SR2008 Tuterial Can Demain

Medelingihecomeyautomateds

m Iris Reinhartz-Berger

Department of Management Infromation Systems
University of Haifa, Israel

4 N
Agenda

* An overview of Domain Engineering
® Domain Engineering concepts
® The two layer model and its related activities
* Semi Automatic Creation of Domain Models
® The ADOM approach
® Knowledge Elicitation in ADOM
® The ADOM supporting tools
® Experimenting with ADOM

° Summary and Discussion

\ ER'2008 Tutorial: Can Domain Modeling become Automated? 0/

4 N
Agenda

* An overview of Domain Engineering
* Domain Engineering concepts
® The two layer model and its related activities
* Semi Automatic Creation of Domain Models
® The ADOM approach
® Knowledge Elicitation in ADOM
® The ADOM supporting tools
® Experimenting with ADOM

° Summary and Discussion

K ER'2008 Tutorial: Can Domain Modeling become Automated? a/

-~
Domain Engineering Concepts:

What is a Domain?

® A domain is an area of knowledge characterized by a set of concepts,

their relationships, and constraints accepted by practitioners in that area.
® aset of applications that use a common jargon for describing the concepts,
problems, and solutions

® a class of similar systems that share common features and operations
® Other names for the term ‘domain’: “product line’, ‘product family’, ...
® Domain attributes: mature, stable, economically viable

® Domain examples: Telephone switches, Insurance portals, Customer Relation

Management, Online banking

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

-

Domain Engineering Concepts:
What is Domain Engineering?

® Domain engineering is the development and evolution of domain
specific knowledge and artifacts to support the development and
evolution of systems in the domain.

® The purpose of domain engineering is to identify, model, construct, catalog, and

disseminate the commonalities and differences of particular domain applications

¢ Domain engineering includes engineering of domain models, components,

methods and tools

® Domain engineering includes three main activities: domain analysis, domain

design, and domain implementation

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

-

Domain Engineering Concepts:
What is Domain Analysis?

® Domain analysis (The Free Dictionary by Farlex)
® [s the domain engineering activity in which domain knowledge is studied and
formalized as a domain definition and a domain specification
Relates to non-implementation issues
® Is the process of identifying, collecting, organizing, analyzing and representing a
domain model and software architecture from the study of existing systems,

underlying theory, emerging technology and development histories within the

domain of interest

® [s the analysis of systems within a domain to discover commonalities and

differences among them

® A common way for carrying out domain analysis is modeling

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

4 . o N
Domain Engineering Concepts:

What is Domain Analysis?

® Domain analysis includes:

Set objectives: identify stakeholders and their objectives
* Scope domain: define selection criteria

* Define domain: identify boundary conditions, examples, counter examples, main

features

¢ Define relations: define relations to other domains, divide the domain into sub-

domains
* Acquire domain information from experts, legacy systems, literature, prototyping
* Describe domain terminology: lexicon of terms, commonality & variability, features

* Refine domain: build overall domain, analyze trade offs, innovative feature

combinations

\ ER'2008 Tutorial: Can Domain Modeling become Automated? e/

4 . o A
Domain Engineering Concepts:

What are Domain Design and Domain implementation?

® Domain design is the activity that takes the results of domain analysis to
identify and generalize solutions for those common requirements in the

form of a Domain-Specific Software Architecture (DSSA)

(Carnegie-Mellon Software Engineering Institute)
* It focuses on the problem space, not just on a particular system's requirements,

to design a solution (solution space)
* [t supports developing a common architecture for the system in the domain and
devising a production plan
® Domain implementation is the process of identifying reusable

components based on the domain model and generic architecture

(Carnegie-Mellon Software Engineering Institute)

\ ER'2008 Tutorial: Can Domain Modeling become Automated? e/

-

Domain Engineering Concepts:
How does Domain Engineering differ from Application Engineering?

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

Domain Engineering

Application Engineering

~

a systematic approach to construct
reusable assets in a given problem
domain

uses the assets to build specialized
software systems in the given
domain

Define and scope domain

Analyze examples, needs, trends

Do delta analysis and design relative
to a domain model and architecture

Develop domain model and
architecture

Use component systems as starting
point

Structure commonality and variability

Find, specialize, and integrate
components

Engineer reusable component
systems, languages, and tools

Exploit variability mechanisms,
languages, generators,

-

Domain Engineering Concepts:

~

How does Domain Engineering differ from Application Engineering?

Domain requirements . . .
4 Domain Engineering ExiEes

Domain

Engineer/Expert o _
Unsatisfied requirements,

errors, adaptations

mimliAaatiAmrm vamrniramaAando

, App_licati_on
~— Engineering
Application
Engineer

Domain /\
Engineering _/
Domain Repository

(models, architecture,
Components)

Reusable
assets

Developed system

Adapted from: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

-~
Domain Engineering Concepts:

~

How does Domain Engineering differ from Application Engineering?

Domain Engineering

Domain Analysis

\ 4 v

equimes /~ Product ./ Integration
Analysis 'V‘o\nfigw Product and Test

Configuration

Customer
Needs

Application Engineering

Domain _ Model Domain .
knowledge / Domain Architecture Domain
Analysis mplementatio
New Requirements Domain-specific
languages
Components
Generators

Adapted from: the Software Engineering Institute at Carnegie Mellon

K ER'2008 Tutorial: Can Domain Modeling become Automated?

| m Custom
New Requirements =\@gy_ m

C o A
Domain Engineering Concepts:

Domain Engineering Approaches - A Partial List

FAST — Family-Oriented
Abstraction, Specification,
and Translation (D. Weiss)

ODM - Organization
Domain Modeling
(M. Simos)

DARE — Domain Analysis
and Reuse Environment
(W. Frakes & R. Prieto-Diaz)

eature-Oriented

Draco (J. Neighbors)

FODA — Feature-Oriented
Domain Analysis

Carnegie-Mellon SE Institute

DSSA — Domain-Specific
Software Architecture
(ARPA)

ODE - Ontology-based
Domain Engineering
(Falbo et al.)

PLUS - Product Line
UML-based SE

(Gomaa)

etamodeling

GME — Generic Modeling
Environment

(ISIS)

—

Software Factories
(Microsoft)

MetaEdit+
(metaCase)

\ ER'2008 Tutorial: Can Domain Modeling become A

-

Domain Engineering Concepts:
What are the advantages of Domain Engineering?

® Provide means for gathering and organizing domain related

information and knowledge.

® Provide libraries of assets to be instantiated (reused) in

particular applications.

® Provide validation templates for particular applications in order

to avoid semantic errors in early development stages.

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

-~
Domain Engineering Concepts:

What are the iimitations of Domain Engineering?

® Deal with too broad areas (domains) which are usually understood

only during the development process.

® Require expertise in the domain, reaching a very high level of

abstraction, and providing flexible, yet formal, artifacts.

® Deal with two different abstraction levels: the domain and the
application.

e Each level is accompanied by different notions and notations

® The transition between the levels remains sometimes vague

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

4 N
Agenda

* An overview of Domain Engineering

® Domain Engineering concepts

® The two layer model and its related activities
* Semi Automatic Creation of Domain Models

® The ADOM approach

® Knowledge Elicitation in ADOM

® The ADOM supporting tools

® Experimenting with ADOM

° Summary and Discussion

K ER'2008 Tutorial: Can Domain Modeling become Automated? @/

4 N

The Two Layer Domain Engineering Model
Presenting the Model

Inter-layer domain engineering:

L) Instantiation (reuse) Intra-layer
domain
Validation . .
engineering

= Knowledge elicitation

. Application
engineering

K ER'2008 Tutorial: Can Domain Modeling become Automated? @/

The Two Layer Domain Engineering Model
Presenting the Model

® The domain layer is the layer in which the domain artifacts are

handled.

* The application layer is the layer in which the applications

(systems) are developed

* Examples:

Software Engineering Domain knowledge Progorams, applications, or
g g g g » 4pP)
systems
Business Process Design Reference models Particular business
processes
Method Engineering Standards, such as ISO/IEC Different development
24744 and SPEM methodologies (e.g., RUP,

XP, and so on)

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

0/

4 N

The Two Layer Domain Engineering Model
Presenting the Model

® Domain engineering supports:

® Intra layer activities, namely domain analysis, domain design,

and domain implementation

Inter-layer activities, i.e., forces that exist between the

domain and application layers:

The domain layer artifacts may be instantiated (reused) in the application

layer.

The domain layer artifacts may be used for validation purposes in the

application layer.

The applications may be generalized into domain artifacts in a process of

« . .
£ 812 =] (Y1)
J10W O ¢ L
@,

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

4 N
Agenda

* An overview of Domain Engineering
® Domain Engineering concepts
® The two layer model and its related activities
* Semi Automatic Creation of Domain Models
* The ADOM approach
® Knowledge Elicitation in ADOM
® The ADOM supporting tools
® Experimenting with ADOM

° Summary and Discussion

K ER'2008 Tutorial: Can Domain Modeling become Automated? @/

4 N
The ADOM Approach
Motivation

* An Application-based DOmain Modeling approach

o Application and domain models are similar:

® They both define structure
® They both exhibit functionality (behavior)

° They both introduce structural and behavioral constraints

e However they also differ in their:

® Abstraction level

* Flexibility level

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

The ADOM Approach
Motivation

® ADOM treats domains with regular application engineering tools,

methods, and techniques.

® Furthermore, it enables its adopt to different fields due to its independence

in the modeling language
® ADOM defines three layers of abstraction: application, domain,
and language.

® In all layers the same approaches (notions and notations) are applied.

e Each layer defines constraints on the more concrete layers.

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

-

The ADOM Approach
Examples of three Common Usages

o Software Engineering

e Goal: Guiding and Validating system design using domain artifacts

* Language: UML, mainly use case, class, sequence, and state diagrams

* Deliverables: Application and domain models

e Business Process Design

e Goal: Guiding and Validating business process design using reference models

* Languages: EPC, BPMN, and UML activity diagrams

* Deliverables: Business process and reference models

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

The ADOM Approach
Examples of three Common Usages

e Method Engineering

® Goal: Guiding the specification of method components and the creation of situational
g P P

methodologies
* Language: Mainly OPM

* Deliverables: Method component type, method component, and situational

methodology models

e A multiplicity indicator mechanism

® A domain classifier mechanism

e UML’s stereotype mechanism was employed for these purposes. Minor changes

to the other languages metamodels were introduced

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

-

<<optional many>> <<multiplicity min =0
max = 00>>

<<optional single>> <<multiplicity min =0
max = 1>>

<<mandatory many>> <<multiplicity min = 1
max = 00>>

<<mandatory single>> <<multiplicity min = 1
max = 1>>

<<multiplicity min =n
max = m>>

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

The ADOM Approach for SE
Multiplicity Indicators in ADOM-UML

Abbreviated Full Notation Meaning
Notation

Any number (including O) of application
elements can be classified
(stereotyped) as this domain element

At most one application element can be
classified (stereotyped) as this domain
element

At least one application element can be
classified (stereotyped) as this domain
element

Exactly one application element can be
classified (stereotyped) as this domain
element

Between n to m application elements can be
classified (stereotyped) as this domain
element

©/

~

The ADOM Approach for SE

An Example of Process Control Systems

° Applications in the Process Control System (PCS) domain monitor
and control the values of certain variables through a set of components

that work together to achieve a common objective or purpose.

e Two specific examples in the domain:

e A water level control system (WLC) for monitoring and controlling the

water level in tanks

e A home climate control system (HCC) for monitoring and controlling

room temperature and hurnidity

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

-

- N g = N e N = =

The WLC application model - a UC diagram

<ss¥stem activati >
R eboaot

<<checking>>
Wiater Level Examining

e ‘,.':\ <<genser>>
<<@perator>> =dncludg== !
Usar .

I
: . Boundary Stick
, i
A . =dnclude »! I'.
| :
onitoring & actirg>> J
<<contrdlled Bevice>> Filling x
Em ptyingWater F aucet | =<E wtend ==
. <<controlled dewice>>
[}

" aeF wtend ==
s i FillingWWater F aucst
Water Level Reporting S

ystem settingsS %

Set BoundaryL evels
f;sy‘stem setting Hazard Handling System
Manage Tanks
Manager

<F stend ==

———— -

Z<exception handling
Water Level Exceptions Handling

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

©/

<<gperatdr>>

Home Usear <<contrélled device>>
Water Spraver
<<controfled dévice> - = : monitoring & actifg <<stnsore>
AirC onditioner monitoring & acting>> i Thermormeter
Heating.Z ooling Spraying
&
z<nclude == : N Anclude ==
: o zdnciudess
i L x R
<<checking>> <<checking>>
Identifying Lisar Environment Measurment <<sénsof»>>

<<sénsor»>
User |dentification

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

Humidity Zauge

-

=mandatory many==

zanandatory many =

L=mandatary many== ==mancatory many=> Controlled Device

-mandatory many s> a:dnandatnr'g.r.|na.ny}} mandatory many==
=zoptional many yatem Activation

Operator

=mandstory many==

=zanandatory many == <<mandatory many ==
Mortitoring & Ading _<----ceeeeea- Checking

=mandatory many:==

==mandatary many:=

¢ «mnandatory many =
Sensor

", wEutend ss «Eutendss ,»"

L] ”
£

Y e
4 i

S=mandatory many== o ,
<zpptional many==
aoptional many:: ==mandatary many:= E xception Hancling

Exception Handler

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

- — N = - =

- N g = N e N = =

The WLC application model - a class diagram

Wisual Paradigm for UML Standad EdSandl niversty of Haifa

<<controller>>

Water Controller

+checkHeight AndActi
+notifyP roblemaProblem . String
+reboot)

<<controlled devide info>> Faucettem

-faucetlD . int
-faucetType . {emptying, filling}
-faucetStatus . {opened, closed)

D esiredhW aterLevel

-lowBound . double

-highB ound . double
-lowestBound ;. double
-uppermostBound . double

+getDesiredWaterLevelRangel . double]
+getExtendedWaterLevelRanged - double [)

+apen . boolean
+cloge() . boolen

filling.size =1

Tanlk Selectf FaucettermiffaucetType =
emptying).sze =1 and
Tank Selectf: FaucetitermiffaucetType =

Tank

tankl D ;. int
-active . boolean

+checkHeight And Acto
+needToChanged - boolean
+getfverageWaterHeights - double

1 »

B oundaryStic kitemn

-boundaryStickliD . int
-waterHeight - double

+getaterHeights . double

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

<<controlled element>>

<<controlled value>>

BowundaryHistory

<<history>>

<<sensor info>>

e

B oundaryinfo

<<history element>>

-measuredWaterLevel . double
-measuredDate . Date

The ADOM Ap

The HCC application

<<controller>> ClimateController

+heat)

+stop He atingo

+C00l ()

+stop Coolingg

+Sprayd

+getFirgl serDesired Tem peratureR angeraComea - Ohject, aBodyHalo . Object) . double []
+getFirgl serDesiredHumidityRange@aComea . Object, aBodyHalo . Chjed) . double 1

proach for SE

model - a class diagram

-name : String

|-cornea - Objed
" |-bodyHalo . Object

+getlssn) . User

+getlseDesiredT emperatureR anged : double [1
+getl sz DesiredHumidityRanged . double(]

<ZCoNtrolled eleMent™> poom

-roomMumber . int
-hulicingMame . String
-room Occupied - boolean
-roomSize . double

+isTemperatureR eachingMinimaly) - hoolean
+isTemperatureR eachingMaximalg : koolean
+igHuUmidityWithinR angel) : boolean

+heat)

+stopHeating()

+cool()

+stopCoolingl)

+sprayg

+getF irstl serDesired Tem peratureRangewaComea . Ohject, aBodyHalo . Chject) . double 1]

|
D esiredH umidity

<<controlled value>>

-optim alHumidity . double
-possibleMigtak e . double

+getDesiredHumidityRangeq . double (]

D esiredT emperature

<<controlled value>>

-minimal Tem perature . double
-maximal Tem perature . double

+getDesiredTempeartureRanged - double(]

e e EEEr TR e e e et e

et i E

Water Sprayerltem

<controlled device info>>

-sprayerCode . String
-sprayerStatus . {ideal, spraying]

+Epray) - hoolean

<<sensor iffo>> Hurmanidentifier

HumidtyGaugeltem <<S€NS0l |

fo>>

-hilD . int
-numberCflsers . int

-humidityGaugelD . int
-roomHumidity . double

AirConditioneritemn

<<caonirdlled device info>>

-userCornea . Ohject(]

+getR oomHumidity) . double

-userBodyHalo . Objectn

+getFirgUserComead - Objed
+getFirgl) serBodyHalog . Object

Thermometerttem <<Sgnsor info>>

“thermometeriD . int

+getlumberOflsers) . int

-roomTemperature . double

+getRoomTemperatured) . double

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

-air ConditionerlD . int
-airConditionerStatus . {off, on}

-airC onditionerMode . {heat, cool idle}
-girConditionerCampany . String
-sErviceCompany - String

+heat) . boolean
+cooly) - boolean
+pause) - boolean
+resume(: boolean
+stopd . boolean

O/

-

- — N = - =

The PCS domam model ac I

<<mandatory single == <<Mmandatory many >=
Cortroller _==optional many== ControlledValue
<<mandatory many >= +monitor AndActo =mandatory singles= 4
{*ﬂpﬂﬂﬁﬂl manys: *natihru

=multiphctyminimum = 2maximum === +angeC onstraint

'; <<mandatory many == +getP ossibleRange(
L]
==mandatary single= i
i for}
— S e e e ==optional many==
zcoptionalmany=> | N @ TETEme==ea
HistoryElement ==optional manys= ==mandatory manys=
<«mandatory single >»-measurementDate . Date <<mandatory many >
<<mandatory many == -measuredalue ControlledElement
==mandatoryd many==

z=mandatory many == -controlledElem entldentity
<<optional many:- -controlledE lementStatus - Enumeration

- =<mandatory many >= ~check Condition) . boolean
P “ﬂphl:":';l it s <amandatory many >= +monitor AndAd(
istony
SETRHGIOnE: e ==mandatory many=»= ==mandatary many=
==optional many= ==optional manys==
z«mandatory many == z<mandatory many ==
Sensorinfo ControlledD evicelnfo
<<mandatory many >>-sensorlderntity <<mandatory many >=-cdidertity
<<mandatory many == -measured\alue z<manclatory many >=-cdStatus , Enumeration
<<mandatory many == +gethl easured\ alue <mandatory many = +actiong

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

4 N

- — N = - = =Es g = e e - = =

The WLC application model - a sequence diagram

<<controlled element>> <<controlled value>> . <<controlled device info>> <<controlled device>>
<<controller> <<sensor info>> <<controlled device info>> <<controlled device>>
Visual Parad gg&t‘zmﬁm mﬂk']:.l' ¥ Il'u_llb':'ﬁlﬂf.:‘- . BoundaryStickltem 5 Em ptying . Faucstitem Eilling . Fauostitem % %

emptyingWater Faucet filing Water Faucet hazard Handling System

[=eq/

|
1. needToChergecJ

|

Qﬂ |
- WH = getAvgrageaterHeighto

|

3 getWateHeighty |

4. DWL = getDesierlNaterLevelRangec:

[seq)

§

—_—F———————————— = ——— 1

5 EWL =getE xtend edWaterLevelRange(

&: EF S = getF aucstStatyso

T
|
7 FFS = g%lFaucetStatus;J
I
I
T
|
|

A N S -

=

H = DWL [1] && WH k EWL[1] && EFS = 'closeq']

8. opend 9. satF ausetStatusiopenkd)

|

10} open
|
|

B D e

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

The ADOM Approach for SE

4=
The HCC application model - a sequence diagram
<<controller>> <<controlled element>> <<gensor infoss=<sensorinfo>>___ . . oo o <<controlled device in<f9§5ntrolled device>>
it ClimateContriler T ~RBoom _Humanldentifier Thermometeritem _DesiredT emperature ~Liser _AirCondtioner]
1.heah'[I airCondtion
loop, I
[t.n] |

seq)

I
)

1. heati)

-0)

|
|
?— 3. isTem peratU|eRead'1iI'1gMinin1al il
]
|
|
|
|
|
i
L
I :_] 7:DT = getFirstUserDe%iredTem peratureRange(AC .PBJ
. gatFirgUserDesiredT emperatureRanged (| I |
|
+ |
| |
IoupJ | I

I

|

|

|

f

|

|

1

|

|

|

|

|

|

|

|

4+ RT =getRoomiemperatureﬂ I
| |
5. AC =getFirgdUserComea D[ﬂ I
. AB=getF irstU serBodyHal |
| |

' :

|

|

|

|

|

|

|

|

T

|

|

i

I
10| getDesiredTem peartureR angd)

I
|
|
f
I
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |

| |

| |

| : |
[AC I=U.comea || AB 1= U.bodyHAo] 2. getllserDesiredT emperatureR angky |
T |

| |

| |

| |

| |

| |

|

I

|

|

|

|

|

| |
I 1.)\\\d = getAirC onditionerMode [}T
| |
| |
I

|

|

|

I

i

i
o

[As

U

|
12. AS|= getAirC onditionerStatus
I

I
I
‘o’ and AM |="heat’ and RT <DT[0]] 13. heato |

D 14. setAirCondtionerMpde rheat

.

15: heat

:

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

/
The ADOM Approach for SE

1~ 2 2 =
Misatal Paradin for UL St Bftu b g € L85 <<Mmandatory many = zemandatorymany == | | <=mandatory single == ==mancatory many ==
optiomarmany==_ | I I I I <<nandatory many == <<optional many==
monro i | | | | controlled Device exception Handler
==optional many== i I I I I
>/ _ | | | |
‘:cmandatorymanerl.-. I I I I
= | : | |
! ==optional single == | | | |
i monitor BndAd) T I I I
<mandatory mpay == i i i I il
s61] | <<nandatory manys= | | |
| check Conditiong I l l
I z<mandatary many == | I I
|| getMeasured'/alueq | |
| | |
| ==mandatory many == | |
I FECRES S an?eu D'[D I
| | | | |
dmandatofymany == I ! I I <<mandatory many =|
alt | <:-mlandatorv many == | act
| | actiong |
| | |
| | |
| ! | |
<-optiohgl many=> I I I I
. | | | |
I I I I =<mandatory many >
| | | | natify
1L | | |
| | | |
| ! | |
T f f f f
I I T T T =
| | | | |
| | | | | -
| | I [[
|
. | L | |
! ! ! ! !
Y i i i i

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

4 N
Agenda

e An overview of Domain Engineering
® Domain Engineering concepts

® The two layer model and its related activities

* Semi Automatic Creation of Domain Models
® The ADOM approach
°* Knowledge Elicitation in ADOM
® The ADOM supporting tools

® Experimenting with ADOM

° Summary and Discussion

K ER'2008 Tutorial: Can Domain Modeling become Automated? @/

Knowledge Elicitation in ADOM

= == v--------v---

Basic Termlnology

* A model M is a representation of certain aspects of the world of interest.

The basic building blocks of models are elements.

e A relational element re in a model M is a binary directional
relationship between two other elements in M.
Notation: re,; =(s, t), where s is the source of re,,; and t is its destination.

* Bidirectional relationships are represented as two relational elements re,=(s, t)
and re,=(t, s).
® n-ary relationships are split into binary relationships.

® Messages & Associations are examples of relational elements in UML.

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

Knowledge Elicita n ADOM
Basic Termlnology

® A dependent element d in a model M is an element which has an
implicit binary directional relationship with another element e in a
model M, such that the omission of e from the model implies the

omission of d.

Notation: d -, e, where e is termed the dependee of d in model M.

® Attributes & Operations are examples of dependent elements.

o A ﬁrst order element in a model M is an element which is not

relational neither dependent in model M.

* Top-level packages are examples of first order elements in UML.

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

Knowledge Elicitation in ADOM
Element Similarity Types
® Meta-information similarity
* Using meta-classes, types, and other kinds of meta-information in

order to determine whether two elements are similar
® Linguistic (syntactic) similarity
* Adopting Dao and Simpson similarity measurement between two
sentences

® Using WordNet - a large, online lexical base for English language,
freely distributed by the Princeton University

Domain—specific VSs. general purpose lexical bases

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

Knowledge Elicitation in ADOM
Element Similarity Types

® (Contextual (semantic) similarity

® Dependee similarity takes into consideration the dependent
elements of certain elements

The structure of compound elements is used in order to measure their similarity

In class diagrams, for example, we can assume, to some degree of confidence, that

classes that exhibit similar attributes and operations are similar too.

® Relational similarity takes into consideration the reiationships in
which two elements participate as sources or destinations

Relational sirnilarity takes into consideration the type of the relationship

Elements that are connected to similar elements are more similar

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

Examples of Sim

R
.

-

icitation in ADOM
d

1 Measurements

R

~optim alHumidit
-possibleMistak

Connected to User, which is connected to Climate

Controller

Linguistic (syntactic) similarity

Contextual (semantic)

dependee similarity

Meta-information similarity

Contextual relational similarity

ER'2008 Tutorial: Can Domain Modeling become Automated?

ka

o

@
-
=
o

7
o
-
-
-

.

e

e lall

.,*
e
i

-

.

,.
i
o
&

I

-

Connected to Tank, which is
connected to Water Controller

4 N
Knowledge Elicitation in ADOM

-v —_—

Similarity Measurements of Behavior: UML Sequence Diag.

® The approach refers similarity to both structural and behavioral aspects of the modeled

systems

® Models are considered hierarchical graphs with nodes (first order and dependent

elements) and arcs (relational elements)
® A sequence diagram, for example, is the dependee of its elements

* Since sequence diagrams rely on the system structure as expressed in the class
diagrams, matches established between elements in the class diagram are used for

rnatching behavioral elements in the sequence diagrarn

® In order to refer to the order of messages in a sequence diagram, we implicitly add
relational elements re=(m,, m,) between any two messages m, and m, such that m,

precedes m,

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

-

Kn

-v

Similarity Measurements of Behavior: UML Sequence Diag.

owledge Elicitation in ADOM

® The similarity of two sequence diagrams, seq; and seq,, is measured as follows:

Linguistic Similarity takes into consideration the sequence diagrams

names

Dependee similarity refers to the similarities of the different combined

fragments, messages and lifelines that constitute the sequence diagram.

Relational similarity refers to the message sources, destinations, and

order.

Meta-information Similarity takes into consideration the element types

(e.g., the message types).

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

~

e/

i s

-

-

R

-
L
|
i

|

T
R

T
S -
e

-
|
|
-

i

s
S

A

nin

~—

citat

asurements of Behav

dge
(S)

=

Knowled

et |
- e |
o - |

| G

- - =N
=\l
-

]
-
]

S
=
-

-

- -
.
. - .

-
-
-
-
-

-
-
-

-

-

-
.

-

-
-
.
-
s

|

-
-
-
e
-

-
-

.
.
it
>
5=

T
.
.
i
-
.
.
e

|
| ...
L . .
| s T
e e einaina
e

-

-
-
E

.
o
-

|

s

- e .

Saw

- = e
= B

. - =

-
-
-
i,
o
i

.
-

| |
|

.
.
.
-

.

\
N
o

-
-
.
e

st

-

e

|
|
**
P
|
|
P
2
-

I
|

|]
|
.
]
-
L
]
|
;i

|

*,

!

=

T = ——
o o T

|
|
|
i

5
-
|

.
.

.
.
-
.
i

larity

L - T e ey]

. 7 ;. - - 1 e |

s = s S S G sEiE 5 o ol]

| . - - = 5 = - |

- — L - - - - E e - -
i - - - - o b 1

. - = 5 = 1

0 - - -5 -] 1

L 1 - . -] 1

.

-

.
.
-
5

.
-
.
-
a3
-
.
.

-

.
.
.
e
e

i

-

.

-
-

.

-

o

-
-

-
S

.
-
.
-
-
-
.
-
-
-
s
-
i
e
-
-
e

-
-
-
-

e

.
.
e
.
.
-
-

v

-

-
-

b
s
e
7
-

-
=

-

-
-
e

-

-
L
%

“““ o
el
-

“““ e B il

-
.

= - | o
= st g e L
e T - -

= i -

*.:rl e

e
.
.

-

_
T
i

o
.

-

-

-
-

el

-

-
-
-
_
(i
.
.
=

-
-
7

i
P

-

%

-

-

=

.
.
o
5
-
o
-
s
-
-

.
.
.
.
.
.
il
-
-
-
.
.
i

-

v
-
-
.
7
"
.

-
-

.
-
-
-
-

-
i
-

-
-

-
.
-
i
-
.
-
-
-
-
-
-
.

-
el

-

“““ -
-
=

.
i
.
o
-
-
.

L
.
.
-
e
i

-

-

e
i

-

-
-
-
i

|
L
[R C
,”*;:**

-

.
-
-
-
-

-
-
.
o

-

-
-
i
i
-
-
o
-
-
-
.

e
.
[

.
.
-
-
i

i
L
-
-
o
o
e
-
-
.
-

L
]
L

o
o
-
i
o
o
-
-
o

-
-
-
-
-
-
.

-
-

-

.

.

.
=

.
.

-
-
.

-
-
.
-
-
_
e
i
.
=
-
-
-
-
-

.
o
-
o
e
i
-
s
5
-

o

-
.
.
-
-
-
-
-
=

s

E
o

. .
L
—
496 e

|
o
|
s
.
r

g
L
i

vﬂ?.m
el
]
-

-

iy
'

“‘:“a

-
-

-

|
.

.

it
e

.
Y .

I
-
-
-
-

-
.

.

-
-
-

.
|
P
|
|
|
|
|
|

-

-
.
.

.
-
-

.
5

i
-

i
L

Imi

.
-
-
-
-

-

-

-
-

.

-
-

/
Dt -
f -
P -
|
e
Jr T
|

.

-
.
e

e

0 -
-
-
-
o

|
|
|
|
|

-
-
-
.
-
-
-
e
.
-
-

-
i
.
.
.
"
.
.
.
.
.
.
=

i

-

-
-
-
-
o
.

-
-

o

L

-
.
7

-
-

- -
-
=
=

o
-

.
.
.

-

-
.

.
.
=

.

-
-
-

e]
L

=
o

-
2
i
-
.

Lo

-
-
-
o
-
e
-
.
-
-
.
i

-
-
-
.

-

.
.
.
L
i
.

i
s
.
.
.

=

-
]
-
i
-
]

i
.
.
-
R
-
-
=
i
-
.
z

-
-
7
-
-

-
.
.

-
.
.

.
.
e

e
I
S

- -
.

.
s
e
.
HEs
.

-
-
o
o
w
-
-
.
-
-
-
-

-

-
-
-

o
o

-
-
e

-
-
-
.
-
-
-
.
i

-
-

-
-
-
-
-

;.

-
-
-

e
=
-
-
L

P
i
>
3
=

S s
S EEa

I
|
£

.
=

g oot
N
=

-
s
i

=
-
-
.
w5
1
|
.
-
-
.
S

e
i
e

-

-
=
-

w0

-
-

-

S
L
p

.

-

-
-
-
o
-
-
-

s
.
o
aa

|
-

|

.
i
=

-
-
.

-
-

-
-
.
-
-

e

-
o
-

-
-
-

UML Sequence Diag.

e
.
e

i
-
-
i

-

-
-
-
-
.

- H =
.. .
e

.
o
ik

.

-
-
-
-
i
-
-
-
7
=

-
-

-
.
-

.
.
.
.
.
-
S
.

-
.
s
.
.

-

-
-

.
-

-
-
-

.
.

-
fo
f
-
f
f
o]
|

L

L]
L]
=

-

7
-
-
-
-
-
-
-
-
-
-
e
-
.
5
-

e
-
o
e
e
e
=
-

o
e
e
-
-
-
-
-

-
=
-
-
-
-

o

-
e
-
.
-

-
.
-
-
L

-
=
-
-
s
=
=
-
-
-

-

:
R
| T
e
.
v
Y
e

i
-
Has
-
-
-

-
-

S
.
s
e
-

-
o
-

-

o
i

.

=
=
-
.
.

.
.
.

-

-
i e
.
L
.

.
S

P
e

S
. i
.

.
S
s
-
.
.
.

.

o
-
i
-
-
-
-
-

-

-

.
-
-
-
-
-
-
-
-
-
-
-
-

e
T
A
e
T
S
At
L e

- iy e .
- S ot e e et
S b]

e | s

-
-
o
-
5
-
-

-
e
-

-
-

-
-

.

i
-
-
-
.

=
o

S
.
.
.

**.

-
-
-
-
-
o
e
-

IC

-
i

o
o
-

-
-

t

-
=
=

o

-
o

-

e

R e

L G
o e
L e L

=
-

-
—

=

it

i
.
-

—
s
-

-
e

moa
o
.
s
- =
o

ingu

-
4
| £

Contextual (semantic) dependee s

L

s e
. N
N
) | 3 e

L &) |

-

|
.
.
|
.
2=

T
o
.

.
-
-
-
-
-
-
-
-
e

-

*
i

R R
e
e

=
SEEEEEE

.
]

o
-
-
-
-
-
-
-
-
-

e
SE S

.
-
Soo
e
e
.
.

o
-
-
-
-
-
-
-
-
.
-
-
-
-

e i
B e
e - s e W
o SR | R
e B

St

il |
=l

-
-
.
-
.
.
.
.
.
5
.
.
.
-

.

-
-
-
-
-
-
-
-
-
-
-
i

it

-

e

e S
e e

= P =
.

-
-
-

Ga
-

.
——

-
-

-
-
-
: -
i v e g
A L
S o
e LA

S i e

=2 o

-
-
-
-
-
-
-
-

=1
i
-
-
-
-
e
e

-

-
-

e

S =
. —
.

i

L
-
.
.
o
=

-

.
-

-

-
-

|
i
o

-
-
-
-
-
=
=
-
-

]
]
- ||

1
-
.
=
-
-

.
-
b
-

.
-

-
.
=

-

=
o

-

e
I L
T
i
|
R
-
-

|
e
G
s - =
- -
e 5

= -
-5
-

-
|

-
o

=

.
i
-
-
-
:
.

-

=
-
-

-
.
5

.
e

|
.
|
&
|

-
i
.

-

.

.

-
-
-

|

AR o b R .
el B .

|
||
F

-

-
-
-

o
.t
i

-
-
-

.
.
-

-

.

.
1
ke
oe e
LDIIT
L oooT
i
S

-
.
o
-
-
.

.
.
.

-
.
o

.

-
-

-
-

.
.
.
-
-
-
=
-
L
-

.
-
.
.
.
-
;
.
.
.
.
.
.

i
-
-
-
-
;
!
-
-
-
-
-
-
-
-

i
i
o
-
-
-
-
-

-
.
-
.
.
.
.
-
-
-
.
-
.
.

.

|
1

s
“““ 1
-

-
L

=
-
.
L
-
-
-
-
-
-
-
.
-
-
-
-
-
H

-

.
.
-

-

=
-
-
.
.
.
S
=
.
.
.
.
L
b
| EF
=
.
.
.
.
—
S

.
1

-
-
-
-
.
-
-

-
.

=

-
.

- . o
i | e
- .

-

i
-
.
.

e e e
e e e e e e B T
o E e s

i

-
-
]
i

B o
e

-
.

=
-
=

.
.
_

-
i

-
-

-
-
n

.
- .
-

-
.

.
o

.
-
s

| -
ﬁ

M

=
P .
i

-
-
.
-

L

-
-
—
a
.
o
o
.
-
-
-
i

.
.
.
.
il

-
.

.
-
.
i
.
-
o

-
-
=
i

.
.
.
|
.
.
i
.

P -

-

.

| |
SR S S e B
s E] = = b " —
X - . m § |
s L L S 2
- b
e ek 1 -
- m b
] i
— Mt b = —

-
.

mi
ia

s e

.
-
-
-
e
[|
=

-
-
-
-
o
'
=
=
-

a

[
-

|
1

. =
e e |
e

|
" |
|
i

Im

A

f

1
i

| C
'

a

e

S s R W
=1

i
L

s
‘" -

g L
—
e

Contextual (conceptual)
relational s

- T
LB A A A s

K ER'2008 Tutor

Knowledge Elicitation in ADOM

Merging and Generalizing

® Thresholds are defined in order to consider only similar enough pairs of
clements for the model merging phase

° Similarity groups are defined

® Asimilarity group of an element e, SG(e), is defined as a group of elements

whose general similarity with e passes a certain similarity threshold

Note that eeSG(e') < e'eSG(e)

e All elements in the same similarity group are generalized into one domain
element. WordNet is used for giving names to the domain elements. We

distinguish between:
° Mandatory elements that appear in all applications in the domain
° Optional elements that appear in several applications in the domain

* Application-specific elements that should not be part of the domain

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

o/

-

Knowle dg
The PCS E

0

==mandstory many ==
Controller_Entity

==pptional many=> +Monitor_Stateg

==mandatory many == +MonitorStop_Stateq

<<pptional many=> +GetlserDesiredRange_AttributeiAcornea, AbodyHalo)

z=mandatory many ==
Desired_State

=amandatory many >> +GetRange_Stateg

=anttional manva-

z<mandatory single= =
. Controller_E rtity

=z<mandatory single==

- Foom

s«mandatory many ==

. Item _Measuring_instrument

z<mandatory single: =
. Desired_State

=<mandatory many ==
. Item _Entity

==mptional single ==

MonitorR uum_State-;b

z=mandatory single ==
Get_Temperature)

D|I_'| zmandatory many ==
GetRange_State))

L

ot

=<mandatory single ==

=
__l._

I

I

I

I

I

I

1

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

L
I
I

Get_Propertyd I
I
I
I
I
I
I
I
I
I
|

4 N
Agenda

e An overview of Domain Engineering
® Domain Engineering concepts

® The two layer model and its related activities

* Semi Automatic Creation of Domain Models
e The ADOM approach
® Knowledge Elicitation in ADOM
®* The ADOM supporting tools

® Experimenting with ADOM

° Summary and Discussion

K ER'2008 Tutorial: Can Domain Modeling become Automated? @/

The ADOM Supporting Tools

® Plugs-in to different Modeling languages:
e TOPCASED — UML CASE tool
e OPCAT — OPM CASE tool
® The plugs-in support:
® Domain model creation
® Domain model instantiation guidance

* Application model validation

* A semi-automatic domain modeling (SDM) tool:

(in XMI format)

° Currently supports class and sequence diagrams only

® More on the tool can be found at
http: / /mis.hevra haifa.ac.il/ ~iris/research/SDM/index . htm

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

® Gets a set of UML models in XMI format and creates a domain model

0/

4 N
Agenda

* An overview of Domain Engineering
® Domain Engineering concepts
® The two layer model and its related activities
* Semi Automatic Creation of Domain Models
® The ADOM approach
® Knowledge Elicitation in ADOM
® The ADOM supporting tools
* Experimenting with ADOM

° Summary and Discussion

K ER'2008 Tutorial: Can Domain Modeling become Automated? @/

-

Experimenting with ADOM
Experiment #1: SDM vs. Manual Domain Modeling

® Goal: checking model comprehension, correctness, and completeness

when using SDM

* Subjects: third year undergraduate students (HU) who had previous
knowledge or experience in system modeling and specification and took

an advance software engineering course

* Forms: the forms included three models of a project management
omain

® SDM domain model generated on 4 applications

® Human made domain model created after carrying out literature review

¢ Human made domain model created after carrying out reverse engineering of

systems in the domain

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

©/

Experimenting with ADOM
Experiment #1: SDM vs. Manual Domain Modeling

e Tasks:

® Mapping the SDM domain model terminology to concepts in the two

human made domain models

° Grading 9 different aspects in the SDM domain model

The aspects referred to correctness, completeness, redundancy, and consistency of

the SDM model

* Correcting the SDM domain model to reflect their knowledge in the

domain

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

Experimenting with ADOM
Experiment #1: SDM vs. Manual Domain Modeling

e Results:
* Above 98% of the participants mapped the structure correctly

® Above 70% of the participants succeeded in correctly mapping

the behavior

® The main criticism:

Too abstract names or names that are not compatible with their expected

roles in the domain

To Raw Data . ..

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

Experimenting with ADOM
Experiment #1: SDM vs. Manual Domain Modeling

e Results (cont.):

® The participants graded the SDM model as follows (out of 5):

Correctness — 3.9
Completeness — 3.7

Redundancy — 4.5 (i.e., the participants thought that the model did not

include too many redundant elements)
Consistency — 4.0
Abstraction level — 3.5

To Raw Data ...

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

Experimenting with ADOM
Experiment #2: SDM vs. Ontologies

* Goal: checking SDM model comprehension, correctness, and

completeness in comparison to those of ontologies

* Subjects: third year undergraduate students (BGU) who had previous
knowledge or experience in system modeling and specification and took

an advance SOftW&I’G engineering course

e Forms: the forms referred to a scheduling domain and included:
e SDM domain model generated on 13 applications

* A known ontology in the domain (Ozone)

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

Experimenting with ADOM
Experiment #2: SDM vs. Ontologies

o Tasks:

® For each element in the SDM model, determining whether it is
relevant to domain and how, and giving it a more meaningful name.

® Mapping the SDM model terminology to that of the ontology and
vice versa

° Grading 7 different aspects in the SDM domain model

The aspects referred to correctness, completeness, and redundancy of the SDM

model

The aspects referred only to structure and not to behavior

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

Experimenting with ADOM
Experiment #2: SDM vs. Ontologies
e Results:
® 75% of the SDM domain elements were evaluated as relevant to the domain

® 73% of the participant answers correctly mapped the SDM model

terminology to that of the ontology

® 65% of the participant answers correctly mapped the ontology terminology

to that of the SDM model

To Raw Data . ..

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

Experimenting with ADOM
Experiment #2: SDM vs. Ontologies

e Results (cont.):

® The participants graded the SDM model as follows (out of 5):
Correctness — 3.9

Completeness — 3.7

Redundancy —3.9

Abstraction level — 2.3

o S

To Raw Data . ..

\ ER'2008 Tutorial: Can Domain Modeling become Automated? @/

4 N
Agenda

* An overview of Domain Engineering
® Domain Engineering concepts
® The two layer model and its related activities
* Semi Automatic Creation of Domain Models
® The ADOM approach
® Knowledge Elicitation in ADOM
® The ADOM supporting tools
® Experimenting with ADOM

° Summary and Discussion

K ER'2008 Tutorial: Can Domain Modeling become Automated? @/

Summary & Discussion
The ADOM Approach Perspectives

® The knowledge engineering perspective
° ADOM provides a means for knowledge representation and
elicitation
© The instantiation perspective

* ADOM supports different types of reuse (customization,
specialization, open and closed reuse) by incorporating domain

elements into application models

® The validation and verification perspective

° ADOM provides means for relaxing application artifacts to domain
artifacts in order to check the validity of the application artifacts in

the context of the given domain.

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

- e e moam am a am aam

ADOM'’s Advantages

° Treating domains similarly to applications enables the specification of

behavioral constraints and not just structural ones.

® Treating domains in a separate layer (and not in the language layer)

enables adjustment of ADOM to different modeling languages.

e The usage of the same modeling language for both the application and
domain layers can reduce the ontological gap and the communication
problems between the different stakeholders in the system development

pI'OCGSS.

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

- e e moam am a am aam

ADOM'’s Advantages

* ADOM supports semi-automatic domain knowledge elicitation
® This process is supported by a tool

e This process outputs reasonable models even on small numbers of applications

e ADOM supports other inter—layer domain engineering activities:

° Validating application models throughout gradual system development stages
for reducing the development efforts and costs as errors are detected in early

stages

° Guiding the instantiation of application models from domain models

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

- e e moam am a am aam

ADOM'’s Limitations & Future Work

® The completeness and expressiveness of the constraints in ADOM have
not been checked (yet)
® In particular, classifying different types of variability and supporting them in

ADOM

® As many domain engineering techniques and methods, the ADOM
approach can be criticized as dealing with too broad areas (domains)
® The results of SDM depend on the broadness of the domain
e The results of SDM depend on the chosen applications and their models
® The results of SDM depend on the lexicon used (WordNet is too general

purpose)

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

So... Can Domain Modeling become Automated?

Answers can also be sent to: iris@mis.haifa.ac.il

Thank you for your attention.

l : i

Questions?

ad

Tha ADOM Annraane nr RD
11N M\LLIINJILVI l_\'J'JIUUUII I1VI LJI
Event-driven Process Chains & Multiplicity Indicators

e EPC was originally designed for business process modeling

® There are attempts to extend EPC to reference models as well

® The most notably is Configurable EPC (C-EPC)

® EPC has no multiplicity indicators, neither domain classifiers

® We added multiplicity indicators of the form <m, n> to the domain layer and
domain classifiers of the form <domain-element name> to the application layer
® <0, 0> is a special multiplicity indicator which can be associated to

connectors and denotes a design—time decision

\ ER'2008 Tutorial: Can Domain Modeling become Automated? acC

The ADOM Approach for BP

An Example of Sales processes

® The sales reference model integrates knowledge about selling products

® Detferent topologies for selling/producing are known:

® make-to-stock: production is made for stock and not for a specific order. E.g., a

chocolate manufacturer

® assemble-to-order: off-the-shelf parts are composed for a specific order. E.g., a

computer store

® engineer-to-order: production is made for a specific order. E.g., a software

development company

\ ER'2008 Tutorial: Can Domain Modeling become Automated? ack

-

’

The ADOM Appr

The Sales reference

by

<0, 1>
Quote Activity

ach for BP
model

<1*>

<1, *>
Insert Order

Validate
Configuration

Customer
Credit

K ER'2008 Tutorial: Can Domain Modeling become Automated?

<1, *>
Check
Availability

Delivery

K
The ADOM Appr

<Check
Customer
Credit>

<Insert Order>
Order Chocolate
by Phone

<Insert Order>
Order Chocolate
by Fax

<Insert Order>
Order Chocolate
Via Internet

<Checl|
Availability>
Check Chocolate

& Packages

Availabili

Cancel Order VT
Packages

The Sales process of a Ch ola te Manufacturer

K ER'2008 Tutorial: Can Domain Modeling become Automated?

Check Required
Transport
Conditions

L

D

<Delivery>
ocal Delivery

<Delivery>
Export
Delivery

J |

<Delivery>
Delivery by

Customer

<Close Sell>

<Payment>
Issue Invoice &
Receive
Payment

The ADOM Approach for ME
ISO/IEC 24744

® ISO/IEC 24744 (Feb. 2007) is an international standard

regarding software engineering metamodel for development

methodologies

* ISO/IEC 24744 refers to five aspects:

® Work Units — the process aspects of methodologies
® Work Products — the product aspects of methodologies
® Producers — the people aspect of methodologies

® Stages — the temporal aspect of methodologies

® Model Units — the modeling language aspect of methodologies

\ ER'2008 Tutorial: Can Domain Modeling become Automated? ack

The ADOM Approach for ME
Object-Process Methodology (OPM)

e OPMis an integrated approach to the development of systems in

general and software systems in particular

® OPM unifies the system’s structure and behavior throughout the analysis,

design and implementation of the system within one frame of reference
Objects and processes are two types of equally important things (entities) required to
describe a system in a single, unifying model
At any point in time, each object is at some state. Object states are transformed
through the occurrence of a process
Object and Processes are connected via structural and procedural links
Complexity is controlled through recursive and selective scaling (zooming) of objects

and/or processes to any desired level of details

\ ER'2008 Tutorial: Can Domain Modeling become Automated? back @/

\ ER'2008 Tutorial: Can Domain Modeling become Automated? back @/

The ADOM Approach for ME
OPM and ISO/IEC 24744

A work unit is represented by an OPM process.

A work product is represented by an OPM object which may be an input

and/or an output for a work unit.

A producer is a physical and environmental object that represents a human

(or a team of humans) who should be involved somehow in the work unit.

A stage is a wrapping process which may comprise of one or more work

units.

Model units are objects which are required for carrying out work units and

producing work products.

-

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

The ADOM Approach for ME
OPM and ADOM

® OPM has multiplicities only to structural links

® Domain model roles are used for specifying multiplicity indicators of objects,

processes, and states

® Link’s cardinalities/ multiplicities are used for specifying muitiplicity

indicators of structural links
® The default multiplicity indicators of entities (objects, processes, and states)
are assut
® The default multiplicity indicators of links are assumed to be ‘mandatory
single’
® OPM has roles as domain classifiers

* A special kind of role (in the domain layer) is meta-attribute

-

The ADOM Approach for ME
The top level domain model

r_ ______
‘ 0..m
" Producer '
e 1 __—’;/
TF.-m
Work Unit
Work Product
Model Unit
: Convention
\ ER'2008 Tutorial: Can Domain Modeling become Automated? acC

-

The ADOM Approach f

Unfolding Work Unit

Work Product

1.m Wark Unit

__ _ — — — relgtionship name

- Activit '

Status

J—
—
—_——

|
Relationship name < { is mandatory for,

is recommended for,
is optional for,

is discouraged for,
is forbidden }

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

L v TaskInfo

-

- m— N = - =

Unfolding Work Product and Document

N

Waork Product
Yersion

Waork Praduct
Status

Waork Product
Type

constrainted by

Wark Product

F==-

Dictionary and
Glossary

Strategy

Authorized User

_9
&/

: Producer !

L]

Access Right

[ead J[uult] [mod'rly] [ﬂtlﬂt]

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

Catalogue

Form

— Diagram
Document —
| Application
Metric _—
— | Component i.m
Caonvention T Document ﬁ
‘
i - Dacument
Architecture Request Identifier
heta Stnbute
—— TaskInfo Dorg:m:m Project Duration
| _ {in years)
I Siggiﬁcam 1m
ate Weta Mirbute
im . F'méect&ze
Access Authorization on sub-systems)
.l eta Atnbute

Flexibility to Changes

Questionnaire

[low J [mlduimJ Lhigh J

=l Approval

Schedule

Manual

Report

@

4 N

The ADOM Approach for M

~ = = = = = v =

m

Unfolding Stage

Seguential
tage

Period Of
Time

Starting Time
Wark

Ending Time Product

Project Phase

=
[

Incremental
tage

lteraive
Stage

UJI

Repeat
Incremental Stage

F——————— e — —
: lteraive Incgﬂ.mental
t
| Waork Product Stage age
[‘Work Product
I
I
I
| —]) Additional Increment
Additional iteration Is Required
: is required
1m
|
[3 Increment
I
I
I
I
I
L

ER'2008 Tutorial: Can Domain Modeling become Automated? back @/

“Extract Requirements" activity (from RUP)

The ADOM Approach for ME

Dictionary andGlossary
Business Domain
Glossary
________ Requirement
1 Producer b Extraction v Y ;
i Client |
P — clivity ask -
Cibtain an initial) Client Initial
nderstanding of the domain Information
[Producer — "~ T T '
|Expected User l >
! e = ask [
Drraw up an initial Convention
set of requirements Requirement
Template
himes ==~ =~
I Requirement !
! Engineer | ¥
R il Requirement satisfied
Docum .
F Y = Requirement
™ Document
Tk 4 ‘ -[inili:ll] [updltc-d] [appmwd]
Deliminate the = A y —
scope of the Refine the requirement
proposed project document

K ER'2008 Tutorial: Can Domain Modeling become Automated? ack

-

Requirement
Document

[A

Fequest
Requirement

Document dentifier
Requirement
Document ID

ent ame —

Requirement
Document Mame

Sigmificant Date
Creation Date

Significant Date

Last Updated

Comment]

m!i m‘!m
User Access

Authaerization

Requirement
Document Status

Project Duration
n years)

~ Project Size
(n sub-systems})

=

Flexibility To Changes

Spproval
Client Approval

Approval
Developer

Approval

The ADOM Approach for ME

“Requirement Document" work product from RUP

Document

Hequest

Requirement

Request [dentifier

Bmgmﬁ‘equiremem Type

[functinn-al]

[non-functional]

ey Requirement Priority

‘validation Criteria

[analysis_] [design] [implememaﬁunJ [h!flingJ

Trace Requirement

Owner

Requirement ID | —

Description |—

[low J [meduim] [high] |

Requirement Traceability

Focess Authonzation
Client or RE
Access Authonzation
| Producer
I Client ”
_ P
Authonzed User
|| Awuthorized Client TPoducer - - T 7
orRE —_— Relguiremem
i ngineer

Fecess Right Client or RE

Access Permission

CNED

[delete]

Pocess Authonzation

Requesting User ||

Owner . .
Waorking Requirement
ngineer

[

Developer
Access Authonzation

Fatharized User
Authorized

Developer

. '
——=' Developer :

—_—_——— e —— =

#Aecess Right Devloper Access
Permission

K ER'2008 Tutorial: Can Domain Modeling become Automated?

back

Q@

-

Experimentin

g
a

w

Experiment #1 Raw Results

Table 1. Performance achieved when mapping SDM elements to the human-made
model elements

Literature review Reverse engineering
PM Others Overall PM Others Overall
Class , : . : . .
. classes 100.0% 100.0% 10:0.0%% 100.0% 08.9% 99.2%
diagram
Spqueu[‘e DhjE‘CtS 87.5% B85 0% 85.7% 87.5% 96.7% 94.0%
diagrams messages 04 4% 64.4% 73.0% 04 4% 75.0% 80.6%
Table 2. Grading the SDM model — experiment 1
Model Maodel Diagrams & Abstraction CGeneral
, Redundaney ; Stereotype Overall
Correctness Completeness consistency s level properness grade
Recognition Average
CD 5D |Overall]l CD SD |[Oweralll CD SD |Overall] CD SD Oweralll CD 5D Owverall] CD 5D Overalld CD SD Overall
PA AVE 35 389 a7 33 37 3= 42 453 4.3 44 44 4.8 31 38 3.5 38 37 1.5 34 36 3.5 3.8
Others AVG |37 42 39 3639 18 44 4% 4.6 3B 3B is 13 41 3.7 32 35 33 14 37 3.6 3.80
Overall AVG | 3.6 41| 3.9 3.5 38 3.7 4.3 4.7 4.5 4.0 4.0 4.0 32 4.0 3.6 34 35 3.5 34 37 3.6 3.81

Legend: CD — Class Diagram. SD — Sequence Diagram

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

@/

Experimenting with ADOM
Experiment #2 Raw Results

Table 3. Evaluating the relevancy of the main SDM model elements to the

Scheduling domain

Part A Total Participants: 15
Relevancy to Domain

SDM Element Name

Relevant Not Relevancy

Relevant | Percentage

ClassificationCar_Legal _document 12 3 80%
Customer_Dewvice 11 4 3%
Customer_Person] T 53%
EmployeeWorker Person 13 2 87%
Schedule Actity 15 0 100%
Status_Statement 13 2 87%
System_Psychological _feature 13 72 BT %
Ticket_Equipment 7 8 A7%
WorkersClassificationDriver_Message 4 8 33%
Update Driver_Act 3 0 100%

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

-

Experimenting with ADOM

| R =

Experiment #2 Raw Results

Table 4. Mapping the SDM elements to the Ozone ontology

SDM Elements S ement | Answers | Answers |Percantage
ClassificationCar_Legal_document Constraint 7 5] 54%
Customer_Device FProduct 7 = 54%
Customer_Person Dremand 6 5 55%
EmployeeWorker_Person Resource 14 n] 100%%
Schedule_Activity Activty 14 1 93%
Status_ Statement Activity 5 7 A42%
System_Psychological_feature Constraint 7 = 54%
Ticket Equipment Resource 3 5 33%
WWorkersClassificationDriver_Message Constraint 5 4 56%
Customer_Device - System_Psychological_feature Imposes 2 1 57%
Ticket_Equipment - System_Psychological_feature Imposes 2 o 100%%:
Customer_Person - System_Psychological_feature Imposes 2 1 67%
EmployeeWorker_Person - System_Psychological_feature Imposes 2 0] 100%%
Schedule_Activity - EmployesWWorker_Person Requires 3 0] 100%%
Schedule__Activity - Ticket Equipment Requires 3 i} 100%6
Schedule_Activity - ClassificationCar_Legal_document Restricts 2 1 67%
Schedule_Activity - System_Psychological_feature Restricts 2 1 67%
e e~ 2 0
Average: T3%

Experimenting with ADOM

Experiment #2 Raw Results
Table 5. Mapping the Ozone ontology to the SDM elements

Ozone Elements Equivalent SDM Element EHZ:;Z?S Af;::?'s Pe?g;;i:;g
Activity Schedule Activity 11 2 85%
Product Customer_Device 8 6 57%
Demand ClassificationCar_Legal _document 9 6 60%
Resource EmployeeWorker Person 10 5 67%
Constraint System_ Psychological feature 8 6 57%
Average: 65%
Table 6. Grading the SDM model — experiment 2

Model Model Redndancy Sfe':‘;:t:;e ‘d‘mlf: 'iﬁ“" General Overall

Correctness |Completeness - Recugni.ﬁ on e grade Average
3.9 3.7 3.9 23 23 15 31

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

-

Domain Analysis Techniques
References (1)

Arango, G. “Domain analysis: from art form to engineering discipline”, Proceedings of
the Fifth International Workshop on Software Specification and Design, p.152-159,
1989.

Carnegie, M. “Domain Engineering: A Model-Based Approach”, Software Engineering

Institute, http://www.sei.cmu.edu/domain-engineering/, 2002.

Champeaux, D. de, Lea, D., and Faure, P. Object-Oriented System Development,
Addison Wesley, 1993.

Cleaveland, C. “Domain Engineering”, http://craigc.com/cs/de html, 2002.

Clauss, M. "Generic Modeling using UML extensions for variability", Workshop on
Domain Specific Visual Languages, Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA'01), 2001.

Davis, J. “Model Integrated Computing: A Framework for Creating Domain Specific

Design Environments”, The Sixth World Multiconference on Systems, Cybernetics,

and Informatics (SCI), 2002.
Gomma, H., Designing Software Product Lines with UML, 2004.

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

-

Domain Analysis Techniques
References (2)

Gomma, H. and Eonsuk-Shin, M. "Multiple-View Meta-Modeling of Software
Product Lines", Proceedings of the Eighth IEEE International Confrerence on
Engineering of Complex Computer Systems, 2002.

Gomaa, E. and Kerschberg, L. "Domain Modeling for Software Reuse and Evolution",

Proceedings of Computer Assisted Software Engineering Workshop (CASE 95), 1995.

Harel, D. Statecharts: a Visual Formalism for Complex Systems. Science of Computer

Programming 8: 231-274, 1987.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A.,”Feature-Oriented Domain
Analysis (FODA) Feasibility Study”, CMU/SEI-90-TR-021 ADA235785, 1990.

Morisio, M., Travassos, G. H., and Stark, M. “Extending UML to Support Domain
Analysis”, Proceedings of the Fifth IEEE International Conference on Automated
Software Engineering, pp. 321-324, 2000.

Nordstrom, G., Sztipanovits, J., Karsai, G., and Ledeczi, A. “Metamodeling - Rapid
Design and Evolution of Domain-Specific Modeling Environments”, Proceedings of

the IEEE Sixth Symposium on Engineering Computer-Based Systems (ECBS), pp. 68-
74, 1999.

Petro,].]., Peterson, A. S., and Ruby, W. F. “In-Transit Visibility Modernization
Domain Modeling Report Comprehensive Approach to Reusable Defense Software”

(STARS-VC-H002a/001/00).

K ER'2008 Tutorial: Can Domain Modeling become Automated?

The ADOM Approach

A o

References (1)

For SE:

o [. Reinhartz-Berger and A. Sturm, Behavioral Domain Analysis —The Application-
based Domain Modeling Approach, the 7% International Conference on the
Unified Modeling Language (UML'2004), Lecture Notes in Computer Science
3273, pp. 410-424, 2004

o A. Sturm and [. Reinhartz-Berger, Applying the Application-based Domain
Modeling Approach to UML Structural Views, the 23" International Conference
on Conceptual Modeling (ER'2004), Lecture Notes in Computer Science 3288,
pp- 766-779, 2004

o [. Reinhartz-Berger and A. Sturm. Enhancing UML Models: A Domain Analysis
Approach, Journal on Database Management (JDM) 19 (1), special issue on UML

Topics, pp. 74-94, 2007.

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

The ADOM Approach

A o

References (2)

o For BP:

o [. Reinhartz-Berger, P. Soffer, and A. Sturm, A Domain Engineering Approach to
Specitying and Applying Reference Models, Enterprise Modeling and
Information Systems Architectures (EMISA'05), pp. 50-63, 2005.

o P. Soffer, I. Reinhartz-Berger, and A. Sturm. Facilitating Reuse by Specialization
of Reference Models for Business Process Design, the gth Workshop on Business
Process Modeling, Development, and Support (BPMDS'07), in conjunction
with CAiSE'07.

o P. Soffer, I. Reinhartz-Berger, and A. Sturm, Matching Models of Different
Abstraction Levels: A Refinement Equivalence Approach. In Keng Siau (Ed.):
Contemporary Issues in Database Design and Information Systems

Development. Idea Group, pp. 89-122, 2007.

K ER'2008 Tutorial: Can Domain Modeling become Automated? @/

The ADOM Approach

A o

References (3)

o For ME:

J [. Reinhartz-Berger and A. Aharoni. Representation of Method Fragments: A
Domain Engineering Approach, the 12" Workshop on Exploring Modeling
Methods for Information Systems Analysis and Design (EMMSAD'07), in
conjunction with CAiSE'07.

° A. Aharoni and I. Reinhartz—Berger. Representation of Method Fragments: A
Comparative Study, [FIP WG8.1 Working Conference on Situational Method
Engineering: Fundamentals and Experiences (ME'07).

° A . Aharoni and I. Reinhartz—Berger. A Domain Engineering—based Approach for

Situational Method Engineering, the 27" International Conference on Conceptual

Modeling (ER'2008), 2008

\ ER'2008 Tutorial: Can Domain Modeling become Automated?

