OPCAT —A BIMODAL CASE TOOL FOR OBJECT-PROCESS

Keywords:

Abstract:

BASED SYSTEM DEVELOPMENT

Dov Dori, Iris Reinhartz-Berger, Arnon Sturm
Technion, Isradl Ingtitute of Technology, Technion City, Haifa 32000, Israel

Emails: {dori@ie, ieiris@tx, sturm@tx}.technion.ac.il

CASE tools, software engineering, development process, Object-Process Methodology, simulation.

Object-Process CASE Tool (OPCAT), which supports system development using Object-Process Method-
ology, meets the challenges of next generation CASE tools by providing a complete integrated software and
system development environment. The main reasons for which CASE tools have spread at alower pace
than expected are their limited support of a particular method, high cost, lack of measurable returns, and
unrealistic user expectations. Although many CASE tools implement familiar methods, their consistency
checking and simulation capabilities are limited, if not inexistent, and the syntax and semantics of their
graphic notations may not be clear to novice users. Based on two human cognition principles, OPCAT en-
ables balanced modeling of the structural and behavioral aspects of systemsin a single view through a bi-
modal visual-lingual representation. Due to this intuitive dual notation, the resulting model is comprehens-
ble to both domain experts and system architects engaged in the devel opment process. Due to OPM formal-
ity, OPCAT aso provides a solid basis for implementation generation and an advanced simulation tool,
which animates system behavior. This paper presents OPCAT and demonstrates its unique features through

asmall case study of atravel management information system.

1 INTRODUCTION

Computer-Aided Software Engineering (CASE)
tools provide technol ogies that support automated or
semi-automated assistance for software devel opment
(Banker and Kauffman, 1991). CASE tools aim at
reducing time and cost of software development;
increasing the productivity and quality of documen-
tation, analysis, and design; facilitating system
maintaining, debugging, and testing; aiding project
management; and preserving consistency among
various development lifecycle steps (McMurtrey et.
al., 2000). These benefits are expected to be
achieved by automating the development process,
which ideally encompasses the entire system devel-
opment lifecycle, including requirement managing,
consistency checking, implementation generating,
and system testing.

As the number of analysis and design methodolo-
giesincreased, so did the number and variety of their
supporting CASE tools. For example, UML (OMG,
2001), which is the industry standard of object-
oriented software systems development, has over 96
supporting CASE tools (Object by Design, 2002).
The importance and advantages of using CASE tools
in the system development process have prompted
the |IEEE-SA Standards Board to adopt the industrial

standard 1SO/IEC 14102: 1995, which is concerned
with the evaluation and selections of CASE toals,
including such issues as the introduction of a new
CASE toal into an organization. In spite of this at-
tention and CASE tool vendor development and
marketing efforts, CASE tools have spread at a
lower pace than expected. The main reason for this
is that most available CASE tools support a specific
development method, which cannot be easily tai-
lored to the needs of a particular organization and its
software developers. In addition, adopting CASE
tools within organizations is often expensive, as it
includes purchasing or leasing the product, maintain-
ing it, and training the developers to use it. The cost,
lack of measurable returns, and lack of fulfillment of
unrealistic expectations have discouraged managers
from introducing such tools into their companies.
Even when decision makers acquire CASE tools,
system and software developers within the organiza-
tion rarely use them.

In this paper, we introduce OPCAT (Object-
Process CASE Tool) as an integrated system devel-
opment software environment. OPCAT supports
system development using Object-Process Method-
ology (OPM) (Dori, 2002), which weaves the object-
oriented paradigm with the process-oriented ap-
proach. To enhance model legibility and comprehen-

sion, OPM uses two semantically equal formalisms:
a visua diagramming tool, called Object-Process
Diagram (OPD), and a textual counterpart, called
Object-Process Language (OPL). Making use of the
modality human cognition principle (Mayer, 2001),
OPM engages the power of "both sides of the brain”
—the visual interpreter and the lingua one.

Being an OPM-based CASE tool, OPCAT enjoys
the advantages of supporting most of the system
development lifecycle tasks, starting from require-
ment analysis, through system design and implemen-
tation, to system testing, simulation, and validation.
Since OPM enables modeling system dynamics and
control structures, such as events, conditions,
branching, and loops, the generated implementation
can definitely be more advanced than a mere stan-
dard skeleton code. Moreover, OPM's ability to cap-
ture the system'’s structure and behavior in a single
view aso enhances OPCAT simulation capabilities
and makes it most suitable for interactive testing and
validation.

The rest of the paper is organized as follows. In
Section 2 we review the literature related to CASE
tools and their use. In Section 3, we briefly introduce
OPM. Section 4 lists the main features of OPCAT
which make it a complete system development and
lifecycle support tool. We exemplify these features
through a small case study of a travel management
system. Findly, in Section 5, we discuss work in
progress and future development plan.

2 CASETOOL UTILIZATION

CASE tools have been developed with the objec-
tive of assisting developers in producing high quality
software systems and products. To this end, CASE
tools are designed to relieve the system architects
and developers from mundane software engineering
activities, leaving them more time to focus on the
non-trivia, insight- and creativity-demanding tasks.
Over the years, severa studies have surveyed the
way organizations use CASE tools. Lending and
Chervany (1998) found out that “it was difficult to
find companies using CASE tools.” Even in the
companies that did use CASE tools, the extent of
their deployment was very small. The CASE tool
features that these companies employed were di-
vided into two groups. anaysis functiondity (e.g.,
testing for consistency between a process model and
a data model), and transformation functionality (e.g.,
generating executable code in severa languages).
The overall result for using features from both func-
tionaitieswas low.

McMurtrey et. a. (2000) surveyed the use of
CASE technology inquiring professionals from dif-

ferent company types (insurance, manufacturing,
consulting firms, etc.). They focused on the most
popular features that CASE tools possessed and the
gap between them and the devel oper needs. The fea-
tures most often cited as being needed and used were
the ability to represent a design in terms of data
models and process or flow models. This reflects the
fact that representing the model's structure and be-
havior aspects is the most useful aspect of current
CASE todls.

In order to overcome some of the CASE tools
flexibility drawbacks, a new type of CASE tools,
caled metaCASE tools, or Computer Aided
Method Engineering (CAME) tools, was introduced.
These tools feature flexible metamodeling facilities
that users can reconfigure to support whatever
metamodel they wish to deploy. Examples of such
tools are MetaEdit+ (Talvanen, 2002) and AToM?
(Lara and Vengheluwe, 2002). However, these tools
are not widely used, since employing them is not a
trivial task.

Method engineering and CASE tool designers
have paid little, if any, attention to the human cogni-
tion theory. For example, the cognitive theory has
shown that the human information processing sys-
tem involves separate channels for processing visual
and verbal material, and that the processing capabil-
ity of each channel is quite limited (Mayer, 2001).
The existing CASE tools address only the visual
channel, neglecting the verbal one.

3 OBJECT-PROCESS
METHODOLOGY (OPM)

Object-Process Methodology (OPM) (Dori,
2002) is a holistic approach to the study and devel-
opment of systems. It integrates the object-oriented
and process-oriented paradigms into a single frame
of reference. Structure and behavior, the two major
aspects that each system exhibits, co-exist in the
same OPM view without highlighting one at the
expense of suppressing the other.

The elements of the OPM ontology are entities
(things and states) and links. A thing is a generaliza-
tion of an object and a process. Objects are (physical
or informatical) things that exist, while processes are
things that transform objects. Links can be structural
or procedural. Structural links express static rela-
tions between pairs of entities. Procedural links
connect entities to describe the behavior of a system.
The behavior is manifested in three major ways.
processes can transform objects; objects can enable
processes, and objects can trigger events that invoke
processes.

Two semanticaly equivalent modalities, one
graphic and the other textual, jointly express the
same OPM model. A set of inter-related Object-
Process Diagrams (OPDs) constitute the graphical,
visual OPM formalism. Each OPM element is de-
noted in an OPD by a symbol, and the OPD syntax
specifies correct and consistent ways by which enti-
ties can be linked. The Object-Process Language
(OPL), defined by a grammar, is the textual counter-
part modality of the graphical OPD-set. OPL is a
dual-purpose language, oriented towards humans as
well as machines. Catering to human needs, OPL is
designed as a constrained subset of English, which
serves domain experts and system architects en-
gaged in analyzing and designing a system. Every
OPD congtruct is expressed by a semanticaly
equivalent OPL sentence or phrase. Designed also
for machine interpretation, OPL provides a solid
basis for automatically generating the designed ap-
plication. This dual representation of OPM increases
the processing capability of humans.

Another advantage of OPM is its complexity
management mechanisms. OPM offers three refine-
ment/abstraction mechanisms: (1) unfolding/ folding
is used for refining/abstracting the structural hierar-
chy of a thing; (2) in-zooming/out-zooming ex-
poses’hides the inner details of a thing within its
frame; and (3) state expressing/suppressing exposes/
hides the states of an object. Using flexible combina-
tions of these mechanisms, OPM enables specifying
a system to any desired level of detail without losing
legibility and comprehension of the resulting speci-
fication. The complete OPM system specification is
a set of OPDs and their corresponding OPL para-
graphs.

OPM has been applied and tested in various do-
mains, including real-time systems (Peleg and Dori,
1999) and Web applications (Reinhartz-Berger et. a.
2002). Developing systems of this nature is a com-
plex task that involves modeling their intertwined
structural and behavioral aspects.

4 OPCAT FEATURES: A CASE
BASED DEMONSTRATION

OPCAT" has been in development as an aca-
demic project. It is designed to support the entire
system development lifecycle through OPM. The
two main benefits of OPCAT over existing object-
oriented CASE tools are its bimodal graphic-textual
single view representation and its smulation capa-
bility. The bimodal representation of OPCAT in-

1 OPCAT can be downloaded free from
http://iew3.technion.ac.il/~dori/opcat/index-continue.html

creases OPM accessihility to heterogeneoudly skilled
users engaged in the system development process.
The intuitive, bimodal model representation enables
development teams consisting of system architects
and domain experts to jointly engage in the devel-
opment process on an ongoing basis. Such collabo-
ration, which is not feasible with other CASE tools,
is highly desirable, because it enables requirements
to be put to test while modeling. Improving the sys-
tem documentation quality is yet another benefit of
OPCAT's bimodal representation, since the textual
representation provides the system documentation.

OPCAT's simulation capability enables “run-
ning’” a system model, testing its functionality
against the requirement specifications, and debug-
ging them at the model level, prior to the beginning
of the implementation phase. In the rest of this sec-
tion we demonstrate these OPCAT capabilities
through a case study of atravel management system.
The system manages company employee profes-
siona travels, including travel request, approval,
finance and expense reporting.

4.1 The Bimodal Graphic-Text

Representation

Catering to the modality principle of cognitive
theory, OPCAT enables modeling systems graphi-
caly via an OPD-set and textually using OPL, a
subset of English. OPCAT automatically translates
an OPD-set into its equivalent OPL paragraph and
vice versa? This way, users who are not familiar
with the graphic notation of OPM can validate their
specifications by inspecting the OPL sentences,
which are automatically generated on the fly in re-
sponse to the user's graphic input. Another cognitive
principle — the limited channel capacity (Mayer,
2001) — is addressed in OPM through the abstrac-
tion/refinement mechanisms. These provide for cre-
ating diagrams and corresponding OPL paragraphs
that are limited in size, thereby avoiding information
overload and enabling comfortable human process-
ing. The relatively small set of OPD symbols and
corresponding OPL sentence types increases the
accessibility of OPM to both system architects and
domain experts. The automatic translation into an
OPL script aso improves the documentation quality
of the developed system. The automatic implementa-
tion generation, currently under development, will
ensure that the specification designed by the system
architects and endorsed by the domain experts is
indeed reflected without any trandational gap in the
actual system.

2As of writing this paper, the text-to-graphics direction is
not yet fully operationd.

Figure 1, which is a snapshaot of an OPCAT 2
screen, shows the bimodal OPD-OPL representation
for the travel management system. The graphic win-
dow in the upper part of the screen shows the top-
level OPD, while the lower part of the screen is the
text window, which contains the equivalent OPL
paragraph. Interpreting the OPD or the OPL para-
graph, the model specifies that the Travel Managing
process is handled by the Employee, which is an
environmental (dashed) and physical (shadowed)
object, linked to Travel Managing via an agent link.
The corresponding OPL sentence that expresses this
is: "Employee, which is environmental and physical,
handles Travel Managing." Travel Managing is
also triggered by the physical and environmental
Clock, which generates externa timing events. Re-
port and Travel Document Set (which, as the
shadow denotes, is physical) are the artifacts result-
ing as objects from the execution of Travel Manag-

ing.

-lnix]
Systern Edit View OPMMotation Secaling Comment Generation Format Exension Tools Window Help
00 (2 Mg X [FRak
\GE

e E

Trave | Managing,
-

-
Travel Document Set
......

DT [+

Travel Document Set is physical.

Employee, which is environmental and physical, handles
Travel Managing.

Clock, which is environmental and physical, triggers Travel
Managing.

Travel Managing yields Report and Travel Document Set.

OPL Generator

0o AANAD= [22¢F LA XN

Figure 1.The OPCAT GUI showing the top-level
specification of the travel management system

OPCAT 2 performs extensive syntax checking,
starting from the validation of simple constraints,
such as checking that two objects are not linked via
a procedural link, continuing with complex con-
strains, such as disallowing aloop within a generali-
zation-specialization hierarchy in an OPD, and end-
ing with inter-OPD consistency checking operations.

To specify the details of the behavior of Travel
Managing, the developer can use the in-zooming
refinement mechanism. Applying this refinement on
Travel Managing in Figure 1 yields a new OPD
shown in Figure 2(a), titled "Travel Managing in-
zoomed." The in-zoomed Travel Managing process
appears enlarged in the center of the newly gener-

ated diagram. All the entities connected to Travel
Managing in the top level specification are aso
connected to it in the new OPD with the same link
typei

=]

Tools Window Help

System Edit View OPM Notation Scaling Commen t Genera tion Formal Extension

. I_II_II_I - _I_IL!I\ | |5 [l_--

nzoomed i

System Edit View OPM Notat g Comment t Generation Format

Somn % o

Olo] AaAAS=
Figure 2. (a) The new OPD, created in response to the user's

in-zooming operation on the Travel Managing process.
(b) The OPD after the user hasfilled in details within
the in-zoomed Travel Managing process.

The developer can now specify the sub-
processes of Travel Managing and any pertinent
interim objects within its elliptical frame, as shown
in Figure 2(b). This refinement specifies that
through the Option Determining subprocess, the
Employee first chooses between the Option states
travel, department, passenger, and exit. This se-
lection is a condition to the occurrence of the appro-
priate process, which can be one of Travel Request-
ing, Department Handling, Passenger Handling,
or nothing.

4.2 Simulation and Dynamic

System Testing

Being both object- and process-oriented, OPM
enables designing the structural and behaviora as-
pects of a system in the same view. This fact enables

OPCAT to visualy simulate the behavior of the sys-
tem being developed enabling system architects to
dynamically examine the system at any stage of its
development and validate with the domain experts
that it addresses the client requirements and expecta-
tions.

Presenting live animated demonstrations of sys-
tem behavior reduces the number of design errors
percolated to the implementation phase. Both static
and dynamic testing help in detecting discrepancies,
inconsistencies, and deviations from the intended
goa of the system. As part of the dynamic testing,
the amulation enables designers to track each of the
system scenarios (also known as use cases in UML
terminology) before writing a single line of code.
Any detected mistake or omission is corrected at the
model level, saving costly time and efforts required
within the implementation level. Avoiding and
eliminating design errors as early as possible in the
system development process and keeping the docu-
mentation up-to-date contribute to shortening the
system's delivery time ("time-to-market").

Although some UML supporting CASE tools
provide simulation tools (for example, Rhapsody by
I-Logix), the lack of a single clean formalism for
expressing processes in UML and the fact that the
dynamic views are separate from the static ones
make such simulations much less comprehensible, as
they can only run on a subset of the nine UML dia-
gram types, overwhelming the limited human cogni-
tive channels and making it extremely difficult to
grasp the behavior of the system inits entirety.

OPCAT simulation is performed graphicaly on
the model itself. It is affected by process duration,
state duration, and reaction time. After determining
these parameters, the designer may manually acti-
vate entities, such as agents or instruments, which
are connected to processes via externa event links.
By default, al the objects that are not created by
processes in the model are active, but the user can
override this. For example, in the initia situation of
the travel management system, only Employee and
Clock are active (grayed). These objects had existed
before Travel Managing started. The process itself
is not active, because no event has triggered it yet.
The user can then start, stop, pause, continue the
simulation, set up breakpoints within the system
model, run the simulation forward or backward any
specified number of steps, or track it step by step.
The simulation agorithm determines the next step
according to process activation rules derived from
OPM semantics. The guidelines of these rules are
that a process becomes active when it isinternally or
externally activated and its pre-condition set holds.
After executing the process, its post-condition set
holds.

In order to invoke the Travel Managing process,
the user has to activate the agent link from Em-
ployee to Travel Managing, simulating the em-
ployee action in the real system. Consequently,
Travel Managing and two of its internal objects,
Department and Passenger, which aready exist,
become active. Option and Travel Request do not
become active yet, since they are created by the sys-
tem in this scenario. When the in-zoomed Travel
Managing becomes active, it activates also its first
sub-process, Option Determining, for an interval of
time determined by the process duration parameter.
When Option Determining terminates, Option be-
comes active and Option Determining reverts to be
non-active, as shown in Figure 3. Since Option has
no initial or default states, the simulation must wait
for the user to manually select a state, ssimulating the
Employee choice in the real system. This way, de-
signers can selectively simulate use cases within the
modeled system. Assuming that the designer acti-
vated travel, the simulation can continue to the next
step, which is to activate the Travel Requesting
process. The simulation algorithm now examines the
pre-conditions of this process: Option heedsto bein
its travel state. Since this pre-condition holds,
Travel Requesting is executed, creating Travel Re-
quest, Travel Document Set, and Report. Since
this is the last subprocess of the Travel Managing
super-process, Travel Managing terminates, ending
the simulation at the situation in which only Em-
ployee, Clock, Report, and Travel Document Set
are active.

% Opcat 11 - Travel Management (=]
System Edit View OPMNofation Scaling Comment Generafion Format Extension Tools Window Help

oean (g Gag e ~[% [Eala[to
«

—
{5 501 - Travel Wanaoing rezome o

Travel Requesting
Y

Do AAAL-= AALSAS AN
Figure 3. The situation of the travel management system
after the Option Determining Sub-process of Travel

Managing has terminated and Option was generated

5 SUMMARY AND WORK IN
PROGRESS

OPCAT has been presented as an integrated sys-
tem development environment that exhibits a num-
ber of unique features. OPCAT implements two im-
portant cognitive theory principles. the modality
principle and the limited channel capacity principle.
To implement the modal principle, OPCAT provides
a dual, graphic and textual, model representation.
The human limited channel capacity is addressed by
implementing the various abstraction/refinement
mechanisms that OPM offers.

OPCAT has advanced simulation capabilities.
Simulations help visualize the operation of the sys-
tem at any level of detail, providing a powerful tool
for early error detection and correction. Although
some UML supporting CASE tools provide smula-
tion tools, the lack of asingle formalism for express-
ing processes in UML and the fact that the dynamic
views are separate from the static ones make such
simulations less tractable and |ess comprehensible.

OPCAT has been studied and used in an under-
graduate system anaysis course for the past two
years. Students' responses to OPCAT are enthusias-
tic. They indicate its reliability, user friendliness,
ease of use, and accessibility to untrained users.
OPCAT is undergoing major expansion. The follow-
ing work in progress is currently under way.

- Analysis and design document generation: OPCAT
document generator facilitates selective generation
of general information, OPDs, OPL paragraphs,
and element dictionary. The documents are pro-
duced according to user-defined templates.

- Implementation generation: The implementation
generator is designed to support conversion rules
to various target languages. Using OPL grammar,
system developers will have to define once the
trandation rules from each OPL template to the
target languages, and the generic implementation
generator will automatically generate the system
implementation from its OPL script. Since OPM
describes also the behavioral aspects of systems,
the generated implementation will be much richer
than just a skeleton code.

- OPM-to-UML conversion: Since UML is the stan-
dard modeling notation within the software engi-
neering community, we are developing a conver-
sion utility from OPM to UML (uses case, class,
sequence, Statecharts, activity, and deployment
diagrams) and vice versa. Thisis done using XML
Metadata | nterchange (XMI) standard.

- Future features, aimed at further enhancing the
usability of OPCAT, include support of automatic
layout, a requirement management module, auto-
matic test case generation, configuration manage-

ment, intelligent knowledge base querying, and a
multi-user version, which enables collaboration of
project teams.

Acknowledgements: The authors would like to ac-
knowledge the contribution of many past and present
students to the development of OPCAT. We are es-
peciadly grateful to Yevgeny (Zhenya) Yaroker for
setting a firm basis for OPCAT and his continuous
work on the project. We thank Larisa Shmerling for
the development of the simulation tool within
OPCAT and to Sergey Krutyolkin for his part in
implementing of the OPL generator of OPCAT.

REFERENCES

Banker, R.D. and Kauffman, R.J. 1991. Reuse and Produc-
tivity in Integrated Computer-Aided Software Engi-
neering: An Empirical Study. MIS Quarterly, 15 (3),
pp. 375-401.

Dori, D. 2002. Object-Process Methodology - A Holistic
Systems Paradigm. Springer Verlag.

Lara, J. and Vangheluwe, H., 2002. Using AToM?® as a
Meta-CASE Tool. Proc. of the 4th Int. Conference On
Enterprise Information Systems (ICEIS 2002),.

Lending , D. and Chervany N.L., 1998. The Use of CASE
Tools. Proc. of the Conference on Computer Personnel
Research, pp. 49-58.

Mayer, R.E., 2001. Multimedia Learning. Cambridge
University Press.

McMurtrey, M. E., Teng, J.T.C., Grover, V., and Kher, H.
V., 2000. Current utilization of CASE technology:
lessons from the field. Industrial Management & Data
Systems, 100 (1), pp. 22-30.

Object by Design, 2002. UML Modeling Tools,
http://www.objectbydesign.com/tools'umitools byPlatf
orm.html.

Object Management Group (OMG), 2001. UML 14 -
UML Semantics.http://cgi.omg.org/docs/formal/01-09-
73.pdf.

Peleg, M. and Dori, D., 1999. Extending the Object-
Process Methodology to Handle Real-Time Systems.
JOOP, 11 (8), pp. 53-58.

Reinhartz-Berger, 1. Dov Dori, and Shmuel Katz, 2002,
OPM/Web — Object-Process Methodology for Devel-
oping Web Applications. ASE, 13, pp. 141-161.

Tavanen, J. P., 2002. Domain-Specific Modelling: Get
your Products out 10 Times Faster. Red-Time &
Embedded Computing Conference,
http://www.metacase.com/papers/Domain-
specific_modelling_10X_faster_than UML .pdf

