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Abstract. In the last decade UML has emerged as the standard object-oriented 
conceptual modeling language. Since UML is a combination of previous 
languages, such as OOSE, OMT, Statecharts, etc., the creation of multi-views 
within UML was unavoidable. These views, which represent different aspects 
of system structure and behavior, overlap, raising consistency and integration 
problems. Moreover, the object-oriented nature of UML set the ground for 
several behavioral views in UML, each of which is a different alternative for 
representing behavior. In this paper I suggest a Top-Level Object-Oriented 
Framework (TLOOF) for UML models. This framework, which serves as the 
glue of use case, class, and interaction diagrams, enables changing the 
refinement level of a model without loosing the comprehension of the system as 
a whole and without creating contradictions among the mentioned structural 
and behavioral views. Furthermore, the suggested framework does not add new 
classifiers to the UML metamodel, hence, does not complicate UML. 

1   Introduction 

Conceptual modeling is fundamental to any domain where one has to cope with 
complex real world systems. The real world exhibits two separate aspects: structure 
(objects, nouns, etc.) and behavior (operations, verbs, etc.). Although being different 
aspects, structure and behavior are highly intertwined in the real world: operations get 
input objects, operation might change structures, sentences include both nouns and 
verbs, and so on. In spite of the differences between these two aspects in the real 
world, in the last few decades most of the modeling and programming languages are 
object-oriented, encapsulating behavior (operations) in structure (objects). The most 
popular, de-facto standard modeling language is Unified Modeling Language (UML) 
[ 14], which is used for specifying, visualizing, constructing, and documenting the 
artifacts of software systems, as well as for business modeling and other non-software 
systems. UML defines ten types of diagrams, which are divided into three categories. 
Four diagram types represent structure and include the class, object, component, and 
deployment diagrams. Five diagram types, which represent different aspects of 
dynamic behavior, include use case, sequence, activity, collaboration (called 



 

communication diagrams in UML 2.0), and Statechart diagrams. Finally, package 
diagrams represent ways to organize and manage application modules. UML 2.0 adds 
two more diagram types: timing diagrams for exploring the behaviors of one or more 
objects throughout a given period of time and composite structure diagrams for 
exploring run-time instances collaborating over communication links. A system 
modeled by UML consists of several different, but related and even overlapping, 
diagrams of various types.  

The popularity UML gained and the standardization efforts of its creators made 
UML a common modeling language which is used in the various steps of system 
development, including during the requirement analysis, design, and testing phases. 
Many automatic code generators have been developed for generating code from UML 
models to various (especially object-oriented) programming languages. These usages 
of UML models require that they will be formal, complete, unambiguous, and 
consistent, in order to get qualitative systems.  

Although UML provides a convenient, standard mechanism for software engineers 
to represent high-level system designs as well as low-level implementation details 
[ 19], several drawbacks prevent UML from being largely used in the industry. The 
main drawbacks are the fragmentation of UML views and the absence of solid glue 
between them, which arise syntactic and semantic consistency problems. UML 
syntactic rules relate to well-formedness of expressions, consistency of identifiers 
with their declarations, etc. Such rules, which are expressed in the UML metamodel, 
can be checked by diagram editors or CASE tools. Semantic consistency, on the other 
hand, is concerned with the compatibility of the meaning of the different views. 
Engels et. al. pointed two types of semantic consistency: horizontal and vertical [ 7]. 
Horizontal consistency refers to rules that should be preserved when traveling 
between different (overlapping) viewpoints of the same system, while vertical 
consistency concerns with rules that should be preserved during the different 
development stages.  

The consistency problems of UML are also associated with integration problems. 
The different UML views represent a single system. Humans engage in the 
development process, such as clients, users, designers, and implementers, should 
comprehend the system as a whole, complete unit. Moreover, automatic tools, for 
example code generators, should be able to generate a consistent, qualitative 
implementation from a UML multiple view model.  

Several solutions for UML consistency and integration problems have been 
proposed over the years (e.g., [ 2], [ 4], [ 6], [ 12]). Most of them suggested using a 
formal language in addition to UML or running translation, verification, or testing 
algorithms on existing UML models. In this paper, I suggest a Top-Level Object-
Oriented Framework (TLOOF) for creating complete, coherent UML models which 
capture both system structure and behavior. This approach enables explicit bindings 
between UML use case, class, and interaction diagrams, thereby supporting 
incremental development of consistent and integral UML models. A set of 
consistency rules between this framework and UML views is defined and 
exemplified.  

The structure of the rest of the paper is as follows. Section 2 reviews and discusses 
the main consistency and integration problems of UML and some of their solutions. 
Section 3 presents the proposed framework, exemplifying it on a simple ordering 



 

system.  Section 4 defines consistency rules between the TLOOF framework and the 
other UML diagram types. Finally, Section 5 summarizes and discusses the benefits 
and shortcomings of the suggested solution and refers to future research plan. 

2   Literature Review: Consistency and Integrity of UML Models 

2.1 UML Consistency and Integration Problems 

The need to model and design complex systems, which involve structural, behavioral, 
functional, and architectural aspects, introduced the notion of a view. Each (graphical 
or textual) view presents a different perspective of the system being developed. The 
actual views and the way in which system aspects are projected onto individual views 
are method- or language- dependant [ 9]. Although the usage of multiple views has 
great benefits in focusing on a specific aspect of the modeled system and in 
preserving the views in a reasonable size, it also raises consistency and integration 
problems.  

As noted, Engels et. al. [ 7] divided UML consistency problems into horizontal and 
vertical ones. Horizontal consistency problems (also known as inter-model 
consistency problems) refer to contradictions that might exist due to the fact that the 
various views model the same system and the information resides at them overlaps. 
An example of a constraint related to horizontal consistency is: "Each Statechart must 
correspond to a state dependent class on a class diagram" [ 9]. The vertical consistency 
problems refer to inconsistencies or contradictions that exist when applying UML to 
the different development stages (due to the different abstraction levels of these 
stages). An example for this type of constraints is: "The information needed for 
implementing a use case must be described in a class diagram" [ 9]. While usually the 
data needed for checking horizontal consistency is explicitly modeled in the UML 
views, some of the information needed for verifying vertical consistency is implicit or 
expressed informally.  

Another problem that exists due to the use of multiple UML views is 
misunderstanding of the system as a whole (i.e., integration problems). Using their 
framework for evaluating system analysis and design methods, Tun and Bielkowicz 
[ 20] claim that UML views (diagram types) are fragmented and there is little glue 
between them. Moreover, they assert that without rigorous crosschecking between the 
views, it would be hard to have confidence that the system would possess essential 
quality characteristics such as completeness, correctness, and consistency. Two 
experiments which compared a single-view methodology, Object-Process 
Methodology (OPM) [ 5], to multi-view modeling languages, Object Modeling 
Technique (OMT), the predecessor of UML, and UML ([ 16] and [ 18], respectively) 
showed that the single view of OPM is more effective than the multiple view 
modeling language in generating a better system specification. Most of the errors in 
the multiple view models resulted from the need to maintain consistency among the 
different view types and to gather information that is scattered across the views.  



 

The consistency and integration problems of UML are also influenced from the 
existence of several behavioral views in UML, some of which represent specific 
scenarios rather than complete behavioral patterns. Uchitel et. al. [ 21] proposed an 
algorithm for synthesizing behavioral models from UML scenarios. Their algorithm 
translates a scenario specification to a Finite Sequential Processes (FSP) specification, 
which is then used for building a composite behavior model in the form of a labeled 
transition system (LTS). Several studies checked if there is any preference between 
UML behavioral views. Otero and Dolado [ 15], for example, compared the semantic 
comprehension of sequence, collaboration, and state diagrams. The comparison was 
in terms of the total time to complete tasks and their scores. They found that the 
comprehension of behavioral models in object-oriented designs depends on the 
complexity of the system. However, using sequence diagrams is the most 
comprehensible way to represent the system behavior. Hahn and Kim [ 11] conducted 
an experiment to check the effects of diagrammatic representation on the cognitive 
integration process of systems analysis and design. The researchers checked the 
comprehension of process components represented in sequence, collaboration, 
activity, and activity flow1 diagrams. The results showed that decomposition of 
process components (which exists in sequence and collaboration diagrams) had a 
positive effect on both the analysis and design activities, while layout organization 
had a positive effect only on the design performance.  

2.2 Solutions for UML Consistency and Integration Problems 

Several solutions have been proposed for UML consistency and integration problems. 
These solutions can be divided into translation and verification approaches.  

Translation approaches translate multi-view models into more formal languages of 
model checkers. The model checker tool is then deployed to analyze the given model 
for inconsistencies. Bowman et. al. [ 2], for example, use LOTOS in order to present a 
formal framework for checking consistency among various viewpoints in Open 
Distributed Processing (ODP). They define consistency between specifications X1, 
X2, …, Xn as the existence of a physical implementation which is a realization of all 
X1, X2, …, Xn. Furthermore, they classify consistency classes, such as binary 
consistency, complete consistency, balanced consistency, and inter language 
consistency, and express their characteristics using LOTOS. Rasch and Wehrheim 
[ 17] use Object-Z in order to give a precise semantics to UML class and Statechart 
diagrams and to check for consistencies between these views. 

Mens et. al. [ 12] suggest restricting to description logic in order to specify and 
detect inconsistencies between UML models. They claim that the use of description 
logic is especially relevant since it contains five reasoning tasks that can be directly 
used to achieve subsumption, instance checking, relation checking, concept 
consistency, and knowledge base consistency. 

                                                           
1 Activity flow diagrams are similar to activity diagrams, except that the activities are not 

arranged within swimlanes. 



 

Große-Rhode [ 10] suggests a semantic approach for the integration of views. This 
approach, which is applied to the structural and behavioral views of UML, is based on 
transition systems, algebraic specifications, and transformation rules. 

Engels et. al. [ 7] present a general methodology to deal with consistency problems 
in UML behavioral views. According to this methodology, relevant aspects of the 
models are mapped to a semantic domain in which precise consistency tests can be 
formulated.  

Baresi and Pezze [ 1] suggest transforming fragments of UML models into high-
level Petri nets that serve as a formal semantic domain. This way, UML behavioral 
views can be simulated and analyzed.  

Verification approaches present testing or validation algorithms which check 
inconsistencies and contradictions between various views. Chiorean et. al. [ 4] use an 
OCL-based framework in order to ensure consistency among UML views. All the 
consistency rules are defined at the metamodel level, supporting their reuse for any 
specific user model. 

Bodeveix et. al. [ 3] implemented a tool for checking the coherence between the 
different UML views. This tool is based on an OCL interpreter and a set of OCL 
expressions over the UML metamodel. Furthermore, OCL is extended to support 
temporal constraints over the behavioral views of UML. 

Engels et. al. [ 6] propose dynamic metamodeling (DMM) as a notation for defining 
consistency conditions. DMM extends the metamodeling idea by introducing 
metaoperations for the metamodel classes. These operations encapsulate the dynamic 
semantics of the classes. A DMM-based testing environment, which consists of a test 
driver, a test controller, and DMM interpreters, was developed.  

Based on a classification of consistency constraints that occur in and between 
specifications at various stages of the lifecycle, Nentwich et. al. [ 13] identify a set of 
requirements that consistency management mechanisms have to address in order to 
provide proper support. Examples of these requirements are flexibility in constraint 
application, a tolerant approach to consistency, support for distributed documents, etc. 
Using a lightweight for consistency checking framework that leverages standard 
Internet technologies, the researches address the consistency problems without 
requiring tight integration, complex translation of specifications, or bulky tools.  

The mentioned translation approaches require definitions of translation rules from 
UML models to semantic, formal languages and definitions of consistency rules in yet 
other formal languages. This is usually done in two separate supporting tools: 
translation generators and model checkers, which together with UML-based CASE 
tools perform the environment in which the translation approaches exist. Moreover, 
after detecting inconsistencies a backward process should be applied, translating the 
locations where inconsistencies were found back to the UML models in order to 
enable the developers to fix the inconsistencies. The verification approaches require 
in addition sophisticated environments which include test drivers, interpreters, 
controllers, etc. Moreover, as noted, some of the consistency rules are not explicitly 
expressed in UML models, demanding semantic interpretation of the UML models 
and understanding the intentions of their developers. 

While both the translation and verification approaches run one time algorithms for 
checking UML models after their development processes have been completed, I 
suggest verifying the legibility of the models during the development process. The 



 

suggested approach requires defining a Top-Level Object-Oriented Framework, 
abbreviated as TLOOF, which glues the different views of a system under 
development and represents their relationships explicitly. The developers will be 
aware of existing inconsistencies at any specific time of the development process, 
thereby being able to correct the models as early as possible. Detecting 
inconsistencies in early development phases contributes to shortening the system's 
delivery time ("time-to-market"). 

3   The Top-Level Object-Oriented Framework Approach 

The Top Level Object-Oriented Framework (TLOOF) approach introduces a TLOOF 
diagram which is actually an extension of a use case diagram. In addition to the actors 
and use cases which exist in regular use case diagrams, a TLOOF diagram includes 
collaborations and realization relations, both are already part of the UML vocabulary. 
Collaborations provide a way to group chunks of interaction behavior [ 8]. In other 
words, collaborations can be viewed as system processes that might have several 
possible scenarios, each of which should be described in a different interaction 
diagram. Realizations specify relationships between specification model elements and 
model elements that implement them. In particular they link use cases to 
collaborations. Collaborations are symbolized in UML as dashed ellipses, while 
realizations are denoted by dashed lines ending with triangles. Figure 1, for example, 
is a TLOOF diagram of an ordering system. This system requires that a customer will 
be able to find a product and order it. During the requirement analysis stage, three 
specification model elements are established: the actor Customer and the use cases 
Product Finding and Product Ordering. A more detailed specification could be 
written, dividing Product Ordering into searching, reserving, paying, and supplying, 
but this type of specification is not needed at the requirement level.  
  

Product Searching

Product Reserving

Product Paying And Supplying

Product Ordering

Customer

Product Finding

<<include>>

 
Figure 1. The TLOOF diagram of an ordering system 

While designing the system, the developers find out that they have to implement 
three main processes: Product Searching, Product Reserving, and Product Paying 



 

and Supplying, each of which is modeled in Figure 1 as a collaboration. From 
encapsulation and reuse perspectives, Product Paying And Supplying includes 
Product Searching, which realizes Product Finding as well as Product Ordering. 
All the three collaborations realize the Product Ordering use case. The transition 
between the abstract level of the system, i.e., the use cases, and the more refined 
description of the same system (the collaborations) is explicit through realization 
relations. Moreover, this transition is relatively simple since both use cases and 
collaborations refer to functional elements. 

 Each one of the collaborations that appears in Figure 1 can be in-zoomed to 
express its internal structure and behavior. The collaborations are classified into 
simple and compound collaborations. Compound collaborations are composed of 
other simple or compound collaborations and, hence, are modeled by composite 
structure diagrams. A composite structure diagram follows activity diagram notations 
for ordering and activating collaborations. A simple collaboration includes a single 
(possibly generic) scenario. Simple collaborations are modeled using interaction 
diagrams, i.e., sequence or collaboration diagrams. A simple or compound 
collaboration defines which objects can participate in the collaboration, how many 
objects of the same class can participate in the collaboration, and what their roles are. 
Using UML stereotypes, there are five possible roles: 
1. The <<involved>> stereotype connects a collaboration to a class (or an actor) the 

objects of which can participate in the collaboration as unchangeable inputs. 
2. The <<affected>> stereotype connects a collaboration to a class the objects of 

which can be affected during the collaboration. These objects exist before and 
after the collaboration occurrence, but their data or states are changed. 

3. The <<created>> stereotype connects a collaboration to a class the objects of 
which are created during the collaboration. 

4. The <<deleted>> stereotype connects a collaboration to a class the objects of 
which are destroyed during the collaboration. 

5. The <<transient>> stereotype connects a collaboration to a class the objects of 
which are local to the collaboration. 
 
Product Paying and Supplying from Figure 1, for example, is a compound 

collaboration which is composed of four simple collaborations, Product Searching, 
Product Paying, Product Supplying, and Error Announcing. First, Product 
Searching is executed, determining if the Product was found or not. If the searched 
Product was found, Product Paying is executed followed by Product Supplying. 
Otherwise, Error Announcing is activated. Either way, the end of Product 
Supplying or Error Announcing determines the end of the whole Product Paying 
And Supplying collaboration. Following the branching and merging notations of 
UML activity diagrams, Figure 2 describes the above in a composite structure 
diagram. In addition, Figure 2 specifies the object classes needed for the different 
collaborations. Product Paying, for example, uses a boundary object of type 
Payment Screen and a control object of type Pay as transient elements. One 
Customer is involved in any Product Paying process. During its execution, Product 
Paying also affects an entity object of type Order Details and an entity object of type 
Customer Details. Examples for these effects can be changing the order status in 
Order Details and adding the customer's credit card details in Customer Details. 



 

Product Paying can also use any information from the two entity objects, for 
example the ordered amount from Order Details which is needed for calculating the 
final order price. Product, on the other hand, is only involved in Product Paying, 
enabling the access to the product price but disabling its change.  

Product Paying And Supplying Supply

Pay

Payment Screen

Order Details

Customer Details

Product Paying

<<transient>>

<<transient>>

<<affected>>

<<affected>>

Product Supplying
<<transient>><<affected>>

<<involved>>

Search

Product

<<affected>>

<<involved>>
Customer

<<involved>>
Product Searching

<<transient>>
<<involves>>

<<involved>>

Search Screen

<<transient>>

Error Announcing

<<transient>>

 

 

  
Partial Legend: 

entity class     boundary class  control class 

  actor   collaboration  branching 

Figure 2. The composite structure diagram of Product Paying and Supplying 

 
Following [ 11,  15] results, Product Searching, which is a simple collaboration, is 

expressed by the sequence diagram2 in Figure 3. This diagram preserves the 
"interface" level described by the composite structure diagram in Figure 2. In other 
words, in this scenario Search Screen and Search are transient, while Customer and 
Product are only involved (used without being changed).  

                                                           
2 For simplicity, the operation signatures in the sequence diagram are suppressed, not showing 

the operation parameters. 
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 : Customer

 : Search Screen

 : Search

 : Product

InsertDetails( )

PList = FindProduct( )

Pi = IsKeyWordInProductName( )

Di = IsKeyWordInDescription( )

Ci = IsInCategory( )

[Pi or Di or Ci] getDetails( )

Loop: [for each Product]

found= (Plist!=null)

found

 
Figure 3. A sequence diagram describing Product Searching 

 
The collaborations, which are described in composite structure diagrams and in 

interaction diagrams, induce a basic class diagram with its classes (boundary, control, 
and entity classes), associations, and operations. In the TLOOF approach, the 
structure of the system is developed to serve the functionality and not the other way, 
bridging the gap between the requirement analysis phase, which is behavior-oriented, 
and the design phase, which is architectural-oriented. Figure 4 is the class diagram 
induced from the three collaborations of the ordering system applying the following 
construction rules: 

1. All the classes whose objects appear in any interaction diagram appear also in 
the class diagram.  

2. An association between two classes in the class diagram exists if there is a 
message between two objects of these classes in an interaction diagram.    

3. All the messages of an interaction diagram are interpreted into operations in the 
class diagram.  

These construction rules follow the consistency rules required from class and 
interaction diagrams in a regular UML model [ 9]. For clarity purposes, the features 



 

(attributes and operations) in Figure 4 are suppressed. After (automatically) creating 
the basic class diagram, the developers can improve it by adding attributes, 
associations, operations, etc.  

 

Search Screen

Customer

Search

Payment Screen

Product

nn

Reservation Screen

Order Details

nn

Customer Details

nn

Pay

Supply

 
Figure 4. The induced class diagram for the ordering system 

4 Consistency Rules for the TLOOF Approach 

As noted, the TLOOF approach does not increase the vocabulary of UML, while 
better connecting the different views of the same system. Moreover, the explicit 
bindings of UML use case, class, and interaction diagrams in the TLOOF approach 
helps defining consistency rules between these views. This section defines and 
exemplifies the new consistency rules introduced by the TLOOF approach. 

4.1 Consistency Rules within the TLOOF Diagram 

As noted, the TLOOF diagram extends the use case diagram and, hence, all the use 
case diagram rules should be enforced in the TLOOF diagram as well. In particular, 
each use case in a TLOOF diagram should be connected either directly or indirectly to 
an actor. Indirect connections exist through inheritance relations, while direct 



 

bindings use associations. In addition, the TLOOF approach defines the required 
realization relations between use cases and collaborations.  

 
The TLOOF realization rule:  
Each use case in a TLOOF diagram is realized by at least one collaboration.  
Each collaboration in a TLOOF diagram realizes at least one use case. 

 
Relating to vertical consistency, the TLOOF realization rule enables traceability of 

the system functional requirements. Each functional requirement, which is expressed 
by a use case, is realized by at least one collaboration, ensuring that no requirements 
are lost. Furthermore, the TLOOF realization rule also ensures that the implemented 
system, expressed by the collaborations, will not include additional, not requested 
functionality. In Figure 1, for example, the Product Finding use case (requirement) is 
realized by one collaboration, Product Searching, while Product Ordering is 
realized by three collaborations. Each collaboration realizes a requirement, except of 
Product Searching that realizes two requirements. 

4.2 Consistency Rules of Composite Structure Diagrams 

A composite structure diagram defines the interface of a collaboration: what are the 
classes whose objects participate in the collaboration and what are their multiplicities 
and roles. The relation between a collaboration and a class can be stereotyped by one 
of the following: involved, affected, created, deleted, or transient, each of which 
refers to a different possible effect of the collaboration on the class objects.  

 
The compound collaboration refinement rule: 
The declaration (interface) of a compound collaboration includes the declarations of 
its constituent collaborations. The inclusion order of the collaboration association 
stereotypes is affected (the most general), created, deleted, involved, and transient 
(the most particular).  

 
The compound collaboration refinement rule regards to consistency between a 

composite structure diagram that describes a compound collaboration and the 
composite structure diagrams that describe its constituents. Hence, for example, if we 
were zooming-out from Product Paying And Supplying, shown in Figure 2, this 
collaboration would be connected to Customer via an involved-stereotyped 
association, to Pay, Search, Supply, Payment Screen, and Search Screen via 
transient-stereotyped associations, and to Product, Order Details, and Customer 
Details via affected-stereotyped associations. Furthermore, the multiplicity of 
Product in this collaboration would be many, while the multiplicity of all the other 
classes would be 1. 

 



 

The actor participation rule:  
An actor appears in a composite structure diagram if the actor is connected to a use 
case which is realized by that collaboration. This connection can be either directly via 
an association or indirectly by an inheritance relation. 

 
The actor participation rule is derived from the vertical consistency requirement: if 

an actor is required for a use case, then it will be required for the collaborations that 
realize (implement) this use case. No contradictions should occur when refining the 
requirement specification expressed in a use case diagram to a more detailed design 
specification expressed in composite structure diagrams. In Figure 2, Customer is 
involved in Product Searching, since in Figure 1 there is an association between 
Customer and Product Finding, whose realization is Product Searching. Similarly, 
Customer is involved in Product Paying due to the fact that Product Paying is part 
of Product Paying And Supplying and the latter realizes Product Ordering, which 
is connected to Customer in the TLOOF diagram shown in Figure 1. If Customer 
were not connected directly to Product Finding in Figure 1 but through another use 
case, say Product Handling, from which Product Finding inherits, the Customer 
would be still involved in the composite structure diagram of Product Searching. 

4.3  Consistency Rules between Composite Structure Diagrams and Interaction 
Diagrams 

Four rules define the consistency required between composite structure diagrams and 
interaction diagrams. Three of these rules correspond to three of the five stereotypes 
of composite structure diagrams: created, deleted, and transient3. The fourth rule 
concerns that there will be no additional, redundant objects in the interaction 
diagrams, i.e., objects whose classes are not declared in the corresponding composite 
structure diagram. 
 
The created object rule: 
Objects of a class which is connected to a collaboration via a created-stereotyped 
association should be created (without deleting) in at least one related interaction 
diagram. Furthermore, the number of the created objects in a single interaction 
diagram should not exceed the corresponding class multiplicity in the collaboration. 
 

                                                           
3 The two other stereotypes, affected and involved, require naming convention rules and, hence, 

are not defined as consistency rules. 



 

The deleted object rule: 
Objects of a class which is connected to a collaboration via a deleted-stereotyped 
association should be deleted (without creating) in at least one related interaction 
diagram. Furthermore, the number of the deleted objects in a single interaction 
diagram should not exceed the corresponding class multiplicity in the collaboration. 
  
The transient object rule: 
Objects of a class which is connected to a collaboration via a transient-stereotyped 
association should be created and deleted in at least one related interaction diagram. 
Furthermore, the number of the transient objects in a single interaction diagram 
should not exceed the corresponding class multiplicity in the collaboration. 
 

The Search Screen and Search classes are connected via transient-stereotyped 
associations to the Product Searching collaboration in the composite structure 
diagram shown in Figure 2. In the sequence diagram which describes this 
collaboration, shown in Figure 3, one Search Screen object and one Search object 
are transient, i.e., created and deleted within the specific scenario. In other words, the 
effect of the sequence diagram on these objects corresponds (does not violate) the 
interface declared by the composite structure diagram. 

 
The redundant object rule: 
The class of each object that appears in an interaction diagram should appear also in 
the composite structure diagram of the corresponding collaboration. The class 
multiplicity in that collaboration is the maximum number of objects that appear in a 
single interaction diagram of that collaboration. 

 
The redundant object rule ensures that there will be no objects that participate in an 

interaction diagram, while their classes are not declared in the collaboration interface. 
Figures 2 and 3 exemplify this rule: the class of each object that appears in Figure 3 
appears also in Figure 2. 

5 Summary and Future Work 

The Top-Level Object-Oriented Framework (TLOOF) approach glues UML views by 
introducing the TLOOF diagram, which is actually an extension of the use case 
diagram with realized collaborations. The TLOOF diagram is refined into composite 
structure diagrams, each of which represents a separate collaboration. A composite 
structure diagram is refined by other composite structure diagrams in case of 
compound collaborations or by interaction diagrams in case of simple collaborations. 
This set of diagrams induces a connected graph with a single root, the TLOOF 
diagram, whose leaves are interaction diagrams. The connected graph enables smooth 
transitions from one aspect of the system to another without loosing the legibility and 
comprehension of the entire system. Seven rules, which can be easily implemented 
and checked, ensure that the UML models obtained in the TLOOF approach are 
consistent. This set of rules is complete, since it defines a consistency rule for each 



 

element that appears in more than one diagram type. Contrarily to the translation and 
verification approaches for solving UML consistency and integration problems, the 
TLOOF approach enforces developing only consistent and integral UML models.  

The TLOOF approach makes use of existing notions of UML, such as 
collaborations, realization relations, and composite structure diagrams. The 
associations between collaborations and classes are classified using stereotypes, a 
UML build-in extension mechanism. While not extending the UML vocabulary, the 
TLOOF approach provides the missing glue for UML views and enables checking 
model consistency and integrity. Furthermore, the TLOOF approach bridges the gap 
between the requirement analysis and design stages, enabling requirement 
traceability. Indeed, checking the comprehension of regular UML models vs. TLOOF 
models (i.e., UML models that apply the TLOOF approach) on a small group of 
undergraduate information system students, the TLOOF models were found to be 
more comprehensive in their description of system behavior and more supportive in 
requirement traceability. 

Further research is planned to deal with overlapping interactions, synchronization 
points of collaborations, and distribution of collaborations. A series of experiments is 
also planned to verify the comprehension and easiness of developing UML models in 
the TLOOF approach.  
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