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Abstract:  Object-Process CASE Tool (OPCAT), which supports system development using Object-Process Method-
ology, meets the challenges of next generation CASE tools by providing a complete integrated software and 
system development environment.  The main reasons for which CASE tools have spread at a lower pace 
than expected are their limited support of a particular method, high cost, lack of measurable returns, and 
unrealistic user expectations. Although many CASE tools implement familiar methods, their consistency 
checking and simulation capabilities are limited, if not inexistent, and the syntax and semantics of their 
graphic notations may not be clear to novice users. Based on two human cognition principles, OPCAT en-
ables balanced modeling of the structural and behavioral aspects of systems in a single view through a bi-
modal visual-lingual representation. Due to this intuitive dual notation, the resulting model is comprehensi-
ble to both domain experts and system architects engaged in the development process. Due to OPM formal-
ity, OPCAT also provides a solid basis for implementation generation and an advanced simulation tool, 
which animates system behavior. This paper presents OPCAT and demonstrates its unique features through 
a small case study of a travel management information system. 

1 INTRODUCTION 

Computer-Aided Software Engineering (CASE) 
tools provide technologies that support automated or 
semi-automated assistance for software development 
(Banker and Kauffman, 1991). CASE tools aim at 
reducing time and cost of software development; 
increasing the productivity and quality of documen-
tation, analysis, and design; facilitating system 
maintaining, debugging, and testing; aiding project 
management; and preserving consistency among 
various development lifecycle steps (McMurtrey et. 
al., 2000). These benefits are expected to be 
achieved by automating the development process, 
which ideally encompasses the entire system devel-
opment lifecycle, including requirement managing, 
consistency checking, implementation generating, 
and system testing.  

As the number of analysis and design methodolo-
gies increased, so did the number and variety of their 
supporting CASE tools. For example, UML (OMG, 
2001), which is the industry standard of object-
oriented software systems development, has over 96 
supporting CASE tools (Object by Design, 2002). 
The importance and advantages of using CASE tools 
in the system development process have prompted 
the IEEE-SA Standards Board to adopt the industrial 

standard ISO/IEC 14102: 1995, which is concerned 
with the evaluation and selections of CASE tools, 
including such issues as the introduction of a new 
CASE tool into an organization. In spite of this at-
tention and CASE tool vendor development and 
marketing efforts, CASE tools have spread at a 
lower pace than expected. The main reason for this 
is that most available CASE tools support a specific 
development method, which cannot be easily tai-
lored to the needs of a particular organization and its 
software developers. In addition, adopting CASE 
tools within organizations is often expensive, as it 
includes purchasing or leasing the product, maintain-
ing it, and training the developers to use it. The cost, 
lack of measurable returns, and lack of fulfillment of 
unrealistic expectations have discouraged managers 
from introducing such tools into their companies. 
Even when decision makers acquire CASE tools, 
system and software developers within the organiza-
tion rarely use them. 

In this paper, we introduce OPCAT (Object-
Process CASE Tool) as an integrated system devel-
opment software environment. OPCAT supports 
system development using Object-Process Method-
ology (OPM) (Dori, 2002), which weaves the object-
oriented paradigm with the process-oriented ap-
proach. To enhance model legibility and comprehen-
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sion, OPM uses two semantically equal formalisms: 
a visual diagramming tool, called Object-Process 
Diagram (OPD), and a textual counterpart, called 
Object-Process Language (OPL). Making use of the 
modality human cognition principle (Mayer, 2001), 
OPM engages the power of "both sides of the brain" 
– the visual interpreter and the lingual one.  

Being an OPM-based CASE tool, OPCAT enjoys 
the advantages of supporting most of the system 
development lifecycle tasks, starting from require-
ment analysis, through system design and implemen-
tation, to system testing, simulation, and validation. 
Since OPM enables modeling system dynamics and 
control structures, such as events, conditions, 
branching, and loops, the generated implementation 
can definitely be more advanced than a mere stan-
dard skeleton code. Moreover, OPM's ability to cap-
ture the system's structure and behavior in a single 
view also enhances OPCAT simulation capabilities 
and makes it most suitable for interactive testing and 
validation.  

The rest of the paper is organized as follows. In 
Section 2 we review the literature related to CASE 
tools and their use. In Section 3, we briefly introduce 
OPM. Section 4 lists the main features of OPCAT 
which make it a complete system development and 
lifecycle support tool. We exemplify these features 
through a small case study of a travel management 
system. Finally, in Section 5, we discuss work in 
progress and future development plan. 

2 CASE TOOL UTILIZATION  

CASE tools have been developed with the objec-
tive of assisting developers in producing high quality 
software systems and products. To this end, CASE 
tools are designed to relieve the system architects 
and developers from mundane software engineering 
activities, leaving them more time to focus on the 
non-trivial, insight- and creativity-demanding tasks. 
Over the years, several studies have surveyed the 
way organizations use CASE tools. Lending and 
Chervany (1998) found out that “it was difficult to 
find companies using CASE tools.” Even in the 
companies that did use CASE tools, the extent of 
their deployment was very small. The CASE tool 
features that these companies employed were di-
vided into two groups: analysis functionality (e.g., 
testing for consistency between a process model and 
a data model), and transformation functionality (e.g., 
generating executable code in several languages). 
The overall result for using features from both func-
tionalities was low. 

McMurtrey et. al. (2000) surveyed the use of 
CASE technology inquiring professionals from dif-

ferent company types (insurance, manufacturing, 
consulting firms, etc.). They focused on the most 
popular features that CASE tools possessed and the 
gap between them and the developer needs. The fea-
tures most often cited as being needed and used were 
the ability to represent a design in terms of data 
models and process or flow models. This reflects the 
fact that representing the model's structure and be-
havior aspects is the most useful aspect of current 
CASE tools.  

In order to overcome some of the CASE tools 
flexibility drawbacks, a new type of CASE tools, 
called meta-CASE tools, or Computer Aided 
Method Engineering (CAME) tools, was introduced. 
These tools feature flexible metamodeling facilities 
that users can reconfigure to support whatever 
metamodel they wish to deploy. Examples of such 
tools are MetaEdit+ (Talvanen, 2002) and AToM3 
(Lara and Vengheluwe, 2002). However, these tools 
are not widely used, since employing them is not a 
trivial task. 

Method engineering and CASE tool designers 
have paid little, if any, attention to the human cogni-
tion theory. For example, the cognitive theory has 
shown that the human information processing sys-
tem involves separate channels for processing visual 
and verbal material, and that the processing capabil-
ity of each channel is quite limited (Mayer, 2001). 
The existing CASE tools address only the visual 
channel, neglecting the verbal one.  

3 OBJECT-PROCESS 
METHODOLOGY (OPM) 

Object-Process Methodology (OPM) (Dori, 
2002) is a holistic approach to the study and devel-
opment of systems. It integrates the object-oriented 
and process-oriented paradigms into a single frame 
of reference. Structure and behavior, the two major 
aspects that each system exhibits, co-exist in the 
same OPM view without highlighting one at the 
expense of suppressing the other.  

The elements of the OPM ontology are entities 
(things and states) and links. A thing is a generaliza-
tion of an object and a process. Objects are (physical 
or informatical) things that exist, while processes are 
things that transform objects. Links can be structural 
or procedural. Structural links express static rela-
tions between pairs of entities. Procedural links 
connect entities to describe the behavior of a system. 
The behavior is manifested in three major ways: 
processes can transform objects; objects can enable 
processes, and objects can trigger events that invoke 
processes.  
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Two semantically equivalent modalities, one 
graphic and the other textual, jointly express the 
same OPM model. A set of inter-related Object-
Process Diagrams (OPDs) constitute the graphical, 
visual OPM formalism. Each OPM element is de-
noted in an OPD by a symbol, and the OPD syntax 
specifies correct and consistent ways by which enti-
ties can be linked. The Object-Process Language 
(OPL), defined by a grammar, is the textual counter-
part modality of the graphical OPD-set. OPL is a 
dual-purpose language, oriented towards humans as 
well as machines. Catering to human needs, OPL is 
designed as a constrained subset of English, which 
serves domain experts and system architects en-
gaged in analyzing and designing a system. Every 
OPD construct is expressed by a semantically 
equivalent OPL sentence or phrase. Designed also 
for machine interpretation, OPL provides a solid 
basis for automatically generating the designed ap-
plication. This dual representation of OPM increases 
the processing capability of humans. 

 Another advantage of OPM is its complexity 
management mechanisms. OPM offers three refine-
ment/abstraction mechanisms: (1) unfolding/ folding 
is used for refining/abstracting the structural hierar-
chy of a thing; (2) in-zooming/out-zooming ex-
poses/hides the inner details of a thing within its 
frame; and (3) state expressing/suppressing exposes/ 
hides the states of an object. Using flexible combina-
tions of these mechanisms, OPM enables specifying 
a system to any desired level of detail without losing 
legibility and comprehension of the resulting speci-
fication. The complete OPM system specification is 
a set of OPDs and their corresponding OPL para-
graphs. 

OPM has been applied and tested in various do-
mains, including real-time systems (Peleg and Dori, 
1999) and Web applications (Reinhartz-Berger et. al. 
2002). Developing systems of this nature is a com-
plex task that involves modeling their intertwined 
structural and behavioral aspects.   

4 OPCAT FEATURES: A CASE 
BASED DEMONSTRATION 

OPCAT1 has been in development as an aca-
demic project. It is designed to support the entire 
system development lifecycle through OPM. The 
two main benefits of OPCAT over existing object-
oriented CASE tools are its bimodal graphic-textual 
single view representation and its simulation capa-
bility. The bimodal representation of OPCAT in-
                                                        

1 OPCAT can be downloaded free from 
http://iew3.technion.ac.il/~dori/opcat/index-continue.html  

creases OPM accessibility to heterogeneously skilled 
users engaged in the system development process. 
The intuitive, bimodal model representation enables 
development teams consisting of system architects 
and domain experts to jointly engage in the devel-
opment process on an ongoing basis. Such collabo-
ration, which is not feasible with other CASE tools, 
is highly desirable, because it enables requirements 
to be put to test while modeling. Improving the sys-
tem documentation quality is yet another benefit of 
OPCAT's bimodal representation, since the textual 
representation provides the system documentation.   

OPCAT's simulation capability enables “run-
ning” a system model, testing its functionality 
against the requirement specifications, and debug-
ging them at the model level, prior to the beginning 
of the implementation phase. In the rest of this sec-
tion we demonstrate these OPCAT capabilities 
through a case study of a travel management system. 
The system manages company employee profes-
sional travels, including travel request, approval, 
finance and expense reporting. 

4.1 The Bimodal Graphic-Text 
Representation  

Catering to the modality principle of cognitive 
theory, OPCAT enables modeling systems graphi-
cally via an OPD-set and textually using OPL, a 
subset of English. OPCAT automatically translates 
an OPD-set into its equivalent OPL paragraph and 
vice versa.2 This way, users who are not familiar 
with the graphic notation of OPM can validate their 
specifications by inspecting the OPL sentences, 
which are automatically generated on the fly in re-
sponse to the user's graphic input. Another cognitive 
principle – the limited channel capacity (Mayer, 
2001) – is addressed in OPM through the abstrac-
tion/refinement mechanisms.  These provide for cre-
ating diagrams and corresponding OPL paragraphs 
that are limited in size, thereby avoiding information 
overload and enabling comfortable human process-
ing. The relatively small set of OPD symbols and 
corresponding OPL sentence types increases the 
accessibility of OPM to both system architects and 
domain experts. The automatic translation into an 
OPL script also improves the documentation quality 
of the developed system. The automatic implementa-
tion generation, currently under development, will 
ensure that the specification designed by the system 
architects and endorsed by the domain experts is 
indeed reflected without any translational gap in the 
actual system.  
                                                        
2As of writing this paper, the text-to-graphics direction is 
not yet fully operational. 
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(a) 

(b) 

Figure 1, which is a snapshot of an OPCAT 2 
screen, shows the bimodal OPD-OPL representation 
for the travel management system. The graphic win-
dow in the upper part of the screen shows the top-
level OPD, while the lower part of the screen is the 
text window, which contains the equivalent OPL 
paragraph. Interpreting the OPD or the OPL para-
graph, the model specifies that the Travel Managing 
process is handled by the Employee, which is an 
environmental (dashed) and physical (shadowed) 
object, linked to Travel Managing via an agent link. 
The corresponding OPL sentence that expresses this 
is: "Employee, which is environmental and physical, 
handles Travel Managing." Travel Managing is 
also triggered by the physical and environmental 
Clock, which generates external timing events. Re-
port and Travel Document Set (which, as the 
shadow denotes, is physical) are the artifacts result-
ing as objects from the execution of Travel Manag-
ing.  

Figure 1. The OPCAT GUI showing the top-level 
specification of the travel management system 

 
OPCAT 2 performs extensive syntax checking, 

starting from the validation of simple constraints, 
such as checking that two objects are not linked via 
a procedural link, continuing with complex con-
strains, such as disallowing a loop within a generali-
zation-specialization hierarchy in an OPD, and end-
ing with inter-OPD consistency checking operations.  

To specify the details of the behavior of Travel 
Managing, the developer can use the in-zooming 
refinement mechanism. Applying this refinement on 
Travel Managing in Figure 1 yields a new OPD 
shown in Figure 2(a), titled "Travel Managing in-
zoomed." The in-zoomed Travel Managing process 
appears enlarged in the center of the newly gener-

ated diagram. All the entities connected to Travel 
Managing in the top level specification are also 
connected to it in the new OPD with the same link 
types.  

Figure 2.  (a) The new OPD, created in response to the user's 
in-zooming operation on the Travel Managing process. 
(b) The OPD after the user has filled in details within 

the in-zoomed Travel Managing process. 
 

The developer can now specify the sub-
processes of Travel Managing and any pertinent 
interim objects within its elliptical frame, as shown 
in Figure 2(b). This refinement specifies that 
through the Option Determining subprocess, the 
Employee first chooses between the Option states 
travel, department, passenger, and exit. This se-
lection is a condition to the occurrence of the appro-
priate process, which can be one of Travel Request-
ing, Department Handling, Passenger Handling, 
or nothing. 

4.2 Simulation and Dynamic 
System Testing  

Being both object- and process-oriented, OPM 
enables designing the structural and behavioral as-
pects of a system in the same view. This fact enables 

Travel Document Set is physical. 
Employee, which is environmental and physical, handles 
Travel Managing. 
Clock, which is environmental and physical, triggers Travel 
Managing. 
Travel Managing yields Report and Travel Document Set.  



 5 

OPCAT to visually simulate the behavior of the sys-
tem being developed enabling system architects to 
dynamically examine the system at any stage of its 
development and validate with the domain experts 
that it addresses the client requirements and expecta-
tions.  

Presenting live animated demonstrations of sys-
tem behavior reduces the number of design errors 
percolated to the implementation phase. Both static 
and dynamic testing help in detecting discrepancies, 
inconsistencies, and deviations from the intended 
goal of the system.  As part of the dynamic testing, 
the simulation enables designers to track each of the 
system scenarios (also known as use cases in UML 
terminology) before writing a single line of code. 
Any detected mistake or omission is corrected at the 
model level, saving costly time and efforts required 
within the implementation level. Avoiding and 
eliminating design errors as early as possible in the 
system development process and keeping the docu-
mentation up-to-date contribute to shortening the 
system's delivery time ("time-to-market").  

Although some UML supporting CASE tools 
provide simulation tools (for example, Rhapsody by 
I-Logix), the lack of a single clean formalism for 
expressing processes in UML and the fact that the 
dynamic views are separate from the static ones 
make such simulations much less comprehensible, as 
they can only run on a subset of the nine UML dia-
gram types, overwhelming the limited human cogni-
tive channels and making it extremely difficult to 
grasp the behavior of the system in its entirety. 

OPCAT simulation is performed graphically on 
the model itself. It is affected by process duration, 
state duration, and reaction time. After determining 
these parameters, the designer may manually acti-
vate entities, such as agents or instruments, which 
are connected to processes via external event links. 
By default, all the objects that are not created by 
processes in the model are active, but the user can 
override this. For example, in the initial situation of 
the travel management system, only Employee and 
Clock are active (grayed). These objects had existed 
before Travel Managing started. The process itself 
is not active, because no event has triggered it yet. 
The user can then start, stop, pause, continue the 
simulation, set up breakpoints within the system 
model, run the simulation forward or backward any 
specified number of steps, or track it step by step. 
The simulation algorithm determines the next step 
according to process activation rules derived from 
OPM semantics. The guidelines of these rules are 
that a process becomes active when it is internally or 
externally activated and its pre-condition set holds. 
After executing the process, its post-condition set 
holds. 

In order to invoke the Travel Managing process, 
the user has to activate the agent link from Em-
ployee to Travel Managing, simulating the em-
ployee action in the real system. Consequently, 
Travel Managing and two of its internal objects, 
Department and Passenger, which already exist, 
become active. Option and Travel Request do not 
become active yet, since they are created by the sys-
tem in this scenario. When the in-zoomed Travel 
Managing becomes active, it activates also its first 
sub-process, Option Determining, for an interval of 
time determined by the process duration parameter. 
When Option Determining terminates, Option be-
comes active and Option Determining reverts to be 
non-active, as shown in Figure 3. Since Option has 
no initial or default states, the simulation must wait 
for the user to manually select a state, simulating the 
Employee choice in the real system. This way, de-
signers can selectively simulate use cases within the 
modeled system. Assuming that the designer acti-
vated travel, the simulation can continue to the next 
step, which is to activate the Travel Requesting 
process. The simulation algorithm now examines the 
pre-conditions of this process: Option needs to be in 
its travel state. Since this pre-condition holds, 
Travel Requesting is executed, creating Travel Re-
quest, Travel Document Set, and Report. Since 
this is the last subprocess of the Travel Managing 
super-process, Travel Managing terminates, ending 
the simulation at the situation in which only Em-
ployee, Clock, Report, and Travel Document Set 
are active. 

Figure 3. The situation of the travel management system 
after the Option Determining sub-process of Travel 
Managing has terminated and Option was generated  
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5 SUMMARY AND WORK IN 
PROGRESS 

OPCAT has been presented as an integrated sys-
tem development environment that exhibits a num-
ber of unique features. OPCAT implements two im-
portant cognitive theory principles: the modality 
principle and the limited channel capacity principle. 
To implement the modal principle, OPCAT provides 
a dual, graphic and textual, model representation. 
The human limited channel capacity is addressed by 
implementing the various abstraction/refinement 
mechanisms that OPM offers.  

OPCAT has advanced simulation capabilities. 
Simulations help visualize the operation of the sys-
tem at any level of detail, providing a powerful tool 
for early error detection and correction. Although 
some UML supporting CASE tools provide simula-
tion tools, the lack of a single formalism for express-
ing processes in UML and the fact that the dynamic 
views are separate from the static ones make such 
simulations less tractable and less comprehensible.  

OPCAT has been studied and used in an under-
graduate system analysis course for the past two 
years. Students' responses to OPCAT are enthusias-
tic. They indicate its reliability, user friendliness, 
ease of use, and accessibility to untrained users. 
OPCAT is undergoing major expansion. The follow-
ing work in progress is currently under way. 
• Analysis and design document generation: OPCAT 

document generator facilitates selective generation 
of general information, OPDs, OPL paragraphs, 
and element dictionary. The documents are pro-
duced according to user-defined templates. 

• Implementation generation: The implementation 
generator is designed to support conversion rules 
to various target languages. Using OPL grammar, 
system developers will have to define once the 
translation rules from each OPL template to the 
target languages, and the generic implementation 
generator will automatically generate the system 
implementation from its OPL script. Since OPM 
describes also the behavioral aspects of systems, 
the generated implementation will be much richer 
than just a skeleton code.  

• OPM-to-UML conversion: Since UML is the stan-
dard modeling notation within the software engi-
neering community, we are developing a conver-
sion utility from OPM to UML (uses case, class, 
sequence, Statecharts, activity, and deployment 
diagrams) and vice versa. This is done using XML 
Metadata Interchange (XMI) standard. 

• Future features, aimed at further enhancing the 
usability of OPCAT, include support of automatic 
layout, a requirement management module, auto-
matic test case generation, configuration manage-

ment, intelligent knowledge base querying, and a 
multi-user version, which enables collaboration of 
project teams. 
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