A Semantic Approach to Approximate Service

Retrieval

Eran Toch - Technion - Israel Institute of Technology
and

Avigdor Gal - Technion - Israel Institute of Technology
and

Iris Reinhartz-Berger - Haifa University

and

Dov Dori - Technion - Israel Institute of Technology

Web service discovery is one of the main applications of semantic Web services, which extend
standard Web services with semantic annotations. Current discovery solutions were developed in
the context of automatic service composition. Thus, the “client” of the discovery procedure is an
automated computer program rather than a human, with little tolerance, if any, to inexact results.
However, in the real world, services which might be semantically distanced from each other are
glued together using manual coding. In this paper, we propose a new retrieval model for semantic
Web services, with the objective of simplifying service discovery for human users. The model
relies on simple and extensible keyword-based query language, and enables efficient retrieval of
approximate results, including approximate service compositions. Since representing all possible
compositions and all approximate concept references can result in an exponentially-sized index,
we investigate clustering methods to provide a scalable mechanism for service indexing. Results
of experiments, designed to evaluate our indexing and query methods, show that satisfactory

approximate search is feasible with efficient processing time.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: web-based

services

General Terms: Web service, semantic Web, service retrieval, ontology

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-077.

2 . Eran Toch et al.

1. INTRODUCTION

Web services are distributed software components, accessed through the World
Wide Web. They are considered first class objects to be reused and combined in or-
der to implement business processes. Semantic description of Web services (known
as semantic Web services) was proposed in an attempt to resolve the heterogeneity
at the level of Web service specifications (including naming of parameters and a
description of the service behavior), and to enable automated discovery and com-
position of Web services. Using languages such as OWL-S [Ankolekar et al. 2001],
Web services are extended with an unambiguous description by relating properties
such as input and output parameters to common concepts, and by defining the
execution characteristics of the service. The concepts are defined in Web ontologies
[Bechhofer et al. 2004], which serve as the key mechanism to globally define and

reference concepts.

A major portion of the research involved in semantic Web services was designed
to be used in the context of automatic service composition (see [Medjahed et al.
2003; Cardoso and Sheth 2003]). In automatic composition, the user provides a
description of a service requirement, and a composition engine aims at satisfying the
requirements by planning a valid composition of services, resulting in an operational
application. Most composition engines use logic-based proof inferencing, relying
mainly on concept hierarchies as a means for providing approximate matching of

services [Paolucci et al. 2002; Klusch et al. 2005].

In real-world settings, the process of service composition may be of an ex-
ploratory nature rather than one of planning (in the Al sense). In order to generate
an executable composition, all the requirements assigned to the composer must be
fulfilled. It is often the case that only partial solutions to a composer requirements
exist, as Web services are created autonomously without any a-priori knowledge of
their intended use. Furthermore, composer requirements may not be well-defined.
Rather, they may be driven by the availability of Web services. For example, bud-
getary constraints may limit the scope of available services and cause the user to
compromise and use only affordable Web services. This type of usage requires com-
position and selection of partial services, which are not well suited for handling by
logic-based methods.

In an attempt to support exploratory composition, an engineering approach we

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 3

advocate in this work calls for approzimate service retrieval, followed by “gluing”
services together using some additional programming work. Such an approach has
the benefit of using existing services for increased reusability, by using existing ser-
vices, while limiting the number of required services, since rewriting the missing
code is always a an option. Naturally, a Web service composer is intuitively in-
terested in finding the most similar composition for her needs, thus reducing the
amount of needed code. Therefore, there is a need for ranking search results ac-
cording to the amount of required modifications for their utilization. Furthermore,
as exploratory composition requires several iterative sessions, the response time of
the query processor is crucial.

In this paper, we present an efficient method for semantic indexing and approx-
imate retrieval of Web services. The search engine relies on graph-based indexing
in which connected services can be approximately composed, while graph distance
represents service relevance. Taking advantage of semantic Web services, the query
interface translates a user’s query into a virtual semantic Web service, which, in
turn, is matched against indexed services. Semantic Web services are indexed in
a service-base that provides fast retrieval of individual services and approximate
composition of multiple services. The service-base is constructed using an algo-
rithm [Toch et al. 2005], which classifies service properties and associated ontology
concepts according to their relevance to service description. The algorithm pro-
vides service ranking that is based on the certainty of matching with a query. The

contributions of this research are threefold:

—At the conceptual level we define a new exploratory model for service composition,
which is aimed at human users, allowing them to query a service-base using a

simple and extensible query language in an interactive way.

—At the semantic level, we extend current service composition approaches to allow
approximate compositions, compositions that require additional manual effort.
An approximate composition is accompanied by a ranking mechanism, based on
the estimation of the required manual effort. Manual effort is estimated using

the partiality of the composition and its overall semantic distance.

—At the computational level, we present a sub-linear service retrieval algorithm
by using a two-level service index of concepts, services and compositions. We

use semantic clustering techniques in order to supply a compact representation

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 . Eran Toch et al.

of the index.

To demonstrate and evaluate our results, we have developed OPOSSUM (Object-
PrOcess-SemanticS Unified Matching), a search engine for Web services which is
based on the methods presented in this paper, including approximation methods
based of semantic and procedural similarity. Experimental results, designed to eval-
uate our indexing and query methods, show that satisfactory approximate search
is feasible with efficient processing time.

The article is organized as follows. Section 2 presents a case-study which will
be used as a running example throughout the paper. Section 3 describes the data
model for service specification. Section 4 describes the syntax and semantics of the
query language. Indexing methods for efficient processing of queries are specified in
Section 5. Section 6 presents the setup and results of the experimental evaluation
of our work. Section 7 describes related work. Finally, Section 8 concludes the

research and provides directions for future work.

2. CASE STUDY: HEALTHCARE SERVICE REPOSITORY

As a motivating example for our work, consider the following scenario. An emer-
gency healthcare center uses a sizeable number of computer services, accessed as
Web services. Web services describe computer services using some standard, e.g.,
Web Service Description Language (WSDL) [Christensen et al. 2001], describing the
input and output parameters needed for the operation. For example, the service
find nearest medical center in Figure 1 receives as input GPS position and provides
as output medical center. These services may be part of the internal IT infrastruc-
ture, or located externally, in hospitals, health insurance companies, and the public
Web. In order to achieve various business tasks, a project or an I'T manager requires

information regarding available service resources, such as the following;:

—Linking services: Can a new service be assembled from existing services? For
example, can a patient be directed to the available hospital nearest to the pa-
tient’s address?

—Gluing services: If a new service cannot be implemented by a simple compo-
sition of existing services, then what further coding would be needed and where
would it be placed?

—Mining services: Which services are needed in a composition to start or end

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval . 5

Ontology

Medical Center

User

Treatment

Hospital

Query Result W
Interface Interface Medical Center
Input: GPS Position
T Output: Medical Center
Index

/Check Hospital Availability\
Y s

Input: Hospital
Input: DateTime
/ Input: Treatment

Crawler | Output: Availability Response |

Semantic Web Services Search Engine Services

Fig. 1. The Architecture of a Search Engine for Web Services

a given service, e.g., the hospital notification service is needed in a variety of

complex hospitalization services.

In this work we assume that Web services are enhanced semantically, using some
language of Semantic Web services (e.g., OWL-S [Ankolekar et al. 2001]). Such
an enhancement extends standard Web services, with the objective of providing
an unambiguous description of their capabilities and properties. The additional
information includes mapping of service attributes, such as input and output pa-
rameters, to concepts which are defined in a common ontology. For instance, in
Figure 1, an output parameter of the service operation find nearest medical cen-
ter refers to the medical center concept and an input parameter the service check
hospital availability refers to the hospital concept.

To illustrate the architecture of a search engine that can handle these queries,
consider Figure 1. The search engine contains four parts: a Crawler, an Index,
a query interface, and a result interface. A query interface allows the user to set
constraints on the desired services. The retrieved services are ranked and presented
to the user via the result interface. The crawler discovers, analyzes and indexes
semantic descriptions of Web services. The structure of the index allows the ques-
tions above to be answered, by indexing services according to the concepts they

relate to, and according to their relations with other services.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 . Eran Toch et al.

3. SERVICE NETWORK MODEL

In this section we define a data model for querying Web services. Section 3.1 we pro-
vide a narrow definition of semantic Web services, to fit our needs of approximate
search. For broader definitions of this concept, the interested reader is referred to
[Ankolekar et al. 2001]. The model is based on a directed graph, in which nodes rep-
resent operations and edges represent procedural dependencies between operations.
Dependencies can be either inferred, by analyzing the relations between operation
properties, or empirically derived from wider-context sources, such as OWL-S spec-
ifications. Context classes will be presented in Section 3.2. Section 3.3 defines rules
for inferring dependencies, and Section 3.4 describes methods of deriving depen-
dencies from OWL-S models. Finally, Section 3.5 describes our implementation of

aligning heterogeneous ontologies.

3.1 Basic Definitions

We define a semantic operation to be an atomic component of a Web service,
performing an atomic task, which the service description does not further divide.
Our notion of a semantic operation is a subset of an OWL-S [Ankolekar et al.
2001] atomic or simple process. Each operation receives an optional set of input
messages and delivers an optional set of output messages. In order to answer queries
for service represented in different levels of expressibility, our proposed definition
of an operation does not include OWL-S’s effects (logical expressions that define
the results of operations) and preconditions. These are described using outputs and

inputs parameters, respectively.

DEFINITION 1 SEMANTIC OPERATION. A semantic operation is a quadruple OP
(In, Out,l,~v¢c), such that

—In is a set of input parameters;

—Out is a set of output parameters;

—1 : In U Out U OP — O is a labeling function that associates each input and

output parameter, as well as the operation, with a concept taken from an ontology
©).

—c : 1 — [0,1] assigns a value that signifies the certainty of the concept mapping.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 7

The semantic operation definition is based on an ontology, denoted by O, to
which input parameters, output parameters and the operation itself refer.! We
use the Web Ontology Language (OWL) [Bechhofer et al. 2004] as an ontology
language of choice, mainly due to its solid theoretical foundations and the wide
variety of tools, ontologies and applications associated with OWL. OWL comes in
three flavors, each of them represent a level of language expressibility: OWL-Lite,
OWL-DL, and OWL-Full. We use the simplest form, OWL-Lite, as it contains
sufficient constructs for our task (such as class hierarchies), while being relatively
simple and easy to use.

A service network is a graph of operations, where nodes signify operations and
edges represent relations between operations. Each relation is associated with a

certainty value, allowing relaxed relations to be introduced into the model.

DEFINITION 2 SERVICE NETWORK. A service network is a connected graph SN =
(OPER, D,c¢,t), such that

—OPER = {op1,0p2,...,0p,} is a finite set of operations.

—D : 0 x O is a finite set of dependencies - directed relations indicating relations

between operations.
—c: D — {flow,empirical}, assigning a type category to each of the dependencies.

—p : D — [0, 1], assigning a certainty value to each dependency.

A service network is depicted in Figure 2. As noted above, the directed arrows
represent dependencies between operations. Input and output message parame-
ters (respectively notated by the in and out labels) are mapped to ontological
concepts, described in Figure 3. The directed arrows form dependencies, which
represent procedural links between operations, connecting separate operations into
service networks. Dependencies can be statically inferred by recognizing similarities
between operator parameters (flow dependencies), or by learning about relations
between operations from external sources (empirical dependencies). The first type

is discussed in Section 3.3 and the second type in Section 3.4.

1n order to simplify the model, we assume that O is a single ontology, combined of the original
ontologies that were used to annotate the semantic Web services. Not all of the concepts in O are
connected to each other. Section 3.5 explains the construction process of O.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 . Eran Toch et al.

Find Nearest
Medical Center

In: GPS Position
Out: Medical Center

In: GPS Position
Out: Arrival Time

Check Hospital Availability

i In: DateTime
em mcal—»
p In: Treatment

Out: Availability Response

In: Hospital
In: Patient Arrival Time

In: Diagnosed Symptoms
Out: Acknowledgment

(Check Personnel Availability w

empiricak-| n: DateTime
In: Treatment
Out: Availability Response

Check Room Availability

In: DateTime
In: Treatment
Out: Availability Response

Fig. 2. An Example of Operations and Dependencies

Finally, we denote the union of all service networks by BASE. It serves as a
service-base - a repository of services, and has the form of a graph of operations
(nodes) and dependencies (edges). Note that service networks are connected graphs,

while the service base may not be connected.

3.2 Context Classes

In this section we provide a general method for calculating semantic correspondence
between concepts, based on the structure of the ontology and the semantic relations
between concepts. Our proposed method for analyzing relations between concepts
is based on the notion of context classes, which form groups of concepts that allow
the investigation of relations between them. We next discuss the different concept
classes, followed by a definition of semantic correspondence. We shall illustrate the
discussion with the use of Figure 3, which depicts a simple healthcare ontology.
For any given concept, we define a set of context classes, each of which defines a
subset of concepts in O, according to their relation to the concept. Given a query

leaf node associated with a concept ¢, we define a set of concepts, Exact(c), as c itself

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval . 9

Organization
Health
Patient —@— Insurance
Number

Health \

Organization
Zﬁ serves Person —@— Person Name
l\éiiltceerll employs=> Physician ——@— Physician ID Age
General |
. Hospital
Hospital _@— Number
A Propertiesyi
Regional Legend
Hospital
Subclass Instance
7 Specific _— T | ------ T~

Instance of -

s ~ Datatype Property |Object Property
Mount Sinai (Relation)

Hospital —<'— —name—=>

Instances

Fig. 3. An example of an ontology for the health-care domain

and concepts which are equivalent to ¢. The Exact class may contain concepts that
have identical semantic meaning. OWL provides relations such as equivalentClass to
define concept equivalence. As an example, consider the concept Hospital in Figure
3. As there are no equivalent classes in this ontology, Exact(Hospital) = { Hospital}.
The other context classes contain concepts with related meaning. For each concept

c € O, we define the following set of classes:

General. Concepts that supply higher-level context; i.e., belonging to the tran-
sitive closure of super classes of c¢. For instance, the Medical Center, Health Orga-
nization, and Organization concepts are super-classes of the Hospital concept and
therefore fall under the category of General with respect to Hospital.

Specific. Concepts that provide a more specific context; i.e., concepts that belong

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 . Eran Toch et al.

to the transitive closure of sub-concepts of c¢. Regional Hospital belongs to the

Specific class of Hospital.

Properties. Concepts which are Datatype Properties of ¢, or properties of Gen-
eral(c). Object Properties, which identify general relations in OWL, are not used for
identification at this stage. We further distinguish properties into those that can
serve for identifying concepts. For instance, the property PersonName identifies a
person (to some degree) while the property age does not identify a Person. Three
criteria were used in order to distinguish between identifying and non-identifying
properties:

(1) Functional properties: properties for which each concept is associated with
a single property value.

(2) Inverse-functional properties: properties for which each property value is
associated with a single concept. Naturally, properties which are functional and
inverse-functional are considered stronger candidates for identifying properties.

(3) Property naming heuristics: we had recognized that some naming conven-
tions for properties can serve for identification purpose, e.g., physician ID

and person name.

InvertProperties. This class holds all concepts of which c is a property, or a prop-
erty of their Specific concepts. For instance, the concepts person and physician are

in the InvertProperties class of physician ID.

Instances. Concepts that are instances of ¢. For example, the concept Mount
Sinai is in the Instances class of regional hospital and hospital. In OWL, elements
of finite enumerations, represented by the oneOf construct, can also indicate an

instance.

Classifiers. Given an instance c, its class holds the concepts which classify c¢. For

example, regional hospital is a member of Classifiers(Mount Sinai).

Siblings. Concepts that have a mutual parent concept (a general concept or a
classifier). For example, patient and physician are siblings, as person is a mutual
general concept. We define ¢ as the mutual parent, and the set of sibling concepts

as:
Siblings(c) = {¢’ € O | 3¢, ¢ € General(c) A ¢ € General(c')}

Unrelated. This set holds all the concepts that do not belong to any other context

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 11

class, i.e., no connection between ¢ and ¢’ was found. Formally:
Unrelated(c) = {¢’ € O | ¢’ ¢ Specific(c) U General(c) U ... U Siblings(c)}

The semantic correspondence between two concepts is based on the semantic
distance between them. We based the definition of the semantic distance function
on a study by Bernstein et al. [Bernstein et al. 2005], which evaluated different
similarity measures in ontologies. While their findings suggest that no single se-
mantic measure is dominant, they show that a strong relation exists between the
type of the semantic measure and the structure of the ontology. Our semantic
measure is founded on a combination of two approaches taken from the study by
Bernstein et al.: information-theoretic approach and ontology distance approach.
The approaches were chosen because they are simple to implement and are com-
patible with our type of ontologies, which feature clear hierarchy. We augmented
the measures by (1) referring to properties of concepts in addition to the concepts
themselves, and (2) handling instances.

Given an anchor concept, ¢ € O, and some arbitrary concept ¢’ € O, we define

the semantic correspondence function d(c, ¢’) to be:

1 , ¢ € Exact(c)

ForaTToasTFS ,¢ € General(c) U ClassesOf(¢) U Properties(c)
d(c,c) = W , ¢’ € Specific(c) U Instances(c) U InvertProperties(c)

2105,&(”1+,,L12)Alogﬁ<1+5) ,¢ € Siblings(c)

0 , ¢ € Unrelated(c)

Where n is the length of the shortest path between ¢ and ¢’ and ¢ is the difference
between the average depth of the ontology and the depth of the upper concept. The
log bases, o and 3, are used as parameters in order to set the magnitude of the
descent of the function. In the implementation of OPOSSUM, we had set both
parameters to 4. For each type of context class, the function d(c,c’) is defined

differently:

(1) In the first case, the two concepts are equal or equivalent, and their similarity
is set to 1, which represents the highest similarity possible.

(2) In the second case, ¢ has a broader semantics than ¢. The distance between
the two concepts is calculated according to a descending function, which de-

pends on the distance between the two concepts in the hierarchy. log(1 + 0) is

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 . Eran Toch et al.

added to reflect the notion that low-level classes are closer to each other than
higher-level classes [Bernstein et al. 2005]. For example, the difference between
concepts organization and health organization is more substantial than the dif-
ference between the concepts hospital and medical center. Because of multiple
inheritance, a concept may have several “depth” values. In this case, we choose
the maximum value. As § can be equal to 0 (in the likely case that the concept

is a leaf node in the ontology), 1 is added to the log calculation.

(3) In the third case, ¢’ has a narrower semantics than ¢. As a result, some prop-
erties of the concept ¢’ may not have corresponding properties. For example
medical center € Specific(health organization), therefore medical center has all
the properties of health organization but the opposite is not true, health or-
ganization lacks properties such as physician. Therefore, the correspondence

function has a higher descending ratio than before.

(4) In the fourth case, ¢ and ¢’ are not directly connected in the hierarchy, but they
have a common parent, denoted as ¢. In this case, the function is the same
as before, but the distance is set to be the sum of n; and ns, reflecting the

distance between ¢ and ¢’ to é.

(5) In the last case, the two concepts are unrelated, so their similarity is set to 0.

3.3 Inferring Dependencies

In order to retrieve compositions that contain operations from different sources and
origins, dependencies between operations are to be inferred, as prior knowledge of
existing relations is incomplete. The following section describes a set of rules for
inferring dependencies, based on the notion of context classes.

Two operations ¢ and p are flow-dependent, denoted as ¢ 4, p if the output of
g can be used as an input of p. In other words, all inputs of p must be satisfied
by some output of q. Formally, ¢ EN p <= VI,,30, : I, = O4. Our definition
of flow dependency resembles horizontal dependency, described in [Medjahed and

Bouguettaya 2005]. This dependency can be relaxed in several ways:

(1) Parameter relaxation: We relax the original definition of flow-dependency
by allowing a matching of a subset of the parameters. Rather than requiring
all input parameters to be matched with compatible output parameters, only

a subset of input parameters is required to be matched. Therefore, 31, ,30, :

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 13

I, = O4. For example, in Figure 2, the operation inform hospital receives
three parameters, while flow dependency can be derived on the basis of a single

parameter (i.e., hospital).

(2) Concept hierarchy relaxation: Rather than requiring full compatibility
from p’s concepts, we relax the dependency by accepting output parameters
which are subsumed by the input parameters or vice versa. VI,,30, : O, €
General(I,) V I, € General(O4). For example, in Figure 2, the operation find
nearest medical center can flow into inform hospital because hospital is sub-

sumed by medical center.

(3) Instance relaxation: This relaxation is similar to the previous one, but now
the dependency is satisfied with instances of ¢, such that VI,,30, : O, €
Instances(l,). For example, an operation that require a hospital concept can
flow from an operation that outputs Mount Sinai hospital, a specific instance

of the Hospital concept.

(4) Property relaxation: The original requirement is relaxed by accepting con-
cepts that are properties of ¢’s output parameters. This relaxation is limited
to functional and inverse-functional properties only. Formally: VI,,30, : I, €
Properties(O,), where the property is a functional and inverse functional object
property relation (such that for each instance of I, there is a single instance of

O, and vice-versa).

3.4 Empirical Dependencies

Empirical dependencies are used when prior knowledge of relations between oper-
ations exist. However, the transformation between external service models (such
as OWL-S) to our service base is not straightforward. In this section we define
transformation rules, in a semi-formal manner. OWL-S serves as a representative
example of Web service specification language. It has been shown that WSMO
[Lara et al. 2004] and BPEL4WS [Wohed et al. 2003] have adequate transforma-
tions to OWL-S, and therefore the transformation we present is applicable for these
languages as well. OWL-S was chosen as the primary language of reference, for the
considerable amount of research and tools associated with it.

The transformation starts with the atomic process - the basic component of

the OWL-S process model. Each atomic process p, which belongs to an OWL-

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 . Eran Toch et al.

OP, OP @) OP (repear) OP (source) OP(source)
t — 7 — 7
empirical /\ empirical T empirical empirical” €MPpirical Sempirical
oP, empirical ~ empirical empirical ~ empirical empirical OP; OP, OP;
[OP1) (OPa] (OP:]
OP (hen) OPeise)

(e] O (o] O
T P p p p -t —
empirical (until) 1 2 3 | empirical empirical empirical
OP;
— —
@ @ (©)) (4) ®)
Sequence If-Then-Else Repeat-Until Split Split + Join

Fig. 4. Transformation Patterns for OWL-S Control Constructs

S model is transformed to an operation OP € BASE. The input and output
properties of the atomic process are mapped to the input and output concepts of
OP. Preconditions and effects of OP are abstracted and mapped to OP’s input and
output concepts respectively. Composite processes are represented as dependencies
between operations.

OWL-S supports control constructs, such as conditional execution and paral-
lel execution, in order to coordinate the execution of groups of operations. For
instance, in OWL-S, the execution of an atomic process can be dependent on a
specific result of another one. However, these constructs are not supported by the
service model, as they provide over-specification which is not needed by the search
engine. Therefore, complex control constructs are transformed to simple dependen-
cies between operations. In this process, some information is lost. All conditional
control constructs, such as if-then-else and repeat-until, are transformed to empirical
dependencies between participating processes, without the actual condition logic.
The following list specify transformation patterns for OWL-S control constructs. A

visual representation of the patterns is depicted in Figure 4.

(1) sequence: The control construct is mapped to a set of empirical dependencies
between the operations, ordered according to the original order of the atomic

processes.

(2) if-then-else: Empirical dependencies are added between the operation that
describes the condition (the if operation) to the conditioned operations: the
then and the else.

(3) repeat-until: An empirical dependency will be added from the conditioned
operation (repeat) to the condition operation (until) and vice versa. Note

that this construct generate a cycle of dependencies, which is resolved in the

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 15

construction of the index.

(4) split: For each split construct, a special operation, OP(source) Will be added
to the service network, representing the beginning of the operation split. An
empirical dependency will be added from OPsource) to each of the operations

belonging to the split.

(5) split+join: Similarly to the transformation pattern for split, an OP(source)
operation will be added, as well as a synchronization operation OPjes). Em-
pirical dependencies will be added to OP4es;) from all operations taking part

in the construct (excluding O P(ource))-

3.5 Aligning Ontologies

The service model is based on the assumption that all concepts belong to a single
ontology (O). However, the original ontologies, to which the services are related,
originate from different and heterogeneous sources. These ontologies may contain
concepts with similar meaning which differ in labeling, content or language. In order
to increase the recall of the retrieval process, the original ontologies are merged
to construct O. The process of ontology merging takes as input a set of source
ontologies and returns a merged ontology, containing a union of the elements of the
ontologies, such that equivalent concepts are merged.

The first step in merging ontologies is to map the relations between their concepts.
We have adopted the approach of Euzenat and Valtchev [Euzenat and Valtchev
2004], which uses a combination of matching techniques in order to map concepts.
These techniques include matching by string-based terminology, lexicon-based ter-
minology, data-type comparison, properties comparison and relation comparison.
The weighted contributions of all the techniques are combined to provide the fi-
nal matching. We have chosen this approach as it designed for OWL-Lite and
is fully automatic, making it suitable for processing large amounts of ontological
data. After the ontologies were matched, they are merged by combining equivalent
concepts, including their properties and relations. Foreign concepts, without any
correspondence to other concepts, are copied to the merged ontology.

Ontology merging can also be used to bridge multilingual ontologies, which de-
fine the same concepts in different languages. As the approach we adopt for on-

tology matching supports lexicon-based matching, multi-lingual lexicons, such as

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 . Eran Toch et al.

EuroWordNet [Vossen 1998], can be used to enable multilingualism in the merged
ontology. While OPOSSUM supports English ontologies in its current version, we

plan to augment it with multilingual ontologies in future versions.

4. QUERY INTERFACE, SYNTAX AND SEMANTICS

In this section we describe the query interface of OPOSSUM and the underlying
query language. Section 4.1 describes the user interaction involved in query com-
position. Section 4.2 describes the syntax underlying the query language. Section
4.3 defines the semantics of basic query operators, while Section 4.4 defines the
semantics of complex query expressions. Finally, Section 4.5 describes an extension

mechanism for the query language.

4.1 Query Interface Overview

Users communicate with the OPOSSUM search engine either through the basic
query interface or through the advanced query interface. The two interfaces share
the same query language, but employ different levels of formality and expressive-
ness. Figure 5 displays a screenshot of the two interfaces. The basic query interface
requires no more than a set of keywords. The user does not need to specify op-
erators, which are added automatically using predefined settings. In contrast, the
advanced query interface allows the user to specify exactly the types of service
properties to query. It also allows the user to use logical operators in order to get
more general or more specific results.

Both query interfaces generate a declarative specification of a virtual semantic
Web service. It is declarative in the sense that: (1) it does not enforce an imple-
mentation on the query results, and (2) a query can be matched by compositions of
operations, rather than by a single operation. The query is relaxed in that it con-
tains keywords instead of formal concepts, and it may contain disjunctions and/or
approximate conjunctions.

User queries are transformed into formal queries (described in Section 4.2) by
automatically mapping keywords to concepts. In order to formalize a simple query,
“address hospital”, into a query expression, each of the keywords is mapped to a

concept term by using content matching techniques.? If more than one concept is

2The content matching techniques are beyond the scope of this article. The interested reader is
referred to [Gal et al. 2005] for an elaborated discussion.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval . 17

© Opossum search results - Mozilla Firefox
Edit Bookmarks

File Wiew G0 Tools Help

>

Home

Find Web Services OPOSSUM

|sddress hospital | | ¥1.0 beta —

Advanced Search What's this?

OPOSSUM is a search engine
for Web services, making them
accessible by automatically

. . X gathering from the Web and
If = hospital is not capable of tresting 3 patient, his relocation has to be set fgging them with meaningful
up, With thiz service, the hozpitsl physician can rnake s transport proposal far
delivaring the patient to the new hospital, concepts.,
[1.0] Service Description | Execute Service

13 services were found

1. PatientTransport

How do I...
2. DiagnosticProcessavailability + Miribe a query?
This service returns cerkain type diagnostic pracess available in the certain * Use semantic concepts?
hospital,if the other input is given then then the output should fulfills + Access a Web service?
requiremnents of the user question, + Troubleshook erars?
[1.0] Service Description | Execute Service + Report 2 bug
v
Daone Adblock

) Opossum - Advanced Query Builder - Mozilla Firefox
File Edit G0 Bookmarks

Yiew Taals

Help

| >

Home

Advanced Query Builder OPOSSUM

Parameters | Service | Origin | Ranking VL0 beta

Find services that include the following parsmeters: VWhat's this?
|| Input Pararmeter v

OPOSSUM is a search engine
for Web services, making them

O and O or| Addto query accessible by automatically

gathering fram the \Weh and
tagging them with meaningful

Current Query concepts. —

How do I...

s Wirite a query?

Use semantic concepts?
Access a Web service?
Troubleshoaot arrars?
Report 3 bug

ins address ‘ hospital sout

Done Adblack

Fig. 5. Screenshots of OPOSSUM’s simple (top) and advanced (bottom) Query

Interface

matched with the keyword, the keyword with the highest matching score is used in
the query evaluation. The user is also alerted, and can choose between the proposed
alternative concept terms. Queries entered via the simple interface undergo two

additional processing steps:

(1) Adding connectors: Query terms are connected automatically using a con-
junctive connector. Applying this stage on an example query “address hospital”
yields “address A hospital”.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 . Eran Toch et al.

(2) Annotating terms: Concept terms are annotated with a property category,
defining which property will be matched with the term. Available categories
are input, output and operation. These categories are aligned with the term
labeling function (I), as defined in Section 3.1. The search engine chooses an
initial default category and lets the user change these defaults after the query

was evaluated.

In order to annotate the terms, a prefetching process is carried out. The index
is queried regarding the existence of concepts which are either input, output or
operation. Afterward, the query is expanded with the disjunction of each category
with which at least one concept is related. For example, applying the annotation

on “address A\ hospital” results in “input:address A output:hospital”.

4.2 Abstract Query Syntax

The abstract query presented in this section forms a mathematical abstraction of

queries presented in the previous section.

DEFINITION 3 ABSTRACT QUERY. An abstract query is a quadruple @ = (T, 1, pc, o),

where

—T is a rooted, directed, binary tree;

—1 : N — O is a term labeling function that associates each leaf node in T with

a concept c € O.

—pc : N — {in,out,op} is a property category function that associates each leaf
node in T with a categorization of its property, which can be input, output, or

operation.

—o: N — {A,V} is an operator function that associates each non-leaf node with

congunction or disjunction connector, respectively.

Each leaf node ng, is annotated with a property category (i.e., input, output,
operation) and a concept. A non-leaf node ng is the application of a boolean
connector over its children. If o(ng) = A, then ng is an and-node, and if o(ng) =V,
then ng is an or-node. Figure 6 depicts an abstract query, requesting services that
have an input parameter aligning either with an address concept or with a GPS

position concept, and should also have a hospital output parameter.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 19

VAN
\4 (out,Hospital)
(in,Address) (in,GPS Position)

Fig. 6. An abstract query

4.3 Query Matching Semantics

In this section we provide an overview of the query semantics. Adopting a bottom-
up approach, the next two sections start with a detailed element description and
continue with a complete structure of the query.

The result of the query evaluation is a set of virtual services. A virtual service, V,
is a sequence of one or more operations, ranked according to their order of execution,
such that V' = (op1,0pa,...op,). Note that a virtual service may contain opera-
tions that originate from diverse sources. Each virtual service is associated with
a matching certainty, expressing the certainty in which the virtual service answers
the query. The notion of matching certainty is embodied by the pu-satisfiability
relation. Let V be a virtual service, and let @ be a query. The pu-satisfiability
relation, denoted as V' }=,, @, indicates that V' satisfies the requirements of () with
a certainty of u.

We define the levels of matching in a recursive manner. The basic unit of match-
ing is related to a single operation, which is matched with a query leaf node (ng,).
In this case, the matching certainty is determined according to the semantic corre-
spondence between the node’s concept and the operation’s concepts. The matching
certainty of virtual services is computed based on the certainty of each of the op-
erations and the certainty of the relation(s) between them.

In order to formally define the u-satisfiability of an operation, we first define
semantic correspondence. The function p : O x O — [0,1] defines the semantic

correspondence that maps query leaf node concept (c¢) and operation parameter

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 . Eran Toch et al.

concept (¢’) to a value between 0 and 1, where 0 implies no compatibility and 1
implies full compatibility. We can now define the operation satisfiability of a query

leaf node as follows.

DEFINITION 4 OPERATION SATISFIABILITY. An operation OP satisfies ng, if

the following jointly applies:

(1) OP contains a parameter p with the same property category of the leaf query
node, pc(ng,).

(2) u(l(ng,),l(p)) > [- the semantic correspondence between the two concepts is
higher than a threshold fi.

The method for calculating u, the semantic correspondence function, is identical

to the context-classes based method described in Section 3.2.

4.4 Complex Queries Semantics

In order to define the semantics of complex queries, the notion of p-satisfiability is
broadened from operation matching to the matching of complete queries, including
conjunctive and disjunctive operators. We say that V' |=, Q, when a query can be
satisfied by a virtual service, in a given u level of certainty.

In order to define the semantics of disjunction, the query is transformed into a
disjunctive normal form. For instance, the example query (depicted in Figure 6),
which has the original form of ((in, Address)V(in, GPSPosition))A(out, Hospital))

will be transformed into the following form:
((in, Address) A (out, Hospital))
V
((in, GPS Position) A (out, Hospital))
A virtual service satisfies an or-node if it satisfies one of its child nodes. Let ng,

and ng, be the child nodes of the or-node, ng. The p-satisfiability specification of

or-node is defined as follows:

DEFINITION 5 DISJUNCTION MATCHING. V =, (ng, Vng,) © V Eu ng, V
V = ng,. The certainty is defined as pp = max {1, pu2}. The certainty values of

matching ng, and ng, are pi and pa, respectively.

While matching an or-node is straightforward, matching an and-node is more

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 21

complex. An and-node can be satisfied by an ordered pair of virtual services. The

basic assumptions underlying the semantics of and-nodes are the following:

—In order to allow relaxed service retrieval, an and-node can be satisfied by a com-
position of operations. For instance, the query (in, GPSPosition)\(out, Hospital)
might be satisfied by a single service (find nearest medical center) or by a com-

position of two services (contact emergency and find nearest medical center).

—If two services satisfy an and-node with equal certainty (the ceteris paribus -
“all other things being equal” - of our model), then the shortest composition of
operations will be chosen. In the context of the previous example, the service find
nearest medical center will be chosen, as its composition length is 0. The rationale
of this assumption is that any operation added to an existing composition reduced

the overall certainty of the composition.

—The order of the elements in the query is important. If an and-node is satisfied by
a composition, the left child of the and-node (In, GPSPosition) should precede
the right child (Out, Hospital). As users search for procedural artifacts, we
assume that there is a direct link between the location of elements within the

query and the location of operations within the procedure.

In conjunction matching, the two query child nodes form a simple pattern, start-
ing from the leftmost node, and ending with the rightmost node. The pattern is
matched against the service network, resulting in a correspondence value that de-
pends on the correspondence of the nodes and the certainty of the composition.

The formal p-satisfiability specification of and-node is as follows:

DEFINITION 6 CONJUNCTION MATCHING. We say that V =, (ng, Ang,) if the

following conditions hold:

(1) V contains two sub services, Vi and Va, such that Vi =, ng, A Va =, ng,,
and BASE contains a path which starts with Vi and ends with V5. Since the
query was transformed into disjunctive normal form, any node can be either an
and-node or a leaf node.

(a) Ifng, is a leaf node V; holds a single operation, and path matching is based
on the operation as a starting or ending point.
(b) If ng, is an and-node V; is a sequence of operations. The path matching

starts with the first operation of the sequence (if ng, is the left node), or

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 . Eran Toch et al.

the last operation of the sequence (if ng, is a right node).

(2) The overall composition certainty of the path is higher than a given threshold.

The composition certainty reflects the certainty of the dependencies between
operations. Recall from Section 3.1 that each dependency is associated with a cer-
tainty value, denoted as yp. We define path(op1, ops) as the set of edges belonging
to the shortest path between two operations, op; and ops. The composition cer-
tainty function -, is calculated as the product of edge certainty of the path, as is
common in the literature [Do and Rahm 2002]:

Yee(l,k) = H VYD (i,5)
(i,7)€path(op1,0p2)

Finally, 7., is bounded by a threshold, 7..:

oo = Yee s Vee > Vee

0 Yee S Yee
Note that Definition 6 accepts situations in which the and-node is satisfied with
a single operation, i.e., op; = ops2, and the path has a length of 0. Moreover,
it is likely that single-operation results will receive high certainty value, as their

composition certainty is maximal.

In OPOSSUM, partial results are allowed to be retrieved by relaxing condition
(1) of Definition 6. We redefine |=,, to accept partial services that do not necessarily

satisfy the full conjunctive chain. We define VP C V as a partial virtual services,

which is contained in V.

DEFINITION 7 PARTIAL CONJUNCTION MATCHING. We say that V? =, (ng, A

ng,) if the following conditions hold:

(1) The partial service satisfies at least one of the child nodes: VP |=,, ng, VV? |=,
nQ,-
(2) The partial certainty is higher than the conjunction threshold.

The partial certainty takes into account the proportion of the partial service,

with respect to the complete service, and is defines as:

1% .
i(ng, Angy, V?) = ||V|| min {j1(ngy, VP, i(ngu, V7)}

The certainty function ranks the conjunction subsets according to their size, giv-

ing higher score to larger subsets. The highest certainty will be given to V itself -

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 23

the service that answers the complete intersection. The remaining subsets will re-
ceive monotonically non-increasing scores. To demonstrate the relaxed conjunction
semantics, consider a simple query (in, Address) A (out, Hospital). Let us evalu-
ate the query against the subset of BASE depicted in Figure 2. The leaf node
(in, Address) is matched with a single operation, Find Position, with a certainty
score of 1. The leaf node (out, Hospital) is matched with a single operation, find
nearest medical center, with a certainty score of 0.85 (due to the inexact matching
of emergency medical center with hospital). The relaxed conjunction between the

nodes is the set:

(find position, find nearest medical center), (find position),

(find nearest medical center)

The first virtual service is a path starting with find position and ending with find
nearest medical center. The path has an initial certainty score of 0.93, based on
the composition certainty. The approximate conjunction recalculates the score,
assigning 0.93 to the first virtual service, 0.5 to the second virtual service and 0.43

to the third service.

4.5 Query Language Extensions

We now present an extension mechanism for the query language. Its aim is to allow
users to write advanced queries without compromising the simple syntax of the
query language. There are two types of syntax extensions and property extensions.

Syntax extensions extend the query language by adding syntactic sugar. In or-
der to demonstrate our approach, we define two syntax extensions: the optional
expression and the any expression. Unlike the default configuration, which man-
dates that all the query parts be retrieved, the optional extension allows users to
define optional query phrases. For example, in the query “address hospital op-
tional(availability)”, the last token is optional, and therefore, results which contain
the availability property will be assigned the same ranking as results which do not
contain it.

The implementation of the extension is simple. It is based on rewriting the
query using disjunctions in the preprocessing phase. Each query of the type “z A
optional(y)”, will be transformed to a query of the type “(z A y) V 2”. Thus, results

satisfying z and results satisfying both z and y will be ranked equally. In order

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 . Eran Toch et al.

to avoid illegal queries, queries which contain solely optional expressions, such as
“optional(y)”, are not allowed.

The any expression allows users to define sets of options. The user can specify
different options for a single property. For example, if the user wish to select services
with an output which is either hospital, clinic or doctor, the following query pattern
can be used: “address any(hospital,clinic,doctor)”.

Property extensions allow definitions of new property categories for concepts.
The basic definitions of the query language include three types: in (for input), out
(for output) and op (for a concept which is assigned with the operations). However,
services may have more specific properties that can be used in retrieval. Examples

for interesting properties include the following:

—Price: The price of using the operation.

—Availability: The times in which the service is available.

—Provider: The organization which provides the service.

—Location: The geographical location in which the service is carried out.

—Language: The interface language used by the service (e.g. English, Hebrew,
Arabic).

Extension properties are defined by the users, simply by assigning a label to a
specific property of all, or some, of the semantic Web services. Thereafter, the
user can use this name for restricting the results according to a certain value of the
property, writing queries such as “flight provider:singapore location:new york”. The
query evaluator maps the value following the property name to a value assigned

with the original concept, before continuing with the retrieval process.

5. INDEXING AND QUERY EVALUATION

In this section, we discuss the indexing method for the service model. The objective
of the index is to enable efficient evaluation of queries with respect to processing
time and storage space. The index is composed of two data structures: Iconcepts
and Iservices- Lconcepts 1S @ hash-based index that maps concepts to their associated
operations, allowing efficient evaluation of query concepts. Iserypices is @ graph-based
index that represents the structural summary of the service network, and is used to
answer queries that require several atomic operations. This section is organized as

follows. Section 5.1 discusses the structure of the I.oncepts index and describes its

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 25

Role Concept

@ Hospital >
@ Medical Center >

@ Mount Sinai > b
@ Diagnosed Symptom 1

Operation

o
[$2)

— (@]
]
‘] [H] §'
El
<

o /

Inform Hospital

i

i

i

T— [o5 |
‘ out H ospital ‘ [

= R . Find Nearest
@ ©PS [Pesilin " \Ll / Medical Center
ol e e

Fig. 7. An example of Iconcepts - the concepts index

construction process through concept expansion. Section 5.2 describes the structure
and construction process of Iseryices- Section 5.3 describes and analyzes the query

evaluation algorithm, operating on the index.

5.1 Concept Index

Iconcepts is based on a hash table, where each entry represents a concept, pointing

to a node in Igeryices- Formally, Iooncepts immerse a mapping function, defined as:
Teoncepts : C x {in,out,op} — Gn

C is defined as a set of concepts, {in, out,op} is a property type (for input / output
/ operation), Gy is a set of operations index keys in Ierpices- Each mapping is
associated with a certainty function, v;(Zeoncepts) — [0, 1], reflecting the semantic
affinity between the concept and the concepts of the operation. Figure 7 represents
an instance of I.oncepts, Which partially reflects the healthcare services running
example (Figure 2). Concepts that serve as keys of Iconcepts are derived from the
service model. For instance, GPS position is associated with an input parameter
of the find nearest medical center operation, with a certainty of vy = 1. hospital is
associated with an output parameter of find nearest medical center, with v; = 0.5.
In this case, v reflects a lower certainty, originating from the distance between the
hospital concept and the medical center concept - the actual concept related to find
nearest medical center.

Iconcepts is expanded with additional concepts that convey a broader meaning, in
order to retrieve approximate services. Expanding the index is carried out through

the index construction process. Constructing I.oncepts is @ multi-phase process, in

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 . Eran Toch et al.

Algorithm 1 Operation indexing in Iconcepts
Input: OPF;, O

OUtPUt: Iconcepts(OPi) g Iconcepts

Iconcepts(opi) — ¢
for all param € OP; do
¢ = l(param)
Iconcepts U (¢, role (param)) — Iserpices-OP;
Y1(—=) =1
for all ¢’ € General(c) U Specific(c)... do
~v =d(e,)
if 4/ > 47 then
Leoncepts U (¢, role(param)) — Iservices-OP;
V(=)=
end if
end for

end for

which a basic set of concepts is expanded with concepts that increase the retrieval
scope of the index. Context classes are used in order to construct the key set
of Iconcepts, and to assign operations associated with each concept. Algorithm
1 describes the indexing process of an operation. The algorithm traverses all the
parameters of an operation, adding the parameter’s concept to the index. Following
that, the algorithm adds index entries for concepts whose mapping certainty is

higher than a given threshold.

5.2 Compact Service Index

Iservices represents the structural summary of the service network, using a directed
graph. Given two operations, the objective of Iserpices 1S to efficiently answer
whether a composite service, starting with the first operation and ending with
the second, can be constructed, and to calculate the certainty of the composition.
Hypothetically, this task can be performed using the service base itself, by exhaus-
tively searching for all possible compositions on the operation graph. Furthermore,

indexing each path will result in an exponential number of index entries. Therefore,

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 27

“Insurance

Operations”
“Geogr_aphical Authorize
Operations Treatment Plan Retrieve Insurance
Ve ™ Record
Find Position /
Find Nearest Contact Check Hospital
Medical Center Emergenc Availability
J
Inform Check Room Check Personnel
Y Hospital Availability Availability
“ “Hospital
Emerg_enc')'/ Procedures
\ Operations Operations” j
“Medical
Operations”

Fig. 8. An example of Iserpices - the service network index

our main design goal was to design an index with minimal number of nodes and
edges that would enable efficient traversal of the service network without compro-
mising the precision of the results. The design of Iserpices 1S based on principles
taken from semantic routing in peer-to-peer networks. Due to the limited scope of
the paper, we refrain from presenting the techniques in details. Rather, we present
the main ideas via an example.

[Schmidt and Parashar 2004] and [Schlosser et al. 2002] proposed the use of
semantic clustering to classify peer nodes to concepts and provide efficient traversal
in peer-to-peer networks. In both methods the underlying ontology is segmented
according to a multi-dimensional hierarchy, and each concept is assigned with a
multi-level identifier that enables an efficient routing from source to destination
concepts.

In Iservices, Operations are associated with multidimensional clusters, based on
a set of clusters of their corresponding concepts. Figure 8 visualizes the opera-
tions, framed by the relevant clusters. Concept clusters are obtained by using the
algorithm described in [Grau et al. 2005] for hierarchical clustering of OWL-Lite

ontologies. All operations within a cluster have concepts with close affinity to each

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 . Eran Toch et al.

other. For example, the operations inform hospital and contact emergency are lo-
cated within the Emergency Operations cluster as they share similar concepts and
have interrelated dependencies. Clusters are organized according to a hierarchy,
where 0-level clusters represent atomic clusters (e.g. Emergency Operations), 1-level
clusters contain 0-level clusters (e.g. medical operations) and so fourth.3

The number of edges in the index is reduced by replacing dependencies between
operations with dependencies between respective clusters. For example, the depen-
dencies between inform hospital and check hospital availability, and between con-
tact emergency and check hospital availability are replaced by a single dependency
between the emergency operations cluster and the Hospital Procedures Operations
cluster. Dependencies exist only between clusters of the same level. For instance,
if a dependency existed in BASE between inform hospital and authorize treatment
plan, there will be no direct edge between the clusters, as emergency operations is
a level-0 cluster, while insurance operations is a level-1 cluster. When evaluating a
path that crosses multi-level clusters, higher level edges will be evaluated if lower
ones do not satisfy the query. Thus, the search space is reduced. This method is
efficient mainly due to the nature of the service network. Empirical results show
that the service network is a sparse graph, and that most connections are between
operations with similar semantics.

As operations contain several parameters, there is no guarantee that all of the
parameters’ concepts will belong to the same cluster. Therefore, operations are
organized into multi-dimensional clusters, which reflect their different semantic
affinities. For instance, the operation contact emergency has parameters involv-
ing geographical concepts and medical concepts, and is located in the Geographical
Operations and the Emergency Operations clusters simultaneously. A query that
requires a service that takes an address and returns hospital availability, will be
answered by a path of operations that starts in the Geographical Operations clus-
ter, goes through the Emergency Operations cluster (as there are mutual operations
belonging to the two clusters), and ends at the Hospital Procedures Operations clus-
ter. Multi-dimensional clustering is feasible as the number of parameters associated
with an operation is bounded, and low. Empirical results show that over 90% of

the services in our benchmark have 4 or less parameters.

3Clusters are nameless. We have named clusters for the sake of clarity.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 29

5.3 Query Evaluation

In this section, we present an algorithm for query evaluation, based on the index
discussed above. The algorithm is described in Algorithm 2. Given a query, Q,
and the index, the algorithm returns a set of virtual services, {V(l)7 Vi) s V(k)},
ranked according to their certainty. The algorithm starts with transforming the
query into disjunctive normal form, resulting in a set of query parts, C. If a query
part includes a single query node, then the results contains operations from Iconcepts-
The results are filtered by the Prune function, which removes services with lower
certainty value than the threshold. If the query part includes more than a single
node, then it contains a conjunction. The algorithm uses the Route function to find
paths between origin operations (associated with the left-hand query node) and
destination operations (associated with the right-hand query node). The functions
start and end The function Rank ranks the virtual services according to their
certainty.

We denote by |C| the number of disjunctions in the query. |OP| represents the
number of operations associated in Ieoncepts With a given query node (with certainty
higher than the threshold). |V| is the number of results, N is the number of peers
(operations) and b is the hypercube base - the number of dimensions needed to

segment the ontology. The query evaluation algorithm complexity is given by:
1
O(IC1- (IOP[* - 5 log, N) + [V|log V)

The main algorithm loop depends on the number of disjunctions, and runs in |V |
steps. The routing function iterates over the cartesian product of the operations
returned by lconcepts- The complexity of Route is calculated in [Schlosser et al. 2002]
to be 1log, N, Finally, the complexity of the ranking of the results (|V|log|V|) is
added to the general complexity.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate our approach in three ways: a) by analyzing the preci-
sion of the search engine; b) by comparing precision and performance to OWLS-MX
[Klusch et al. 2005]; ¢) by evaluating the scalability of our approach through simu-
lation. Evaluation was based on an implementation of OPOSSUM using Java and
MySQL server. A dedicated personal computer running Windows XP with 1.5GB

RAM was used for all the experiments.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 . Eran Toch et al.

Algorithm 2 Evaluate Query
Input: Q7 Iconceptsa Iservices

Output: V = {V(1),V(a), ..., Vi) }

Vo
C =toDNF(Q)
for all C; € C do
n = (C};.left-node
Ssource « Leoncepts(1(n), pe(n))
Ssource < Prune(Ssource)
if C.right-node = ¢ then
V — VU Ssource
else
Ngest = Cj.right-node
Sdest — Iconcepts (l(ndest)apc(ndest))
Saest + Prune(Sgest)
for all OP; € Syource, OPj € Sgest do
Scompose < Scompose J Route(OP;, OP;)
Scompose < Prune(Scompose)
end for
V — VU Scompose
end if
end for

Return Rank(V)

In order to evaluate the search engine, we used OWLS-TC, an existing bench-
mark for semantic service retrieval, supplied by [Klusch et al. 2005]. OWLS-TC
includes more than 550 services, which are semantically annotated using more than
40 different ontologies, from various domains, including economy, communication,
and healthcare. In addition, OWLS-TC includes a set of predefined queries and
relevance sets that enable to calculate precision and recall values of query results.
OWLS-TC was augmented with queries and relevance sets that reflect composed
services.

Ranking serves as the main method for expressing relevance and certainty in our

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 31

08

Precision @K

o
=

02

Fig. 9. Average precision at top K

approach. Therefore, we had measured the precision of the results in the top-K

Ly, kNSq

places, as depicted in Figure 9. Precision at top-K is calculated as =% , where

®
S, is defined in the benchmark as the set of services that are relevantq to a query
g, and Lgj is the top k results on the list. The results show that services with
high certainty (and therefore, higher ranking) were found to be more relevant than
services with lower certainty. We explain the descent of precision around the top
3 and 4 results by the precedence of shorter services, derived from the method of
calculating the compositional certainty. If this precedence will be canceled, the
precision of the top 1 and 2 places will descend.

We had compared the precision/recall values of OPOSSU M with those of OWLS-
MX by running the OWLS-TC queries. Our results show that we succeeded in
matching our precision/recall performance to those of OWLS-MX. However, the
two methods vary considerably in the query response time. Table I presents a
comparison of average response time of OPOSSUM and OWLS-MX.# The results
clearly show the benefits of an indexing mechanism, which improves the perfor-

mance of the query evaluation algorithms by an order of magnitude.

41t is worth noting that the average query response time we had measured of OWLS-MX were
slightly higher than those reported by [Klusch et al. 2005]. The difference can be attributed to
the different hardware configurations of the testing platforms.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 . Eran Toch et al.

Table I. Average query response time of OPOSSUM vs. OWLS-MX (measured in ms)

Query OWLS-MX | OPOSSUM
hospital investigating 1710 33
book price 1647 35
country skilled occupation 1742 20
car price service 1682 15
geopolitical entity weather process | 1364 27
government degree scholarship 1782 32
novel author 1662 40
60
50 {e e . 3 -
m -
g 40 e . AR " 00 wure nmmes wBe «
= . . ee o et e mee e+ *tecn hoomiuheomdmihe:
g . o . . et e Buse 24 'Y Shoamb
S o30]e ®oee
o
E . o 3 3
a T e e e mete
8 20 -t ¥ o subsomw w o ‘e - - .
o - oo
=%
10 smemmsdunitathes $ ¢ o Trendllne
0

0 500 1000 1500 2000 2500 3000

number of services

Fig. 10. Precessing time for query evaluation

The scalability of our approach was evaluated by simulating large numbers of
semantic Web services. Using the existing 500 OWLS-TC benchmark services as
a core, 2500 additional services were simulated by imitating the properties of core
services. The service generation function was parameterized using 3 random vari-
ables: p - the number of parameters, nc - whether to associate the parameter with
a new concept or with an existing one, ¢ - the identity of the associated concept, if
nc is false. Figure 10 represents the average query response time, depending on the
number of services in the index. The black line represents a linear trend line on top
of the discrete measurements. While the number of services increased by a factor

of 3000 (from 500 to 3000), the average response time increased by a factor of 2.3

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 33

(from 15 ms to around 35 ms). The results exhibit the scalability of our indexing

approach.

7. RELATED WORK

Activity in the area of service-retrieval can be divided into three main approaches:
keyword-based, semantics-based and behavioral matching. In this section, we

overview these approaches in that order.

7.1 Keyword-Based Approaches

Currently, the keyword-based approach is the most wide spread in the industrial
attempts to implement service retrieval. The most prominent example is the UDDI
protocol [Bellwood et al. |, which is an industry standard for locating Web services
through keyword and category search. The main drawback of UDDI, and with other
keyword-based approaches, is the lack of sufficient information for describing Web
services. Web service interface are defined using WSDL descriptions, which contain
a very small amount of information regarding Web service operations. Therefore,
keyword search solutions fail in providing satisfactory recall for Web service search

[Ankolekar et al. 2001; Sirin et al. 2003].

7.2 Semantic Approaches

Several techniques have been proposed to deal with service discovery using logical
inference. These approaches are based on an ontology-based formal description of
Web services. Several works, including those of Paolucci et al. [Paolucci et al. 2002]
and Sirin et al. [Sirin et al. 2003], propose a method based on OWL-S for matching
requests and advertisements of semantic Web services. The OWL-S profile ontology
is used to describe the capabilities of services, and service matching takes the form
of logic inference over the properties of the services. Another approach for semantic
matching of Web services is based on planning methods taken from the Al research
domain. In [Traverso and Pistore 2004] semantic Web services are translated into
state transition machines, and the composition problem is defined as a planning
problem over the available services, with the required composition defined as the
planning goal. While all of these works provide precise matching, they exhibit a
limited notion of relaxed matching, based on the hierarchy of sub types.

Several research initiatives suggest hybrid approaches for semantic Web services

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 . Eran Toch et al.

discovery, augmenting logic-based methods with content-matching techniques. Tra-
verso and Pistore [Syeda-Mahmood et al. 2005] describe a hybrid approach for Web
services discovery, combining methods based on thesaurus and ontological infer-
ence. In [Klusch et al. 2005] and in [Bernstein and Kiefer 2006] logical inference is
compared with content-based matching. The latter was found to performs better
both in terms of recall and precision. Furthermore, hybrid approaches that combine
properties of logic inference and content matching were shown to outperform any
of the pure approaches.

Both logic-based approaches and hybrid approaches aim at automatic composi-
tion. Therefore, they require a highly accurate and trustful description of services
and queries, as well as an unambiguous matching process. In contrast, our work
relies on adjustable confidence values for semantic mappings. It allows the use of
syntactic service description, such as WSDL. Also, our work relaxes the seman-
tic and structural evaluation of compositions, expressing the approximation level
through ranking. Furthermore, we use a user-oriented form of query language, au-
tomatically translating a simple keyword query to a formal structure of concepts.
While the hybrid approach relaxes the semantic matching by using content-based
similarity methods, our work relies solely on ontologies for semantic matching. Our
relaxation methods rely on a broader definition of equivalence between ontological
concepts and on approximating the structure of the composition imposed by the
query. Finally, OPOSSUM outperforms the semantic approaches described above

in response time, due to the utilization of indexing methods.

7.3 Behavioral Matching

BP-QL [Beeri et al. 2006] is a query language for BPEL4AWS [Wohed et al. 2003]
process definitions. It uses a graph-based visual query language that represents a
BPEL script and searches for a subgraph isomorphism in a repository of BPEL
scripts. While BP-QL supports an expressive query language, it ignores semantic
attributes of services. Klein et al. [Klein and Bernstein 2004] present a method
for recognizing semantically-annotated services through pattern matching of activ-
ity sequences. Shen et al. [Shen and Su 2005] encode semantic Web services and
queries as regular expressions, defining matching as the intersection between them.
Indexing methods for regular expressions were introduced to enhance behavioral

matching performance. These methods differ from our approach in two main as-

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 35

pects. First, these methods evaluate a query against each service independently
while our proposed work matches queries against service networks, dynamically
built from isolated operations by analyzing and inferring relations between opera-
tions. Second, these methods provide limited support for approximate matching,

and do not rank results according to their semantic and compositional certainty.

8. CONCLUSIONS AND FUTURE WORK

In this work we have introduced a semantic approach to Web service retrieval. Our
approach is based on three aspects: a) using the current research in semantic Web
services to enrich the querying abilities of users, b) using approximation techniques
to increase the recall of possible service compositions, and ¢) exploring indexing
techniques for sub-linear response time. To motivate our approach, we have pro-
posed Web service composition as an exploratory process, in which designers seek
the use of existing Web services to gain a leading edge in their businesses. Composi-
tion as exploration suggests that services can be composed by the use of additional
gluing effort even if they do not match exactly. Such an approximate matching
therefore accounts for the amount of extra effort needed, and this is reflected in the
ranking of the results. The ranking combines both the semantic distance between
the query and the result and the partiality of the result. Thus, a lower ranking
suggests additional gluing effort in order to bridge the semantic distance between
the components or to implement the missing functionality.

We propose a general framework of a service search engine, where the various
components of our work provide solutions to issues of indexing, retrieval, and rank-
ing within this framework. As a proof of concept, we have built OPOSSUM, a
Web service search engine and share our experiences with discovering, indexing,
querying, and ranking using real-world data.

The contributions of this research are at conceptual, semantic, and computational
levels. First, we define an efficient, graph-based data structure for organizing ser-
vices. Second, we provide a semantically-rich query language, allowing both simple
and advanced service search capabilities. Finally, we provide a sub-linear service
retrieval algorithm.

There are several directions for future work. We are currently extending our
research to include a broader notion of service ranking, based on service reusability

(the ability to use a service in a given context). Furthermore, we intend to extend

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 . Eran Toch et al.

the applicability of our approach to syntactic Web services (represented by WSDL
documents) and Web forms. Also, we intend to extend OPOSSUM with advanced
capabilities, including multi-lingual ontology alignment and content-based match-
ing techniques. We plan to offer OPOSSUM as a service to the general Web
community, allowing users to submit Web services and to query the database. By
opening the engine to the public we hope to gain realistic information that would
help us characterize searching and utilization patterns for Web services. Finally, we
intend to apply OPOSSUM for model-driven engineering of information systems,

embedding semantic service retrieval within service development environments.

REFERENCES

ANKOLEKAR, A., MARTIN, D. L., ZENG, HOBBs, J. R., SYCARA, K., BURSTEIN, PaoLucci, M.,
LAssILA, O., MCILRAITH, S. A., NARAYANAN, S.; AND PAYNE. 2001. Daml-s: Semantic markup
for web services. In Proceedings of the International Semantic Web Workshop (SWWS). 411—
430.

BECHHOFER, S., VAN HARMELEN, F., HENDLER, J., HORROCKS, I., MCGUINNESS, D., PATEL-
SCHNEIDER, P., AND STEIN, L. 2004. OWL web ontology language reference. W3c candidate
recommendation, W3C.

BEERI, C., EYAL, A., KAMENKOVICH, S., AND MILO, T. 2006. Querying business processes. In Pro-
ceedings of the 32nd International Conference on Very Large Data Bases (VLDB’06). VLDB
Endowment, 343-354.

BeLtwoon, T., CLEMENT, L., EHNEBUSKE, D., HATELY, A., HonpO, M., HUSBAND, Y.,
JaNuszewskl, K., LEE, S., B., M., MUNTER, J., AND VON RIEGEN, C.

BERNSTEIN, A., KAUFMANN, E.; BU”RKI, C., AND KLEIN, M. 2005. How similar is it? towards
personalized similarity measures in ontologies. In 7. Internationale Tagung Wirtschaftsinfor-
matik.

BERNSTEIN, A. AND KIEFER, C. 2006. Imprecise rdql: towards generic retrieval in ontologies using
similarity joins. In SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing.
ACM Press, New York, NY, USA, 1684-1689.

CARDOSO, J. AND SHETH, A. 2003. Semantic E-Workflow Composition. Journal of Intelligent
Information Systems 21, 3, 191-225.

CHRISTENSEN, E.; F., MEREDITH, G., AND WEERAWARANA, S. 2001. Web services description
language (wsdl) 1.1. Specification document, W3C. Mar.

Do, H. aAxnD RanMm, E. 2002. COMA: A System for Flexible Combination of Schema Matching
Approaches. Proceedings of the 28th Conf. on Very Large Databases (VLDB’02).

EUZENAT, J. AND VALTCHEV, P. 2004. Similarity-based ontology alignment in OWL-lite. Proceed-
ings of ECAI, 333-337.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Semantic Approach to Approximate Service Retrieval : 37

GAL, A., Mopbica, G., JamiL, H., AND EvAL, A. 2005. Automatic ontology matching using
application semantics. AI Magazine 26, 1.

GRAU, B., PARsiA, B., SIrIN, E., AND KALYANPUR, A. 2005. Automatic Partitioning of OWL
Ontologies Using E-Connections. Proc. of the 2005 International Workshop on Description
Logics.

KLEIN, M. AND BERNSTEIN, A. 2004. Towards high-precision service retrieval. IEEE Internet
Computing 8, 1 (January), 30-36.

KruscH, M., FrIes, B., KHALID, M., AND SYCARA, K. 2005. Owls-mx: Hybrid semantic web service

retrieval. In Proceedings of 1st Intl. AAAI Fall Symposium on Agents and the Semantic Web.
AAAI Press.

LARA, R., RoMAN, D., POLLERES, A., AND FENSEL, D. 2004. A conceptual comparison of wsmo
and owl-s. In Proceedings of the European Conference on Web Services (ECOWS’04). Lecture
Notes in Computer Science, vol. 3250. Springer-Verlag, 254-269.

MEDJAHED, B. AND BOUGUETTAYA, A. 2005. A multilevel composability model for semantic web

services. IEEE Transactions on Knowledge and Data Engineering 17, 7, 954-968.

MEDJAHED, B., BOUGUETTAYA, A., AND ELMAGARMID, A. K. 2003. Composing web services on
the semantic web. VLDB J. 12, 4, 333-351.

Paorucct, M., KAwAMURA, T., PAYNE, T. R., AND SYCARA, K. P. 2002. Semantic matching of
web services capabilities. In International Semantic Web Conference. 333-347.

SCHLOSSER, M., SINTEK, M., DECKER, S., AND NEJDL, W. 2002. Hypercup: hypercubes, ontologies,
and efficient search on peer-to-peer networks. Proceedings of the 1st Workshop on Agents and
P2P Computing.

ScHMIDT, C. AND PARASHAR, M. 2004. A peer-to-peer approach to web service discovery. World
Wide Web Journal 7, 2, 211-229.

SHEN, Z. AND Su, J. 2005. Web service discovery based on behavior signatures. In 2005 IEEE
International Conference on Services Computing (SCC’05). 279-286.

SIRIN, E., , HENDLER, J., AND PARSIA, B. 2003. Semi-automatic composition of web services using
semantic descriptions. In Web Services: Modeling, Architecture and Infrastructure workshop
in ICELS 2003.

SYEDA-MAHMOOD, T., SHAH, G., AKKIRAJU, R., IVAN, A.-A.; AND GOODWIN, R. 2005. Searching
service repositories by combining semantic and ontological matching. In Third International
Conference on Web Services.

TocH, E., GAL, A., AND DoRrI, D. 2005. Automatically grounding semantically-enriched con-
ceptual models to concrete web services. In Proceedings of the International Conference on
Conceptual Modeling (ER’05). Lecture Notes in Computer Science, vol. 3716. 304-319.

TRAVERSO, P. AND PISTORE, M. 2004. Automated composition of semantic web services into
executable processes. In Proceedings of the International Semantic Web Conference 200/
(ISWC’04). Springer-Verlag, 380-394.

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 . Eran Toch et al.

VosseN, P. 1998. Eurowordnet: a Multilingual Database with Lexical Semantic Networks. Com-
putational Linguistics 25, 4.

WOHED, P., VAN DER AALST, W. M. P., DuMAS, M., AND TER HOFSTEDE, A. H. M. 2003. Analysis
of web services composition languages: The case of bpeldws. In Proceedings of the International
Conference on Conceptual Modeling (ER’03). Lecture Notes in Computer Science, vol. 2813.
Springer-Verlag, 200-215.

ACM Journal Name, Vol. V, No. N, Month 20YY.

