and the standardization efforts of its creators made
UML a common modeling language which is used in the various steps of system
development, including during the requirement analysis, design, and testing phases.
Many automatic code generators have been developed for generating code from UML
models to various (especially object-oriented) programming languages. These usages
of UML models require that they will be formal, complete, unambiguous, and
consistent, in order to get qualitative systems.

Although UML provides a convenient, standard mechanism for software engineers
to represent high-level system designs as well as low-level implementation details
[19], several drawbacks prevent UML from being largely used in the industry. The
main drawbacks are the fragmentation of UML views and the absence of solid glue
between them, which arise syntactic and semantic consistency problems. UML
syntactic rules relate to well-formedness of expressions, consistency of identifiers
with their declarations, etc. Such rules, which are expressed in the UML metamodel,
can be checked by diagram editors or CASE tools. Semantic consistency, on the other
hand, is concerned with the compatibility of the meaning of the different views.
Engels et. al. pointed two types of semantic consistency: horizontal and vertical [7].
Horizontal consistency refers to rules that should be preserved when traveling
between different (overlapping) viewpoints of the same system, while vertical
consistency concerns with rules that should be preserved during the different
development stages.

The consistency problems of UML are also associated with integration problems.
The different UML views represent a single system. Humans engage in the
development process, such as clients, users, designers, and implementers, should
comprehend the system as a whole, complete unit. Moreover, automatic tools, for
example code generators, should be able to generate a consistent, qualitative
implementation from a UML multiple view model.

Several solutions for UML consistency and integration problems have been
proposed over the years (e.g., [2], [4], [6], [12]). Most of them suggested using a
formal language in addition to UML or running translation, verification, or testing
algorithms on existing UML models. In this paper, | suggest a Top-Level Object-
Oriented Framework (TLOOF) for creating complete, coherent UML models which
capture both system structure and behavior. This approach enables explicit bindings
between UML use case, class, and interaction diagrams, thereby supporting
incremental development of consistent and integral UML models. A set of
consistency rules between this framework and UML views is defined and
exemplified.

The structure of the rest of the paper is as follows. Section 2 reviews and discusses
the main consistency and integration problems of UML and some of their solutions.
Section 3 presents the proposed framework, exemplifying it on a simple ordering

system. Section 4 defines consistency rules between the TLOOF framework and the
other UML diagram types. Finally, Section 5 summarizes and discusses the benefits
and shortcomings of the suggested solution and refers to future research plan.

2 Literature Review: Consistency and Integrity of UML Models

2.1 UML Consistency and Integration Problems

The need to model and design complex systems, which involve structural, behavioral,
functional, and architectural aspects, introduced the notion of a view. Each (graphical
or textual) view presents a different perspective of the system being developed. The
actual views and the way in which system aspects are projected onto individual views
are method- or language- dependant [9]. Although the usage of multiple views has
great benefits in focusing on a specific aspect of the modeled system and in
preserving the views in a reasonable size, it also raises consistency and integration
problems.

As noted, Engels et. al. [7] divided UML consistency problems into horizontal and
vertical ones. Horizontal consistency problems (also known as inter-model
consistency problems) refer to contradictions that might exist due to the fact that the
various views model the same system and the information resides at them overlaps.
An example of a constraint related to horizontal consistency is: "Each Statechart must
correspond to a state dependent class on a class diagram” [9]. The vertical consistency
problems refer to inconsistencies or contradictions that exist when applying UML to
the different development stages (due to the different abstraction levels of these
stages). An example for this type of constraints is: "The information needed for
implementing a use case must be described in a class diagram" [9]. While usually the
data needed for checking horizontal consistency is explicitly modeled in the UML
views, some of the information needed for verifying vertical consistency is implicit or
expressed informally.

Another problem that exists due to the use of multiple UML views is
misunderstanding of the system as a whole (i.e., integration problems). Using their
framework for evaluating system analysis and design methods, Tun and Bielkowicz
[20] claim that UML views (diagram types) are fragmented and there is little glue
between them. Moreover, they assert that without rigorous crosschecking between the
views, it would be hard to have confidence that the system would possess essential
quality characteristics such as completeness, correctness, and consistency. Two
experiments which compared a single-view methodology, Object-Process
Methodology (OPM) [5], to multi-view modeling languages, Object Modeling
Technique (OMT), the predecessor of UML, and UML ([16] and [18], respectively)
showed that the single view of OPM is more effective than the multiple view
modeling language in generating a better system specification. Most of the errors in
the multiple view models resulted from the need to maintain consistency among the
different view types and to gather information that is scattered across the views.

The consistency and integration problems of UML are also influenced from the
existence of several behavioral views in UML, some of which represent specific
scenarios rather than complete behavioral patterns. Uchitel et. al. [21] proposed an
algorithm for synthesizing behavioral models from UML scenarios. Their algorithm
translates a scenario specification to a Finite Sequential Processes (FSP) specification,
which is then used for building a composite behavior model in the form of a labeled
transition system (LTS). Several studies checked if there is any preference between
UML behavioral views. Otero and Dolado [15], for example, compared the semantic
comprehension of sequence, collaboration, and state diagrams. The comparison was
in terms of the total time to complete tasks and their scores. They found that the
comprehension of behavioral models in object-oriented designs depends on the
complexity of the system. However, using sequence diagrams is the most
comprehensible way to represent the system behavior. Hahn and Kim [11] conducted
an experiment to check the effects of diagrammatic representation on the cognitive
integration process of systems analysis and design. The researchers checked the
comprehension of process components represented in sequence, collaboration,
activity, and activity flow' diagrams. The results showed that decomposition of
process components (which exists in sequence and collaboration diagrams) had a
positive effect on both the analysis and design activities, while layout organization
had a positive effect only on the design performance.

2.2 Solutions for UML Consistency and Integration Problems

Several solutions have been proposed for UML consistency and integration problems.
These solutions can be divided into translation and verification approaches.

Translation approaches translate multi-view models into more formal languages of
model checkers. The model checker tool is then deployed to analyze the given model
for inconsistencies. Bowman et. al. [2], for example, use LOTOS in order to present a
formal framework for checking consistency among various viewpoints in Open
Distributed Processing (ODP). They define consistency between specifications X,
X,, ..., X, as the existence of a physical implementation which is a realization of all
X1, Xz ..., X, Furthermore, they classify consistency classes, such as binary
consistency, complete consistency, balanced consistency, and inter language
consistency, and express their characteristics using LOTOS. Rasch and Wehrheim
[17] use Object-Z in order to give a precise semantics to UML class and Statechart
diagrams and to check for consistencies between these views.

Mens et. al. [12] suggest restricting to description logic in order to specify and
detect inconsistencies between UML models. They claim that the use of description
logic is especially relevant since it contains five reasoning tasks that can be directly
used to achieve subsumption, instance checking, relation checking, concept
consistency, and knowledge base consistency.

L Activity flow diagrams are similar to activity diagrams, except that the activities are not
arranged within swimlanes.

GrolRe-Rhode [10] suggests a semantic approach for the integration of views. This
approach, which is applied to the structural and behavioral views of UML, is based on
transition systems, algebraic specifications, and transformation rules.

Engels et. al. [7] present a general methodology to deal with consistency problems
in UML behavioral views. According to this methodology, relevant aspects of the
models are mapped to a semantic domain in which precise consistency tests can be
formulated.

Baresi and Pezze [1] suggest transforming fragments of UML models into high-
level Petri nets that serve as a formal semantic domain. This way, UML behavioral
views can be simulated and analyzed.

Verification approaches present testing or validation algorithms which check
inconsistencies and contradictions between various views. Chiorean et. al. [4] use an
OCL-based framework in order to ensure consistency among UML views. All the
consistency rules are defined at the metamodel level, supporting their reuse for any
specific user model.

Bodeveix et. al. [3] implemented a tool for checking the coherence between the
different UML views. This tool is based on an OCL interpreter and a set of OCL
expressions over the UML metamodel. Furthermore, OCL is extended to support
temporal constraints over the behavioral views of UML.

Engels et. al. [6] propose dynamic metamodeling (DMM) as a notation for defining
consistency conditions. DMM extends the metamodeling idea by introducing
metaoperations for the metamodel classes. These operations encapsulate the dynamic
semantics of the classes. A DMM-based testing environment, which consists of a test
driver, a test controller, and DMM interpreters, was developed.

Based on a classification of consistency constraints that occur in and between
specifications at various stages of the lifecycle, Nentwich et. al. [13] identify a set of
requirements that consistency management mechanisms have to address in order to
provide proper support. Examples of these requirements are flexibility in constraint
application, a tolerant approach to consistency, support for distributed documents, etc.
Using a lightweight for consistency checking framework that leverages standard
Internet technologies, the researches address the consistency problems without
requiring tight integration, complex translation of specifications, or bulky tools.

The mentioned translation approaches require definitions of translation rules from
UML models to semantic, formal languages and definitions of consistency rules in yet
other formal languages. This is usually done in two separate supporting tools:
translation generators and model checkers, which together with UML-based CASE
tools perform the environment in which the translation approaches exist. Moreover,
after detecting inconsistencies a backward process should be applied, translating the
locations where inconsistencies were found back to the UML models in order to
enable the developers to fix the inconsistencies. The verification approaches require
in addition sophisticated environments which include test drivers, interpreters,
controllers, etc. Moreover, as noted, some of the consistency rules are not explicitly
expressed in UML models, demanding semantic interpretation of the UML models
and understanding the intentions of their developers.

While both the translation and verification approaches run one time algorithms for
checking UML models after their development processes have been completed, |
suggest verifying the legibility of the models during the development process. The

suggested approach requires defining a Top-Level Object-Oriented Framework,
abbreviated as TLOOF, which glues the different views of a system under
development and represents their relationships explicitly. The developers will be
aware of existing inconsistencies at any specific time of the development process,
thereby being able to correct the models as early as possible. Detecting
inconsistencies in early development phases contributes to shortening the system's
delivery time ("time-to-market").

3 The Top-Level Object-Oriented Framework Approach

The Top Level Object-Oriented Framework (TLOOF) approach introduces a TLOOF
diagram which is actually an extension of a use case diagram. In addition to the actors
and use cases which exist in regular use case diagrams, a TLOOF diagram includes
collaborations and realization relations, both are already part of the UML vocabulary.
Collaborations provide a way to group chunks of interaction behavior [8]. In other
words, collaborations can be viewed as system processes that might have several
possible scenarios, each of which should be described in a different interaction
diagram. Realizations specify relationships between specification model elements and
model elements that implement them. In particular they link use cases to
collaborations. Collaborations are symbolized in UML as dashed ellipses, while
realizations are denoted by dashed lines ending with triangles. Figure 1, for example,
is a TLOOF diagram of an ordering system. This system requires that a customer will
be able to find a product and order it. During the requirement analysis stage, three
specification model elements are established: the actor Customer and the use cases
Product Finding and Product Ordering. A more detailed specification could be
written, dividing Product Ordering into searching, reserving, paying, and supplying,
but this type of specification is not needed at the requirement level.

//’\\\ JE—
e D

Product Searching\ Product Finding\
<<inT|ude>> Y \ ?Oi

N S— Customer
- . \Q /

Product Resening \DO
v

—

L - —_ - — Product Ordering

7

Product Paying And Supplying

Figure 1. The TLOOF diagram of an ordering system

While designing the system, the developers find out that they have to implement
three main processes: Product Searching, Product Reserving, and Product Paying

and Supplying, each of which is modeled in Figure 1 as a collaboration. From

encapsulation and reuse perspectives, Product Paying And Supplying includes

Product Searching, which realizes Product Finding as well as Product Ordering.

All the three collaborations realize the Product Ordering use case. The transition

between the abstract level of the system, i.e., the use cases, and the more refined

description of the same system (the collaborations) is explicit through realization
relations. Moreover, this transition is relatively simple since both use cases and
collaborations refer to functional elements.

Each one of the collaborations that appears in Figure 1 can be in-zoomed to
express its internal structure and behavior. The collaborations are classified into
simple and compound collaborations. Compound collaborations are composed of
other simple or compound collaborations and, hence, are modeled by composite
structure diagrams. A composite structure diagram follows activity diagram notations
for ordering and activating collaborations. A simple collaboration includes a single
(possibly generic) scenario. Simple collaborations are modeled using interaction
diagrams, i.e., sequence or collaboration diagrams. A simple or compound
collaboration defines which objects can participate in the collaboration, how many
objects of the same class can participate in the collaboration, and what their roles are.
Using UML stereotypes, there are five possible roles:

1. The <<involved>> stereotype connects a collaboration to a class (or an actor) the
objects of which can participate in the collaboration as unchangeable inputs.

2. The <<affected>> stereotype connects a collaboration to a class the objects of
which can be affected during the collaboration. These objects exist before and
after the collaboration occurrence, but their data or states are changed.

3. The <<created>> stereotype connects a collaboration to a class the objects of
which are created during the collaboration.

4. The <<deleted>> stereotype connects a collaboration to a class the objects of
which are destroyed during the collaboration.

5. The <<transient>> stereotype connects a collaboration to a class the objects of
which are local to the collaboration.

Product Paying and Supplying from Figure 1, for example, is a compound
collaboration which is composed of four simple collaborations, Product Searching,
Product Paying, Product Supplying, and Error Announcing. First, Product
Searching is executed, determining if the Product was found or not. If the searched
Product was found, Product Paying is executed followed by Product Supplying.
Otherwise, Error Announcing is activated. Either way, the end of Product
Supplying or Error Announcing determines the end of the whole Product Paying
And Supplying collaboration. Following the branching and merging notations of
UML activity diagrams, Figure 2 describes the above in a composite structure
diagram. In addition, Figure 2 specifies the object classes needed for the different
collaborations. Product Paying, for example, uses a boundary object of type
Payment Screen and a control object of type Pay as transient elements. One
Customer is involved in any Product Paying process. During its execution, Product
Paying also affects an entity object of type Order Details and an entity object of type
Customer Details. Examples for these effects can be changing the order status in
Order Details and adding the customer's credit card details in Customer Details.

Product Paying can also use any information from the two entity objects, for
example the ordered amount from Order Details which is needed for calculating the
final order price. Product, on the other hand, is only involved in Product Paying,
enabling the access to the product price but disabling its change.

O -O

Search - Search Screen
<<transiel >>I<<tr sient>> <transient>>
<<involves>> / Nk g

/ \ <<inwolved>>
* AN 7

<<involved>> <<invol

Product|Searching
Product Customer

<<transient>>

<<affected>!

- -~ N

<<transient>>

-
|

Customer Details

@)

i i Supply
Order Details Product Paying And Supplying

'
N 2 Error Announcing /
<<affeCted>>) <transient>> Payment Screen
Product Supplying

<affected>> <

~ 3 @

Partial Legend:

Q entity class C boundary class @ control class

% actor ~~--" collaboration <> branching
Figure 2. The composite structure diagram of Product Paying and Supplying

Following [11, 15] results, Product Searching, which is a simple collaboration, is
expressed by the sequence diagram? in Figure 3. This diagram preserves the
"interface” level described by the composite structure diagram in Figure 2. In other
words, in this scenario Search Screen and Search are transient, while Customer and
Product are only involved (used without being changed).

2 For simplicity, the operation signatures in the sequence diagram are suppressed, not showing
the operation parameters.

A @)

. Customer : Product

: Search Screen
InsertDetails()

: Search
PList = FindProduct()

Loop: [for each Product] N

Pi = IsKeyWordInProductName()

gl

Di = IsKeyWordInDescription()

Ci = IsInCategory()

=

[Pi or Di or Ci] getDetails()

gl

found= (Plist!=null)

found

|
| X

Figure 3. A sequence diagram describing Product Searching

The collaborations, which are described in composite structure diagrams and in
interaction diagrams, induce a basic class diagram with its classes (boundary, control,
and entity classes), associations, and operations. In the TLOOF approach, the
structure of the system is developed to serve the functionality and not the other way,
bridging the gap between the requirement analysis phase, which is behavior-oriented,
and the design phase, which is architectural-oriented. Figure 4 is the class diagram
induced from the three collaborations of the ordering system applying the following
construction rules:

1. All the classes whose objects appear in any interaction diagram appear also in
the class diagram.

2. An association between two classes in the class diagram exists if there is a
message between two objects of these classes in an interaction diagram.

3. All the messages of an interaction diagram are interpreted into operations in the
class diagram.

These construction rules follow the consistency rules required from class and
interaction diagrams in a regular UML model [9]. For clarity purposes, the features

(attributes and operations) in Figure 4 are suppressed. After (automatically) creating
the basic class diagram, the developers can improve it by adding attributes,
associations, operations, etc.

. O O

Search Search Screen

Product

A

Customer
Resenation Screen

Order Details
n

@ Payment Screen

Customer Details Pay

Figure 4. The induced class diagram for the ordering system

4 Consistency Rules for the TLOOF Approach

As noted, the TLOOF approach does not increase the vocabulary of UML, while
better connecting the different views of the same system. Moreover, the explicit
bindings of UML use case, class, and interaction diagrams in the TLOOF approach
helps defining consistency rules between these views. This section defines and
exemplifies the new consistency rules introduced by the TLOOF approach.

4.1 Consistency Rules within the TLOOF Diagram

As noted, the TLOOF diagram extends the use case diagram and, hence, all the use
case diagram rules should be enforced in the TLOOF diagram as well. In particular,
each use case in a TLOOF diagram should be connected either directly or indirectly to
an actor. Indirect connections exist through inheritance relations, while direct

bindings use associations. In addition, the TLOOF approach defines the required
realization relations between use cases and collaborations.

The TLOOF realization rule:
Each use case in a TLOOF diagram is realized by at least one collaboration.
Each collaboration in a TLOOF diagram realizes at least one use case.

Relating to vertical consistency, the TLOOF realization rule enables traceability of
the system functional requirements. Each functional requirement, which is expressed
by a use case, is realized by at least one collaboration, ensuring that no requirements
are lost. Furthermore, the TLOOF realization rule also ensures that the implemented
system, expressed by the collaborations, will not include additional, not requested
functionality. In Figure 1, for example, the Product Finding use case (requirement) is
realized by one collaboration, Product Searching, while Product Ordering is
realized by three collaborations. Each collaboration realizes a requirement, except of
Product Searching that realizes two requirements.

4.2 Consistency Rules of Composite Structure Diagrams

A composite structure diagram defines the interface of a collaboration: what are the
classes whose objects participate in the collaboration and what are their multiplicities
and roles. The relation between a collaboration and a class can be stereotyped by one
of the following: involved, affected, created, deleted, or transient, each of which
refers to a different possible effect of the collaboration on the class objects.

The compound collaboration refinement rule:

The declaration (interface) of a compound collaboration includes the declarations of
its constituent collaborations. The inclusion order of the collaboration association
stereotypes is affected (the most general), created, deleted, involved, and transient
(the most particular).

The compound collaboration refinement rule regards to consistency between a
composite structure diagram that describes a compound collaboration and the
composite structure diagrams that describe its constituents. Hence, for example, if we
were zooming-out from Product Paying And Supplying, shown in Figure 2, this
collaboration would be connected to Customer via an involved-stereotyped
association, to Pay, Search, Supply, Payment Screen, and Search Screen via
transient-stereotyped associations, and to Product, Order Details, and Customer
Details via affected-stereotyped associations. Furthermore, the multiplicity of
Product in this collaboration would be many, while the multiplicity of all the other
classes would be 1.

The actor participation rule:

An actor appears in a composite structure diagram if the actor is connected to a use
case which is realized by that collaboration. This connection can be either directly via
an association or indirectly by an inheritance relation.

The actor participation rule is derived from the vertical consistency requirement: if
an actor is required for a use case, then it will be required for the collaborations that
realize (implement) this use case. No contradictions should occur when refining the
requirement specification expressed in a use case diagram to a more detailed design
specification expressed in composite structure diagrams. In Figure 2, Customer is
involved in Product Searching, since in Figure 1 there is an association between
Customer and Product Finding, whose realization is Product Searching. Similarly,
Customer is involved in Product Paying due to the fact that Product Paying is part
of Product Paying And Supplying and the latter realizes Product Ordering, which
is connected to Customer in the TLOOF diagram shown in Figure 1. If Customer
were not connected directly to Product Finding in Figure 1 but through another use
case, say Product Handling, from which Product Finding inherits, the Customer
would be still involved in the composite structure diagram of Product Searching.

4.3 Consistency Rules between Composite Structure Diagrams and Interaction
Diagrams

Four rules define the consistency required between composite structure diagrams and
interaction diagrams. Three of these rules correspond to three of the five stereotypes
of composite structure diagrams: created, deleted, and transient®. The fourth rule
concerns that there will be no additional, redundant objects in the interaction
diagrams, i.e., objects whose classes are not declared in the corresponding composite
structure diagram.

The created object rule:

Obijects of a class which is connected to a collaboration via a created-stereotyped
association should be created (without deleting) in at least one related interaction
diagram. Furthermore, the number of the created objects in a single interaction
diagram should not exceed the corresponding class multiplicity in the collaboration.

3 The two other stereotypes, affected and involved, require naming convention rules and, hence,
are not defined as consistency rules.

The deleted object rule:

Obijects of a class which is connected to a collaboration via a deleted-stereotyped
association should be deleted (without creating) in at least one related interaction
diagram. Furthermore, the number of the deleted objects in a single interaction
diagram should not exceed the corresponding class multiplicity in the collaboration.

The transient object rule:

Obijects of a class which is connected to a collaboration via a transient-stereotyped
association should be created and deleted in at least one related interaction diagram.
Furthermore, the number of the transient objects in a single interaction diagram
should not exceed the corresponding class multiplicity in the collaboration.

The Search Screen and Search classes are connected via transient-stereotyped
associations to the Product Searching collaboration in the composite structure
diagram shown in Figure 2. In the sequence diagram which describes this
collaboration, shown in Figure 3, one Search Screen object and one Search object
are transient, i.e., created and deleted within the specific scenario. In other words, the
effect of the sequence diagram on these objects corresponds (does not violate) the
interface declared by the composite structure diagram.

The redundant object rule:

The class of each object that appears in an interaction diagram should appear also in
the composite structure diagram of the corresponding collaboration. The class
multiplicity in that collaboration is the maximum number of objects that appear in a
single interaction diagram of that collaboration.

The redundant object rule ensures that there will be no objects that participate in an
interaction diagram, while their classes are not declared in the collaboration interface.
Figures 2 and 3 exemplify this rule: the class of each object that appears in Figure 3
appears also in Figure 2.

5 Summary and Future Work

The Top-Level Object-Oriented Framework (TLOOF) approach glues UML views by
introducing the TLOOF diagram, which is actually an extension of the use case
diagram with realized collaborations. The TLOOF diagram is refined into composite
structure diagrams, each of which represents a separate collaboration. A composite
structure diagram is refined by other composite structure diagrams in case of
compound collaborations or by interaction diagrams in case of simple collaborations.
This set of diagrams induces a connected graph with a single root, the TLOOF
diagram, whose leaves are interaction diagrams. The connected graph enables smooth
transitions from one aspect of the system to another without loosing the legibility and
comprehension of the entire system. Seven rules, which can be easily implemented
and checked, ensure that the UML models obtained in the TLOOF approach are
consistent. This set of rules is complete, since it defines a consistency rule for each

element that appears in more than one diagram type. Contrarily to the translation and
verification approaches for solving UML consistency and integration problems, the
TLOOF approach enforces developing only consistent and integral UML models.

The TLOOF approach makes use of existing notions of UML, such as
collaborations, realization relations, and composite structure diagrams. The
associations between collaborations and classes are classified using stereotypes, a
UML build-in extension mechanism. While not extending the UML vocabulary, the
TLOOF approach provides the missing glue for UML views and enables checking
model consistency and integrity. Furthermore, the TLOOF approach bridges the gap
between the requirement analysis and design stages, enabling requirement
traceability. Indeed, checking the comprehension of regular UML models vs. TLOOF
models (i.e., UML models that apply the TLOOF approach) on a small group of
undergraduate information system students, the TLOOF models were found to be
more comprehensive in their description of system behavior and more supportive in
requirement traceability.

Further research is planned to deal with overlapping interactions, synchronization
points of collaborations, and distribution of collaborations. A series of experiments is
also planned to verify the comprehension and easiness of developing UML models in
the TLOOF approach.

References

1. Baresi, L., Pezze, M.: On Formalizing UML with High-Level Petri Nets. Concurrent
Object-Oriented Programming and Petri Nets (2001) 276-304.

2. Bowman, H., Steen, M., Boiten, E.A., Derrick, J.: A Formal Framework for Viewpoint
Consistency. Formal Methods in System Design 21 (2) (2002) 111-166.

3. Bodeveix, J.P., Millan, T., Percebois, C., Le Camus, C., Bazex, P., Feraud, L., Sobek, R.:
Extending OCL for Verifying UML Models Consistency. Workshop on Consistency
Problems in UML-based Software Development, 5" International Conference on the
Unified Modeling Language- the Language and its applications (UML'2002), Dresden,
Germany (2002) 75-90.

4. Chiorean, D., Pasca, M., Carcu, A., Botiza, C., Moldovan, S.: Ensuring UML models
consistency using the OCL Environment. Workshop on OCL 2.0 - Industry standard or
scientific playground?, 6™ International Conference on the Unified Modeling Language -
the Language and its applications (UML'2003), San Francisco (2003),
http://i11www.ira.uka.de/~baar/oclworkshopUmI03/papers/06_ensuring_uml_model_consi
stency.pdf

5. Dori, D.: Object-Process Methodology - A Holistic Systems Paradigm. Springer Verlag,
Heidelberg, NY (2002).

6. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Testing the Consistency of Dynamic
UML Diagrams. Proc. 6" International Conference on Integrated Design and Process
Technology (IDPT 2002), Pasadena CA (2002), http://www.uni-paderborn.de/cs/ag-
engels/Papers/2002/EngelsHHS-IDPT02.pdf

7. Engels, G., Kuster, J. M., Groenewegen, L., Heckel, R.: A Methodology for Specifying and
Analyzing Consistency of Object-Oriented Behavioral Models. In V. Gruhn (ed.):
Proceedings of the 8" European Software Engineering Conference (ESEC) and 9" ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-9). ACM Press,
Vienna Austria (2001) 186-195.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Fowler, M., Scott, K.: UML Distilled: A Brief Guide to the Standard Object Modeling
Language. 3" edition, Addison-Wesley (2003).

Gomaa, H., Wijesekera, D.: Consistency in Multiple-View UML Models: A Case Study.
Workshop on Consistency Problems in UML-based Software Development II, 6"
International Conference on the Unified Modeling Language- the Language and its
applications (UML'2003), San Francisco (2003) 1-8.

GrolRe-Rhode, M.: Integrating Semantics for Object-Oriented System Models. 28th
International Colloquium on Automata, Languages and Programming (ICALP 2001), Crete,
Greece, Lecture Notes in Computer Science 2076 (2001) 40-60.

Hahn, J., Kim, J.: Why Are Some Diagrams Easier to Work With? Effects of Diagrammatic
Representation on the Cognitive Integration Process of Systems Analysis and Design. ACM
Transactions on Computer-Human Interaction, 6 (3) (1999) 181-213.

Mens, T., Van Der Straeten, R., Simmonds, J.: Maintaining Consistency between UML
Models Using Description Logic. Workshop on Consistency Problems in UML-based
Software Development 11, 6" International Conference on the Unified Modeling Language-
the Language and its applications (UML'2003), San Francisco (2003) 71-77.

Nentwich, C., Emmerich, W., Finkelstein, A., Ellmer, E.: Flexible consistency checking.
ACM Transactions on Software Engineering and Methodologies 12 (1) (2003) 28-63.
Object Management Group. Unified Modeling Language Specification — version 1.4.
ftp://ftp.omg.org/pub/docs/formal/01-09-67.pdf

Otero, M.C., Dolado, J.J.: An Initial Experimental Assessment of the Dynamic Modeling in
UML. Empirical Software Engineering 7 (2002) 27-47.

Peleg, M., Dori, D.: The Model Multiplicity Problem: Experimenting with Real-Time
Specification Methods. IEEE Transaction on Software Engineering 26 (8) (2000) 742-759.
Rasch, H., Wehrheim , H.: Consistency Between UML Classes and Associated State
Machines. Workshop on Consistency Problems in UML-based Software Development, 5
International Conference on the Unified Modeling Language- the Language and its
applications (UML'2002), Dresden, Germany (2002) 46-60.

Reinhartz-Berger, 1., Dori, D.. OPM vs. UML - Experimenting Comprehension and
Construction of Web Application Models. Accepted Empirical Software Engineering
(EMSE).

Tilley, S., Huang, S.: A qualitative assessment of the efficacy of UML diagrams as a form
of graphical documentation in aiding program understanding. Proceedings of the 21%
annual international conference on Documentation, San Francisco, CA (2003) 184-191.
Tun, T., Bielkowicz, P.: A Critical Assessment of UML using an Evaluation Framework.
8" CAISE/IFIP8.1 International Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design (EMMSAD’03) (2003) 29-37.

Uchitel, S., Kramer, J. and Magee, J. Synthesis of Behavioral Models from Scenarios. IEEE
Transactions on Software Engineering 29 (2) (2003) 99-115.

