Open Reuse of Component Designs in OPM/Web

Iris Reinhartz-Berger, Dov Dori, and Shmuel Katz
Technion - Israel Institute of Technology
Technion City, Haifa, Israel 32000
{ieiris@tx, dori @ie, katz@cs }.technion.ac.il

Abstract

As system complexity has increased, so has interest in
reusing software components in early development
phases. While most current modeling methods support
design of generic parameterized frameworks or patterns
and weaving them into specific models, they do not
support open reuse, i.e., the ability to develop partially
specified components and refine them in the target
application. We introduce an open reuse formalism that is
based on OPM/Web, an extension of Object-Process
Methodology for distributed systems and Web
applications. Our open reuse is accomplished by a three-
step process, consisting of designing reusable models,
creating basic woven models, and enhancing their
specification. We model a reusable component through
partially specified environmental elements that are bound
to concrete counterparts when the component is
integrated into the system under development. Rules for
modeling and combining components are defined and
applied to a Web example.

1. Introduction

There is widespread interest in the use of existing
software artifacts or knowledge to create new software
[11]. Such software reuse aims at improving software
quality and productivity by integrating existing
components, such as commercial off-the-shelf (COTS)
products or tested modules from other projects. Early
software reuse concerned the combination of reusable
source code components to produce application software
[14]. The object-oriented paradigm highlighted reusability
as part of the development process by using classes,
packages (modules), and the inheritance mechanism as
primary linguistic vehicles for reuse [3]. The current
definition of software reuse encompasses all the resources
used and produced during the development process,

including reuse of requirements, architecture, design,
implementation, and documentation.

We distinguish two reuse categories: closed and open
reuse. Closed reuse incorporates existing complete, stand-
alone modules or components, such as packages or
classes, into new applications via the components'
interfaces [2]. In open reuse, we integrate partially
specified components into one combined model. Like
closed reuse, open reuse encompasses the design of
reusable models and their integration with the system
under construction. In addition, open reuse enables
enhancing and optimizing the integrated components
during the analysis and design phases.

Most software engineering methods support closed
reuse by parameterization and binding capabilities, but do
not deal with open reuse. We suggest a formalism for
both closed and open reuse using OPM/Web [15], an
extension to the Object-Process Methodology (OPM) for
distributed systems and Web applications. OPM [6, 7]
extends the object-oriented paradigm with a new entity,
called process, which is a pattern of transformation
(consumption, generation, or change) that objects
undergo. This provides OPM with a straightforward way
for specifying stand-alone processes, which are not
owned by (or encapsulated in) a specific object and
therefore cannot abide by the object-oriented
encapsulation principle. Section 2 reviews existing reuse
specification techniques and argues that they primarily
handle closed reuse. Section 3 specifies rules for weaving
components in OPM/Web and discusses the semantics of
the resulting models, while Section 4 demonstrates the
process of weaving models on a Web-based example.

2. Reuse of component designs in modeling

Current object-oriented approaches, most notably
UML [13, 16], emphasize the importance of reuse during
the development process and enable it through classes,
packages, and the inheritance mechanism. However, once
the classes and packages have been modeled, they are
treated as closed, black boxes with interfaces, through

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

which other parts of the model or other models can
communicate. This approach hinders reusing generic
models in different contexts. To respond to this challenge,
AOP [4] introduces the concept of aspect, which
modularizes the features for a particular concern and
describes how these features should be woven, i.e.,
incorporated and integrated, into the system model.
Superimposition language constructs [12] similarly
extend the functionality of process-oriented systems,
again cutting across the software architecture.

Recent attempts have been made to extend the aspect
notion from programming to software design and
engineering [1]. Most aspect-oriented modeling is based
on UML, adding stereotypes to model the new aspect-
oriented concepts. Catalysis [8] is an OMG-compliant
methodology for component and framework-based
development. Troll [9] and Composition Patterns [5]
suggest adding parameterization and binding capabilities
to UML packages. While these methods handle closed
reuse, they lack the ability to support the development of
several components into complete systems. Such support
is often essential for optimizing and enhancing the design
of an entire model a mission that goes beyond binding
existing components together.

Object-Process Methodology (OPM) [6, 7] is a suitable
basis for open reuse, since it integrates concepts from the
object- and process-oriented approaches within a single
frame of reference. The elements of the OPM ontology
are things and links. A thing is a generalization of an
object and a process the two basic building blocks of
any system expressed in OPM. Analogously, links can be
structural or procedural. Structural links express static
relations between pairs of objects, such as aggregation
and generalization. Procedural links connect objects and
processes to describe the behavior of a system how
processes transform objects. OPM manages complex
system models through two refinement/abstraction
mechanisms: unfolding/folding, which is used for
detailing/abstracting the structural parts of a thing, and in-
zooming/out-zooming, which exposes/hides the inner
details of a thing within its frame. This way OPM enables
specifying a system to any desired level of detail without
losing legibility and comprehension of the resulting
model. The code generated from an OPM model describes
the system dynamics, not just its skeleton, as is often the
case with other modeling approaches. The main limitation
of OPM with respect to reusability is that it is not geared
towards the integration of a number of semi-specified
components into one model of a complete application.

3. Weaving OPM/Web models

OPM/Web [15] extends OPM for the domains of
distributed systems and Web applications. These
extensions allow characterizing links with specific

features (objects and/or processes), extending the refining
mechanisms to increase modularity, separating between
the definition of a process class and process instances
(occurrences) of that class to model code migration, and
adding global data integrity and control constraints to
express dependence or temporal relations among
physically separate modules. Table 1 summarizes the
relevant symbols of OPM/Web.

Table 1. Relevant OPM/Web symbols
Category Name Symbol
Things Systemic object [

Environmental object Lo
Systemic process
Environmental process [
Structural Inheritance JAN
Links Characterization A
Aggregation A
Procedural Instrument link o—
Links Result/consumption link <+
Systemic effect link +—>
Environmental effect link <+——D>
Condition link e—
Invocation link +—

In this work, we endow OPM/Web with open reuse
capability. The open reuse is achieved by a three-step
process, consisting of (1) designing reusable components,
(2) integrating these components to create basic woven
models, and (3) enhancing the basic woven models into
complete applications. While the first two steps could be
partially carried out by applying UML, the third step is
not supported by object-oriented methods, since their
resulting woven models are structural in nature and closed
through pre-defined parameters.

3.1. Designing reusable models

The specification and design of each reusable model is
carried out using OPM/Web. A thing (object or process)
in an OPM/Web model that needs further specification in
the target system to which it may be bound is defined as
environmental. In OPM, an environmental thing is
completely external to the system, as opposed to a
systemic thing, which is internal to the system. In
OPM/Web, an environmental thing can have partly
specified internal structure, which may contain both
systemic and environmental elements. When components
are woven into one model, each environmental thing in
the combined model is either bound to a specific thing or
left as an unbound requirement. A component may also
include requirements related to things in the target system
to which it is bound. Such requirements are expressed by
environmental (dashed) links, which connect pairs of
environmental things. As explained in Section 3.2, an
environmental link in a reusable component requires the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

existence of a corresponding link in the target system
model.

Time Stamped !
~._Executing .-

Figure 1. A reusable Time Stamp model

Figure 1 shows an example of a reusable model for
adding time-stamps to a process execution. The model,
called Time Stamp, attaches to each Data Item a
timestamp, Recorded Time. Data Item and Recorded Time
characterize (are the attributes of) Node. Data Iltem is
environmental since it needs to be refined and adapted to
the various contexts in which this model is reused.
Recorded Time, on the other hand, is systemic it is
internal to the model and will remain the same regardless
of the context of Data Item. Similarly, Process Executing
should be adapted to a specific process in the target
system and is therefore denoted as an environmental
process, while Time Recording is a systemic process. The
environmental effect link between Process Executing and
Data Item implies that this model can be reused only with
components in which the process bound to Process
Executing can affect (change the value of) the object
bound to Data Item.

Any OPM/Web model is required to abide by intra-
model weaving rules defined below.

The scaling rule: A systemic thing can only be refined
(unfolded or in-zoomed) by other systemic things, while
an environmental thing can be refined by environmental
or systemic things. In Figure 1, Time-Stamped Executing
is an environmental process, since it contains an
environmental process, Process Executing. Similarly, the
object Node is environmental, since one of its attributes,
Data ltem, is environmental.

The link attachment rule: Two things in a reusable
component that are connected by an environmental link
must both be environmental, while systemic links can
connect either systemic or environmental things. In Figure
1, the environmental effect link connects an
environmental object, Data Item, to an environmental
process, Process Executing. If this link were replaced by
a systemic one, then the things in the target model that are
bound to Data Item and Process Executing would become
connected by an effect link, even though this link might
not be explicitly specified in their original model.

3.2. Creating basic woven models

Having created a set of OPM/Web components, the
designer should decide which components are to be

woven into the target model and how to weave them.
Each model, be it a reusable component or a target model,
is contained in a rectangular frame, called a module.
Usually one module is a generic reusable component and
the other is the target one and is specific. The resultant
woven module can be entirely concrete, or it may still
contain environmental elements, which imply that the
weaving process is not yet complete.

The designer can connect each environmental thing of
an OPM/Web module with an environmental or systemic
thing of another module. Since each module may contain
things that need to be bound at different levels of
refinement, the designer can successively apply the
appropriate series of refining steps to get the needed
design portion. The model in Figure 2, for example,
weaves the model of Figure 1 into a specific DB
Maintenance model, such that the combined specification
contains two modules the Time Stamp Module with
Time-Stamped Executing in-zoomed, and the DB
Maintenance Module with DB Handling in-zoomed.

Generalization-specialization relations are the primary
means for binding between things in any two different
modules. This relation gives rise to object-oriented
inheritance by providing not only for structural object
inheritance, but also for process inheritance, which is
behavioral in nature. In process inheritance, the sub-
process class has at least the same interface (i.e., the set of
procedural links) and behavior (i.e., sub-processes) as the
super-process class. The interface and behavior of the
inheriting process class may be extended or restricted.
This way, things in OPM/Web can inherit not just
complete classes, as in UML, but also partially specified
objects or processes. In both inheritance types, multiple
inheritance is allowed.

Time Stamp Module
Time Stamped Executing zoomed-in =~ r ===~~~ '

i
'
1
'

N >
. Time Stamped ,* \ Data Iltem
~. Executing _hl Ve '

Product Handling Module
DB Handling zoomed-in

Figure 2. The Time Stamp Module woven into the DB
Maintenance Module

Figure 2 shows three generalization-specialization
relations: one object inheritance relation between Data
Iltem and Record, and two process inheritance relations

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)

0730-3157/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER

SOCIETY

one between Process Executing and DB Updating and the
other between Time-Stamped Executing and DB Handling.
These relations imply that DB Updating affects Record
and uses Recorded Time as an input.

3.2.1. Inter-model weaving rules. Each woven module is
required to preserve three inter-model weaving rules, in
addition to the (intra-) scaling and link attachment rules.

The minimal binding rule: Each environmental thing
in a module can be bound to a corresponding thing in
another module, either explicitly or implicitly. A
generalization-specialization relation achieves explicit
binding, while implicit binding is applicable only to a
compound environmental thing. A compound thing is an
object or a process that is further refined and is therefore
not at the lowest level of detail. For each compound
environmental thing in the reusable module that is not
explicitly bound to a thing in the target module, a default
systemic thing is implicitly generated, including all the
specific things bound to its environmental constituents. In
the woven model in Figure 2, Node is not explicitly
bound, hence a default systemic object is implicitly
generated for it, including Record. The default object also
inherits Recorded Time from Node. Likewise, if there
were no process inheritance relation between Time-
Stamped Executing and DB Handling, then a default
process would be implicitly generated for Time-Stamped
Executing, consisting of DB Updating and inheriting Time
Recording from Time-Stamped Executing.

The hierarchy congruence rule: The hierarchy
structure between environmental things in a reusable
module must be congruent with that of the things bound
to them in the target module. As an example, Time-
Stamped Executing in Figure 2 is bound to DB Handling,
while Process Executing is bound to DB Updating. The
zooming relation between Time-Stamped Executing and
Process Executing is maintained in the specific module
by DB Handling and DB Updating. The hierarchy
congruence rule disallows binding Time-Stamped
Executing with Consistency Checking and at the same
time Process Executing with DB Updating.

The link precedence rule: The binding of an
environmental link is implicitly determined from the
bindings of its connected things. Environmental links can
be bound to systemic links which are at least as strong as
the environmental according to the link precedence order.

consumption/result links are the most powerful, followed
by effect links, then agent and instrument links, and
finally condition and event links. The environmental
effect link between Data Item and Process Executing in
Figure 2 is implicitly bound to the systemic effect link
between Record and DB Updating. The link precedence
rule implies that a legal binding can also connect Data

Iltem and Process Executing with an object and a process
already connected by a consumption or result link.

3.2.2. Semantics of basic woven models. The semantics
of the generalization-specialization relation between
modules is similar to their semantics within a single
module. An object can inherit the features (attributes and
operations) of a partially specified (environmental) object.
Similarly, a process can inherit the behavior (sub-
processes) and interface (procedural links) of a partially
specified (environmental) process. In the woven model of
Figure 2, Node has two attributes, Recorded Time and
Record, where the latter inherits from Data Item. DB
Handling consists of four sub-processes, but only DB
Updating inherits from Process Executing an instrument
link to Recorded Time and requires an effect link to
Record. In other words, DB Updating uses Recorded Time
as an extra input.

If different types of links exist between two
environmental things and their corresponding things in a
bound module, then the more powerful link (according to
the link precedence order) prevails. If there were a
systemic instrument link between Data Item and Process
Executing in the Time Stamp Module, it would be
subsumed by the effect link between Record and DB
Updating, because of the precedence.

Generalization-specialization relations between
processes also define a partial execution order between
the sub-processes of an individual process. The time axis
in an OPM/Web System Diagram (SD) goes from the top
of the diagram to its bottom within each in-zoomed
process. Hence, two independent or concurrent sub-
processes are depicted at the same vertical level. The
generalization-specialization relations between modules
merge the partial orders from each module into one
combined partial order. In Figure 2, there is a total order
in both the Time Stamp Module (Time Recording and then
Process Executing) and in the DB Handling Module (DB
Reporting, then DB Updating and finally Consistency
Checking). The generalization-specialization relation
between Process Executing and DB Updating defines a
partial execution order in the woven model: first Time
Recording and DB Reporting are independently executed,
then DB Updating, and finally Consistency Checking.

The single model constructed by applying the above
semantics of environmental elements and generalization-
specialization relations is the fully expanded model. The
woven models can be maintained either as component
modules, or as fully expanded models.

3.3. Enhancing basic woven models

Having created the basic woven model, the system
architect can continue specifying the combined system in
a separate layer without affecting the composing modules.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

This layer includes the generalization-specialization
relations between the modules and additional intra- and
inter-relations. This stage may include reusing aspects,
integrating stand-alone components, or modeling new
requirements following OPM/Web rules. This stage
enables optimization and minimization of the combined
modules as a complete application which offers
functionality that goes beyond that of each of the
individual modules.

4. Reusing OPM/Web models: The Web-
based accelerated search example

We use the Accelerated Search System [10] to
demonstrate the OPM/Web weaving process described in
Section 3. The Accelerated Search System implements an
algorithm for improving the performance of a search
engine over the Web requiring time-consuming search
algorithms. The design of this system includes two
models a reusable one, called Acceleration, and a
specific one, called Multi-Search. The Acceleration model
specifies a generic algorithm that reduces the execution
time of an input-output part of a system by trying first to
retrieve the output, which is determined by the input,
from a database. If the entry is not already in the database,
it activates a process that calculates the sought output and
records it in the database to accelerate future executions
of the algorithm with the same input. The Multi-Search
model implements a new search engine that benefits from
existing search engines by combining their results and
ordering them according to a weighted score. We assume
that the needed Web items are static and rarely changed,
so the query results remain valid in consequent activations
of the query with the same input. Previous query results
can therefore be stored to avoid executing the costly
search engines.

4.1. The Acceleration and Multi-Search models

Figure 3 specifies that Acceleration consists of three
main steps: searching the DB for an input-output entry,
retrieving the output if it was found in the database, and
activating the full process otherwise. The Acceleration
model contains two environmental objects, Input and
Output, and one simple lowest-level environmental
process, Original Processing. The scaling rule implies
that Accelerating and Full Process Activating are also
environmental processes. All the other things are
systemic, as they are internal to the generic model.

Figure 4 is the top-level diagram of the Multi-Search
algorithm. It specifies the inputs (Term and Query Result
Msg) and outputs (Query Msg and Search Result) of the
algorithm. We could also zoom into Multi Searching sub-
processes that create queries, send them out, and correlate
the results, but these are not needed for the weaving here.

Found
ey [
o e
(\Accaeraﬂng:' y':o”gma Prucessmg]‘l p
’ ;L Ful Process Actvatn i
outpu) R S
,,,,,,,,,, Output ¢
(a) SD (c) SD1.1 e
_,»-""'T‘-.__ ———————
R Accelerating . ot
"¢ OB . ' Inpu !
] .
K Searchin .O/‘ ******
L *
¥ Input is found?|
v
DB Output ® yes m° S
H Retrievin H
. "
"
.
Ly PR TY N N
. " .l *
. v Full Process H .
e &——’—‘:‘/——;~ Activating L e
A——"""v vemrme= .
| Output ! .‘~~ Lt
,,,,,,, . pRT (b) SD1
Figure 3. The Acceleration model. (a) Top-level

diagram. (b) Accelerating zoomed-in. (c) Full Process
Activating zoomed-in.

Term

,
Query Msg Search Result

Top level Multi-Search model

SD

Figure 4.

4.2. The basic Acceleration/Multi-Search model

To improve the response time, we weave the
Acceleration model into the Multi-Search model, so the
latest searched terms and their results are saved in a local
database, which is searched before invoking the entire
Multi-Searching process. Figure 5 shows the basic woven
Acceleration/Multi Search model with Acceleration
Module zoomed-into Full Process Activating, and the top-
level Multi-Search Module. Three generalization-
specialization relations connect the two modules. The
object class Term is an Input and Search-Result is an
Output. The third generalization-specialization relation is
between two process classes, specifying that Multi-
Searching specializes Original-Processing. Full Process
Activating is implicitly bound to a default systemic
process that includes just Multi-Searching. These bindings
are legal according to the inter- and intra-model weaving
rules. If we developed the Acceleration/Multi-Search
model conventional (by completely specifying the same
system without weaving any reusable model), the
resulting model would be specific to the problem
hindering reuse. The model in Figure 3 enjoys the
benefits of generality, which makes it reusable for a
variety of functions having the same core architecture.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)

0730-3157/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER
SOCIETY

Found

Acceleration Module
Full Process Activating of
Accelerating

:]
Search Result

Multi-Search Z&

Module
Top Level

Figure 5.

The Acceleration/Multi-Search model

4.3. Further extensions/enhancement

Acceleration/Multi-Search Module

Acceleration Module
Full Process Activating
of Accelerating

Multi-Search Zx
Module
Top Level

> o

Parameter

Figure 6.

Adding Log Recording

The equivalent semantics of the woven and fully
expanded models makes it possible to treat woven models
as regular OPM/Web models. The designer can continue
specifying the combined system and integrate other
reusable models into it. For example, the Log Recording
Module in Figure 6 includes a Log File along with its Log

Records and a Recordin

g operation. When weaving the

module into the Acceleration/Multi-Search Module, Term
is bound to Input, and the modules are connected with an

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)

0730-3157/02 $17.00 © 2002 IEEE

invocation link to denote that Recording is triggered
through a Multi-Searching process termination event.

Thus, using the rules and weaving repeatedly, complex
new systems can be formed from partially specified
components, supporting both open and closed reuse.

References

(1]
(2]

(3]
(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

The Aspect-Oriented Software Engineering Web site.
http://www.comp.lancs.ac.uk/computing/aop/index.html
K.S. Barber, T.J. Graser, and S. R. Jernigan, Increasing
Opportunities for Reuse through Tool and
Methodology Support for Enterprise-wide
Requirements Reuse and Evolution. 1* Intl. Conf. on
Enterprise Information Systems, 1999, pp. 383-390.
G. Booch, Object-Oriented Analysis and Design with
Application. Benjamin/Cummings, 1994.
K. Czarnecki, U. W. Eisenecker, and P. Steyaert,
Beyond Object: Generative Programming. AOP
-8.
S. Clarke, and R.J. Walker, Composition Patterns: An
Approach to Designing Reusable Aspects. Intl. Conf.
on Software Engineering, 2001.
D. Dori, Object-Process Analysis: Maintaining the
Balance between System Structure and Behavior. Jour.
of Logic and Computation, 5, 1995, pp. 227-249.
D. Dori, Object-Process Methodology - A Holistic
Systems Paradigm. Springer Verlag, Heidelberg, NY,
in press, 2002.

Components with UML
Addison-Wesley, 1998.
S. Eckstein, P. Ahlbrecht, and K. Neumann, Increasing
Reusability in Information Systems Development by
Applying Generic Methods. 13™ CAiSE, LNCS 2068,
2001, pp. 251-266.

Y. Firstenberg, S. Katz, and O. Shmueli, An Object-
Oriented Program Accelerator Using Impersonation,
Technion Computer Science Department, Technical
Report CS-2002-06, 2002.

W. Frakes, and C. Terry, Software Reuse: Metrics and
Models. ACM Comp. Surveys, 28, 1996, pp. 415-435.
S. Katz, A Superimposition Control Construct for
Distributed Systems. ACM TOPLAS, 15, 1993, pp.
337-356.

N. G. Lester, F. G. Wilkie, and D. W. Bustard,
Applying UML Extensions to Facilitate Software
Reuse. The Unified Modeling Language - Beyond the
Notation. LNCS 1618, 1998, pp. 393-405.

H. Mili, F. Mili, and A. Mili, Reusing Software: Issues
and Research Directions. IEEE Transactions on
Software Engineering, 21, 1995, pp. 528-562.

L. Reinhartz-Berger, D. Dori, and S. Katz, OPM/Web
Object-Process Methodology for Developing Web
Applications. Annals on Software Engineering: OO
Web-based Software Engineering, 2002 (to appear).
UML 1.3, http://www.rational.com/media/uml/
resources/documentation/ad99-06-08-ps.zip.

The Catalysis Approach.

YF]',F.

COMPUTER

SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

