
1

Semi Automatic DSL Generation

Iris Reinhartz-Berger
Department of Management Information
Systems, University of Haifa, Haifa
31905, Israel
iris@mis.haifa.ac.il

Zeev Tavor
Department of Computer Science,
University of Haifa, Haifa 31905, Israel

 ztavor@gmail.com

Arava Tsoury
Department of Management Information
Systems, University of Haifa, Haifa
31905, Israel
aravab@mis.haifa.ac.il

Domain models capture the common knowledge gained while developing

applications in the domain as well as the possible variability allowed among them. Hence,
domain models may assist in the creation of valid applications in that domain, improving
productivity and software quality and reducing the domain and development expertise
needed. However, the creation of such domain models is not a trivial task: it requires
expertise in the domain, reaching a very high level of abstraction, and providing flexible,
yet formal, artifacts [1]. The field of domain engineering (also known as product line
engineering) [4] aims at identifying, modeling, constructing, cataloging, and
disseminating the commonalities and differences among applications in a specific
domain. Several domain engineering methods have been proposed over the years, but
most of them can be criticized as making the domain engineer the only responsible for the
development of domain models and artifacts. Since domains may cover broad areas and
are usually understood only during the development process, creating domain models can
be a very demanding task. However, they may be beneficial in both creating
(instantiating) new applications in the domain and validating them according to the
domain rules. In this research, we aim at semi-automatically generalizing application
models into domain models in order to create Domain Specific languages (DSL) [3]. Van
Deursen et al. [7] define DSL as “a programming language or executable specification
language that offers, through appropriate notations and abstractions, expressive power
focused, and usually restricted to, a particular problem domain”. Part of the domain
knowledge that is needed for creating DSLs can be extracted from domain models.

For representing the domain knowledge, we use a domain engineering approach,
called Application-based DOmain Modeling (ADOM) [5], which perceives that
applications and domains require similar facilities for their modeling, design, and
development, thus it enables specifying and constructing domain artifacts with regular
application engineering techniques. The ADOM framework comprises of three layers: the
application layer, which consists of models of particular systems; the domain layer, which
consists of specifications of application families (i.e., domains) including their
commonality and variability; and the language layer, which includes metamodels of
modeling languages. This separation of ADOM into three layers enables its adaptation to
different modeling languages. However, when adapting ADOM to a particular modeling
language, it is used in both application and domain layers, so that the language layer
imposes constraints on both the application and domain layers. Furthermore, the domain
layer enforces constraints and provides guidelines for the models in the application layer.

The proposed approach consists of two steps: creating domain models from
applications that have already been developed in the domain and generating DSLs from
the created domain models.

Creating domain models: In this step, draft models of emerging domains are created
from families of relevant applications [6]. These applications are being matched,
integrated, and generalized into domain models. The matching phase includes three kinds
of similarity measurements, calculated for each pair of elements. First, the linguistic
similarity compares element names using hierarchies and semantic relationships
embedded in the WordNet, a semantic lexicon for the English language [9]. Second, the
dependee similarity takes into consideration the dependent elements of certain elements.

2

Dependent elements of an element e are all those model elements that the omission of e
from the model implies their omission too. In the object-oriented paradigm, for example,
we can assume, to some degree of confidence, that classes that exhibit similar attributes
and methods are similar too and thus can be matched. Finally, relational similarity takes
into consideration the relationships in which the compared elements participate (as
sources or destinations). Two elements are considered matches if their general similarity
measurement, which is a weighted calculation of their linguistic, dependee, and relational
similarities, exceeds a certain threshold. After the matches are established, the application
models are correspondingly generalized into draft domain models, expressed on a higher
abstraction level: elements that are in the same similarity group (calculated using the
elements' general similarity measurements) are generalized into the same domain
element.

The domain models creation step refers to both structural and behavioral aspects of
model matching and merging, enabling specification of the domain functionality and not
just its structure. Sequence diagrams, for example, can be considered as the dependees of
their elements, namely their combined fragments, messages, and lifelines (objects).
Furthermore, the approach is not language specific and can be applied to a variety of
modeling languages. However, for each language the main concepts and their
dependencies and relationships should be defined first (once).

Generating DSL: Having the created domain models, we can automatically generate
DSLs. DSLs, which have become popular in recent years partially due to their support for
expressing solutions in the level of abstraction of the problem domain, aim at enhancing
quality, productivity, reliability, maintainability, portability and reusability of
implementations. The most noticeable approaches for implementing DSLs [7] are:
interpretation or compilation, embedded languages or domain-specific libraries, and
preprocessing or macro processing. We chose to apply in this research a domain-specific
libraries approach, which is known as Domain Specific embedded Languages (DSeL),
due to its maturity (through existing tools, such as [2]) and simplicity. However, as
opposed to other DSL tools and approaches, we aim at guiding the domain variability and
referring to its behavioral aspects. Identifying the commonality of a domain is important
as it describes the important concepts and rules and, indeed, most DSL approaches
support commonality generation. However, Gomma [1] stated that variability
management is even more important, as this factor distinguishes domain analysis from
"regular" reuse. Webber and Gomaa [8] identified four types of variability mechanisms:
(1) parameterization, in which the application designer may change the values of
attributes defined as parameters in the domain model, (2) information hiding, in which the
application designer uses the same interface for defining similar components, (3)
inheritance, in which the application designer may extend the interface of domain
elements within a specific application and even override them, and (4) variation points
definition, in which the application designer may create new variants and connect them to
the variation points specified within the domain model. All these variability mechanisms
will be supported by the suggested approach. Furthermore, similarly to the matching and
generalization operations, the DSL generation will support the development of DSLs'
behavioral aspects and not just structural ones.

For providing a proof of concept, we have implemented the first step of the approach
(namely, the automatic creation of domain models) and run it for a domain of project
management systems that included just four applications (see [6]). The application
models were expressed in UML class and sequence diagrams and were specified by
different advanced undergraduate Management Information Systems students (MIS). We
further conducted an experiment in which the resulted domain model, along with an
evaluation questionnaire, was given to a class of about 20 undergraduate MIS students at

3

the University of Haifa, Israel. This questionnaire included a paragraph describing the
project management domain, the domain model as generated by the implemented
algorithm, a domain model that was created by advanced MIS students who analyzed and
reverse engineered open-source applications in the domain, and a domain model which
was created by advanced MIS students who studied domain ontologies and reviewed the
domain literature. The participants were required to map the core elements of the
automatically created domain model, such as classes and messages, to their counterparts
(if exist) in the two human-made domain models. In addition, they were required to
evaluate the automatically created domain model according to different criteria, such as
correctness, completeness, redundancy, and consistency. The results showed that above
98% of the participants mapped the classes correctly and above 70% of the participants
succeeded in correctly mapping the objects and messages in the sequence diagrams.
Moreover, the participants graded the correctness of the automatically created domain
model as 3.9 (out of 5), its completeness – as 3.7, its redundancy – as 4.5 (i.e., the
participants thought that the model did not include too many redundant elements), its
consistency – as 4.0, and its overall quality grade – as 3.8. The main criticism of the
participants regarding the draft model was that the names of some relevant elements were
too abstract or not compatible with their expected roles in the domain. However, since the
repository that was used in this experiment was very small (4 applications) and despite of
it the participants managed to correctly map the model concepts to the domain
terminology, this shortcoming is tolerable.

In the future, we plan to improve the implemented algorithm in general and the
calculation of the different types of similarities in particular by using additional meta-
information on the elements, such as data types, scopes, relationship types, relationship
cardinality, and so on. We also plan to improve the variability specified in the
automatically created domain models in order to support the modeling of variants and
alternatives. Furthermore, we plan to implement the DSL generation step.

References:
1. Gomma, H., Designing Software Product Lines with UML, 2004.
2. Microsoft Domain-Specific Language (DSL) Tools, available at:

http://www.microsoft.com/downloads/details.aspx?FamilyId=57A14CC6-C084-
48DD-B401-1845013BF834&displaylang=en.

3. Mernik, M., Heering, J. and M.Sloane, A., When and how to develop Domain-
Specific Languages. ACM Computing Surveys (CSUR), Volume 37, Issue 4
(December 2005), Pages: 316 - 344, 2005.

4. Prieto-Diaz, R. Domain Analysis and Software Systems Modeling. Los Alamitos, CA:
IEEE Computer Society Press, 1991.

5. Reinhartz-Berger, I. and Sturm, A. Enhancing UML Models: A Domain Analysis
Approach, Journal on Database Management (JDM) 19 (1), special issue on UML
Topics, pp. 74-94, 2007.

6. Reinhartz-Berger, I. and Tavor, Z. SADoM - A Semi–Automated Domain Modeling
Approach, available at: http://mis.hevra.haifa.ac.il/~iris/research/SADoM/.

7. Van Deursen, A., Klint, P. and Visser, J. Domain – Specific Languages: An Annotated
Bibliography, SIGPLAN Notices journal , volume 35 number 6, pages 26-36, 2000,

8. Webber, D. L. and Gomaa, H., “Modeling variability in software product lines with
variation point model”, Science of Computer Programming, Vol. 53, pp. 305-331,
2004.

9. WordNet – a lexical database for the English language, available at:
http://wordnet.princeton.edu.

