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Web service discovery is one of the main applications of semantic Web services, which extend

standard Web services with semantic annotations. Current discovery solutions were developed in

the context of automatic service composition. Thus, the “client” of the discovery procedure is an

automated computer program rather than a human, with little tolerance, if any, to inexact results.

However, in the real world, services which might be semantically distanced from each other are

glued together using manual coding. In this paper, we propose a new retrieval model for semantic

Web services, with the objective of simplifying service discovery for human users. The model

relies on simple and extensible keyword-based query language, and enables efficient retrieval of

approximate results, including approximate service compositions. Since representing all possible

compositions and all approximate concept references can result in an exponentially-sized index,

we investigate clustering methods to provide a scalable mechanism for service indexing. Results

of experiments, designed to evaluate our indexing and query methods, show that satisfactory

approximate search is feasible with efficient processing time.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: web-based

services

General Terms: Web service, semantic Web, service retrieval, ontology
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1. INTRODUCTION

Web services are distributed software components, accessed through the World

Wide Web. They are considered first class objects to be reused and combined in or-

der to implement business processes. Semantic description of Web services (known

as semantic Web services) was proposed in an attempt to resolve the heterogeneity

at the level of Web service specifications (including naming of parameters and a

description of the service behavior), and to enable automated discovery and com-

position of Web services. Using languages such as OWL-S [Ankolekar et al. 2001],

Web services are extended with an unambiguous description by relating properties

such as input and output parameters to common concepts, and by defining the

execution characteristics of the service. The concepts are defined in Web ontologies

[Bechhofer et al. 2004], which serve as the key mechanism to globally define and

reference concepts.

A major portion of the research involved in semantic Web services was designed

to be used in the context of automatic service composition (see [Medjahed et al.

2003; Cardoso and Sheth 2003]). In automatic composition, the user provides a

description of a service requirement, and a composition engine aims at satisfying the

requirements by planning a valid composition of services, resulting in an operational

application. Most composition engines use logic-based proof inferencing, relying

mainly on concept hierarchies as a means for providing approximate matching of

services [Paolucci et al. 2002; Klusch et al. 2005].

In real-world settings, the process of service composition may be of an ex-

ploratory nature rather than one of planning (in the AI sense). In order to generate

an executable composition, all the requirements assigned to the composer must be

fulfilled. It is often the case that only partial solutions to a composer requirements

exist, as Web services are created autonomously without any a-priori knowledge of

their intended use. Furthermore, composer requirements may not be well-defined.

Rather, they may be driven by the availability of Web services. For example, bud-

getary constraints may limit the scope of available services and cause the user to

compromise and use only affordable Web services. This type of usage requires com-

position and selection of partial services, which are not well suited for handling by

logic-based methods.

In an attempt to support exploratory composition, an engineering approach we
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advocate in this work calls for approximate service retrieval, followed by “gluing”

services together using some additional programming work. Such an approach has

the benefit of using existing services for increased reusability, by using existing ser-

vices, while limiting the number of required services, since rewriting the missing

code is always a an option. Naturally, a Web service composer is intuitively in-

terested in finding the most similar composition for her needs, thus reducing the

amount of needed code. Therefore, there is a need for ranking search results ac-

cording to the amount of required modifications for their utilization. Furthermore,

as exploratory composition requires several iterative sessions, the response time of

the query processor is crucial.

In this paper, we present an efficient method for semantic indexing and approx-

imate retrieval of Web services. The search engine relies on graph-based indexing

in which connected services can be approximately composed, while graph distance

represents service relevance. Taking advantage of semantic Web services, the query

interface translates a user’s query into a virtual semantic Web service, which, in

turn, is matched against indexed services. Semantic Web services are indexed in

a service-base that provides fast retrieval of individual services and approximate

composition of multiple services. The service-base is constructed using an algo-

rithm [Toch et al. 2005], which classifies service properties and associated ontology

concepts according to their relevance to service description. The algorithm pro-

vides service ranking that is based on the certainty of matching with a query. The

contributions of this research are threefold:

—At the conceptual level we define a new exploratory model for service composition,

which is aimed at human users, allowing them to query a service-base using a

simple and extensible query language in an interactive way.

—At the semantic level, we extend current service composition approaches to allow

approximate compositions, compositions that require additional manual effort.

An approximate composition is accompanied by a ranking mechanism, based on

the estimation of the required manual effort. Manual effort is estimated using

the partiality of the composition and its overall semantic distance.

—At the computational level, we present a sub-linear service retrieval algorithm

by using a two-level service index of concepts, services and compositions. We

use semantic clustering techniques in order to supply a compact representation
ACM Journal Name, Vol. V, No. N, Month 20YY.
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of the index.

To demonstrate and evaluate our results, we have developedOPOSSUM (Object-

PrOcess-SemanticS Unified Matching), a search engine for Web services which is

based on the methods presented in this paper, including approximation methods

based of semantic and procedural similarity. Experimental results, designed to eval-

uate our indexing and query methods, show that satisfactory approximate search

is feasible with efficient processing time.

The article is organized as follows. Section 2 presents a case-study which will

be used as a running example throughout the paper. Section 3 describes the data

model for service specification. Section 4 describes the syntax and semantics of the

query language. Indexing methods for efficient processing of queries are specified in

Section 5. Section 6 presents the setup and results of the experimental evaluation

of our work. Section 7 describes related work. Finally, Section 8 concludes the

research and provides directions for future work.

2. CASE STUDY: HEALTHCARE SERVICE REPOSITORY

As a motivating example for our work, consider the following scenario. An emer-

gency healthcare center uses a sizeable number of computer services, accessed as

Web services. Web services describe computer services using some standard, e.g.,

Web Service Description Language (WSDL) [Christensen et al. 2001], describing the

input and output parameters needed for the operation. For example, the service

find nearest medical center in Figure 1 receives as input GPS position and provides

as output medical center. These services may be part of the internal IT infrastruc-

ture, or located externally, in hospitals, health insurance companies, and the public

Web. In order to achieve various business tasks, a project or an IT manager requires

information regarding available service resources, such as the following:

—Linking services: Can a new service be assembled from existing services? For

example, can a patient be directed to the available hospital nearest to the pa-

tient’s address?

—Gluing services: If a new service cannot be implemented by a simple compo-

sition of existing services, then what further coding would be needed and where

would it be placed?

—Mining services: Which services are needed in a composition to start or end
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Semantic Web Services Search Engine

Query 
Interface

Result 
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Input: DateTime
Input: Treatment
Output: Availability Response
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Output: Medical Center
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Medical Center

Hospital

Ontology

Treatment

Services

Fig. 1. The Architecture of a Search Engine for Web Services

a given service, e.g., the hospital notification service is needed in a variety of

complex hospitalization services.

In this work we assume that Web services are enhanced semantically, using some

language of Semantic Web services (e.g., OWL-S [Ankolekar et al. 2001]). Such

an enhancement extends standard Web services, with the objective of providing

an unambiguous description of their capabilities and properties. The additional

information includes mapping of service attributes, such as input and output pa-

rameters, to concepts which are defined in a common ontology. For instance, in

Figure 1, an output parameter of the service operation find nearest medical cen-

ter refers to the medical center concept and an input parameter the service check

hospital availability refers to the hospital concept.

To illustrate the architecture of a search engine that can handle these queries,

consider Figure 1. The search engine contains four parts: a Crawler, an Index,

a query interface, and a result interface. A query interface allows the user to set

constraints on the desired services. The retrieved services are ranked and presented

to the user via the result interface. The crawler discovers, analyzes and indexes

semantic descriptions of Web services. The structure of the index allows the ques-

tions above to be answered, by indexing services according to the concepts they

relate to, and according to their relations with other services.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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3. SERVICE NETWORK MODEL

In this section we define a data model for querying Web services. Section 3.1 we pro-

vide a narrow definition of semantic Web services, to fit our needs of approximate

search. For broader definitions of this concept, the interested reader is referred to

[Ankolekar et al. 2001]. The model is based on a directed graph, in which nodes rep-

resent operations and edges represent procedural dependencies between operations.

Dependencies can be either inferred, by analyzing the relations between operation

properties, or empirically derived from wider-context sources, such as OWL-S spec-

ifications. Context classes will be presented in Section 3.2. Section 3.3 defines rules

for inferring dependencies, and Section 3.4 describes methods of deriving depen-

dencies from OWL-S models. Finally, Section 3.5 describes our implementation of

aligning heterogeneous ontologies.

3.1 Basic Definitions

We define a semantic operation to be an atomic component of a Web service,

performing an atomic task, which the service description does not further divide.

Our notion of a semantic operation is a subset of an OWL-S [Ankolekar et al.

2001] atomic or simple process. Each operation receives an optional set of input

messages and delivers an optional set of output messages. In order to answer queries

for service represented in different levels of expressibility, our proposed definition

of an operation does not include OWL-S’s effects (logical expressions that define

the results of operations) and preconditions. These are described using outputs and

inputs parameters, respectively.

Definition 1 Semantic Operation. A semantic operation is a quadruple OP =

〈In,Out, l, γC〉, such that

—In is a set of input parameters;

—Out is a set of output parameters;

—l : In ∪ Out ∪ OP → O is a labeling function that associates each input and

output parameter, as well as the operation, with a concept taken from an ontology

(O).

—γC : l→ [0, 1] assigns a value that signifies the certainty of the concept mapping.
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The semantic operation definition is based on an ontology, denoted by O, to

which input parameters, output parameters and the operation itself refer.1 We

use the Web Ontology Language (OWL) [Bechhofer et al. 2004] as an ontology

language of choice, mainly due to its solid theoretical foundations and the wide

variety of tools, ontologies and applications associated with OWL. OWL comes in

three flavors, each of them represent a level of language expressibility: OWL-Lite,

OWL-DL, and OWL-Full. We use the simplest form, OWL-Lite, as it contains

sufficient constructs for our task (such as class hierarchies), while being relatively

simple and easy to use.

A service network is a graph of operations, where nodes signify operations and

edges represent relations between operations. Each relation is associated with a

certainty value, allowing relaxed relations to be introduced into the model.

Definition 2 Service Network. A service network is a connected graph SN =

〈OPER, D, c, t〉, such that

—OPER = {op1, op2, . . . , opn} is a finite set of operations.

—D : O ×O is a finite set of dependencies - directed relations indicating relations

between operations.

—c : D → {flow, empirical}, assigning a type category to each of the dependencies.

—γD : D → [0, 1], assigning a certainty value to each dependency.

A service network is depicted in Figure 2. As noted above, the directed arrows

represent dependencies between operations. Input and output message parame-

ters (respectively notated by the in and out labels) are mapped to ontological

concepts, described in Figure 3. The directed arrows form dependencies, which

represent procedural links between operations, connecting separate operations into

service networks. Dependencies can be statically inferred by recognizing similarities

between operator parameters (flow dependencies), or by learning about relations

between operations from external sources (empirical dependencies). The first type

is discussed in Section 3.3 and the second type in Section 3.4.

1In order to simplify the model, we assume that O is a single ontology, combined of the original

ontologies that were used to annotate the semantic Web services. Not all of the concepts in O are

connected to each other. Section 3.5 explains the construction process of O.
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empirical

empirical

empirical

Fig. 2. An Example of Operations and Dependencies

Finally, we denote the union of all service networks by BASE . It serves as a

service-base - a repository of services, and has the form of a graph of operations

(nodes) and dependencies (edges). Note that service networks are connected graphs,

while the service base may not be connected.

3.2 Context Classes

In this section we provide a general method for calculating semantic correspondence

between concepts, based on the structure of the ontology and the semantic relations

between concepts. Our proposed method for analyzing relations between concepts

is based on the notion of context classes, which form groups of concepts that allow

the investigation of relations between them. We next discuss the different concept

classes, followed by a definition of semantic correspondence. We shall illustrate the

discussion with the use of Figure 3, which depicts a simple healthcare ontology.

For any given concept, we define a set of context classes, each of which defines a

subset of concepts in O, according to their relation to the concept. Given a query

leaf node associated with a concept c, we define a set of concepts, Exact(c), as c itself
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 3. An example of an ontology for the health-care domain

and concepts which are equivalent to c. The Exact class may contain concepts that

have identical semantic meaning. OWL provides relations such as equivalentClass to

define concept equivalence. As an example, consider the concept Hospital in Figure

3. As there are no equivalent classes in this ontology, Exact(Hospital) = {Hospital}.
The other context classes contain concepts with related meaning. For each concept

c ∈ O, we define the following set of classes:

General. Concepts that supply higher-level context; i.e., belonging to the tran-

sitive closure of super classes of c. For instance, the Medical Center, Health Orga-

nization, and Organization concepts are super-classes of the Hospital concept and

therefore fall under the category of General with respect to Hospital.

Specific. Concepts that provide a more specific context; i.e., concepts that belong
ACM Journal Name, Vol. V, No. N, Month 20YY.
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to the transitive closure of sub-concepts of c. Regional Hospital belongs to the

Specific class of Hospital.

Properties. Concepts which are Datatype Properties of c, or properties of Gen-

eral(c). Object Properties, which identify general relations in OWL, are not used for

identification at this stage. We further distinguish properties into those that can

serve for identifying concepts. For instance, the property PersonName identifies a

person (to some degree) while the property age does not identify a Person. Three

criteria were used in order to distinguish between identifying and non-identifying

properties:

(1) Functional properties: properties for which each concept is associated with

a single property value.

(2) Inverse-functional properties: properties for which each property value is

associated with a single concept. Naturally, properties which are functional and

inverse-functional are considered stronger candidates for identifying properties.

(3) Property naming heuristics: we had recognized that some naming conven-

tions for properties can serve for identification purpose, e.g., physician ID

and person name.

InvertProperties. This class holds all concepts of which c is a property, or a prop-

erty of their Specific concepts. For instance, the concepts person and physician are

in the InvertProperties class of physician ID.

Instances. Concepts that are instances of c. For example, the concept Mount

Sinai is in the Instances class of regional hospital and hospital. In OWL, elements

of finite enumerations, represented by the oneOf construct, can also indicate an

instance.

Classifiers. Given an instance c, its class holds the concepts which classify c. For

example, regional hospital is a member of Classifiers(Mount Sinai).

Siblings. Concepts that have a mutual parent concept (a general concept or a

classifier). For example, patient and physician are siblings, as person is a mutual

general concept. We define ĉ as the mutual parent, and the set of sibling concepts

as:

Siblings(c) = {c′ ∈ O | ∃ ĉ , ĉ ∈ General(c) ∧ ĉ ∈ General(c′)}

Unrelated. This set holds all the concepts that do not belong to any other context
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Semantic Approach to Approximate Service Retrieval · 11

class, i.e., no connection between c and c′ was found. Formally:

Unrelated(c) = {c′ ∈ O | c′ /∈ Specific(c) ∪ General(c) ∪ . . . ∪ Siblings(c)}

The semantic correspondence between two concepts is based on the semantic

distance between them. We based the definition of the semantic distance function

on a study by Bernstein et al. [Bernstein et al. 2005], which evaluated different

similarity measures in ontologies. While their findings suggest that no single se-

mantic measure is dominant, they show that a strong relation exists between the

type of the semantic measure and the structure of the ontology. Our semantic

measure is founded on a combination of two approaches taken from the study by

Bernstein et al.: information-theoretic approach and ontology distance approach.

The approaches were chosen because they are simple to implement and are com-

patible with our type of ontologies, which feature clear hierarchy. We augmented

the measures by (1) referring to properties of concepts in addition to the concepts

themselves, and (2) handling instances.

Given an anchor concept, c ∈ O, and some arbitrary concept c′ ∈ O, we define

the semantic correspondence function d(c, c′) to be:

d(c, c′) =



1 , c′ ∈ Exact(c)
1

2logαn·logβ(1+δ) , c′ ∈ General(c) ∪ ClassesOf(c) ∪ Properties(c)
1

2n·logβ1+δ , c′ ∈ Specific(c) ∪ Instances(c) ∪ InvertProperties(c)
1

2logα(n1+n2)·logβ(1+δ) , c′ ∈ Siblings(c)

0 , c′ ∈ Unrelated(c)

Where n is the length of the shortest path between c and c′ and δ is the difference

between the average depth of the ontology and the depth of the upper concept. The

log bases, α and β, are used as parameters in order to set the magnitude of the

descent of the function. In the implementation of OPOSSUM, we had set both

parameters to 4. For each type of context class, the function d(c, c′) is defined

differently:

(1) In the first case, the two concepts are equal or equivalent, and their similarity

is set to 1, which represents the highest similarity possible.

(2) In the second case, c′ has a broader semantics than c. The distance between

the two concepts is calculated according to a descending function, which de-

pends on the distance between the two concepts in the hierarchy. log(1 + δ) is
ACM Journal Name, Vol. V, No. N, Month 20YY.
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added to reflect the notion that low-level classes are closer to each other than

higher-level classes [Bernstein et al. 2005]. For example, the difference between

concepts organization and health organization is more substantial than the dif-

ference between the concepts hospital and medical center. Because of multiple

inheritance, a concept may have several “depth” values. In this case, we choose

the maximum value. As δ can be equal to 0 (in the likely case that the concept

is a leaf node in the ontology), 1 is added to the log calculation.

(3) In the third case, c′ has a narrower semantics than c. As a result, some prop-

erties of the concept c′ may not have corresponding properties. For example

medical center ∈ Specific(health organization), therefore medical center has all

the properties of health organization but the opposite is not true, health or-

ganization lacks properties such as physician. Therefore, the correspondence

function has a higher descending ratio than before.

(4) In the fourth case, c and c′ are not directly connected in the hierarchy, but they

have a common parent, denoted as ĉ. In this case, the function is the same

as before, but the distance is set to be the sum of n1 and n2, reflecting the

distance between c and c′ to ĉ.

(5) In the last case, the two concepts are unrelated, so their similarity is set to 0.

3.3 Inferring Dependencies

In order to retrieve compositions that contain operations from different sources and

origins, dependencies between operations are to be inferred, as prior knowledge of

existing relations is incomplete. The following section describes a set of rules for

inferring dependencies, based on the notion of context classes.

Two operations q and p are flow-dependent, denoted as q
f→ p if the output of

q can be used as an input of p. In other words, all inputs of p must be satisfied

by some output of q. Formally, q
f→ p ⇐⇒ ∀Ip ,∃ Oq : Ip = Oq. Our definition

of flow dependency resembles horizontal dependency, described in [Medjahed and

Bouguettaya 2005]. This dependency can be relaxed in several ways:

(1) Parameter relaxation: We relax the original definition of flow-dependency

by allowing a matching of a subset of the parameters. Rather than requiring

all input parameters to be matched with compatible output parameters, only

a subset of input parameters is required to be matched. Therefore, ∃Ip ,∃Oq :
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Ip = Oq. For example, in Figure 2, the operation inform hospital receives

three parameters, while flow dependency can be derived on the basis of a single

parameter (i.e., hospital).

(2) Concept hierarchy relaxation: Rather than requiring full compatibility

from p’s concepts, we relax the dependency by accepting output parameters

which are subsumed by the input parameters or vice versa. ∀Ip ,∃Oq : Oq ∈
General(Ip) ∨ Ip ∈ General(Oq). For example, in Figure 2, the operation find

nearest medical center can flow into inform hospital because hospital is sub-

sumed by medical center.

(3) Instance relaxation: This relaxation is similar to the previous one, but now

the dependency is satisfied with instances of q, such that ∀Ip ,∃Oq : Oq ∈
Instances(Ip). For example, an operation that require a hospital concept can

flow from an operation that outputs Mount Sinai hospital, a specific instance

of the Hospital concept.

(4) Property relaxation: The original requirement is relaxed by accepting con-

cepts that are properties of q’s output parameters. This relaxation is limited

to functional and inverse-functional properties only. Formally: ∀Ip ,∃Oq : Ip ∈
Properties(Oq), where the property is a functional and inverse functional object

property relation (such that for each instance of Ip there is a single instance of

Oq and vice-versa).

3.4 Empirical Dependencies

Empirical dependencies are used when prior knowledge of relations between oper-

ations exist. However, the transformation between external service models (such

as OWL-S) to our service base is not straightforward. In this section we define

transformation rules, in a semi-formal manner. OWL-S serves as a representative

example of Web service specification language. It has been shown that WSMO

[Lara et al. 2004] and BPEL4WS [Wohed et al. 2003] have adequate transforma-

tions to OWL-S, and therefore the transformation we present is applicable for these

languages as well. OWL-S was chosen as the primary language of reference, for the

considerable amount of research and tools associated with it.

The transformation starts with the atomic process - the basic component of

the OWL-S process model. Each atomic process p, which belongs to an OWL-
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 4. Transformation Patterns for OWL-S Control Constructs

S model is transformed to an operation OP ∈ BASE . The input and output

properties of the atomic process are mapped to the input and output concepts of

OP . Preconditions and effects of OP are abstracted and mapped to OP ’s input and

output concepts respectively. Composite processes are represented as dependencies

between operations.

OWL-S supports control constructs, such as conditional execution and paral-

lel execution, in order to coordinate the execution of groups of operations. For

instance, in OWL-S, the execution of an atomic process can be dependent on a

specific result of another one. However, these constructs are not supported by the

service model, as they provide over-specification which is not needed by the search

engine. Therefore, complex control constructs are transformed to simple dependen-

cies between operations. In this process, some information is lost. All conditional

control constructs, such as if-then-else and repeat-until, are transformed to empirical

dependencies between participating processes, without the actual condition logic.

The following list specify transformation patterns for OWL-S control constructs. A

visual representation of the patterns is depicted in Figure 4.

(1) sequence: The control construct is mapped to a set of empirical dependencies

between the operations, ordered according to the original order of the atomic

processes.

(2) if-then-else: Empirical dependencies are added between the operation that

describes the condition (the if operation) to the conditioned operations: the

then and the else.

(3) repeat-until: An empirical dependency will be added from the conditioned

operation (repeat) to the condition operation (until) and vice versa. Note

that this construct generate a cycle of dependencies, which is resolved in the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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construction of the index.

(4) split: For each split construct, a special operation, OP(source) will be added

to the service network, representing the beginning of the operation split. An

empirical dependency will be added from OP(source) to each of the operations

belonging to the split.

(5) split+join: Similarly to the transformation pattern for split, an OP(source)

operation will be added, as well as a synchronization operation OP(dest). Em-

pirical dependencies will be added to OP(dest) from all operations taking part

in the construct (excluding OP(source)).

3.5 Aligning Ontologies

The service model is based on the assumption that all concepts belong to a single

ontology (O). However, the original ontologies, to which the services are related,

originate from different and heterogeneous sources. These ontologies may contain

concepts with similar meaning which differ in labeling, content or language. In order

to increase the recall of the retrieval process, the original ontologies are merged

to construct O. The process of ontology merging takes as input a set of source

ontologies and returns a merged ontology, containing a union of the elements of the

ontologies, such that equivalent concepts are merged.

The first step in merging ontologies is to map the relations between their concepts.

We have adopted the approach of Euzenat and Valtchev [Euzenat and Valtchev

2004], which uses a combination of matching techniques in order to map concepts.

These techniques include matching by string-based terminology, lexicon-based ter-

minology, data-type comparison, properties comparison and relation comparison.

The weighted contributions of all the techniques are combined to provide the fi-

nal matching. We have chosen this approach as it designed for OWL-Lite and

is fully automatic, making it suitable for processing large amounts of ontological

data. After the ontologies were matched, they are merged by combining equivalent

concepts, including their properties and relations. Foreign concepts, without any

correspondence to other concepts, are copied to the merged ontology.

Ontology merging can also be used to bridge multilingual ontologies, which de-

fine the same concepts in different languages. As the approach we adopt for on-

tology matching supports lexicon-based matching, multi-lingual lexicons, such as
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EuroWordNet [Vossen 1998], can be used to enable multilingualism in the merged

ontology. While OPOSSUM supports English ontologies in its current version, we

plan to augment it with multilingual ontologies in future versions.

4. QUERY INTERFACE, SYNTAX AND SEMANTICS

In this section we describe the query interface of OPOSSUM and the underlying

query language. Section 4.1 describes the user interaction involved in query com-

position. Section 4.2 describes the syntax underlying the query language. Section

4.3 defines the semantics of basic query operators, while Section 4.4 defines the

semantics of complex query expressions. Finally, Section 4.5 describes an extension

mechanism for the query language.

4.1 Query Interface Overview

Users communicate with the OPOSSUM search engine either through the basic

query interface or through the advanced query interface. The two interfaces share

the same query language, but employ different levels of formality and expressive-

ness. Figure 5 displays a screenshot of the two interfaces. The basic query interface

requires no more than a set of keywords. The user does not need to specify op-

erators, which are added automatically using predefined settings. In contrast, the

advanced query interface allows the user to specify exactly the types of service

properties to query. It also allows the user to use logical operators in order to get

more general or more specific results.

Both query interfaces generate a declarative specification of a virtual semantic

Web service. It is declarative in the sense that: (1) it does not enforce an imple-

mentation on the query results, and (2) a query can be matched by compositions of

operations, rather than by a single operation. The query is relaxed in that it con-

tains keywords instead of formal concepts, and it may contain disjunctions and/or

approximate conjunctions.

User queries are transformed into formal queries (described in Section 4.2) by

automatically mapping keywords to concepts. In order to formalize a simple query,

“address hospital”, into a query expression, each of the keywords is mapped to a

concept term by using content matching techniques.2 If more than one concept is

2The content matching techniques are beyond the scope of this article. The interested reader is

referred to [Gal et al. 2005] for an elaborated discussion.
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Fig. 5. Screenshots of OPOSSUM’s simple (top) and advanced (bottom) Query

Interface

matched with the keyword, the keyword with the highest matching score is used in

the query evaluation. The user is also alerted, and can choose between the proposed

alternative concept terms. Queries entered via the simple interface undergo two

additional processing steps:

(1) Adding connectors: Query terms are connected automatically using a con-

junctive connector. Applying this stage on an example query “address hospital”

yields “address ∧ hospital”.
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(2) Annotating terms: Concept terms are annotated with a property category,

defining which property will be matched with the term. Available categories

are input, output and operation. These categories are aligned with the term

labeling function (l), as defined in Section 3.1. The search engine chooses an

initial default category and lets the user change these defaults after the query

was evaluated.

In order to annotate the terms, a prefetching process is carried out. The index

is queried regarding the existence of concepts which are either input, output or

operation. Afterward, the query is expanded with the disjunction of each category

with which at least one concept is related. For example, applying the annotation

on “address ∧ hospital” results in “input:address ∧ output:hospital”.

4.2 Abstract Query Syntax

The abstract query presented in this section forms a mathematical abstraction of

queries presented in the previous section.

Definition 3 Abstract Query. An abstract query is a quadruple Q = 〈T, l, pc, o〉,
where

—T is a rooted, directed, binary tree;

—l : N → O is a term labeling function that associates each leaf node in T with

a concept c ∈ O.

—pc : N → {in, out, op} is a property category function that associates each leaf

node in T with a categorization of its property, which can be input, output, or

operation.

—o : N → {∧,∨} is an operator function that associates each non-leaf node with

conjunction or disjunction connector, respectively.

Each leaf node nQl
is annotated with a property category (i.e., input, output,

operation) and a concept. A non-leaf node nQ is the application of a boolean

connector over its children. If o(nQ) = ∧, then nQ is an and-node, and if o(nQ) = ∨,

then nQ is an or-node. Figure 6 depicts an abstract query, requesting services that

have an input parameter aligning either with an address concept or with a GPS

position concept, and should also have a hospital output parameter.
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(out,Hospital)

(in,GPS Position)(in,Address)

Fig. 6. An abstract query

4.3 Query Matching Semantics

In this section we provide an overview of the query semantics. Adopting a bottom-

up approach, the next two sections start with a detailed element description and

continue with a complete structure of the query.

The result of the query evaluation is a set of virtual services. A virtual service, V ,

is a sequence of one or more operations, ranked according to their order of execution,

such that V = 〈op1, op2, . . . opn〉. Note that a virtual service may contain opera-

tions that originate from diverse sources. Each virtual service is associated with

a matching certainty, expressing the certainty in which the virtual service answers

the query. The notion of matching certainty is embodied by the µ-satisfiability

relation. Let V be a virtual service, and let Q be a query. The µ-satisfiability

relation, denoted as V |=µ Q, indicates that V satisfies the requirements of Q with

a certainty of µ.

We define the levels of matching in a recursive manner. The basic unit of match-

ing is related to a single operation, which is matched with a query leaf node (nQl
).

In this case, the matching certainty is determined according to the semantic corre-

spondence between the node’s concept and the operation’s concepts. The matching

certainty of virtual services is computed based on the certainty of each of the op-

erations and the certainty of the relation(s) between them.

In order to formally define the µ-satisfiability of an operation, we first define

semantic correspondence. The function µ : O × O → [0, 1] defines the semantic

correspondence that maps query leaf node concept (c) and operation parameter
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concept (c′) to a value between 0 and 1, where 0 implies no compatibility and 1

implies full compatibility. We can now define the operation satisfiability of a query

leaf node as follows.

Definition 4 Operation Satisfiability. An operation OP satisfies nQl
if

the following jointly applies:

(1 ) OP contains a parameter p with the same property category of the leaf query

node, pc(nQl
).

(2 ) µ(l(nQl
), l(p)) > µ̂ - the semantic correspondence between the two concepts is

higher than a threshold µ̂.

The method for calculating µ, the semantic correspondence function, is identical

to the context-classes based method described in Section 3.2.

4.4 Complex Queries Semantics

In order to define the semantics of complex queries, the notion of µ-satisfiability is

broadened from operation matching to the matching of complete queries, including

conjunctive and disjunctive operators. We say that V |=µ Q, when a query can be

satisfied by a virtual service, in a given µ level of certainty.

In order to define the semantics of disjunction, the query is transformed into a

disjunctive normal form. For instance, the example query (depicted in Figure 6),

which has the original form of ((in,Address)∨(in,GPSPosition))∧(out, Hospital))

will be transformed into the following form:

((in,Address) ∧ (out, Hospital))

∨

((in,GPSPosition) ∧ (out, Hospital))

A virtual service satisfies an or-node if it satisfies one of its child nodes. Let nQ1

and nQ2 be the child nodes of the or-node, nQ. The µ-satisfiability specification of

or-node is defined as follows:

Definition 5 Disjunction Matching. V |=µ (nQ1 ∨ nQ2) ⇔ V |=µ nQ1 ∨
V |=µ nQ2 . The certainty is defined as µ = max {µ1, µ2}. The certainty values of

matching nQ1 and nQ2 are µ1 and µ2, respectively.

While matching an or-node is straightforward, matching an and-node is more
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complex. An and-node can be satisfied by an ordered pair of virtual services. The

basic assumptions underlying the semantics of and-nodes are the following:

—In order to allow relaxed service retrieval, an and-node can be satisfied by a com-

position of operations. For instance, the query (in,GPSPosition)∧(out, Hospital)

might be satisfied by a single service (find nearest medical center) or by a com-

position of two services (contact emergency and find nearest medical center).

—If two services satisfy an and-node with equal certainty (the ceteris paribus -

“all other things being equal” - of our model), then the shortest composition of

operations will be chosen. In the context of the previous example, the service find

nearest medical center will be chosen, as its composition length is 0. The rationale

of this assumption is that any operation added to an existing composition reduced

the overall certainty of the composition.

—The order of the elements in the query is important. If an and-node is satisfied by

a composition, the left child of the and-node (In, GPSPosition) should precede

the right child (Out,Hospital). As users search for procedural artifacts, we

assume that there is a direct link between the location of elements within the

query and the location of operations within the procedure.

In conjunction matching, the two query child nodes form a simple pattern, start-

ing from the leftmost node, and ending with the rightmost node. The pattern is

matched against the service network, resulting in a correspondence value that de-

pends on the correspondence of the nodes and the certainty of the composition.

The formal µ-satisfiability specification of and-node is as follows:

Definition 6 Conjunction Matching. We say that V |=µ (nQ1 ∧nQ2) if the

following conditions hold:

(1 ) V contains two sub services, V1 and V2, such that V1 |=µ nQ1 ∧ V2 |=µ nQ2 ,

and BASE contains a path which starts with V1 and ends with V2. Since the

query was transformed into disjunctive normal form, any node can be either an

and-node or a leaf node.

(a) If nQi
is a leaf node Vi holds a single operation, and path matching is based

on the operation as a starting or ending point.

(b) If nQi is an and-node Vi is a sequence of operations. The path matching

starts with the first operation of the sequence (if nQi
is the left node), or
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the last operation of the sequence (if nQi
is a right node).

(2 ) The overall composition certainty of the path is higher than a given threshold.

The composition certainty reflects the certainty of the dependencies between

operations. Recall from Section 3.1 that each dependency is associated with a cer-

tainty value, denoted as γD. We define path(op1, op2) as the set of edges belonging

to the shortest path between two operations, op1 and op2. The composition cer-

tainty function γcc is calculated as the product of edge certainty of the path, as is

common in the literature [Do and Rahm 2002]:

γcc(l,k) =
∏

(i,j)∈path(op1,op2)

γD(i,j)

Finally, γcc is bounded by a threshold, γ̂cc:

γcc =

 γcc , γcc > γ̂cc

0 , γcc ≤ γ̂cc

Note that Definition 6 accepts situations in which the and-node is satisfied with

a single operation, i.e., op1 = op2, and the path has a length of 0. Moreover,

it is likely that single-operation results will receive high certainty value, as their

composition certainty is maximal.

In OPOSSUM, partial results are allowed to be retrieved by relaxing condition

(1) of Definition 6. We redefine |=µ to accept partial services that do not necessarily

satisfy the full conjunctive chain. We define V p ⊂ V as a partial virtual services,

which is contained in V .

Definition 7 Partial Conjunction Matching. We say that V p |=µ (nQ1 ∧
nQ2) if the following conditions hold:

(1 ) The partial service satisfies at least one of the child nodes: V p |=µ nQ1∨V p |=µ

nQ2 .

(2 ) The partial certainty is higher than the conjunction threshold.

The partial certainty takes into account the proportion of the partial service,

with respect to the complete service, and is defines as:

µ(nQ1 ∧ nQ2 , V
p) =

|V p|
|V |

min {µ(nQ1 , V
p), µ(nQ2 , V

p)}

The certainty function ranks the conjunction subsets according to their size, giv-

ing higher score to larger subsets. The highest certainty will be given to V itself -
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the service that answers the complete intersection. The remaining subsets will re-

ceive monotonically non-increasing scores. To demonstrate the relaxed conjunction

semantics, consider a simple query (in,Address) ∧ (out, Hospital). Let us evalu-

ate the query against the subset of BASE depicted in Figure 2. The leaf node

(in,Address) is matched with a single operation, Find Position, with a certainty

score of 1. The leaf node (out, Hospital) is matched with a single operation, find

nearest medical center, with a certainty score of 0.85 (due to the inexact matching

of emergency medical center with hospital). The relaxed conjunction between the

nodes is the set:

(find position, find nearest medical center), (find position),

(find nearest medical center)

The first virtual service is a path starting with find position and ending with find

nearest medical center. The path has an initial certainty score of 0.93, based on

the composition certainty. The approximate conjunction recalculates the score,

assigning 0.93 to the first virtual service, 0.5 to the second virtual service and 0.43

to the third service.

4.5 Query Language Extensions

We now present an extension mechanism for the query language. Its aim is to allow

users to write advanced queries without compromising the simple syntax of the

query language. There are two types of syntax extensions and property extensions.

Syntax extensions extend the query language by adding syntactic sugar. In or-

der to demonstrate our approach, we define two syntax extensions: the optional

expression and the any expression. Unlike the default configuration, which man-

dates that all the query parts be retrieved, the optional extension allows users to

define optional query phrases. For example, in the query “address hospital op-

tional(availability)”, the last token is optional, and therefore, results which contain

the availability property will be assigned the same ranking as results which do not

contain it.

The implementation of the extension is simple. It is based on rewriting the

query using disjunctions in the preprocessing phase. Each query of the type “x ∧
optional(y)”, will be transformed to a query of the type “(x ∧ y) ∨ x”. Thus, results

satisfying x and results satisfying both x and y will be ranked equally. In order
ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · Eran Toch et al.

to avoid illegal queries, queries which contain solely optional expressions, such as

“optional(y)”, are not allowed.

The any expression allows users to define sets of options. The user can specify

different options for a single property. For example, if the user wish to select services

with an output which is either hospital, clinic or doctor, the following query pattern

can be used: “address any(hospital,clinic,doctor)”.

Property extensions allow definitions of new property categories for concepts.

The basic definitions of the query language include three types: in (for input), out

(for output) and op (for a concept which is assigned with the operations). However,

services may have more specific properties that can be used in retrieval. Examples

for interesting properties include the following:

—Price: The price of using the operation.

—Availability: The times in which the service is available.

—Provider: The organization which provides the service.

—Location: The geographical location in which the service is carried out.

—Language: The interface language used by the service (e.g. English, Hebrew,

Arabic).

Extension properties are defined by the users, simply by assigning a label to a

specific property of all, or some, of the semantic Web services. Thereafter, the

user can use this name for restricting the results according to a certain value of the

property, writing queries such as “flight provider:singapore location:new york”. The

query evaluator maps the value following the property name to a value assigned

with the original concept, before continuing with the retrieval process.

5. INDEXING AND QUERY EVALUATION

In this section, we discuss the indexing method for the service model. The objective

of the index is to enable efficient evaluation of queries with respect to processing

time and storage space. The index is composed of two data structures: Iconcepts

and Iservices. Iconcepts is a hash-based index that maps concepts to their associated

operations, allowing efficient evaluation of query concepts. Iservices is a graph-based

index that represents the structural summary of the service network, and is used to

answer queries that require several atomic operations. This section is organized as

follows. Section 5.1 discusses the structure of the Iconcepts index and describes its
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Fig. 7. An example of Iconcepts - the concepts index

construction process through concept expansion. Section 5.2 describes the structure

and construction process of Iservices. Section 5.3 describes and analyzes the query

evaluation algorithm, operating on the index.

5.1 Concept Index

Iconcepts is based on a hash table, where each entry represents a concept, pointing

to a node in Iservices. Formally, Iconcepts immerse a mapping function, defined as:

Iconcepts : C × {in, out, op} → GN

C is defined as a set of concepts, {in, out, op} is a property type (for input / output

/ operation), GN is a set of operations index keys in Iservices. Each mapping is

associated with a certainty function, γI(Iconcepts) → [0, 1], reflecting the semantic

affinity between the concept and the concepts of the operation. Figure 7 represents

an instance of Iconcepts, which partially reflects the healthcare services running

example (Figure 2). Concepts that serve as keys of Iconcepts are derived from the

service model. For instance, GPS position is associated with an input parameter

of the find nearest medical center operation, with a certainty of γI = 1. hospital is

associated with an output parameter of find nearest medical center, with γI = 0.5.

In this case, γI reflects a lower certainty, originating from the distance between the

hospital concept and the medical center concept - the actual concept related to find

nearest medical center.

Iconcepts is expanded with additional concepts that convey a broader meaning, in

order to retrieve approximate services. Expanding the index is carried out through

the index construction process. Constructing Iconcepts is a multi-phase process, in
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Algorithm 1 Operation indexing in Iconcepts

Input: OPi, O
Output: Iconcepts(OPi) ⊆ Iconcepts

Iconcepts(OPi)← φ

for all param ∈ OPi do

c = l(param)

Iconcepts ∪ (c, role (param))→ Iservices.OPi

γI(→) = 1

for all c′ ∈ General(c) ∪ Specific(c)... do

γ′ = d(c, c′)

if γ′ > γ̂I then

Iconcepts ∪ (c′, role(param))→ Iservices.OPi

γI(→) = γ′

end if

end for

end for

which a basic set of concepts is expanded with concepts that increase the retrieval

scope of the index. Context classes are used in order to construct the key set

of Iconcepts, and to assign operations associated with each concept. Algorithm

1 describes the indexing process of an operation. The algorithm traverses all the

parameters of an operation, adding the parameter’s concept to the index. Following

that, the algorithm adds index entries for concepts whose mapping certainty is

higher than a given threshold.

5.2 Compact Service Index

Iservices represents the structural summary of the service network, using a directed

graph. Given two operations, the objective of Iservices is to efficiently answer

whether a composite service, starting with the first operation and ending with

the second, can be constructed, and to calculate the certainty of the composition.

Hypothetically, this task can be performed using the service base itself, by exhaus-

tively searching for all possible compositions on the operation graph. Furthermore,

indexing each path will result in an exponential number of index entries. Therefore,
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Fig. 8. An example of Iservices - the service network index

our main design goal was to design an index with minimal number of nodes and

edges that would enable efficient traversal of the service network without compro-

mising the precision of the results. The design of Iservices is based on principles

taken from semantic routing in peer-to-peer networks. Due to the limited scope of

the paper, we refrain from presenting the techniques in details. Rather, we present

the main ideas via an example.

[Schmidt and Parashar 2004] and [Schlosser et al. 2002] proposed the use of

semantic clustering to classify peer nodes to concepts and provide efficient traversal

in peer-to-peer networks. In both methods the underlying ontology is segmented

according to a multi-dimensional hierarchy, and each concept is assigned with a

multi-level identifier that enables an efficient routing from source to destination

concepts.

In Iservices, operations are associated with multidimensional clusters, based on

a set of clusters of their corresponding concepts. Figure 8 visualizes the opera-

tions, framed by the relevant clusters. Concept clusters are obtained by using the

algorithm described in [Grau et al. 2005] for hierarchical clustering of OWL-Lite

ontologies. All operations within a cluster have concepts with close affinity to each
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other. For example, the operations inform hospital and contact emergency are lo-

cated within the Emergency Operations cluster as they share similar concepts and

have interrelated dependencies. Clusters are organized according to a hierarchy,

where 0-level clusters represent atomic clusters (e.g. Emergency Operations), 1-level

clusters contain 0-level clusters (e.g. medical operations) and so fourth.3

The number of edges in the index is reduced by replacing dependencies between

operations with dependencies between respective clusters. For example, the depen-

dencies between inform hospital and check hospital availability, and between con-

tact emergency and check hospital availability are replaced by a single dependency

between the emergency operations cluster and the Hospital Procedures Operations

cluster. Dependencies exist only between clusters of the same level. For instance,

if a dependency existed in BASE between inform hospital and authorize treatment

plan, there will be no direct edge between the clusters, as emergency operations is

a level-0 cluster, while insurance operations is a level-1 cluster. When evaluating a

path that crosses multi-level clusters, higher level edges will be evaluated if lower

ones do not satisfy the query. Thus, the search space is reduced. This method is

efficient mainly due to the nature of the service network. Empirical results show

that the service network is a sparse graph, and that most connections are between

operations with similar semantics.

As operations contain several parameters, there is no guarantee that all of the

parameters’ concepts will belong to the same cluster. Therefore, operations are

organized into multi-dimensional clusters, which reflect their different semantic

affinities. For instance, the operation contact emergency has parameters involv-

ing geographical concepts and medical concepts, and is located in the Geographical

Operations and the Emergency Operations clusters simultaneously. A query that

requires a service that takes an address and returns hospital availability, will be

answered by a path of operations that starts in the Geographical Operations clus-

ter, goes through the Emergency Operations cluster (as there are mutual operations

belonging to the two clusters), and ends at the Hospital Procedures Operations clus-

ter. Multi-dimensional clustering is feasible as the number of parameters associated

with an operation is bounded, and low. Empirical results show that over 90% of

the services in our benchmark have 4 or less parameters.

3Clusters are nameless. We have named clusters for the sake of clarity.
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5.3 Query Evaluation

In this section, we present an algorithm for query evaluation, based on the index

discussed above. The algorithm is described in Algorithm 2. Given a query, Q,

and the index, the algorithm returns a set of virtual services,
{
V(1), V(2), ..., V(k)

}
,

ranked according to their certainty. The algorithm starts with transforming the

query into disjunctive normal form, resulting in a set of query parts, C. If a query

part includes a single query node, then the results contains operations from Iconcepts.

The results are filtered by the Prune function, which removes services with lower

certainty value than the threshold. If the query part includes more than a single

node, then it contains a conjunction. The algorithm uses the Route function to find

paths between origin operations (associated with the left-hand query node) and

destination operations (associated with the right-hand query node). The functions

start and end The function Rank ranks the virtual services according to their

certainty.

We denote by |C| the number of disjunctions in the query. |OP | represents the

number of operations associated in Iconcepts with a given query node (with certainty

higher than the threshold). |V| is the number of results, N is the number of peers

(operations) and b is the hypercube base - the number of dimensions needed to

segment the ontology. The query evaluation algorithm complexity is given by:

O(|C| · (|OP |2 · 1
2

logb N) + |V| log |V|)

The main algorithm loop depends on the number of disjunctions, and runs in |∨ |
steps. The routing function iterates over the cartesian product of the operations

returned by Iconcepts. The complexity of Route is calculated in [Schlosser et al. 2002]

to be 1
2 logb N , Finally, the complexity of the ranking of the results (|V| log |V|) is

added to the general complexity.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate our approach in three ways: a) by analyzing the preci-

sion of the search engine; b) by comparing precision and performance to OWLS-MX

[Klusch et al. 2005]; c) by evaluating the scalability of our approach through simu-

lation. Evaluation was based on an implementation of OPOSSUM using Java and

MySQL server. A dedicated personal computer running Windows XP with 1.5GB

RAM was used for all the experiments.
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Algorithm 2 Evaluate Query
Input: Q, Iconcepts, Iservices

Output: V =
{
V(1), V(2), ..., V(k)

}
V ← φ

C = toDNF (Q)

for all Ci ∈ C do

n = Ci.left-node

Ssource ← Iconcepts(l(n), pc(n))

Ssource ← Prune(Ssource)

if C.right-node = φ then

V ← V ∪ Ssource

else

ndest = Ci.right-node

Sdest ← Iconcepts(l(ndest), pc(ndest))

Sdest ← Prune(Sdest)

for all OPi ∈ Ssource, OPj ∈ Sdest do

Scompose ← Scompose ∪Route(OPi, OPj)

Scompose ← Prune(Scompose)

end for

V ← V ∪ Scompose

end if

end for

Return Rank(V)

In order to evaluate the search engine, we used OWLS-TC, an existing bench-

mark for semantic service retrieval, supplied by [Klusch et al. 2005]. OWLS-TC

includes more than 550 services, which are semantically annotated using more than

40 different ontologies, from various domains, including economy, communication,

and healthcare. In addition, OWLS-TC includes a set of predefined queries and

relevance sets that enable to calculate precision and recall values of query results.

OWLS-TC was augmented with queries and relevance sets that reflect composed

services.

Ranking serves as the main method for expressing relevance and certainty in our
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approach. Therefore, we had measured the precision of the results in the top-K

places, as depicted in Figure 9. Precision at top-K is calculated as Lq,k∩Sq

Lq,k
, where

Sq is defined in the benchmark as the set of services that are relevant to a query

q, and Lq,k is the top k results on the list. The results show that services with

high certainty (and therefore, higher ranking) were found to be more relevant than

services with lower certainty. We explain the descent of precision around the top

3 and 4 results by the precedence of shorter services, derived from the method of

calculating the compositional certainty. If this precedence will be canceled, the

precision of the top 1 and 2 places will descend.

We had compared the precision/recall values ofOPOSSUM with those of OWLS-

MX by running the OWLS-TC queries. Our results show that we succeeded in

matching our precision/recall performance to those of OWLS-MX. However, the

two methods vary considerably in the query response time. Table I presents a

comparison of average response time of OPOSSUM and OWLS-MX.4 The results

clearly show the benefits of an indexing mechanism, which improves the perfor-

mance of the query evaluation algorithms by an order of magnitude.

4It is worth noting that the average query response time we had measured of OWLS-MX were

slightly higher than those reported by [Klusch et al. 2005]. The difference can be attributed to

the different hardware configurations of the testing platforms.
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Table I. Average query response time of OPOSSUM vs. OWLS-MX (measured in ms)

Query OWLS-MX OPOSSUM

hospital investigating 1710 33

book price 1647 35

country skilled occupation 1742 20

car price service 1682 15

geopolitical entity weather process 1364 27

government degree scholarship 1782 32

novel author 1662 40
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Fig. 10. Precessing time for query evaluation

The scalability of our approach was evaluated by simulating large numbers of

semantic Web services. Using the existing 500 OWLS-TC benchmark services as

a core, 2500 additional services were simulated by imitating the properties of core

services. The service generation function was parameterized using 3 random vari-

ables: p - the number of parameters, nc - whether to associate the parameter with

a new concept or with an existing one, c - the identity of the associated concept, if

nc is false. Figure 10 represents the average query response time, depending on the

number of services in the index. The black line represents a linear trend line on top

of the discrete measurements. While the number of services increased by a factor

of 3000 (from 500 to 3000), the average response time increased by a factor of 2.3
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(from 15 ms to around 35 ms). The results exhibit the scalability of our indexing

approach.

7. RELATED WORK

Activity in the area of service-retrieval can be divided into three main approaches:

keyword-based, semantics-based and behavioral matching. In this section, we

overview these approaches in that order.

7.1 Keyword-Based Approaches

Currently, the keyword-based approach is the most wide spread in the industrial

attempts to implement service retrieval. The most prominent example is the UDDI

protocol [Bellwood et al. ], which is an industry standard for locating Web services

through keyword and category search. The main drawback of UDDI, and with other

keyword-based approaches, is the lack of sufficient information for describing Web

services. Web service interface are defined using WSDL descriptions, which contain

a very small amount of information regarding Web service operations. Therefore,

keyword search solutions fail in providing satisfactory recall for Web service search

[Ankolekar et al. 2001; Sirin et al. 2003].

7.2 Semantic Approaches

Several techniques have been proposed to deal with service discovery using logical

inference. These approaches are based on an ontology-based formal description of

Web services. Several works, including those of Paolucci et al. [Paolucci et al. 2002]

and Sirin et al. [Sirin et al. 2003], propose a method based on OWL-S for matching

requests and advertisements of semantic Web services. The OWL-S profile ontology

is used to describe the capabilities of services, and service matching takes the form

of logic inference over the properties of the services. Another approach for semantic

matching of Web services is based on planning methods taken from the AI research

domain. In [Traverso and Pistore 2004] semantic Web services are translated into

state transition machines, and the composition problem is defined as a planning

problem over the available services, with the required composition defined as the

planning goal. While all of these works provide precise matching, they exhibit a

limited notion of relaxed matching, based on the hierarchy of sub types.

Several research initiatives suggest hybrid approaches for semantic Web services
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discovery, augmenting logic-based methods with content-matching techniques. Tra-

verso and Pistore [Syeda-Mahmood et al. 2005] describe a hybrid approach for Web

services discovery, combining methods based on thesaurus and ontological infer-

ence. In [Klusch et al. 2005] and in [Bernstein and Kiefer 2006] logical inference is

compared with content-based matching. The latter was found to performs better

both in terms of recall and precision. Furthermore, hybrid approaches that combine

properties of logic inference and content matching were shown to outperform any

of the pure approaches.

Both logic-based approaches and hybrid approaches aim at automatic composi-

tion. Therefore, they require a highly accurate and trustful description of services

and queries, as well as an unambiguous matching process. In contrast, our work

relies on adjustable confidence values for semantic mappings. It allows the use of

syntactic service description, such as WSDL. Also, our work relaxes the seman-

tic and structural evaluation of compositions, expressing the approximation level

through ranking. Furthermore, we use a user-oriented form of query language, au-

tomatically translating a simple keyword query to a formal structure of concepts.

While the hybrid approach relaxes the semantic matching by using content-based

similarity methods, our work relies solely on ontologies for semantic matching. Our

relaxation methods rely on a broader definition of equivalence between ontological

concepts and on approximating the structure of the composition imposed by the

query. Finally, OPOSSUM outperforms the semantic approaches described above

in response time, due to the utilization of indexing methods.

7.3 Behavioral Matching

BP-QL [Beeri et al. 2006] is a query language for BPEL4WS [Wohed et al. 2003]

process definitions. It uses a graph-based visual query language that represents a

BPEL script and searches for a subgraph isomorphism in a repository of BPEL

scripts. While BP-QL supports an expressive query language, it ignores semantic

attributes of services. Klein et al. [Klein and Bernstein 2004] present a method

for recognizing semantically-annotated services through pattern matching of activ-

ity sequences. Shen et al. [Shen and Su 2005] encode semantic Web services and

queries as regular expressions, defining matching as the intersection between them.

Indexing methods for regular expressions were introduced to enhance behavioral

matching performance. These methods differ from our approach in two main as-
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Semantic Approach to Approximate Service Retrieval · 35

pects. First, these methods evaluate a query against each service independently

while our proposed work matches queries against service networks, dynamically

built from isolated operations by analyzing and inferring relations between opera-

tions. Second, these methods provide limited support for approximate matching,

and do not rank results according to their semantic and compositional certainty.

8. CONCLUSIONS AND FUTURE WORK

In this work we have introduced a semantic approach to Web service retrieval. Our

approach is based on three aspects: a) using the current research in semantic Web

services to enrich the querying abilities of users, b) using approximation techniques

to increase the recall of possible service compositions, and c) exploring indexing

techniques for sub-linear response time. To motivate our approach, we have pro-

posed Web service composition as an exploratory process, in which designers seek

the use of existing Web services to gain a leading edge in their businesses. Composi-

tion as exploration suggests that services can be composed by the use of additional

gluing effort even if they do not match exactly. Such an approximate matching

therefore accounts for the amount of extra effort needed, and this is reflected in the

ranking of the results. The ranking combines both the semantic distance between

the query and the result and the partiality of the result. Thus, a lower ranking

suggests additional gluing effort in order to bridge the semantic distance between

the components or to implement the missing functionality.

We propose a general framework of a service search engine, where the various

components of our work provide solutions to issues of indexing, retrieval, and rank-

ing within this framework. As a proof of concept, we have built OPOSSUM, a

Web service search engine and share our experiences with discovering, indexing,

querying, and ranking using real-world data.

The contributions of this research are at conceptual, semantic, and computational

levels. First, we define an efficient, graph-based data structure for organizing ser-

vices. Second, we provide a semantically-rich query language, allowing both simple

and advanced service search capabilities. Finally, we provide a sub-linear service

retrieval algorithm.

There are several directions for future work. We are currently extending our

research to include a broader notion of service ranking, based on service reusability

(the ability to use a service in a given context). Furthermore, we intend to extend
ACM Journal Name, Vol. V, No. N, Month 20YY.



36 · Eran Toch et al.

the applicability of our approach to syntactic Web services (represented by WSDL

documents) and Web forms. Also, we intend to extend OPOSSUM with advanced

capabilities, including multi-lingual ontology alignment and content-based match-

ing techniques. We plan to offer OPOSSUM as a service to the general Web

community, allowing users to submit Web services and to query the database. By

opening the engine to the public we hope to gain realistic information that would

help us characterize searching and utilization patterns for Web services. Finally, we

intend to apply OPOSSUM for model-driven engineering of information systems,

embedding semantic service retrieval within service development environments.
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