
Developing Web Applications With Object-Oriented

Approaches and Object-Process Methodology

Iris Reinhartz-Berger

Developing Web Applications With Object-Oriented

Approaches and Object-Process Methodology

Research Thesis

Submitted in Partial Fulfillment of the

Requirements for the

Degree of Doctor of Philosophy

Iris Reinhartz-Berger

Submitted to the Senate of

the Technion – Israel Institute of Technology

TAMOOZ 5763 HAIFA JULY 2003

The research thesis w as done under

the supervision of Prof. Dov Dori and Prof. Shmuel Katz

in the faculty of Industrial Engineering and Management.

The generous financial help of the Technion is gratefully acknowledged.

List of Content:

Abstract ...1

Symbols and Abbreviations List...3

Part 1. Introduction and Background ...4

1. Introduction ...4

2. Literature Review: Web Application Features and Modeling Methods ..6

2.1 WEB APPLICATION FEATURES... 6

2.2 CURRENT WEB APPLICATION DEVELOPMENT TECHNIQUES.. 8

2.2.1 Hypermedia Authoring Techniques .. 9

2.2.2 Object-Oriented Modeling Methods and Techniques... 11

2.2.3 Behavior-Oriented Modeling Approaches.. 12

2.2.4 Structure- and Behavior-Oriented Approaches.. 13

3. Object-Process Methodology (OPM)..14

3.1 OPM ONTOLOGY .. 14

3.2 THE BIMODAL GRAPHIC-TEXT REPRESENTATION OF OPM... 15

4. Research Objectives and Methodology...16

Part 2. OPM/Web – OPM Extensions for Web Application Modeling ..19

5. OPM/Web Overview and Examples ...19

5.1 COMPLEXITY MANAGEMENT... 19

5.2 STRUCTURAL ARCHITECTURE REPRESENTATION AND LINK CHARACTERIZATIONS 21

5.3 INTEGRATING THE REPRESENTATION OF ARCHITECTURE STRUCTURE AND BEHAVIOR....................... 22

5.4 SYSTEM INTEGRITY CONSTRAINTS.. 24

5.4.1 Data Integrity Constraints.. 24

5.4.2 Concurrency and Distribution Control Constraints... 26

5.4.3 System Status Integrity Constraints.. 27

5.5 OPM/WEB VS. UML: THE GLAP SYSTEM CASE STUDY ... 28

5.5.1 OPM/Web Model of the GLAP System ... 28

5.5.2 A Comparison to the UML Model of the GLAP System ... 32

6. Modeling Code Mobility and Migration Specification in OPM/Web ...36

6.1 MODELING CODE MOBILITY: DESIGN PARADIGMS AND MODELING TECHNIQUES.............................. 37

6.1.1 The Client-Server Paradigm and Related Approaches... 38

6.1.2 Design Paradigms for Code Mobility... 38

6.1.3 Modeling Techniques for Specifying Code Mobility and Migration... 40

6.2 OPM/WEB AND MOBILE COMPONENTS .. 41

6.2.1 Mapping Mobility Terms onto OPM/Web Concepts... 41

6.2.2 Modeling the Client-Server Paradigm using OPM/Web .. 43

6.2.3 Simulating Mobile Specifications with OPCAT.. 46

6.3 OPM/WEB MODELS OF CODE MOBILITY DESIGN PARADIGMS ... 46

6.3.1 Remote Evaluation ... 49

6.3.2 Code-on-Demand ... 50

6.3.3 PUSH.. 51

6.3.4 Mobile Agents... 52

6.4 REUSING OPM/WEB CODE MOBILITY MODELS: THE QOS SYSTEM EXAMPLE................................... 53

7. Component-Based Development with OPM/Web ..58

7.1 REUSE OF DESIGN COMPONENTS IN EXISTING MODELING TECHNIQUES ... 59

7.2 WEAVING OPM/WEB COMPONENTS... 62

7.2.1 Designing Reusable Generic Components ... 62

7.2.2 Intra-Model Weaving Rules.. 64

7.2.3 Creating Raw Woven Components ... 65

7.2.4 Inter-Model Weaving Rules.. 68

7.2.5 Merged Components... 71

7.2.6 Weaving vs. Merging .. 73

7.2.7 Enhancing Raw Woven Components.. 74

7.3 REUSING OPM/WEB COMPONENTS: THE WEB-BASED ACCELERATED SEARCH CASE STUDY............ 74

7.3.1 Designing the Acceleration and Multi Search Components ... 75

7.3.2 Weaving the Raw Accelerated Multi Search Component ... 77

7.3.3 Refining the Raw Woven Accelerated Multi Search Component.. 78

Part 3. OPM/Web Evaluation ..81

8. OPM/Web vs. UML – An Experiment..81

8.1 COMPARING MODELING TECHNIQUES – RELATED WORK... 81

8.2 EXPERIMENT GOAL, HYPOTHESES, AND DESIGN .. 83

8.2.1 Experiment Hypotheses .. 83

8.2.2 Population Background and Training.. 84

8.2.3 Experiment Design ... 85

8.2.4 The OPM/Web and UML Models and Questions ... 86

8.3 RESULTS AND DISCUSSION.. 87

Part 4. OPM/Web Metamodel ...93

9. The Metamodeling Technique...93

10.OPM Reflective Metamodel – The Top Level Specification ..96

11.Metamodel of OPM Structure ...99

11.1 ELEMENTS ... 99

11.1.1 Informal Element Definitions... 99

11.1.2 Element Metamodel.. 101

11.2 THINGS .. 103

11.2.1 Informal Thing Definitions... 103

11.2.2 Thing Metamodel ... 105

11.3 STATES .. 107

11.3.1 Informal State Definitions.. 107

11.3.2 State Metamodel... 108

11.4 LINKS .. 109

11.4.1 Informal Structural Link Definitions.. 111

11.4.2 Structural Link Metamodel .. 114

11.4.3 Informal Procedural Link Definitions.. 117

11.4.4 Procedural Link Metamodel .. 120

11.4.5 Informal Event Link Definitions... 122

11.4.6 Event Link Metamodel ... 127

12.Metamodel of OPM Behavior ...130

12.1 COMPLEXITY MANAGEMENT... 130

12.1.1 Informal Refinement and Abstraction Mechanism Definitions .. 130

12.1.2 Refinement and Abstraction Mechanism Metamodel ... 133

12.1.3 Informal Consistency Rule Definitions .. 140

12.1.4 Metamodel of the Abstraction Procedural Link Consistency Rule....................................... 142

12.2 METAMODEL OF AN OPM-BASED DEVELOPMENT PROCESS.. 144

12.2.1 Main Development Stages.. 144

12.2.2 The Requirement Specifying stage ... 146

12.2.3 The Analyzing and Designing stage ... 148

12.2.4 The Implementing stage ... 151

Part 5. Summary and Implementation Issues...153

13.Summary and Contribution ...153

14.Implementation Issues...158

Appendix A. OPM/Web Concepts and Symbols ..164

Appendix B. The XML Schema of the Object-Process Language (OPL) ..167

Appendix C. The OPM/Web vs. Conallen’s UML experiment Forms...173

Appendix D. Definitions of Link Essence, Affiliation, and Scope ...185

Appendix E. OPM Metamodel Constraints in OCL...188

Appendix F. OPCAT – Object-Process CASE Tool..190

References ...201

List of Figures:
Figure 1. Applying OPM scaling mechanisms to process P1. (a) Process P1 is unfolded. (b) Process P1

is in-zoomed. ..20

Figure 2. Suppressing and expressing of Printer states. State expressing of (a) yields (b) and state

expressing of “on” in (b) yields (c). State suppressing moves from (c) to (b) to (a).20

Figure 3. An OPD of a typical Web application architecture...21

Figure 4. Modeling the Form Verifying transferring process. (a) The top-level version. (b) The detailed

version – Form Verifying is unfolded and Code Transferring is in-zoomed.23

Figure 5. An OPD of the data integrity example..25

Figure 6. Deterministic and non-deterministic executions of processes P1, P2 and P3. (a) P2 and P3 are

independently executed after the termination of P1. (b) P2 or P3 (but not both) are

independently executed after the termination of P1. (b) P2 or P3 (or both) are independently

executed after the termination of P1. ..27

Figure 7. A status integrity constraint example..28

Figure 8. The top level OPD of the GLAP system...29

Figure 9. (a) IGlossary, unfolded. (b) Server Web Pages, unfolded. ...30

Figure 10. GLAP Server Executing, in-zoomed ...31

Figure 11. Browser Processing, in-zoomed ..31

Figure 12. The use case and site map diagrams of the GLAP system..32

Figure 13. The package diagram and the ‘Browsing Detail’ class diagram of the GLAP System.......................33

Figure 14. A generic OPM/Web model of a Component Transferring process. (a) Component

Transferring transfers Component's code, leaving the original Component intact. (b)

Component Transferring transfers an instance of Component, leaving the original Component

intact. ..43

Figure 15. An OPM/Web model of the Client-Server (CS) paradigm: (a) The OPD (b) The corresponding

OPL paragraph..44

Figure 16. OPCAT 2 simulation snapshots before (a) and after (b) executing CS Interacting. Existing

things in a snapshot appear in gray. ..46

Figure 17. A generic OPD of the REV paradigm ..49

Figure 18. A generic OPD of the COD paradigm..50

Figure 19. A generic OPD of the PUSH paradigm ..51

Figure 20. A generic OPD of the MA paradigm..53

Figure 21. The top level OPM/Web diagram of the QoS System..54

Figure 22. Detailing the Client – ISP Agency interaction..55

Figure 23. Detailing the ISP Agency – Router Agency interaction ...56

Figure 24. A reusable generic Time Stamped Execution component ..63

Figure 25. The possibilities of connecting two entities in OPM/Web. (a) Two systemic entities can be

linked by a systemic link. (b) An environmental entity and a systemic one can be linked by a

systemic link. (c) Two environmental entities can be linked by a systemic link. (d) Two

environmental entities can be linked by an environmental link..65

Figure 26. A raw OPM/Web woven component in which the generic Time Stamped Execution component

(top) is woven into the target Product Handling component (bottom) ...67

Figure 27. The raw woven component of Figure 26, in which Concrete Node, its binding with Node, and

the binding of Product to Data Item explicitly appear ..70

Figure 28. The merged component which is derived from the woven component in Figure 26 and is

equivalent to it ..72

Figure 29. The Acceleration component. (a) SD is the top-level diagram. (b) SD1 has Accelerating of SD

in-zoomed. (c) SD1.1 has Full Process Activating of SD1 in-zoomed...75

Figure 30. The Multi Search component. (a) SD is the top-level diagram. (b) SD1 has Multi Searching of

SD in-zoomed. ..76

Figure 31. The Accelerated Multi Search component..78

Figure 32. Improving the Result Merging algorithm of the Accelerated Multi Search component by

linking it to DB...79

Figure 33. Reusing the Log Recording component in the Accelerated Multi Search component80

Figure 34. SD, the top level specification, of the OPM reflective metamodel...96

Figure 35. SD1, in which OPM Notation is unfolded..97

Figure 36. A simple OPM model of objects, processes, states, and links ..100

Figure 37. The OPM model of Figure 36 extended with the environmental object Product Catalog and the

physical object Receipt ...101

Figure 38. SD2, in which Ontology of OPM is unfolded...102

Figure 39. An OPM model of simple and complex objects and time constrained processes.............................103

Figure 40. An OPM model of sequential and parallel processes. (a) Supplying and Paying are executed

serially. (b) Paying and Supplying are executed in parallel...105

Figure 41. SD2.1, in which Thing of OPM Ontology is unfolded ...106

Figure 42. An OPM model of initial, default, final, and timed states ..108

Figure 43. SD2.2, in which State of OPM Ontology is unfolded...109

Figure 44. SD2.3, in which Link of OPM Ontology is unfolded ...111

Figure 45. An OPM model with various structural links ...112

Figure 46. SD2.4 in which Structural Link of OPM Ontology is unfolded ...115

Figure 47. SD2.4.1, in which Fundamental Structural Link of OPM Ontology is unfolded..............................116

Figure 48. An OPM model with various procedural links ...118

Figure 49. A refined OPM model of effect links as consumption and result links ..119

Figure 50. An OPM model with path labels on procedural links...120

Figure 51. SD2.5, in which Procedural Link of OPM Ontology is unfolded...121

Figure 52. An OPM model of an instrument link (a) and a conditional instrument link (b)122

Figure 53. An OPM model of an agent link...123

Figure 54. An OPM model of a state entrance event link ..124

Figure 55. An OPM model of a general event link ..125

Figure 56. An OPM model of an invocation link...126

Figure 57. An OPM model of a timeout event link..126

Figure 58. An OPM model of a reaction timeout event ...127

Figure 59. SD2.6, in which Event Link of OPM Ontology is unfolded...128

Figure 60. SD3, in which System is unfolded..135

Figure 61. SD3.1, in which Scaling is unfolded...136

Figure 62. SD3.2, in which Entity Instance is unfolded...138

Figure 63. SD3.3, in which Thing Instance is unfolded...138

Figure 64. SD3.4, in which Object Instance is unfolded..139

Figure 65. Example for scaling consistency rules. (a) Folding of the object Order. (b) Out-zooming of the

process Ordering. (c) State suppressing of the object Order...142

Figure 66. SD3.5, in which the consistency rule is specified...143

Figure 67. SD4, in which System Developing is in-zoomed ...145

Figure 68. SD4.1, in which Requirement Specifying is in-zoomed...147

Figure 69. SD4.2, in which Analyzing & Designing is in-zoomed..149

Figure 70. SD4.2.1, in which Analysis & Design Improving is in-zoomed...150

Figure 71. SD4.3, in which Implementing is in-zoomed ...152

Figure 72. The architecture and functionality of the generic OPM code generator ...159

Figure 73. OPCAT TIP screen snapshot – the OPL tab...160

Figure 74. OPCAT TIP screen snapshot – the Translations tab...161

Figure 75. OPCAT TIP screen snapshot – operation details..162

Figure 76. Conallen’s UML specification of the project management system – Deployment diagram.............173

Figure 77. Conallen’s UML specification of the project management system – Class diagram........................173

Figure 78. Conallen’s UML specification of the project management system – Statechart of project and

payment status ..174

Figure 79. Conallen’s UML specification of the project management system – Site map diagram174

Figure 80. Conallen’s UML specification of the project management system – Sequence diagram of

Project Order Handling...175

Figure 81. OPM/Web specification of the project management system – Top level diagram...........................175

Figure 82. OPM/Web specification of the project management system – DB unfolded176

Figure 83. OPM/Web specification of the project management system – Interface Handling in-zoomed176

Figure 84. OPM/Web specification of the project management system – Database Handling in-zoomed........177

Figure 85. OPM/Web specification of the project management system – Project Order Handling in-

zoomed ...177

Figure 86. Questions related to the project management system ...178

Figure 87. Conallen’s UML specification of the book ordering system – Deployment diagram.......................179

Figure 88. Conallen’s UML specification of the book ordering system – Class diagram..................................179

Figure 89. Conallen’s UML specification of the book ordering system – Statechart of cart status180

Figure 90. Conallen’s UML specification of the book ordering system – Site map diagram180

Figure 91. Conallen’s UML specification of the book ordering system – Sequence diagram of book

searching...181

Figure 92. OPM/Web specification of the book ordering system – Top level diagram.....................................181

Figure 93. OPM/Web specification of the book ordering system – DB unfolded ...182

Figure 94. OPM/Web specification of the book ordering system – Interface Handling in-zoomed182

Figure 95. OPM/Web specification of the book ordering system – Database Handling in-zoomed..................183

Figure 96. OPM/Web specification of the book ordering system – Book Choosing Handling in-zoomed183

Figure 97. Questions related to the book ordering system...184

Figure 98. An OPM specification of the Link Essence rule...185

Figure 99. An OPM specification of the Link Affiliation rule...185

Figure 100. An OPM specification of the Link Scope ...186

Figure 101. The OPCAT GUI showing the top-level specification of the travel management system193

Figure 102. (a) The new OPD, created in response to the user's in-zooming operation on the Travel

Managing process. (b) The OPD after the user has filled in details within the in-zoomed Travel

Managing process. ..194

Figure 103. The situation of the travel management system after the Option Determining sub-process of

Travel Managing has terminated and Option was generated ..198

Figure 104. The final situation of the travel management system after running the simulation.......................198

List of Tables:
Table 1. Comparison of existing modeling approaches to the Web application domain17

Table 2. Dependency relations between distributed and concurrent processes ..27

Table 3. The resource and computational components in Requesting Site (the client) and Processing Site

(the server) before and after an activation of CS Interacting ..45

Table 4. The resource and computational components in Requesting Site (the “client”) and Resource

Site (the “server”) before and after an activation of the transfer processes in each one of the

four code mobility design paradigms..48

Table 5. The syllabus of the course “Specification and Analysis of Information Systems”.............................85

Table 6. Experiment Design ...86

Table 7. Experiment Results...87

Table 8. Results of the overall and construction grades – the mixed model...89

Table 9. Results of the overall and construction grades according to the case studies90

Table 10. Results of the comprehension grades – the GENMOD model ...91

Table 11. Examples of the three entity types in their in-zoomed and out-zoomed versions. (a) The

process Ordering in-zoomed (b) Ordering out-zoomed (c) The state paid in-zoomed (d) paid

out-zoomed (e) The object Computer in-zoomed (f) Computer out-zoomed.131

Table 12. Examples of the two thing types in their unfolded and folded versions. (a) The object Order

unfolded. (b) Order folded. (c) The process Ordering unfolded. (d) Ordering folded.132

Table 13. Examples of state expressing and state suppressing. (a) The object Order is state expressed. (b)

Order is state suppressed. ...133

Table 14. Abstraction order of procedural links ...141

Table 15. Mapping of OPM/Web concepts to the requirements of a Web application modeling method........157

Table 16. Supported functions in OPCAT TIP translations..163

Table 17. Entities – Things and States..164

Table 18. Structural Relations, their OPD symbols, and OPL sentences..164

Table 19. Procedural Links, their OPD symbols, and OPL sentences ..165

Table 20. Event links, their semantics and symbols ...166

1

Abstract

The exponential growth of the Web during the last two decades and its expected spread in the

next years has set the stage for increasing use of Web applications. Web applications, which

can be classified as hybrids between hypermedia and information systems, have a relatively

simple distributed architecture from the user viewpoint but a complex dynamic architecture

from the designer viewpoint. They need to respond to operation by an unlimited number of

heterogeneously skilled users, address security and privacy concerns, access heterogeneous,

up-to-date information sources, and exhibit dynamic behaviors that involve such processes as

code transferring. Common system development methods can model some of these aspects,

but none of them is sufficient to specify the large spectrum of Web application concepts and

requirements. The main reason for this is that these techniques are either structure- or

behavior-oriented, but not both. This work presents the development and evaluation of

OPM/Web, which is an extension to the Object-Process Methodology (OPM) that satisfies

the functional, structural and behavioral Web-based information system requirements in a

single frame of reference.

The work consists of five parts. The first part reviews Web applications modeling needs and

critiques existing development techniques in this field. It also define the research goals and

methodology. The second part presents OPM/Web extensions. The main extensions of

OPM/Web with respect to OPM are: (1) adding properties to links to express such

requirements as encryption; (2) extending zooming and unfolding facilities to increase

modularity within a single model and to improve component reuse; (3) defining components

and weaving rules for their composition; (4) separating declarations of process classes

(representing code) from their instances to model code migration; and (5) adding global data

integrity and control constraints to express dependence or temporal relations among

(physically) separate modules.

2

The third part evaluates OPM/Web by experimentally comparing it to a Web extension of

UML, the standard object-oriented modeling language. The experiment, whose subjects were

third year undergraduate information systems engineering students, included comprehension

and construction questions about two representative Web application models. OPM/Web was

found to be more comprehensible when answering questions about the system dynamics and

distribution and easier to use when constructing or extending existing models. No significant

differences were found with respect to comprehension of the system's structure.

In the forth part of the work, OPM/Web is formally metamodeled using OPM ontology and

notation. This metamodel captures the ontology and notation of OPM/Web, as well as a

generic OPM-based development process. This capability of OPM (and OPM/Web) to model

itself is indicative to its expressive power.

In the fifth, final part of the work, I summarize the contribution of this research, its

application in OPCAT, the Object-Process CASE Tool, and refer to implementation issues.

3

Symbols and Abbreviations List

Code Full Name
AOD Aspect-Oriented Design
AOP Aspect-Oriented Programming

CAME Computer Aided Method Engineering
CASE Computer Aided Software Engineering
CBD Component-Based Development
COD Code On Demand

CORBA Common Object Request Broker Architecture
COTS Commercial Of-The Shelf

CS Client-Server
DB Database

DBMS Database Management System
DFD Data Flow Diagram
ECA Event – Condition – Action
EER Extended Entity Relationship

EORM Enhanced Object Relationship Model
ER Entity-Relation

GUI Graphical User Interface
HDM Hypertext Design Model

HTML HyperText Markup Language
MA Mobile Agent

MDA Model-Driven Architecture
MMF Meta Modeling Facility
MOF Meta Object Facility

NIAM Nijssen Information Analysis Method
OCL Object Constraint Language
OML OPEN Modeling Language
OMT Object Model Technique
OO Object-Oriented

OOHDM Object-Oriented Hypertext Design Model
OPCAT Object-Process CASE Tool

OPD Object-Process Diagram
OPEN Object Process, Environment, and Notation
OPL Object-Process Language
OPM Object-Process Methodology
ORM Object Role Model
RDF Resource Description Framework
REV Remote Evaluation
RMM Relationship Management Methodology
RPC Remote Procedure Call
RUP Rational Unified Process
UML Unified Modeling Language

WebML Web Modeling Language
WSDL Web Services Description Language
XML eXtendible Markup Language

4

Part 1. Introduction and Background

1. Introduction

The exponential growth of the Web and the progress of Internet-based architectures have set

the stage for the sprouting of Web applications. Web applications are diverse and include

electronic catalogs with secure and on-line transaction processing, real-estate listing services,

inventory management systems, private membership services, job matching applications,

interactive discussion groups and chat rooms, interactive training, internet commerce

solutions, and many more. Built on the foundations of the World Wide Web, Web

applications, which provide a rich interactive environment, are completely cross-platform and

can be accessed anywhere in the world at any time. The only client-side software needed to

access and execute Web applications is a Web browser environment. In recent years, the

World Wide Web has become the platform of choice for developing distributed systems. This

preference is based on the Web's powerful browsing communication paradigm and on its

open architectural standards, which facilitate the integration of different types of content and

systems [35].

Web applications can be classified as hybrids between hypermedia and information systems

[66]. Like hypermedia, which is based on computer-addressable files that contain links to

multimedia information (e.g., text, graphics, video, or audio), information on the Web is

accessed in an exploratory way rather than through “canned" interfaces. The way in which

the navigation is done and presented in Web applications is therefore of prominent

importance. Like information systems, the size and volatility of data and the distribution of

applications requires consolidated architectural solutions based on such technologies as

database management systems and client-server computing.

Due to the hybrid nature of Web applications, methodologies and software tools from both

hypermedia and information systems may greatly assist mastering the complexity of these

5

applications. The three major design dimensions that characterize many Web applications

are:

1. The structure that describes the organization of the information managed by the

application, as well as its user interface;

2. The behavior that concerns the facilities for accessing information, manipulating it, and

navigating across the application content; and

3. The architecture that specified the static and dynamic distribution of the application.

Hypermedia authoring techniques [66], which help design hypermedia applications, focus

on modeling the structure, content, and navigation of a system, but they tend to neglect the

architecture and behavior of many complex, dynamic Web applications. Hence, these

techniques are primarily suitable for modeling and developing content-rich applications that

are published once and are hardly changed.

In the information systems area, the object-oriented paradigm and the Unified Modeling

Language (UML) [68] are commonly used. UML, which has become the industrial standard

of the object-oriented methods, models the system structure through classes, while system

behavior is expressed through services and message passing between objects. The static

system architecture is modeled in yet another view. The use of the multi-view in UML and

the lack of clear, separate mechanism for specifying processes weaken UML models integrity

and expressiveness [24, 78, 87].

Hypermedia authoring techniques and information system development methods model

some Web application requirements, but each one of them on its own, or even a combination

of them, is not sufficient for specifying all the aspects of Web applications. This work

extends the Object-Process Methodology (OPM) to respond to Web application domain

needs. The motivation for this extension, which is called OPM/Web, its features, its

6

evaluation and comparison to the standard UML, and its formal metamodel are the focus of

this research.

2. Literature Review: Web Application Features and Modeling Methods

2.1 Web Application Features

Although the variety of Web applications is very wide, several features, which are listed

below, are common to most Web applications [13, 35, 58].

Complex dynamic and distributed architecture

The general architecture of Web applications is client-server, which consists of three

components: one or more Web servers, a network connection (mainly http), and client

browsers. A contrast exists between a simplistic user perspective, which views Web

applications as resident on a server and accessed remotely, and a relatively complex

designer’s viewpoint of architectural reality with many structural and behavioral aspects [1].

Unlike stand-alone systems, in which architecture is known at compilation time and does not

change, most Web applications feature dynamic architecture, which can change and evolve

during run-time. Therefore, a specification method for Web applications should support

modeling logical distributed elements, their bindings to physical elements, and algorithms for

detecting system architecture and its dynamic changes during run-time.

Unlimited, heterogeneously skilled users

The Web allows universal access to its applications for an unlimited number of users of all

skill levels. In addition, the competition among different solutions (Web sites) for the same

user segment emphasizes user interface design as one of the first priorities. Any modeling

technique for Web applications should therefore meet two main user interface requirements:

expressiveness and complexity management. Expressiveness means that the technique should

be able to model all the applicable structures, such as complex GUI classes of Java or

7

navigational capabilities of HTML. Moreover, since the developer obviously cannot represent

every single Web object in a flat user interface, a variety of techniques are required to reduce

the clutter. Some useful techniques for complexity management are aggregation,

summarization, filtering, and example-based representations [67].

Security and privacy support

Although the Web is reachable by any connected user around the world, Web applications

potentially deal with private information or restricted user group information. Therefore, Web

applications should prevent the users from causing (either intentionally or unintentionally)

harm to the systems, by security and privacy management [31]. Recent attacks and defacing

of Web sites underscore this need. ISO 7498-2 (1989) defines five main categories of security

services: authentication, access control, confidentiality (privacy), data integrity, and non-

repudiation (of the transaction by the performer). These types of security services should be

specified in the early stages of system development, i.e. during the analysis and design

phases.

Heterogeneity of information sources

Web applications must handle and integrate heavy, complex, hierarchical data, as well as

unstructured or semi-structured data. These data can reside directly in documents and might

be static (text, pictures, etc.), dynamic (Java applets, HTML forms, etc.), or linking

components. The data may also be stored in different systems and distributed over multiple

sites, possibly through a distributed DBMS, which increases security, provides for shared

access, and boosts performance. A Web application modeling method should be able to

specify this variety of information sources.

Up-to-date Information

Updates of data input into Web applications are done in real-time or near real-time.

Moreover, some Web applications should run continuously, forcing the developer to be able

8

to add new constructs and functionality without disturbing the working version. One way of

facilitating concurrent updating is to apply modularity, which is essential for maximizing

conceptual clarity, modifiability, understandability, and reusability of the specifications.

Modular programs are easier to develop and test, especially for a team of designers and

programmers. They are also easier to understand and maintain, because certain changes do

not require extensive modifications or re-testing of the entire application and can be

implemented locally.

Dynamic behavior

Most Web applications are dynamic. They access data, manipulate it, ask the server for code,

verify different types of constraints, and produce results for the users or updates for the

server. The behavior of Web applications results from the trade-off between evolving

functionality requirements and existing bandwidth limitations. The dynamic behavior can be

exhibited through animations, dynamic presentations, or filling in interactive forms, where

executing code at the client side is required. In order to be able to reuse specifications of Web

applications, modeling methods should support specifying conceptual Web terms separately

from the technical solutions. An example is modeling code transferring processes that can be

implemented as Java applets or mobile agents.

2.2 Current Web Application Development Techniques

As noted, existing system and software development approaches can be divided into two

groups: hypermedia authoring techniques and information system development methods. The

later group can be further divided into object-oriented approaches, behavior-oriented ones,

and hybrids of the two.

9

2.2.1 Hypermedia Authoring Techniques

Hypermedia authoring techniques are based either on the Entity-Relation (ER) model (e.g.,

HDM, RMM, and WebML) or on the object-oriented model (OOHDM or EORM).

Employing the hypermedia authoring approach, the Web application structure, navigation,

and presentation are designed.

The Hypertext Design Model (HDM) [38, 39] shifts the focus from hypertext data models

as a means to capture the structuring primitives of hypertext systems, to hypertext models as

a means for capturing the semantics of a hypermedia application domain. It prescribes the

definition of an application schema, which specifies classes of information elements in terms

of their common presentation characteristics, their internal organization structure, and the

types of their mutual interconnections. Web structure is expressed by means of entities, sub-

structured into a tree of components. Navigation can be internal to entities (along part-of

links), cross-entity (along generalized links), or non-contextual (using access indexes, called

collections).

The Relationship Management Methodology (RMM) [48] evolves HDM by embedding

its hypermedia design concepts into a structured methodology, splitting the development

process into seven distinct steps and giving guidelines for the tasks. The development cycle

steps in RMM are ER design, slice design, navigation design, conversion protocol design,

user-interface design, runtime behavior design, and construction & testing.

The Web Modeling Language (WebML) [13] enables specifying the core features of a site

at a high level, without committing to low-level architectural details. The specification of a

site in WebML consists of four orthogonal perspectives: (1) The structural model which

expresses the data content of the site in terms of the relevant entities and relationships; (2) the

hypertext model that describes one or more hypertexts that can be published in the site. Each

different hypertext defines a so-called site view, each of which consists of two sub-models:

10

the composition model (i.e., the hypertext that compose the pages) and the navigation model

(expressing how pages and content units are linked to form the hypertext); (3) the

presentation model that expresses the layout and graphic appearance of pages, independently

of the output device and of the rendition language. This model is represented by means of an

XML syntax; and (4) the personalization model which defines users, user groups, and

permissions.

The Object-Oriented Hypertext Design Model (OOHDM) [88, 89] is a direct descendant

of HDM. It differs from HDM in its object-oriented nature, and in that it includes special-

purpose modeling primitives for both navigational and interface design. OOHDM comprises

four different activities: conceptual design, navigational design, abstract interface design, and

implementation. During each activity, except for the implementation, a set of object-oriented

models describing particular design concerns are built or enriched from previous iterations.

The Enhanced Object Relationship Model (EORM) [53] is defined as an iterative process

concentrating on the enrichment of the object-oriented model by the representation of

relations between objects (links) as objects. The technique is based on three frameworks of

reusable libraries: one for class definition, one for composition (link class definition), and one

for GUIs. EORM differs from OOHDM mainly in that OOHDM clearly separates

navigational from conceptual design concerns by defining different modeling primitives for

each step, while EORM combines them all together. The advantages of EORM over

OOHDM are that relations become semantically rich as they are extensible constructs, they

can participate in other relations, and they can be part of reusable libraries.

All the hypermedia authoring techniques emphasize content and presentation modeling but

do not adequately describe complicated behaviors. Since these techniques do not support

physical architecture representation and security and privacy management either, they may be

11

suitable for designing content-rich applications with a low to medium level of dynamic

behavior, but not for high-volume, distributed Web-based systems.

2.2.2 Object-Oriented Modeling Methods and Techniques

Object-orientation is a general paradigm for developing systems that focuses on the objects

that build the system. The most common object-oriented modeling language is the Unified

Modeling Language (UML) [68]. UML is a general-purpose visual modeling language,

which is applied mainly for specifying, constructing, and documenting the artifacts of

software systems. The structural models of UML define the classes of objects important to a

system and to its implementation and the relationships among them. The dynamic behavior

defines the history of objects over time and the communications among them. Web

applications, like other software-intensive systems, are represented by a set of UML models,

including a use-case model, a class model, an interaction (collaboration) model, a state

transition model, and a deployment model. There are several UML extensions for the Web

application domain, including [6, 18, 97]. All of these extensions are based on the UML

built-in extension mechanisms, which are tagged values, stereotypes and constraints.

The Object Process, Environment, and Notation (OPEN) [57, 75], which is a complete

methodology that uses the OPEN Modeling Language (OML) [45] as its notation, offers a set

of principles for modeling all aspects of software development across the system lifecycle.

The development process is described by a contract-driven lifecycle model, which is

complemented by a set of techniques and a formal representation using a modeling language

(e.g., OML or UML).

The strength of object-oriented techniques is in modeling the structural aspects of a system.

However, they are far less suitable for representing the dynamic and functional aspects of an

application. In particular, they do not have a single concept or mechanism for specifying

stand-alone processes, which do not belong to a specific object and do not follow the

12

encapsulation principle. This is a major hindrance to developing Web applications, which, as

noted, typically feature complex dynamic behaviors.

2.2.3 Behavior-Oriented Modeling Approaches

The behavior-oriented approaches specify the conditions or constraints that are required to

activate some (perhaps partly specified) functionality at a desired moment. Three of the

behavior-oriented design techniques, which also address the development of Web

applications and distributed systems, are the superimposition approach, Aspect-Oriented

Design and the Event-Condition-Action paradigm.

The superimposition approach [10, 11, 49] introduces a procedure-like control structure,

called a superimposition, that allows convenient expression of the superimposition of one

algorithm on another. In this construct, both formal processes and schematic abstractions

(called role-types) are declared, each with formal parameters and a sequential communicating

algorithm using those parameters. The declaration captures a distributed algorithm that is

designed separately, but intended to be executed in conjunction with other activities in the

same state space. The construct is combined with an existing collection of communicating

processes by instantiating the formal processes and associating each process of the collection

with one role-type.

Aspect-Oriented Design (AOD) [2, 50, 93] is an abstraction principle intended to help

software developers separate multiple concerns in their design and source code. An aspect

modularizes the features for a particular concern and describes how those features should be

integrated (woven) into the system design. In object-oriented methods, an aspect is typically

spread across multiple methods in multiple classes. In AOD, an aspect can be separated from

the classes to which it applies. The aspect-oriented approach emerged through the

development of AspectJ [3], a programming language based on Java. This was followed by

attempts to percolate this concept to earlier stages in the application development lifecycle,

13

i.e., to the design stage. Most of the methods relying on this approach use UML. Suzuke and

Yamamoto [93], for example, have extended the UML metamodel with another classifier

element (in addition to Class, Interface, Component, and Node), called Aspect. Kersten and

Murphy [50] have introduced the aspect notion as a new notation – a diamond and an

associated rectangle, which consists of four sections: attributes, operations, introduce

members, and advice methods.

The Event- Condition-Action Paradigm (ECA) [14] is used in information systems in

general and database systems in particular in order to apply the concept of triggers in

specifying the behavior of a system. A trigger is a procedural processing element, stored in a

database and executed automatically by the DBMS server under specific conditions. A trigger

is composed of three components: Event, Condition and Action. It may also take the form of

an “Event Condition then Action else Action” (also called ECAA principle). In Web

applications those principles can be used, for example, to model business rules [79],

expressed by an XML-like object -oriented meta-language.

These approaches incorporate new functionality to existing models and define conditions

for the execution of processes. However, they tend to pay less attention to the system’s

structural organization, the physical architecture representation, and the detailed design of the

system dynamics.

2.2.4 Structure- and Behavior-Oriented Approaches

Proponents of both structure- and behavior-oriented approaches have reached the

conclusion that focusing on just one aspect of a system while neglecting the other is

counterproductive. To remedy this shortcoming, each approach adopted some technique of its

counterpart. DFD-based techniques, for example, rely on ER or class diagrams for modeling

the static data scheme. UML incorporates several process-oriented diagrams, including

interaction and Statecharts, which are state transition diagrams.

14

The need for adequate representation of both the static and dynamic aspects of a system,

while keeping the model as simple as possible, was a prime motivation for the development

of Object-Process Methodology (OPM) [23]. OPM is an integrated modeling approach that

uses objects, processes, and links to represent the system's structure and behavior in the same

diagram type. This way, OPM attempts to solve two of the main deficiencies of the object-

oriented model: the complexity management problem and the model multiplicity problem

[24, 78].

Although OPM is a promising candidate for modeling distributed systems, such as Web

applications, in its current state it is not fully suitable to accurately specify some of the

mentioned Web application requirements, such as the dynamic architecture and security and

privacy management.

3. Object-Process Methodology (OPM)

The Object-Process Methodology (OPM) [23] is a holistic approach to the modeling, study,

and development of systems. It integrates the object-oriented and process-oriented paradigms

into a single frame of reference. Structure and behavior, the two major aspects that each

system exhibits, co-exist in the same OPM model without highlighting one at the expense of

suppressing the other. Contrary to UML and its nine diagram types, OPM shows system’s

structure, behavior, and architecture in the same diagram type, enabling the expression of

mutual relations and effects between them and reinforcing the understanding of a system as a

whole.

3.1 OPM Ontology

The elements of OPM ontology are entities (things and states) and links. A thing is a

generalization of an object and a process – the two basic building blocks of any OPM-based

system model. At any point in time, each object is at some state, and object states are

15

changed through occurrences of processes. Analogically, links can be structural or

procedural. Structural links express static relations between pairs of objects or processes.

Aggregation, generalization, characterization, and instantiation are the four fundamental

static relations.

The behavior of a system is manifested in three major ways: (1) processes can transform

(generate, consume, or change) things; (2) things can enable processes without being

transformed by them; and (3) things can trigger events that (at least potentially, if some

conditions are met) invoke processes. Accordingly, a procedural link can be a transformation

link, an enabling link, or an event link.

The complexity of an OPM model is controlled through three refinement/abstraction

mechanisms: in-zooming/out-zooming, in which the entity (primarily a process or a state)

being detailed is shown enclosing its constituent elements; unfolding/folding, in which the

entity (primarily an object) being detailed is shown as the root of a structural graph; and state

expressing/suppressing, which allows for showing or hiding the possible states of an object.

These mechanisms enable OPM to recursively specify a system to any desired level of detail

without losing legibility and comprehension of the complete system.

3.2 The Bimodal Graphic-Text Representation of OPM

Two semantically equivalent modalities, one graphic and the other textual, jointly express the

same OPM model. A set of inter-related Object-Process Diagrams (OPDs), constitute the

graphical, visual OPM formalism. Each OPM element is denoted in an OPD by a symbol, and

the OPD syntax specifies correct and consistent ways by which entities can be connected via

structural and procedural links. The Object-Process Language (OPL), defined by a grammar,

is the textual counterpart modality of the graphical OPD set. OPL is a dual-purpose language,

oriented towards humans as well as machines. Catering to human needs, OPL is designed as a

constrained subset of English, which serves domain experts and system architects, jointly

16

engaged in analyzing and designing a system. Every OPD construct is expressed by a

semantically equivalent OPL sentence or phrase. Designed also for machine interpretation

through a well-defined set of production rules, OPL provides a solid basis for automating the

generation of the designed application. This dual representation of OPM increases the

processing capability of humans according to an accepted cognitive theory [60].

The OPD formalism goes hand in hand with the OPL in the following meaning: Anything

that is expressed graphically by an OPD is also expressed textually in the corresponding

OPL paragraph, and vice versa. OPCAT, a Java-based Object-Process CASE Tool,

automatically translates each OPD into its equivalent OPL paragraph (collection of OPL

sentences) and vice versa, as explained in Appendix F.

4. Research Objectives and Methodology

The main objective of this research has been to develop and evaluate a complete

methodology that supports the entire life-cycle of distributed systems in general and Web

applications in particular. As argued in Section 2.2, none of the hypermedia authoring

techniques and the information system development approaches can specify all the features

that Web applications require. The main reason for this is that these approaches pertain

mostly either to the system’s structure or its behavior. Table 1 presents an evaluation of the

level of structuredness, modularity and reusability, physical architecture representation, user

interface modeling, dynamic behavior modeling, and security and privacy management of

these techniques and modeling languages. Based on these criteria, OPM was found as the

most suitable basis for a complete Web application development methodology. However, in

its basic configuration and scope, OPM still cannot address some of the distribution concerns,

such as dynamic architecture, message passing, and consistency constrains, neither can it

adequately specify code migration. This research extends OPM to OPM/Web, which

17

augments OPM with features required to model and develop distributed and Web

applications.

Table 1. Comparison of existing modeling approaches to the Web application domain

Criterion Hypermedia Authoring Object-Oriented Behavioral-

Oriented

OPM

Level of

Structuredness

Average

(limited to ER concepts)

Good Poor

(built on top of

existing structure)

Good

(inherits the object-

orientation)

Modularity and

Reusability

Poor

(does not concern reuse)

Average

(concern reuse of

structure)

Average+

(does not support

partially specified

component reuse)

Average+

(inherits the

behavioral-orientated

approach)

Physical

Architecture

Representation

Poor

(does not concern

architecture)

Average

(concerns architecture

structure only)

Poor

(does not concern

architecture)

Average

(concerns architecture

structure only)

User Interface

Modeling

Average

(concerns navigational

interface of hypertext)

Average

(concerns user

interface classes)

Poor

(does not concern

user interface)

Average

(concerns user

interface classes)

Dynamic

Behavior

Modeling

Poor

(concerns navigation, but

not behavior)

Average

(breaks behaviors into

methods/services)

Average

(models different

functionalities at

separate levels)

Good

(enables stand-alone

processes)

Security and

Privacy

Management

Poor

(does not concern

security and privacy,

supports personalization)

Average

(supports security and

privacy through

stereotypes)

Poor

(does not concern

security and

privacy)

Average

(supports privacy

through authorization

of agent links)

The research objective is achieved in the following steps:

1. Extending OPM to OPM/Web, which includes improving the complexity management

mechanisms of OPM, enabling specifications of the static and dynamic aspects of the

system architecture, enabling modeling of system integrity constraints, and improving the

reuse of partially specified OPM components. Both OPD notation and OPL grammar are

extended to OPM/Web, leaving existing OPM models valid in OPM/Web. OPM/Web

18

extensions are presented in Part 2 of this work and were published in the Annals of

Software Engineering [82], the Computer Software and Applications Conference [84],

CAiSE workshop on Data Integration over the Web [81], and IBM workshop on

Programming Languages & Development Environments [83].

2. Evaluating OPM/Web expressiveness, comprehension, and adequacy for specifying Web

applications and comparing them to the standard UML. Although OPM/Web does not add

to OPM concepts, it is important to check its ease of use by untrained designers. The

experiment and its outcomes are presented in Part 3.

3. Formalization of OPM/Web through a reflective-metamodel. This metamodel, which is

expressed by an OPD-set and equivalent OPL paragraphs, includes OPM ontology and

notation definitions, as well as a development process suitable for modeling centric and

distributed systems in OPM/Web. The complete metamodel of OPM/Web is described in

Part 4. A paper about the metamodel of an OPM-based development process was

accepted to the International Conference on Conceptual Modeling ER’2003 [26].

19

Part 2. OPM/Web – OPM Extensions for Web Application Modeling

Chapter 5 presents an overview of OPM/Web extensions through representative examples,

while chapters 6 and 7 elaborate on two main OPM/Web extensions: specifying code

mobility and migration applications and improving OPM models reusability. The OPM/Web

legend of all the examples is summarized in Appendix A.

5. OPM/Web Overview and Examples1

The OPM/Web extensions explained and demonstrated in this chapter concern complexity

management, structural architecture representations, link characterization, integrative

representation of architecture structure and behavior, and system integrity constraint

definition.

5.1 Complexity Management

As noted, OPM manages complex system models through abstraction/refinement

mechanisms, which address the main requirements from a methodology: completeness and

clarity. Completeness means that the system must be specified to the last relevant detail,

while clarity means that the resultant model must be legible and comprehensible. Hence OPM

has two scaling (abstraction/refinement) mechanisms: unfolding/folding and in-zooming/out-

zooming. The unfolding/folding mechanism uses structural relations for refining/abstracting

the structural parts of a thing (object or process). For example, in Figure 1(a), the process P1

is unfolded to expose its parts, processes P1.1 and P1.2, and its feature, object B1.1. The in-

zooming/out-zooming mechanism exposes/hides the inner details of a thing within its frame.

1 An extended version of this section was published in Annals on Software Engineering (ASE) – Special Issue

on Object-Oriented Web-based Software Engineering [82].

20

In Figure 1(b), the process P1 is in-zoomed, showing the process flow – first P1.1 is executed

and creates object B1.1, and then process P1.2 is activated, consuming object B1.1.

Figure 1. Applying OPM scaling mechanisms to process P1.

(a) Process P1 is unfolded. (b) Process P1 is in-zoomed.

OPM's abstraction/refinement mechanisms facilitate focusing on a particular subset of

things (objects and/or processes), elaborating on their details by drilling down to any desired

level of detail. The complexity of the entire system is managed by keeping each Object-

Process Diagram (OPD) at a reasonable size and keeping track of the parent-child

relationships among the various OPDs in the OPD-set.

Figure 2. Suppressing and expressing of Printer states. State expressing of (a) yields (b) and

state expressing of “on” in (b) yields (c). State suppressing moves from (c) to (b) to (a).

Following the Statechart approach [44], OPM/Web introduces a hierarchical state

expressing/suppressing complexity management mechanism. This enables exposing and

hiding of object class states and sub-states. For example, Figure 2 depicts the state

suppression/expression mechanism for states of a printer. A Printer can be in “on” or in “off”.

(a)

(c)

(b)

(a) (b)

21

The state “off” is the initial state of the Printer. If the Printer is in “on”, it can be in a “power

save mode” sub-state (which is the initial state of the super state “on”), or in a “printing mode”.

5.2 Structural Architecture Representation and Link Characterizations

OPM and hence OPM/Web can model the structural aspect of the physical architecture using

a combination of physical and informatical things (objects and processes). A physical object

consists of matter and/or energy, is tangible in the broad sense and can be detected by one or

more of our senses, while an informatical object is a piece of information. A physical process

is a change that a physical object undergoes. Similarly, an informatical process is some

transformation (or manipulation) of an informatical object. Figure 3 models a typical

architecture of a Web application, in which the Server and the Client are physical objects. The

Server stores a database (DB), which is an informatical object, while the Client stores an

informatical object, called User Profile, which gathers the system knowledge about the client

(the browser type, configuration, etc.).

Figure 3. An OPD of a typical Web application architecture

The bi-directional structural relation between the Server and the Client is physical, since it

connects two physical objects. In OPM, there are two different types of links: structural links,

which specify static aspects of the modeled system and procedural links, which capture

behavior (such as transformations and events). Both structural and procedural links are

characterized only by their types (aggregation, agent, inheritance, etc.) and their multiplicity

(e.g., one, many, between 2 to 5). This limits the ability to model certain link properties, such

22

as the encryption algorithm associated with a physical structural link and sets of possible user

activities (a mouse clicking, a button pressing, etc.) associated with a procedural link.

OPM/Web supports link characterizations that can associate with each link type any number

of features (attributes, which are objects, and/or operations, which are processes). In Figure 3,

for example, the Encrypting process class is an operation of the physical structural link

between the Server and the Client. It can be further in-zoomed to specify a particular

encryption algorithm.

5.3 Integrating the Representation of Architecture Structure and Behavior

As discussed in Section 2.1, modeling the static-structural aspects of a system is not enough.

Essential dynamic aspects of the architecture, such as dynamic net programming constructs,

must also be modeled. The best known and most prevalent such constructs are Java applets.

An applet is a small program that is transmitted to be embedded inside another application

and run within it. An applet can be sent to a user either separately or along with a Web page

and run on the client computer without having to send a user request back to the server. Other

known constructs are worms and cookies. Worms are computer programs that replicate

themselves and are self-propagating. Cookies are special pieces of information about the user,

which are stored in text files on the client hard disk and can be accessed by the server when

the client connects to a Web site that requires this information, while associated code in the

client can gather this information.

OPM/Web supports modeling of dynamic code and construct transmission by applying two

principles:

• The thing class, be it an object or a process, is separated from its instances. The

thing classes are denoted by rectangles for object classes and by ellipses for process

classes. Following the UML notation of classes and objects, a thing instance is

denoted in OPM/Web by a rectangle/ellipse within which the thing class name is

23

written as :ThingClassName, where the identifier of the instance can optionally

precede the colon. The thing class is connected to its instances via an instantiation

link (denoted by a black circle within a blank triangle). It serves as a template from

which the individual instances are generated. Using this principle, the designer can

model separately the system classes, which are usually located on the server side,

and their instances, which are generated on the server side and transferred to the

client side.

• Objects and processes are defined as dual things that can be used by processes in

order to perform other activities. The developer is able to use either object instances

or process instances as inputs and outputs for performing an operation.

Figure 4. Modeling the Form Verifying transferring process. (a) The top-level version.

(b) The detailed version – Form Verifying is unfolded and Code Transferring is in-zoomed.

As an example for the above extensions, Figure 4(a) models Code Transferring from the

Server to the Client. The Form Verifying process class, which can be implemented as a Java

applet, should verify the information within a form already filled by the user. This process

class resides in the server; hence it appears within the in-zooming frame of the physical

(b)

(a)

:

:

:

24

object Server. The client side instance of this process is created through the Code Transferring

process, which is an operation that characterizes the relation between the Server and the

Clients.

The Code Transferring process is divided in Figure 4(b) into three sub-processes:

1. Code Requesting – When the Code Transferring process is activated, for example after the

user pushes the “OK” or “Send” button in the relevant form, the Code Requesting part

starts executing. This subprocess creates a Code Request message, asking for an instance

of the Form Verifying process.

2. Code Sending – This subprocess uses an instance of the Form Verifying process class and

sends it to the Client.

3. Code Activating – The Code Transferring process finishes by activating the client side

instance of Form Verifying, which affects the Local (client) Resources.

5.4 System Integrity Constraints

Integrity constraints of Web applications are distributed and global in nature, and they

involve constraints that are related to such issues as security management and dynamic

updating. Web application constraints can be divided into three categories: data integrity

constraints over the objects, concurrency and distribution control constraints over the

processes, and global status integrity constraints over the system states. The following

subsections explain the nature of these constraint types and how OPM/Web supports their

validation.

5.4.1 Data Integrity Constraints

Data integrity refers to the completeness of the system information, which is modeled in the

object-oriented paradigm as object classes. The integrity is achieved by defining dependency

relations between different pieces of information (i.e., objects). For example, the Object

25

Constraint Language (OCL) [99], which was designed to accompany UML models, is an

expression language that enables describing constraints on object-oriented models and other

object modeling artifacts.

Figure 5. An OPD of the data integrity example

In OPM/Web, a dependency relation among objects is expressed in a procedural way by

defining stand-alone processes. These processes automatically enforce certain constraints on

the involved objects. For example, Figure 5 shows three top-level objects: Student, Course,

and Statistics. The object Student stores the attributes Name, Address, and Phone of an actual

student. Course stores the catalog information of the course (Course Number, Course Name, and

Maximum Capacity). The relation between Student and Course is characterized by an object

called Student-In-Course, which stores the student Grade in a specific course. The Grade is

changed by the Grade Updating process, which is a service of Student-In-Course. The third top

level object, Statistics, maintains statistical information about a course given in a specific

semester (Semester, Average, and Median Score). One of the system responsibilities is that

whenever a change (adding, deleting, or editing) in a student’s grade occurs, the statistics

26

should be recalculated. In other words, the Statistics Updating process is activated whenever a

change in a grade takes place. This is expressed by the event link between the Grade object

and the Statistics Updating process. This process changes the attribute values of the Statistics

object and thus expresses a dependency relation between those objects.

5.4.2 Concurrency and Distribution Control Constraints

In OPM and OPM/Web the time axis is directed from the top of the diagram to its bottom

within the frame of an in-zoomed process. This way, concurrent processes are located at the

same height, while sequential processes are located one below the other. Constraints on the

duration of an individual process can be specified in parentheses determining the lowest and

uppest bounds of the process duration time.

In distributed systems, a problem arises when dependent processes occur in various

physical locations. For example, a process executed at the server site may be required to

terminate three seconds before another process begins at the client site. This time period is

required for the central database to become stable. In order to support such concurrency

control constraints, OPM/Web is augmented with timed invocation links between processes.

An invocation link is denoted by a lightning arrow, as shown and explained in Table 2.

Regular (round) parentheses or square brackets are used to denote open or closed time

intervals. For example, (2s, 5s] means “a time interval greater than 2 seconds and smaller

than or equal to 5 seconds”. The default time constraints are [0, ∞).

This extension also provides the ability to express non-deterministic execution, using

OPM xor and or relations between links. Figure 6 demonstrates the three possibilities of

deterministic and non-deterministic executions.

27

Table 2. Dependency relations between distributed and concurrent processes

Symbol Semantics

Q must begin within a time period, which is between min

and max time units after the beginning of P

Q must begin within a time period, which is between min

and max time units after the end of P

(a) (b) (c)

Figure 6. Deterministic and non-deterministic executions of processes P1, P2 and P3. (a) P2

and P3 are independently executed after the termination of P1. (b) P2 or P3 (but not both)

are independently executed after the termination of P1. (b) P2 or P3 (or both) are

independently executed after the termination of P1.

5.4.3 System Status Integrity Constraints

Constraints on the general status of the system involve relations among the states of the

model. For example, a Status object, which is an attribute of Client, is in the state “ok” if and

only if the Database object, which is on the Server side, is in its “stable” state. This implies that

the system should not be concurrently at states “ok” and “unstable”, and whenever this occurs,

the system will take steps to correct the situation. OPM/Web handles this kind of constraints

through error handling processes, as shown in Figure 7. Wrong Status Error Handling is triggered

by Status being at the wrong state and changes Database from stable to unstable. An analogous

chain of events occurs with Unstable Database Error Handling. When Status is wrong and

(min, max)

(min, max)

28

Database is unstable, another process, Error Correcting (not shown), is activated and upon its

successful completion it restores Status to its ok state and Database to its stable state.

Figure 7. A status integrity constraint example

5.5 OPM/Web Vs. UML: The GLAP System Case Study

To demonstrate OPM/Web extensions, a Web-based glossary application, called GLAP, is

used. The GLAP system [18] provides an online version of a software development project’s

glossary of terms. The project’s team members can access the database of terms, using a

common Web browser. Team members may also update, add entries to the database, and

remove entries from it, using the same browser interface.

5.5.1 OPM/Web Model of the GLAP System

Figure 8 is the top level OPD of the GLAP system that shows the Server and the Clients as two

physical object classes. The Server stores the Server Components, which consist of the IGlossary

object, and the Server Web Pages. It also stores Form Verifying and GLAP Server Executing process

classes. The last mentioned process is activated by Client Requests (as the event link from

Client Request to GLAP Server Executing indicates), uses Server Web Pages as inputs, updates the

IGlossary, and creates Client Pages. The Client stores Browser Processing and activates it

according to the User commands (as the agent link from User to Browser Processing indicates)

29

and the Client Pages. The Server and the Clients communicate through the Encrypted Transferring

process. This process transfers Client Requests from the Client to the Server (path a), Client Pages

from the Server to the Clients (path b), and instances of Form Verifying from the Server to the

Clients (path c). The Encrypted Transferring process can further be divided into sub-processes in

order to specify its exact algorithm. For example, Encrypted Transferring is responsible (among

other things) to transfer the instance of Form Verifying from the Server to the Clients as a

response to a Client Request for a search or an edit form. In addition it activates the client

instance which uses the relevant Client Page and creates a Client Request for page searching or

edit confirming, respectively.

Figure 8. The top level OPD of the GLAP system

The OPD in Figure 9(a) elaborates the top level OPD by unfolding the IGlossary object to its

constituents, IGlossary Entry. Each IGlossary Entry is characterized by one attribute (MDSN) and

seven services (Get Entries Starting With, Search Entries, New Entry, Update Entry, Remove Entry,

DSN, and Message Text).

The Server Web Pages object is unfolded in Figure 9(b) to its constituents Process Search,

Process Form, Get Entries, and SP Edit Entry, each of which has its own set of attributes and

services.

30

Figure 9. (a) IGlossary, unfolded. (b) Server Web Pages, unfolded.

In the OPM/Web model, separate processes describe the functionality of the client side

(Browser Processing) and of the server side (GLAP Server Executing). This separation enables the

developer to model the client-server communications, construct passing, and code

transferring.

The server stores the stand-alone process, GLAP Server Executing, which is in-zoomed in

Figure 10 into three sub processes: Glossary Reading, Glossary Searching, and Glossary Entry

Editing. All three sub-processes use Server Web Pages but do not change them, as expressed by

the instrument link between the Server Web Pages and the GLAP Server Executing process. The

Glossary Reading and Glossary Searching processes use IGlossary as an instrument, while the

Glossary Entry Editing process affects IGlossary Entry (of IGlossary). Glossary Reading is executed

in response to a read page Client Request. Glossary Searching is activated in response to either a

search form Client Request or a search page Client Request, and it creates accordingly either search

form Client Page or search page. Similarly, Glossary Entry Editing is activated in response to either

an edit form Client Request or an edit confirmation Client Request, and it creates accordingly either

an edit form Client Page or an edit confirmation Client Page.

(a) (b)

31

Figure 10. GLAP Server Executing, in-zoomed

The client side Browser Processing, shown in Figure 11, expresses the navigational

functionality of the client computer and is executed in response to the command the User

issues. The Reader can activate Client Read Interface Managing or Client Search Interface Managing

to create read page Client Requests or search form Client Requests, respectively. The Editor can, in

addition, activate Client Edit Interface Managing that creates edit form Client Requests.

Figure 11. Browser Processing, in-zoomed

In the OPM/Web model, the client pages are not part of the server side and they are not

statically linked with structural pointers to the creating pages of the server. Instead, they are

32

formed by the server processes, transferred to the client side, and displayed there by the Client

Page Displaying process.

5.5.2 A Comparison to the UML Model of the GLAP System

Figure 12 and Figure 13 show part of an UML model of the same GLAP system, presented in

[18]. The model includes a use-case diagram, a site map diagram, a package diagram, and the

‘browsing detail’ class diagram as a sample class diagram. The complete model includes, in

addition to the ones shown here, four class diagrams and five sequence diagrams, which

specify several system scenarios.

The use case diagram shows the main actors of the system: readers, who read the data, and

editors, who change the data. The main use cases are Read Glossary, Search Glossary, and

Edit Glossary Entry.

Figure 12. The use case and site map diagrams of the GLAP system

The site map diagram is a class diagram which shows an abstraction of the Web pages and

navigation routes throughout the system. The GLAP system site map specifies that the

Reader can view directly the home page, the browse results page, the search results page, and

Read Glossary

Search Glossary

Reader

Edit Glossary Entry
Editor

<<extend>>

Use-Case Diagram Site Map Diagram

Reader

Editor

Home Page

Browse Results

Search Results

Search Form

Browse Glossary

Entry Form

Search Glossary

Update Glossary

Glossary Entry

33

the search form. The Editor can, in addition, view the entry form. The browse results page,

for example, activates the browse glossary which accesses the glossary entry.

Figure 13. The package diagram and the ‘Browsing Detail’ class diagram of the GLAP

System

The package diagram divides the system into two sub-packages: Server Components (which

include the IGlossary interface object) and Web Pages. The Browsing Detail class diagram

Search Form

<<Text>> Word
<<Text>> Description
<<Submit>> Search

<<Web Html Form>>

{id}

Process Search

SearchWord : String
SearchDescription : String
nl : String
Message Word : Str ing

Main()
WriteEntry()
GetEntr ies()

<<Web Server Page>>

<<submit>>

Search Results
<<Web Client Page>>

<<build>>

Glossary Home
<<Web Client Page>>

{BeginWith}

sp Edit Entry

id : long
word : Str ing
description : Str ing

Main()
GetEntry()

<<Web Server Page>>

0..n+EditEntry 0..n

{id}

IGlossary

(from Server Components)

<<Interface>>

+Glossa ry

+Glossary

EntryListing
<<Web Client Page>>

0..n

+EditEntry

0..n

Get Entr ies

SearchChar : String
nl : String

Main()
GetEntries()
WriteEntry()
WriteLetterIndex()

<<Web Server Page>>

26+LetterEntry 26

<<link>>

+Glossary

<<build>>

25

<<link>>

+LetterEntry 25

Session

dsn : String = "Glossary"

Browsing Detail

Class Diagram

Package Diagram LEGEND
Actor

Use-case

Inheritance

Bi-directional association

Uni-directional association

Dependency relationship

Boundary object

Entity object

Control object

Package

Class/Interface

IGlossary

mdsn : String

GetEntriesStartingWith()
SearchEntries()
NewEntry()
UpdateEntry()
RemoveEntry()
<<Let>> dsn()
MessageText()

(from Server Components)

<<Interface>>

Glossary

WEB Pages

Server Components

34

includes the Web server pages and the Web client pages needed for modeling the glossary

browsing functionality. It also specifies the structural relations among these classes, their

inner structure and methods, and their constraints.

This simple example demonstrates some of the OPM/Web benefits over UML. A developer

who uses UML to model the system has to remember many different symbols and to

associate each symbol with the correct type of diagram. For example, to specify a string

attribute in a Web HTML form, the developer has to use the stereotype <<text>> (e.g., the

“Word” attribute of the “Search Form” class in the Browsing Detail class diagram). However,

in other locations in the same class diagram, the reserved type “String” is used (e.g., the

“Search Word” attribute of the “Process Search” class). Another example is using the “Search

Results” class. In the site map diagram “Search Results” is used as a boundary object, which

represents the interface between the actor and the system, while in the class diagram it refers

to a Web client page. In contrast with UML, OPM/Web uses a single visual framework that

makes it easier to understand the system as whole, enables the developer to grasp the system

structure, behavior and functionality at the same time, and minimizes the likelihood of

making design and integration errors.

The built-in scaling mechanisms of OPM/Web support automatic integration and

compatibility checking, without losing the whole picture of a system. UML, on the other

hand, requires the application of different diagram types for specifying distinct views of the

same system, and the relationships among these views are not explicitly modeled or

constrained.

While UML does not have a single clean mechanism for expressing processes, OPM/Web

enables specifying the system’s behavior by services or stand-alone processes, which can be

described to any desired level of detail. Hence, in UML the designer should use a

combination of sequence diagrams, collaboration diagrams and activity diagrams, which

35

describe possible scenarios, but do not capture the entire process framework in the context of

the use cases or the class services. Thus, in the UML version of the GLAP example, the

relation between a Web server page and its corresponding Web client page (in the ‘browsing

detail’ class diagram) is structural. This means that there is a pointer from the server page to

the client page, although the actual implementation is most likely dynamic. In the actual

implementation, the server page builds the client page through a process, as the OPM/Web

version explicitly expresses. Moreover, UML does not support modeling the code

transferring processes, such as in Java applets, because it does not provide for specifying

stand-alone processes.

36

6. Modeling Code Mobility and Migration Specification in OPM/Web2

The tradeoff between the functional requirements from Web applications and existing

bandwidth limitations requires addressing issues related to code mobility and code migration.

Code mobility is the capability of software systems to dynamically reconfigure the binding

between the software components of an application and their physical locations (nodes)

within a computer network [36]. Mobile Code is a piece of code that exhibits the mobility

property, i.e., code that can be transmitted across a network and executed on another node.

Code migration is the function which controls how code mobility is achieved [21]. Although

most applications do not require mobile code, adding this capability to applications supports

disconnected operations and can enhance system flexibility, reduce bandwidth consumption

and total completion time, and improve fault tolerance [36].

The code migration process involves determining the operation targets, transferring the

code, and integrating it into the target system. In static system architectures, the targets can be

determined at compilation time. If the system architecture is dynamic, the operation targets

should be computed immediately prior to transferring the code. Following the target

determination, the code can be transferred by applying one of the design paradigms for code

mobility, which extend the traditional client-server paradigm from data to code. Once

transferred, the code can be integrated with the local target system by activating an instance

of it, connecting it to existing data or code, or continuing its transfer over the network to yet

another target. Modeling the code migration process also includes defining the process

2 An extended abstract of this section was published in the Israeli Workshop on Programming Languages &

Development Environments (PLE), IBM [83]. An extended version of it is submitted to the International Journal

on Web Engineering Technology (IJWET).

37

triggers, its preconditions and postconditions, and handling security issues and possible

transfer errors.

Current techniques for modeling code mobility and migration support determining the

operation targets separately from the transferring stage (e.g., by class services) and do not

specify how the code is to migrate. The main reason for the insufficient expressive power of

these methods is the fact that they are structure-oriented in nature. Hence, although most of

the systems, such as mobile applications, usually involve structure and behavior in complex,

intertwined ways, current methods model these systems in an unbalanced way, emphasizing

their objects and structural relations. OPM/Web enables completely specifying mobile

applications within a single view by considering objects and processes as two equally

important classes of entities.

6.1 Modeling Code Mobility: Design Paradigms and Modeling Techniques

Applications that involve code mobility are defined in terms of components, interactions, and

sites [12]. Components are the building blocks of system architecture. They are further

divided into resource components, which are objects (architectural elements representing

data, or physical devices), and computational components, which are programs that embody

flows of control. A resource component is represented in object-oriented terms as an object

with attributes and operations (services) that contain knowledge about how to execute a

particular task, while a computational component, which contains code, may also be

characterized by private data, an execution state, and bindings to other (resource or

computational) components. Interactions are events that involve two or more components

communicating with each other. Sites are nodes or execution environments – they host

components and provide support for the execution of computational components.

38

6.1.1 The Client-Server Paradigm and Related Approaches

The Client-Server (CS) paradigm [85] is the traditional design approach for distributed

communication among sites, in which messages are transferred from one site to another, but

actual code is not. In a typical client-server interaction, site SB, which acts as the interaction

server, offers a set of services. It also hosts the resources and the knowledge needed for

executing these services. Site SA, which is the operation client, requests the execution of

some service offered by SB by sending it a message. As a response, SB performs the requested

service and delivers the result back to SA in a subsequent interaction. If the server does not

have all the data and knowledge required, it can act as a client in another client-server

interaction.

The CS paradigm has been criticized as being too low-level, requiring developers to

determine network addresses and synchronization points. CS interaction is also too specific,

since the client must “know” the exact services that the server can provide [21]. The Remote

Procedure Call (RPC) [8] tries to overcome these shortcomings by enabling the client to

request a service to be executed on a server in the same way that it would make a local

function call; the location of the server, the initiation of the service, and the transportation of

the results are handled transparently to the client. The object-oriented approach attempts to

make the CS paradigm more accessible and uniform by adopting reuse, inheritance, and

encapsulation principles. OMG’s Common Object Request Broker Architecture (CORBA)

[69], for example, is a CS technology that is based on the object-oriented approach.

6.1.2 Design Paradigms for Code Mobility

Design paradigms for code mobility extend the CS paradigm by transporting computational

components across a network. Four common design paradigms for code mobility are Remote

Evaluation (REV), Code-on-Demand (COD), PUSH, and Mobile Agents (MA). These

paradigms differ in their preconditions, postconditions, and triggers.

39

In the Remote Evaluation (REV) paradigm [92], a computational component, C, located at

SA, has the knowledge (represented by code) necessary to perform a service, but it lacks the

required resource components, which are located at a remote site SB. Therefore, C is

transferred from SA to SB and is executed there. The results of this execution are delivered

back to SA in an additional interaction.

In the Code-on-Demand (COD) paradigm [12], site SA can access the resource components

needed for a service, but it does not have the knowledge required to process them. Therefore,

SA requests the service execution knowledge, i.e., the computation component C, from its

hosting site, SB. SB delivers the knowledge to SA, which subsequently processes C at site SA

on the resource components residing there. Contrary to REV, in COD the code is executed at

the client.

In the PUSH paradigm [34], site SB sends a (computational or resource) component to site

SA in advance of any specific request. This push-based operation is often preceded by a

profiling operation, in which SA specifies a profile that reflects its users’ interests. The profile

is sent to site SB, saved there, and used by SB to decide which components SA should receive

and when to send them. The advantage of this paradigm over COD is that the users do not

have to know when to pull new components and where to pull them from. Rather, the system

automatically sends necessary new components when they become available, and they are

often used later by the receiving node.

In the Mobile Agent (MA) paradigm [41], site SB owns the service execution knowledge,

C, but some of the required resource components are located at site SA. Hence, C migrates to

SA and completes the service using the resource components available there. The migration is

usually initiated by the agent (C), but it might be requested by SA or SB. Contrary to the REV,

COD, and PUSH paradigms, which focus on the transfer of just code between sites, the

40

mobile agent migrates to the remote site as a whole computational component, along with its

state, the code it needs, and some of the resource components required to perform the task.

Discussing these design paradigms for code mobility, Carzaniga et al. [12] claim that none

of them is absolutely better than the others and suggest choosing the most appropriate

paradigm for a system under development on a case-by-case basis according to the

application type.

6.1.3 Modeling Techniques for Specifying Code Mobility and Migration

Code mobility is supported by such programming environments as Java, Telescript, and

D’Agents. However, current modeling techniques that are used in the analysis and design

phases of Web applications do not address the code mobility concept, including triggers,

conditions, and security issues, at a satisfactory level.

Hypermedia authoring techniques model the content and navigational aspects of an

application, but not its functionality, physical architecture, or security requirements.

Therefore, they do not explicitly address code-related issues, such as code migration.

Object-oriented development methods, notably UML, enable modeling of the application

functionality through class services and message passing among objects. Concepts involving

code mobility, such as Java applets, are modeled in separate views using pre-declared UML

stereotypes. Therefore, modeling these concepts with an object-oriented method is

technology-dependent (e.g., specific to the Java language and its applets). Moreover, UML

does not handle the code migration process as a whole pattern, including its preconditions

(e.g., the existence of a request in the client site and source code at the server site),

postconditions (e.g., the existence of executable code at the client site), and triggers (e.g., a

change in a server component). Trying to overcome these shortcomings, UML has been

extended by various research teams, including the mobile agent extension [52], Agent UML

(AUML) [74], and MASIF-DESIGN [65]. Even though the proliferation of such extensions

41

undermine and weaken UML standardization efforts, they still do not separate the execution

knowledge (services) from the resource components (classes). It should come as no surprise

that such separation is not possible, since doing so would work against the encapsulation of

operations within object classes, which is a major principle in the object-oriented approach.

Behavior-oriented techniques model the system functionality separately from the

application structure. They enable static binding of processes to sites, but do not support the

modeling of dynamic configurations and the actual migration process.

OPM enables specifying the architecture of the system along with its structure and behavior.

It also enables transfer of objects between sites. Nevertheless, code migration specification

cannot be carried out in OPM.

6.2 OPM/Web and Mobile Components

As noted, OPM/Web clearly distinguishes between thing classes and instances. An object

class (abbreviated as an object) is a set of object instances which exist, or at least have the

potential of stable, unconditional physical or logical existence. A process class (abbreviated

as a process) is a pattern of transformation of one or more object classes. A program, an

operation, a procedure, and an algorithm are examples of process classes. An actual execution

of a process (such as the carrying out of an executable version of a program or an algorithm)

is a process instance. The code migration process can transfer process classes or instances.

6.2.1 Mapping Mobility Terms onto OPM/Web Concepts

The terms used in the various design paradigms for code mobility are mapped to OPM/Web

concepts as follows.

• A resource component is an informatical or physical object. An informatical object is a

piece of information, such as the data required for a process execution. A physical

object is tangible in the broad sense, for example a device.

42

• A computational component is a process. It can own private data (objects) and include

sub-processes. The migration process can transfer the computational component

source code (i.e., a process class), which can be compiled at the target site and run

there any number of times, or an executable version of the code (i.e., a process

instance), which can run at the target site only a specified number of times.

• A site, which is analogous to a node in the UML implementation model, is a physical

object in OPM/Web. This physical object can be in-zoomed to expose its resource and

computational components.

• An interaction has both structural and dynamic aspects. The structural aspect of an

interaction specifies how two sites can communicate with each other, irrespective of a

specific point in time. This aspect is modeled in OPM/Web by a (unidirectional or bi-

directional) structural link between the communicating sites, which, as noted, are

physical objects. The dynamic aspect of an interaction is the ability to transfer data

(objects) or code (processes) between two sites and is specified in OPM/Web by an

event-driven process. Since interaction conceptually characterizes the communication

between the sites, the interaction process is associated in the model to the structural

link that connects the two interacting sites. The implementation of this interaction may

still be carried out as two inter-related processes, one at each interacting site.

The basic code transferring operation is represented by the generic OPD in Figure 14. The

computational Component on the left of Figure 14(a) and Figure 14(b), which is a process

class denoted by an ellipse, is the input for the Component Transferring process, as the

instrument link between them indicates. In Figure 14(a) the Component Transferring process

transfers Component’s source code, while in Figure 14(b) Component Transferring transfers a

process instance, i.e., only an executable version of Component, denoted by :Component. The

semantics of the arrow with the white (blank) arrowhead from Component Transferring to the

43

right appearance of Component is of a result link, which means that Component Transferring

creates (a copy of) the process class Component, as in Figure 14(a), or an instance of it, as in

Figure 14(b). In the original OPM, processes are not connected, and, hence, there is no

difficulty to determine which is the processing entity. To remove the ambiguity arising from

connecting two processes in OPM/Web via consumption or result links, a consumption link is

denoted as a black-headed arrow from the consumed entity to the consuming process, while

the semantics of a white-headed arrow from a process to an entity remains a result link. The

identical path labels3 on the instrument and result links and the identical component names

indicate that Component Transferring transfers Component as is rather than computing it from an

input.

Figure 14. A generic OPM/Web model of a Component Transferring process.

(a) Component Transferring transfers Component's code, leaving the original Component

intact. (b) Component Transferring transfers an instance of Component, leaving the original

Component intact.

6.2.2 Modeling the Client-Server Paradigm using OPM/Web

Based on the mapping of code mobility terms onto OPM/Web concepts, an OPM/Web model

of the traditional client-server paradigm, presented in Figure 15, consists of two

complementary modalities: graphical – the OPD in Figure 15(a), and textual – the OPL

paragraph in Figure 15(b). The objective of this unique dual representation is to enhance the

readability of the model by humans: graphics-oriented model readers, who are familiar with

3 A path label in OPM is a label on a procedural link that removes the ambiguity arising from multiple

incoming/outgoing procedural links. Here identical path labels on the incoming link to and the outgoing link

(b)(a)

:

44

OPM and its diagrammatic notation, can relate to the OPD, while text-oriented readers, or

those who are new to the OPM graphic notation, can refer to the OPL paragraph and learn the

correspondence between each OPL sentence or phrase and its OPD construct counterpart.

Requesting Site, which is physical, zooms into Activation Request and Requested Result.

Activation Request triggers CS Interacting.
Processing Site, which is physical, zooms into Activation Request, Required Data, and

Requested Result, as well as Requested Processing.

Activation Request triggers Requested Processing.
Requested Processing consumes Activation Request of Processing Site.

Requested Processing affects Required Data.
Requested Processing yields Requested Result of Processing Site.

Many Requesting Sites and many Processing Sites communicate. This link exhibits CS Interacting.

CS Interacting zooms into Result Requesting and Result Retrieving.
Following path request sending, Result Requesting consumes Activation Request of

Requesting Site.

Following path request sending, Result Requesting yields Activation Request of

Processing Site.
Following path result sending, Result Retrieving consumes Requested Result of

Processing Site.
Following path result sending, Result Retrieving yields Requested Result of Requesting

Site.

Figure 15. An OPM/Web model of the Client-Server (CS) paradigm:

(a) The OPD (b) The corresponding OPL paragraph

from the Component Transferring process are used to denote the transfer flow.

(b)

45

Examining Figure 15, one can see that Requesting Site (the client) and Processing Site (the

server) are both physical objects (as denoted by shadowed rectangles). The computational

component, Requested Processing, resides in the Processing Site, which also hosts the resource

components required for that computation, Required Data and (later on) Requested Result. The

two sites are connected via a bi-directional structural link, tagged communicate, which exhibits

(i.e., is characterized by) the CS Interacting process. A change in (an instance of) Activation

Request at the Requesting Site initiates the CS Interacting process, as the event link (the circle-

headed link with the letter 'e' inside it) between the two things shows. Following the request

sending path, the first sub-process of the CS Interacting process, which is Result Requesting,

transfers a copy of Activation Request to the Processing Site. As soon as this copy is placed at

the Processing Site, it activates the Requested Processing, as the consumption event link (the

black-headed arrow with the letter 'e' next to it) denotes. This Requested Processing potentially

affects the Required Data object and yields (produces) the Requested Result object. The creation

of Requested Result enables the second stage of the interaction, executed by Result Retrieving.

Following the result sending path, this process moves the local copy of the generated

Requested Result from the Processing Site to the Requesting Site.

Table 3 summarizes the structure of Requesting Site and Processing Site before and after an

activation of a CS Interacting process.

Table 3. The resource and computational components in Requesting Site (the client) and

Processing Site (the server) before and after an activation of CS Interacting

Design

Paradigm

(Process Name)

Time Requesting Site Processing Site

Before Activation Request
Requested Processing (code)
Required DataClient Server

(CS Interacting)
After Requested Result

Requested Processing (code)
Required Data

46

6.2.3 Simulating Mobile Specifications with OPCAT

Using the new version 2.1 of OPCAT (OPM CASE Tool), with which the OPM models in

this work were generated, a system model can also be simulated by animation. In the CS

paradigm, for example, the simulation starts by making the precondition set of the CS

Interacting process true. This is done by enabling (through highlighting) all the components

(objects and processes) which are not created by processes in the given model, i.e., the

objects Activation Request of Requesting Site and Required Data and the process Requested

Processing, as shown in Figure 16(a). While executing CS Interacting, the Activation Request at

the Processing Site becomes highlighted, then the Requested Result at the Processing Site, and

finally the Requested Result at the Requesting Site. After the transfer process has been

completed, its postcondition set becomes true, i.e., Requested Result at the Requesting Site,

Required Data at the Processing Site, and Requested Processing are highlighted, as shown in

Figure 16(b). Using this simulation capability of OPCAT, design errors that were not

detected in the static model can be spotted and corrected before starting the implementation.

Appendix F elaborates on OPCAT 2 in general and its simulation capability in particular.

Figure 16. OPCAT 2 simulation snapshots before (a) and after (b) executing CS Interacting.

Existing things in a snapshot appear in gray.

6.3 OPM/Web Models of Code Mobility Design Paradigms

OPM/Web enables precise modeling of the REV, COD, PUSH, and MA paradigms, which

were explained informally in Section 6.1.2. In this section, generic OPM/Web models for

these design paradigms are presented. In all of these models, Requesting Site is the transaction

(a) (b)

47

client, and as such, it obtains a copy of the Requested Result and keeps it at the end of the

process. Activation Request is the trigger for the code transferring process. The Resource Site is

the transaction server, i.e., it hosts the Requested Processing (as in COD, PUSH, and MA) or

the Required Data (as in REV). The COD, PUSH, and MA models describe transferring a one-

time executable version of code (i.e., a process instance) from the Resource Site to the

Requesting Site, and executing it in the remote site. The REV model specifies a process that

transfers an executable version of code from Requesting Site to Resource Site and executes it

there. Replacing the process instance with a process class supports transfer of source code

that can later be instantiated, i.e., compiled and executed. Removing the execution part and

connecting the transferred process class to other local things support mixins

[30]. The various code mobility models can become generic components in specifications of

mobile applications, as explained and demonstrated in Section 6.4.

Table 4 summarizes the components that reside at the Requesting Site and the Resource Site

before and after the transfer of a process instance in each one of the four mobile code design

paradigms. Note that the table reflects the situation before Requested Processing took place, so

Requested Result does not yet exist. After this transfer, the executable code may be activated,

creating Requested Result.

48

Table 4. The resource and computational components in Requesting Site (the “client”) and

Resource Site (the “server”) before and after an activation of the transfer processes in

each one of the four code mobility design paradigms.

Code Mobility

Design Paradigm

(Process Name)

Time Requesting Site Resource Site

Before
Activation Request

Requested Processing code
Required Data

Remote Evaluation

(REV Interacting)
After Requested Processing code

Required Data

Requested Processing instance

Before
Activation Request

Required Data
Requested Processing code

Code-on-Demand

(COD Interacting)
After

Required Data

Requested Processing

instance

Requested Processing code

Before Required Data
Requested Processing code

Profile
Activation Request

PUSH

(PUSH

Interacting)
After

Required Data
Requested Processing

instance

Requested Processing code

Profile

Before Required Data
Requested Processing instance

(+ Execution Status + Private

Data)
Mobile Agent

(MA Interacting)
After

Required Data

Requested Processing
instance (+ Execution Status

+ Private Data)

If clones:

Requested Processing instance

(+ Execution Status + Private

Data)

49

6.3.1 Remote Evaluation

The OPD in Figure 17 is an OPM/Web model of the Remote Evaluation (REV) paradigm.

The following OPL paragraph describes the same REV model textually.

Requesting Site, which is physical, zooms into Activation Request and Requested Result, as well

as Requested Processing.
Activation Request triggers REV Interacting.

Resource Site, which is physical, zooms into Required Data and Requested Result, as well as

Requested Processing instance.
Requested Processing instance affects Required Data.

Requested Processing instance yields Requested Result of Resource Site.
Many Requesting Sites and many Resource Sites communicate. This link exhibits REV

Interacting.

REV Interacting consumes Activation Request.
REV Interacting zooms into Code Sending, Code Activating, and Result Retrieving.

Following path code sending, Code Sending requires Requested Processing of

Requesting Site.
Following path code sending, Code Sending yields Requested Processing instance of

Resource Site.
Code Activating invokes Requested Processing instance of Resource Site.
Following path result sending, Result Retrieving consumes Requested Result of

Resource Site.
Following path result sending, Result Retrieving yields Requested Result of

Requesting Site.

Figure 17. A generic OPD of the REV paradigm

:

50

6.3.2 Code-on-Demand

The OPD in Figure 18 is a generic model of the Code-on-Demand (COD) paradigm, while

the OPL paragraph below is its textual counterpart.

Requesting Site, which is physical, zooms into Activation Request, Required Data, and Requested Result, as

well as Requested Processing instance.

Activation Request triggers COD Interacting.

Requested Processing instance affects Required Data.

Requested Processing instance yields Requested Result.
Resource Site, which is physical, zooms into Requested Processing.

Many Requesting Sites and many Resource Sites communicate. This link exhibits COD Interacting.
COD Interacting consumes Activation Request.
COD Interacting zooms into Code Retrieving and Code Activating.

Following path code sending, Code Retrieving requires Requested Processing of Resource Site.
Following path code sending, Code Retrieving yields Requested Processing instance of Requesting
Site.

Code Activating invokes Requested Processing instance of Requesting Site.

Figure 18. A generic OPD of the COD paradigm

Figure 18 clearly shows that processing (i.e., the activation of a Requested Processing

instance) in the COD model occurs at the Requesting Site, whereas in the REV model, shown

in Figure 17, the processing takes place in the Resource Site. The fact that Requested Processing

is not initially at the Requesting Site is denoted in Figure 18 by the result link (the white

arrowhead) whose destination is the Requested Processing instance at the Requesting Site,

indicating that the Requested Processing instance was created there only after the first stage of

COD Interacting, which is Code Retrieving, occurred. As described in Section 6.2.3, OPCAT 2

:

51

enables simulation of the behavior of this system, showing more vividly the sequence of

occurrences. When the animated simulation is run, the Requested Processing instance appears

only in the postcondition set of Code Retrieving.

6.3.3 PUSH

Figure 19 is a generic model of the PUSH paradigm. The following OPL sentences describe

the model.

Requesting Site, which is physical, zooms into Required Data and Requested Result, as well as Requested

Processing instance.

Requested Processing instance affects Required Data.
Requested Processing instance yields Requested Result.

Resource Site, which is physical, zooms into Activation Request and Profile, as well as Requested

Processing.
Many Activation Requests relates to many Profiles.

Activation Request triggers PUSH Interacting.

Many Requesting Sites and many Resource Sites communicate. This link exhibits PUSH Interacting.

PUSH Interacting occurs if Profile of Resource Site is requesting site.
PUSH Interacting consumes Activation Request.
PUSH Interacting zooms into Code Retrieving and Code Activating.

 Following path code sending, Code Retrieving requires Requested Processing of Resource Site.
Following path code sending, Code Retrieving yields Requested Processing instance of

Requesting Site.

 Code Activating invokes Requested Processing instance of Requesting Site.

Figure 19. A generic OPD of the PUSH paradigm

The condition link from requesting site Profile to PUSH Interacting specifies that when triggered

(by Activation Request), Requested Processing is transferred only to sites that were registered in

the Profile.

:

52

6.3.4 Mobile Agents

Various definitions of an agent [33] agree that all software agents are computer programs, but

not all programs are agents. Each agent definition indicates some properties that differentiate

an agent from a “conventional” program. An agent is expected to be reactive, autonomous,

goal-oriented, temporally continuous, communicative, learning, mobile, and flexible. Agents

of the same class or of different classes can communicate with each other using objects.

These definitions of an agent as a computer program with additional characteristics call for

modeling an OPM/Web agent as a process instance, which belongs to a process class. These

process instances (agents) initiate their own migration at specific points of their execution.

Figure 20 and the corresponding OPL paragraph describe a mobile agent model for the case

in which the agent is cloned from the Resource Site to the Requesting Site.

Requesting Site, which is physical, zooms into Required Data and Requested Result, as well as Requested

Processing instance.

Requested Processing instance exhibits Execution Status and Private Data.

Execution Status can be transfer or local.
Requested Processing instance affects Required Data.

Requested Processing instance yields Requested Result.
Resource Site, which is physical, zooms into Requested Processing instance.

Requested Processing instance exhibits Execution Status and Private Data.

 Execution Status can be transfer or local.
 Execution Status triggers MA Interacting when it enters transfer.

Many Requesting Sites and many Resource Sites communicate. This link exhibits MA Interacting.

 MA Interacting zooms into Agent Migrating and Agent Activating.

Following path code sending, Agent Migrating requires Requested Processing instance of

Resource Site.
Following path code sending, Agent Migrating yields Requested Processing instance of Requesting
Site.

Agent Activating changes Execution Status of Requested Processing instance of Requesting Site
from transfer to local.
Agent Activating invokes Requested Processing instance of Requesting Site.

53

Figure 20. A generic OPD of the MA paradigm

The instrument link from the agent (the Requested Processing instance at the Resource Site) to

Agent Migrating (within MA Interacting) denotes that this migration clones (i.e., makes a copy of)

the Resource Site‘s agent at the Requesting Site. Alternatively, MA Interacting might move the

agent, in which case a consumption link from Requested Processing instance of Resource Site to

Agent Migrating replaces the instrument link, implying that the agent at the Resource Site

disappears.

6.4 Reusing OPM/Web Code Mobility Models: The QoS System Example

As noted, transferring a (resource or computational) component between sites involves

determining the source and target sites, integrating the transferred component within the

target sites, addressing network security issues, and handling errors that may occur in the

process. These aspects can be incorporated in the single view of OPM/Web models by

reusing one or more of the code migration design paradigms, presented in the previous

section. To demonstrate the value of OPM/Web approach, a partial model of a Quality of

Service (QoS) system is presented [52]. This system is a mobile application in which

software components from multiple parties collaborate to provide a particular service to end

users.

:

:

54

As the top level diagram in Figure 21 shows, the QoS system consists of three types of

sites: Client, ISP (Internet Service Provider) Agency, and Router Agency, each of which may

have multiple instances. Each site type is modeled as a physical object that inherits from Site,

which represents a network node. At this level of abstraction, the Client is shown to include

only the QoS Interface Handling process, with which the Service User interacts. The Service User

is an actor using the system and is therefore modeled as an external (dashed) and physical

(shadowed) object. Not knowing which routers provide the requested service, the Service User

interacts via the QoS Interface Handling process, which the Client site hosts. This interaction is

indicated in Figure 21 by the agent link from Service User to QoS Interface Handling. Each Client

is connected to ISP Agencies, and each ISP Agency is connected to several sites of type Router

Agency.

Figure 21. The top level OPM/Web diagram of the QoS System

In UML, this system would need three different types of UML diagrams: deployment

diagrams to describe the system physical architecture, use case diagrams to describe the user-

system interactions, and sequence diagrams to describe scenarios of the communication

processes. However, even these three diagram types combined do not describe the details of

the interaction processes, as do the next two OPDs in Figure 22 and Figure 23.

Refining the interaction between the Client and the ISP Agency, Figure 22 shows that their

communication structural relation exhibits two operations: CS Interacting and COD Interacting.

55

The details of the models of the Client-Server (CS) and Code-on-Demand (COD) paradigms

have been presented earlier. COD Interacting, for example, is the same as the process modeled

in Figure 18, where ISP Agency is the server (Resource Site), Parameter Check Request is

Activation Request, and Parameter Checking is Requested Processing. Therefore, CS Interacting and

COD Interacting are not in-zoomed further here.

Figure 22. Detailing the Client – ISP Agency interaction

When weaving these models into a complete application, the combined model can be

enhanced to handle security issues and possible transfer errors. Since the security and privacy

algorithms are, most likely, pre-defined computational components, they can be modeled as

OPM/Web processes, from which the transfer processes can inherit the functionality and

interface. The different kinds of transfer errors, such as communication failures, unknown

addresses, and timeout exceptions, can be traced using OPM event links. These links model a

variety of events, including process timeout, process termination, state change, state entrance,

state timeout, and external events [77].

In addition to showing the details of the interaction between the Client and the ISP Agency

components, Figure 22 also zooms into the Client and the ISP Agency components, exposing a

more refined view of their internal objects and processes. QoS Interface Handling, which is the

:

56

computational component of the Client, handles requests that the Service User submits. When

activated by the Service User, QoS Interface Handling creates the objects QoS Parameter Set and

Parameter Check Request. Upon its creation, Parameter Check Request activates COD Interacting,

which transfers an instance (one-time executable version) of Parameter Checking from the ISP

Agency to the Client. This Parameter Checking execution (at the client site) changes the state of

QoS Parameter Set from created to either checked or wrong (as denoted by the dashed arc).

Through the QoS Interface Handling process, the Service User can continue affecting QoS

Parameter Set, in order to request services (via the update path) or to cancel them (via the

cancel path). These requests are transferred to ISP Agency by the CS Interacting process, which

does not need to wait for a response from the ISP Agency.

Unlike UML and its extension mechanisms, OPM/Web specifies the communication

processes generically, regardless of their implementation technology. For example, the COD

Interacting process specifies a common design paradigm for code mobility without limiting it

to specific implementation language constructs (such as Java applets or C# in the .NET

environment). As this example shows, OPM/Web also supports modeling the events which

trigger the communication processes, as well as the conditions that enable their activations.

Figure 23. Detailing the ISP Agency – Router Agency interaction

:

57

Figure 23 is a refinement of the interaction between ISP Agency and Router Agency. Since not

all the Router Agencies provide all the services, the QoS Choice Handling uses a Service Provider

Catalog as an instrument for creating a Service Control Message and the Service Address object,

which defines a router agency address for the required service. If the Service Control Message

requests a new service (which is the case when its state is create), then the REV Interacting

process is activated, transferring an executable version of QoS Agent Processing to the Router

Agency according to the Service Address. If the Service Control Message is created in its update or

cancel states, it is transferred as is to the Router Agency by the CS Interacting process, enabling

the continuous running of QoS Agent Processing in the Router Agency, where it can use the

Service Control Message and affect the Local Database.

Other OPM/Web code mobility models could be plugged and linked into the QoS

application for specific purposes. For example, if the QoS Agent Processing is required to be

able to move or clone itself among various Router Agencies according to the Mobile Agent

(MA) paradigm, explained in Section 6.3.4, a structural relation between Router Agency and

itself could be added. This relation would exhibit the MA Interacting process as its operation.

The simulation of the system would provide for interactive verification of the system already

at the early design stage, saving time and human resource efforts.

58

7. Component-Based Development with OPM/Web4

The last few decades have witnessed increasing interest in software reuse, i.e., the use of

existing software artifacts or knowledge to create new software [32]. Software reuse aims at

improving software quality and productivity by integrating existing components, such as

commercial off-the-shelf (COTS) products or tested modules from other projects. Early

software reuse concerned the combination of reusable source code components to produce

application software [64]. The object-oriented paradigm has highlighted the importance of

reusability as part of the entire software system development process by using classes,

packages (modules), and the inheritance mechanism as primary linguistic vehicles for reuse

[9]. The current definition of software reuse encompasses the variety of resources that are

generated and used during the development process, including requirements, architecture,

design, implementation, and documentation.

Software engineering approaches refer to reuse in various ways: plug-and-play software

component technologies, design patterns, aspect-oriented and superimposition approaches,

subject-oriented methods, etc. Many of these reuse approaches rely on the Unified Modeling

Language (UML). While UML has undoubtedly contributed to the communicability of

software designs during the system development process, two significant drawbacks reduce

UML's suitability for component-based development: its model multiplicity and its confused

behavior modeling [24]. A major problem with UML is the relatively large number of

different views, which require nine diagram types, and the lack of integration and consistency

validation among them. On top of this model multiplicity problem, UML lacks a coherent

4 A short version of this section was published in the 26th annual international Computer Software and

Applications Conference (COMPSAC'02) [84]; while an extended version of it is submitted to ACM

Transactions of Software Engineering and Methodology (TOSEM).

59

single mechanism to specify system dynamics. The interaction of processes with external

entities is shown in the use case view; their behavior is broken into services, which are

distributed among different classes in the class diagram. Their effects on the system's objects

are shown in the Statecharts view, while their flows of control are specified in the activity

and interaction diagrams. This unbalanced object-oriented, multiple-view system

representation complicates the reuse of behavioral components that cut across various object

classes. OPM/Web remedies this major obstacle to modeling system dynamics in general and

dynamics-rich components in particular by enabling reuse of partially specified components

that combine structure and behavior. Web applications can serve as examples of complex

structural and behavioral systems whose qualities and delivery times can be improved by

reusing existing components.

In this section, an OPM component-based development (CBD), which encompasses the

design of generic components and their complex integration with the system under

construction, is introduced and exemplified. This process does not fit only for developing

Web applications, but any system that requires reuse of existing, partially specified

components.

7.1 Reuse of Design Components in Existing Modeling Techniques

Current object-oriented modeling techniques and languages, notably UML [56, 62, 68],

emphasize the importance of reuse during the development process and facilitate it through

classes, packages, and the inheritance mechanism. Plug and play software component

technologies treat classes and packages as closed, black boxes with interfaces, through which

other parts of the component or other components can communicate [5]. This approach

hinders reusing generic components in different contexts, where they can be effectively

woven into various locations throughout an application under development. Moreover,

Mezini and Lieberherr [63] claim that object-oriented programs are more difficult to maintain

60

and reuse because their functionality is spread over several methods, making it difficult to get

the “big picture.” They suggest designing components that facilitate the construction of

complex systems in a manner that supports the evolutionary nature of both structure and

behavior.

To respond to this challenge, aspect-oriented programming (AOP) approaches [3, 20]

modularize the features for a particular concern and enable these features to be woven, i.e.,

incorporated and integrated into the system model on the level of programming languages.

Superimposition language constructs [4, 10, 11, 49] similarly extend the functionality of

process-oriented systems, again cutting across the software architecture of process hierarchy.

These techniques allow the imposition of predefined, but configurable, types of functionality

on reusable components.

Recently, attempts have been made to extend the aspect notion from programming to

software design [7, 19, 50] and to software engineering [2, 42]. Most aspect-oriented

modeling techniques are based on UML and employ stereotypes to model the new aspect-

oriented concepts. Catalysis [27], for example, is a methodology for component and

framework-based development. It enables describing complex systems based on coherent

perspectives and views. Catalysis also provides consistency rules across models and

mechanisms for composing these views to describe complete systems. Troll [28] and

Composition Patterns [16] suggest adding parameterization and binding capabilities to UML

packages.

Design patterns [37] describe common design solutions that can be reused in different

contexts. They are typically described using a combination of natural languages, UML

diagrams, and program code. Since, as noted, UML visualization suffers from unbalanced

representation of the static and dynamic aspects of the design patterns [59], UML is extended

61

using its built-in mechanism of stereotypes. These extensions increase the language

vocabulary and complexity, and consequently hinder its comprehension.

Subject- oriented design methods try to reduce the gap between the functional-oriented

requirements and the object-oriented design models by enabling compositions of models,

each of which specifies a user requirement. Clarke [15], for example, has extended UML

with two types of composition relations: merge and override. They both involve an entire

UML unit – attribute, method, class, etc. As noted by the author, this approach should be

customized to each one of the nine UML diagram types, but for now the extension handles

only class and sequence diagrams.

While these methods are intuitive for reusing complete structural units, such as classes,

packages, or collaborations, they are limited and inconvenient in their support of behavioral

and functional component reuse with more intricate relations to an existing system.

Furthermore, most of them do not relate to subsequent phases of the system development that

need to be accounted for after reusing generic components. Complete integration often

requires that certain changes be made to parts of the original component units. This implies

that components cannot be black boxes, but rather white or transparent boxes, whose contents

can be accessed and modified. This kind of support is often essential for optimizing and

enhancing the design of an entire system, a mission that goes beyond binding existing

components together. OPM/Web enables weaving partially specified components and evolve

them to complete system models by further enhancing and optimizing them during the

analysis and design phases. The evolution is made possible through further specification and

specialization of the original constituents of the generic components in a way that best suits

the task at hand, while maintaining their original core function.

62

7.2 Weaving OPM/Web Components

The weaving of OPM/Web components is a three-step process, which includes (1) designing

reusable generic and target components; (2) integrating them to create raw woven

components; and (3) enhancing the raw woven components into complete systems or

applications.

7.2.1 Designing Reusable Generic Components

Generic components are the building blocks of the weaving process. For each pair of

components to be woven (combined), one component is defined as generic, and is partially

specified, while the other is a specific target component. The components are each modeled

using OPM/Web.

Each thing (object or process) in OPM exhibits the affiliation attribute, which determines

if the thing belongs to the system or to the system’s environment. A systemic thing belongs to

(is affiliated with) the system, while an environmental thing is either completely external to

the system (and interacts with it) or requires further specification in a target component to

which it is bound. A compound environmental thing has a partially specified structure and/or

behavior, containing at least one environmental element and possibly one or more systemic

elements.

In OPM/Web, states and links also exhibit affiliation and hence may also be systemic or

environmental. An environmental state is owned by an environmental object, while an

environmental (structural or procedural) link connects a pair of environmental entities. As

explained in Section 7.2.4 below, an environmental element in a generic component requires

the existence of a corresponding element in the target component.

Figure 24 is a model of a generic reusable Time Stamped Execution component, which adds

time recording capability to a process execution. This component attaches to each Data Item a

timestamp, called Recorded Time. Data Item and Recorded Time characterize (i.e., are the

63

attributes of) the environmental object Node. Node must be environmental, because it exhibits

the environmental Data Item. Data Item itself is environmental since it needs to be refined and

adapted to the various contexts in which it is reused. Each object bound (assigned) to Data

Item must have at least one state that corresponds to the state created of Data Item. Regardless

of the context of Data Item, Recorded Time is systemic, since it requires no further refinement

when woven into the target concrete component.

Figure 24. A reusable generic Time Stamped Execution component

Similarly, Time Recording, which is a sub-process within the Time Stamped Executing

process, is systemic. Data Handling, which should be bound and adapted to a process in the

target component, is denoted as an environmental process. The environmental effect link

between Data Handling and Data Item means that in the target component bound to the Time

Stamped Execution component, a systemic effect link must exist between the process bound to

Data Handling and the object bound to Data Item. This implies that the Data Handling process in

the Time Stamped Execution component must be bound to a process that affects Data Item, i.e., a

process that changes its value. If Data Item and Data Handling were not linked in the Time

Stamped Execution component, Data Handling could be bound to a process in the target

component that is linked to the object bound to Data Item by any possible procedural link, or it

might not be linked at all.

64

The systemic event link from the state created of Data Item to Timed Stamped Executing

indicates that the process is triggered each time Data Item enters its created state. In other

words, whenever a new data item is created, the process that records the time of its creation is

invoked.

7.2.2 Intra-Model Weaving Rules

In addition to OPM consistency and legality rules, formally defined in Part 4 of this work,

OPM/Web components are required to abide by two types of weaving rules: intra-model rules

and inter-model rules. Inter-model weaving rules, which are discussed in Section 7.2.4,

concern the weaving of two or more components. Intra-model weaving rules, which include

the refinement and the link attachment rules defined below, state what can and what cannot

be done within a single OPM/Web component.

The refinement rule: The refineables (parts, specializations, features, or instances) of an

environmental thing can be either environmental or systemic, while those of a systemic thing

can only be systemic. In other words, an environmental thing can be refined (unfolded, in-

zoomed, or state expressed) by environmental or systemic entities, while a systemic thing is

already fully defined and, hence, can only be refined by other systemic entities.

To see an application of this rule, consider Figure 24, in which Time Stamped Executing must

be environmental, since it contains the environmental process Data Handling. Similarly, the

object Node must be environmental, since one of its refineables, in this case the attribute Data

Item, is environmental. The environmental Data Item object owns an environmental state,

called created.

The link attachment rule: An environmental link connects two environmental entities,

while a systemic link connects two entities that may be systemic or environmental.

Figure 25 shows the four possible variations of linking two entities in a generic OPM/Web

component. Two systemic entities or a systemic entity and an environmental one can be

65

linked only by a systemic link (as shown in Figure 25(a) and Figure 25(b), respectively). Two

environmental entities can be linked by either a systemic or an environmental link (as Figure

25(c) and Figure 25(d) show). A systemic link between two environmental entities (as in

Figure 25c) implies that after the binding, the two systemic counterparts which are bound to

the linked entities in the generic component must be connected by the systemic link, even

though this link may not be present in the original target component. It should be noted that

both A and B in Figure 25 can be any type of entity – object, process, or state, and the link

between them can be any type of procedural or structural link that can legally connect the two

entities.

Figure 25. The possibilities of connecting two entities in OPM/Web. (a) Two systemic entities

can be linked by a systemic link. (b) An environmental entity and a systemic one can be

linked by a systemic link. (c) Two environmental entities can be linked by a systemic

link. (d) Two environmental entities can be linked by an environmental link.

7.2.3 Creating Raw Woven Components

Having obtained or created a set of reusable generic OPM/Web components, the system

architect should decide which ones are to be woven into the target component and how to

weave each one of them so that the resulting specification meets the system requirements. A

woven component includes one or more generic or target components, each of which is

enclosed in a package. A package is graphically symbolized as in UML (see Appendix A)

and is in-zoomed to expose its OPD-set. As noted, in each pair of components to be woven,

one component is defined as generic, while the other is the target. A generic component in

one combination can be a target in another, and vice versa. The result of the weaving of the

(a) (b)

(c) (d)

66

generic and target components is a single woven component, which can be entirely systemic

(i.e., all of its entities are systemic, or concrete), or it may still contain one or more

environmental entities, implying that it should be further woven with additional components

until all the elements are systemic. Only then is the system specification considered complete.

While weaving, the designer has to link one or more environmental entities in the generic

component with corresponding (environmental or systemic) entities in the target component.

In Figure 26, for example, the generic Time Stamped Execution component of Figure 24 is

woven into a target Product Handling component, such that the combined specification contains

two components. Since each component may contain entities that are bound at different levels

of refinement, the appropriate series of refining and binding steps needs to be applied in order

to get the final specification. In Figure 26, for example, the generic Time Stamped Execution

component shows Time Stamped Executing in-zoomed, while the target Product Handling

component shows Product Handling in-zoomed. This way, the latter process can be bound as a

specialization of the former. At the in-zoomed, more detailed level shown in Figure 26,

Product Updating is bound to Data Handling as its specialization.

The generalization-specialization relation is the primary means for binding a thing from

the generic component to its counterpart in the target component, although the components

can be connected by any (structural or procedural) link. The generalization-specialization

(gen-spec) relation in OPM/Web extends its object-oriented counterpart by providing not

only for object inheritance, but also for process and state inheritance. As in the object-

oriented paradigm, object inheritance implies that the sub-object class exhibits at least the

same set of features (attributes and operations) and static relations as the super-object class.

Process inheritance means that the sub-process class has at least the same interface (i.e., the

set of procedural links) and behavior (i.e., sub-processes) as the super-process class. The

interface and behavior of the inheriting process class may be extended. This way, things can

67

inherit not just complete classes, as in UML, but also partially specified behaviors. In state

inheritance, the specialized state inherits the structure (i.e., sub-states) and the interface (i.e.,

the set of procedural links) in which the generalized state is involved.

Figure 26. A raw OPM/Web woven component in which the generic Time Stamped Execution

component (top) is woven into the target Product Handling component (bottom)

Each of the three gen-spec relations in Figure 26 binds an entity of the generic component

to a corresponding one in the target component. These relations imply that (1) Product

Handling inherits the systemic Time Recording process (which, in turn, affects Recorded Time),

(2) Product Updating inherits the instrument link from Recorded Time, and (3) Product Handling

inherits the event link and is thus triggered when Data Item is generated, i.e., when it enters its

created state. The state gen-spec relation between created Data Item and proper Product implies

that proper is a specialization of created, such that Product Handling is triggered whenever

Product enters its proper state. This relation also implicitly connects Data Item to Product

(implying that Product is a Data Item).

Product Handling

Time Stamped Execution

68

7.2.4 Inter-Model Weaving Rules

Each woven component is required to preserve the intra-model weaving rules, which are

defined in Section 7.2.2, and three inter-model weaving rules, which apply to the integration

of two components. The inter-model weaving rules are the mandatory binding rule, the

hierarchy congruence rule, and the link abstraction rule, which are defined next.

(1) The mandatory binding rule: This rule concerns binding of three types of elements:

entities, links, and states.

(1.1) Entity binding: Each environmental entity (object, process, or state) in a generic

component can be bound to a corresponding entity in the target component, either explicitly

or implicitly. Explicit binding applies a direct gen-spec relation. In implicit binding, which is

applicable only to a compound environmental entity, the gen-spec relation is not visible

directly. Rather, it is implied from the context, as follows. For each compound environmental

entity A in the generic component, which is not explicitly bound to an entity in the target

component, a default systemic entity, whose name is Concrete A, is automatically generated in

the target component. This new entity has a refineables (parts, specializations, features, or

instances) set which includes all the systemic entities bound to the environmental refineables

of A.

As an example, for the unbound environmental object Node in the generic component of

Figure 26, a default systemic object, whose name is automatically set to Concrete Node, is

generated in the target component. The object Concrete Node exhibits Product as its attribute

and inherits the systemic object Recorded Time from Node.

(1.2) Link binding: The binding of an environmental link is implicitly determined from the

bindings of the entities it connects.

69

For example, the environmental effect link between Data Item and Data Handling in the generic

component in Figure 26 is implicitly bound to the systemic effect link between Product and

Product Handling in the target component.

(1.3) State binding: The binding of an environmental state implies the binding of the

(environmental) object owning this state.

In Figure 26, for example, Product is implicitly bound to Data Item, since its proper state is

bound to the created state of Data Item.

Figure 27 extends the raw woven component of Figure 26 with the above implicit bindings.

One should bear in mind that Figure 27 is only drawn to explicitly illustrate the various

bindings, but in practice the two added bindings are implicitly implied from Figure 26 and

need not be explicitly specified as in Figure 27.

(2) The hierarchy congruence rule: The hierarchy structure of entities in a target

component must be congruent with the hierarchy structure of the corresponding entities that

bind them in the target component.

For example, in the woven component of Figure 27, Node is bound to Concrete Node, while

Data Item is bound to Product. Hence, Concrete Node and Product of the target Product Handling

component must preserve the exhibition-characterization relation that exists between Node

and Data Item in the generic Time Stamped Execution component. The same congruence exists in

the raw woven component in Figure 26, albeit implicitly.

As another example, the systemic Product Handling process is bound to the environmental

Time Stamped Executing process, while the systemic Product Updating process is bound to the

environmental Data Handling process. The in-zooming (containment) relation between Time

Stamped Executing and Data Handling in the generic component is maintained in the target

component, as Product Handling zooms into (contains) Product Updating. The hierarchy

congruence rule forbids concurrent binding of Time Stamped Executing with Consistency

70

Checking and Data Handling with Product Updating, because this would violate the hierarchy

congruence of the processes required by the generic Time Stamped Execution component.

Similarly, the congruence of the relation between the created state and Data Item in the generic

component is preserved in the target component by the proper state and the Product object,

respectively.

Figure 27. The raw woven component of Figure 26, in which Concrete Node, its binding with

Node, and the binding of Product to Data Item explicitly appear

(3) The link abstraction rule: Environmental links can be bound to systemic links which

are at least as strong as their environmental counterparts according to the link abstraction

order. OPM’s procedural link abstraction order is summarized in Section 12.1.3.

As an example, the link abstraction rule implies that the procedural link between Product

and Product Updating in the target component in Figure 26, must be at least as strong as an

effect link, which connects Data Item and Data Handling in the generic component. Hence,

 Product Handling

Time Stamped Execution

71

Product and Product Updating can not be linked, for example, by instrument or condition links,

which are weaker than the effect link.

7.2.5 Merged Components

The semantics of the gen-spec relation between an entity in a generic component and its

counterpart in the target component is similar to the semantics of this type of relation

between entities within a single component: a target entity inherits the structure and behavior

of a generic (environmental) entity.

The target component “absorbs” the generic one, resulting in a merged component, which

is the single component constructed by applying the weaving rules and the semantics of the

raw woven components explained above. By definition, the raw woven component and the

merged one, which is derived from it, are equivalent.

Figure 28 is the merged component, which is derived from and equivalent to the woven

component in Figure 26. In this merged component, Concrete Node exhibits two attributes,

Recorded Time and Product, the latter being part of Product Catalog. Zooming into Product

Handling shows that it consists of four sub-processes: Time Recording, Product Listing, Product

Updating , and Consistency Checking. Product Updating, for example, has an instrument link from

Recorded Time, required by the generic Time Stamped Execution component, and an effect link

with Product, as the target Product Handling component implies. In other words, Product Updating

uses Recorded Time as an input and affects Product. The proper state of Product inherits an event

link to Product Handling from the environmental created state of Data Item in the generic Time

Stamped Execution component.

72

Figure 28. The merged component which is derived from the woven component in Figure 26

and is equivalent to it

The layout of the processes within an in-zoomed process in an OPD defines a partial

execution order: two independent or concurrent sub-processes appear at the same vertical

level, while sequential processes follow each other. The gen-spec relations between processes

of different components merge the partial orders from each component into a single

combined partial order. In Figure 26, for example, there is a total order in both the generic

Time Stamped Execution component (first Time Recording and then Data Handling) and in the

target Product Handling component (first Product Listing, then Product Updating, and finally

Consistency Checking). The gen-spec relation between Data Handling and Product Updating in

Figure 28 defines a partial order, in which Time Recording and Product Listing are independently

executed first, followed by Product Updating, and finally by Consistency Checking6.

If after absorbing the generic component into the target one, more than one link exists

between two environmental entities in the generic component and their corresponding entities

in the target component, then the more abstract link according to the link abstraction order,

6 The sub-processes within an in-zoomed process are either parallel or sequential (but not both). Hence, the

OPD in Figure 28 is equivalent to an OPD in which Product Handling is zoomed into 3 sequential sub-

processes: Pre-Handling, Product Updating, and Consistency Handling, where Pre-Handling is further

zoomed into 2 parallel sub-processes: Product Listing and Time Recording.

73

defined in Section 12.1.3, prevails. For example, if in Figure 26 there were a systemic

instrument link between Data Item and Data Handling in the generic component, it would have

been subsumed by the effect link between Product and Product Updating in the merged

component, because an effect link is more abstract than an instrument link.

7.2.6 Weaving vs. Merging

A raw woven component can be maintained either as is, or as a merged component. Each

option has its advantages and disadvantages. The raw woven component is more succinct and

abstract. Its main advantage is the ability to maintain and develop each component separately.

Once a generic component is improved, each target component automatically benefits from

this improvement. The main advantage of the merged component is its explicit presentation of

all the elements from both building components in a single model. However, once merged,

this merged component loses its linkage with the generic component, so no change made to

the generic component will be reflected in the merged component.

Components can be maintained in libraries that may be distributed over many nodes

(computers). According to the flexible usage approach, each time an application is compiled,

the most up-to-date components that comprise the application are imported, thereby enabling

potential constant improvement in various performance aspects. In another configuration,

only future uses of the component benefit from the new, improved version of the component,

while existing bindings use an older version of the component with which they were

originally complied. To increase flexibility and ensure that the application enjoys potential

improvements in generic library components, it is recommended maintaining the woven

component version and generating the merged components only to facilitate the readability of

the application's OPM/Web model.

74

7.2.7 Enhancing Raw Woven Components

Having created the raw woven component, the system architect can refer to it as a single

component, while further refining the system specification in a separate layer without

affecting the generic nature of the composing components. This layer includes the gen-spec

relations and additional links among the components. The refinement stage enables

optimization of the combined component as a complete application, offering functionality that

exceeds the sum of the individual component functionalities. The weaving process can be

successively employed in order to reuse additional components for meeting new requirements

or modeling various concerns or aspects, as demonstrated next.

7.3 Reusing OPM/Web Components: The Web-Based Accelerated Search Case Study

To demonstrate the weaving process described in Section 7.2, a case study of an OPM/Web

component-based development of an accelerated search system is presented. The system

implements an algorithm for improving the performance of a Web search engine, which

employs time-consuming search algorithms. The design of the accelerated search system

includes two components – the generic Acceleration component and the target Multi Search one.

The Acceleration component [29] specifies a generic algorithm that reduces the execution time

of an input-output part of a system by trying first to retrieve the output, which is determined

by the input, from a database. It is assumed that the sought Web-based items rarely change,

so they are relatively static. This implies that results of subsequent activations of a query with

the same input remain valid and can therefore be stored to avoid executing the costly

calculation each time a query with that input is submitted. If the entry is not already in the

database, the algorithm activates a process that calculates the sought output and records it in

the database to accelerate future executions of the query with the same input. The Multi Search

component implements a new search engine that benefits from existing search engines by

combining their results and ordering them according to a weighted score.

75

7.3.1 Designing the Acceleration and Multi Search Components

Figure 29 shows the Acceleration component. At the top level system diagram (SD) shown in

Figure 29(a), Accelerating requires Input to produce Output and affects (updates) the database

DB. According to Figure 29(b), the Accelerating process zooms into (consists of) the following

sub-processes: DB Searching, which searches the DB for an input-output entry; Output Retrieving,

which retrieves the output if it was found in the database; and Full Process Activating, which

activates the full-blown process of Output Computing otherwise. As Figure 29(c) shows, during

Full Process Activating, Output Computing first computes the output, and then DB Updating records

the input-output pair in the database for future searches.

Figure 29. The Acceleration component. (a) SD is the top-level diagram. (b) SD1 has Accelerating

of SD in-zoomed. (c) SD1.1 has Full Process Activating of SD1 in-zoomed.

The Acceleration component contains two environmental objects, Input and Output, and one

simple (atomic) environmental process, Output Computing. The refinement rule implies that

Full Process Activating must also be environmental, since it contains the environmental process

Output Computing. Following the same line of reasoning, Accelerating, which is at a yet more

abstract level, must also be environmental. All the other things, including the object DB, the

(b) SD1

(a) SD

(c) SD1.1

76

Boolean object “Input is found?,” and the processes DB Searching and Output Retrieving, are

systemic. They are internal to the Acceleration component and would not change when this

component is woven into a target component.

Figure 30 is a specification of the Multi Search algorithm, executed by the Multi Searching

process. Figure 30(a) is the top-level diagram, which specifies the inputs, Term and Query

Result Message, and outputs, Query Message and Search Result, of the Multi Search algorithm.

Assuming that the algorithm operates concurrently on three different search engines, the

diagram in Figure 30(b) shows that Search Starting requires Term, from which it creates three

queries, one for each engine. Query Sending then creates from the three queries three Query

Messages, which are sent in parallel to the relevant search engines (the sending part is not

included in this model). Result Collecting waits until all three replies, called Query Result

Message 1, 2, and 3, arrive. It then outputs them as Result 1, 2, and 3, respectively. Finally,

Result Merging combines these three results to get the Search Result.

(a) SD (b) SD1

Figure 30. The Multi Search component. (a) SD is the top-level diagram. (b) SD1 has Multi

Searching of SD in-zoomed.

77

The Multi Searching process depends on the speed of each search engine, the network

response time, and the number and size of results supplied by each search engine. Any

combination of these factors can slow down the Multi Searching response time. To improve the

system’s performance, the Acceleration component (Figure 29) is woven into the Multi Search

component (Figure 30). This way, the most recently searched terms and their corresponding

results are saved in a local database, and, for each new query, the local database is searched

before invoking the entire Multi Searching process. Only if the result is not found in the

database, the system executes the Multi Searching process.

7.3.2 Weaving the Raw Accelerated Multi Search Component

Figure 31 shows the generic Acceleration component, derived from SD1.1 of Acceleration in

Figure 29(c), woven into SD of the Multi Search component in Figure 30(a) to create the raw

woven component, called Accelerated Multi Search. Three gen-spec relations connect the things

in the generic component to the corresponding things in the target one. Two of these relations

are between object classes, specifying that Term is an Input and that Search Result is an Output.

The third gen-spec relation is between two process classes, specifying that the systemic Multi

Searching process specializes the environmental Output Computing process.

In each of the three bindings, an atomic thing in the generic component generalizes a

corresponding thing in the target component: Input, Output, and Output Computing generalize

Term, Search Result, and Multi Searching, respectively. According to the intra-weaving rules, the

environmental process Full Process Activating is implicitly bound to a default systemic process,

called Concrete Full Process Activating, which includes just Multi Searching.

Merging the Acceleration and Multi Search components would result in an explicit model,

which is equivalent to the woven component modeled in Figure 31. However, this model is

both specific to the problem and more complex than the woven component. Furthermore, in

order to reuse the acceleration part of this merged component in another system, such as a

78

system that finds the shortest path between two nodes in a network, the system architect

would have to remodel the acceleration functionality to fit the new problem. Conversely, the

generic nature of the Acceleration component in Figure 29 makes the same core architecture

reusable for a variety of related functions. Enhancements to the (non-merged) generic library

Acceleration component can automatically be reflected in any model into which this

component is woven. Physically, the Acceleration component may reside in any repository.

Assuming constant update of the components is desired, new versions of the Acceleration

component can be broadcast, published, or pushed to its customer applications whenever it is

updated.

Figure 31. The Accelerated Multi Search component

7.3.3 Refining the Raw Woven Accelerated Multi Search Component

The equivalent semantics of the woven and the merged component make it possible to treat

woven components as generic or as target components. The system architect can continue

SD of Multi Search

SD1.1 of Acceleration

79

specifying the system into which a component has been woven as a complete application.

Two refinements that enhance the raw woven Accelerated Multi Search component obtained in

Section 7.3.2 are demonstrated. The first refinement improves the Result Merging algorithm

within Multi Searching by treating DB as an additional input, while the second one adds to the

system an entire generic Log Recording component. Any combination of these two refinements

can be part of the system design, and they may be incorporated into the system in any order.

Figure 32. Improving the Result Merging algorithm of the Accelerated Multi Search component by

linking it to DB

Improving the Result Merging process is achieved by adding the capability to retrieve related

term-result pairs from the database and use them to decide how to score the new search

results. To carry out this function, an extra instrument link from DB (of the generic

SD1 of Multi Search

SD1.1 of Acceleration

80

Acceleration component) to Result Merging (of the specific Multi Search component) is added in

Figure 32. This makes DB an additional input to Result Merging. To be able to express this

binding, the Multi Searching process is shown in SD1 of the Multi Search component (see Figure

30(b)). Further zooming into Result Merging would contain details specifying how the database

(DB), added by the Acceleration component, improves the merging of the query results.

Figure 33 shows how the Accelerated Multi Search component is enhanced with the ability to

maintain a log file. The generic Log Recording component includes a systemic Log File along

with its Log Records and a Recording operation. The only environmental thing in this

component is the object Input. When weaving the Log Recording component into the Accelerated

Multi Search component, Term is bound to Input. The two components are also connected with

an event link and an invocation link, denoting the two possible triggers of Recording: a DB

change event triggers Recording via the event link, while a Multi Searching process termination

event triggers Recording via the invocation link. The dashed arc between the two events

represents a “logical-xor” relation between them.

Figure 33. Reusing the Log Recording component in the Accelerated Multi Search component

SD1.1 of Acceleration

SD of Multi Search

SD of Log Recording

SD of Accelerated Multi Search

81

Part 3. OPM/Web Evaluation

8. OPM/Web vs. UML – An Experiment7

In order to establish the level of comprehension of a given OPM/Web model and the quality

of the models constructed using it, OPM/Web was experimentally compared to Conallen’s

extension of UML to the Web application domain. Third year undergraduate information

systems engineering students had to respond to comprehension and construction questions

about two representative Web application models. This chapter describes the experiment

hypothesis, design, results, and conclusions.

8.1 Comparing Modeling Techniques – Related Work

The emergence of a large number of software system modeling methods over the years has

raised the need to evaluate them either theoretically or empirically. Theoretical approaches

use techniques, such as metamodeling or defining objective criteria for language

comparisons, to examine various attributes of the modeling methods, such as expressiveness,

complexity, and accuracy. In one theoretical approach, using metamodeling, Hillegersberg et

al. [47] studied the fitness of the Booch method [9], an object-oriented analysis and design

method, to the object-oriented programming languages Smalltalk, Eiffel and C++. Halpin and

Bloesch [43] examined the relative strengths and weaknesses of the Object Role Model

(ORM) and UML for data modeling according to criteria of expressiveness, clarity, semantic

stability, semantic relevance, validation mechanisms, abstraction mechanisms, and formal

foundation. Siau and Cao [91] compared the complexity metric values of UML with other

object-oriented techniques. Their comparison related to seventeen complexity metrics,

7 An extended version of this section is submitted to the Empirical Software Engineering journal.

82

including independent metrics (such as the number of object types per technique) and

aggregate metrics (e.g., the division of work in a specific technique).

Modeling methods can also be compared empirically. Empirical studies are based on

experiments, in which the results are examined quantitatively according to certain criteria,

and the subjects may be untrained people, students, or professional systems analysis and

design experts. Kim and March [51] compared Extended Entity Relationship (EER) and

Nijssen Information Analysis Method (NIAM) [96] for user comprehension, which was

measured by counting the number of correct answers to questions about the various modeling

constructs. Shoval and Shiran [90] compared EER and object-oriented data models from the

point of view of design quality. They measured quality in terms of correctness of the

achieved model, time to complete the design task, and designer’s preferences for the models.

Otero and Dolado [76] compared the semantic comprehension of three different notations for

representing behavior in UML: sequence diagrams, collaboration diagrams, and state

diagrams. The comparison relied on the total time and score. They found that the

comprehension of dynamic modeling in object-oriented designs depends on the complexity of

the system. Peleg and Dori [78] compared OPM/T, an extension of OPM to real-time

systems, with a variation of Object Modeling Technique (OMT) [86] to the same domain

(T/OMT). They examined the specification quality and its comprehension on both the

structural and behavioral aspects of a system. The subjects were asked to fill in a

questionnaire consisting of statements on a system modeled in one of the methods and to

specify another system using the second method. The conclusion was that the single view of

OPM/T is more effective than the multiple-view of T/OMT in generating a better system

specification. Most of the errors in T/OMT resulted from the lack of integration among the

method’s different views and the need to maintain consistency and gather information that is

scattered across these views. According to the comprehension part of the experiment, a

83

significant difference was found in favor of T/OPM in three issues: (1) identifying triggering

events of processes; (2) identifying processes that are triggered by a given event; and (3)

identifying objects that participate in a process. T/OMT, on other hand, was found better in

two categories: (1) identifying events that affect objects by changing their state, and (2)

determining the order of process execution.

8.2 Experiment Goal, Hypotheses, and Design

Following the empirical approach for evaluating modeling techniques, OPM/Web was

compared to Conallen’s extension of UML to Web applications [18]. This extension, called

Conallen’s UML for short, is based on a set of UML stereotypes, tagged values, and

constraints, which are commonly used with Web applications, as well as a set of well-

formedness rules. The reason for choosing this extension over other UML extensions for the

Web application domain was its adoption by the UML standard user community.

The goal of the experiment was to compare OPM/Web to Conallen’s UML with respect to

two aspects: (1) comprehension: the level of comprehending a given model expressed in each

language, and (2) construction: the quality and ease of modeling a given system in each

language.

8.2.1 Experiment Hypotheses

The experiment conjecture (the null hypothesis) regarding comprehension was that questions

that can be answered by inspecting a single UML view would be more correctly answered

using UML than OPM/Web. More specifically, since UML is object-oriented and is

comprised of multiple views (diagram types), the UML class diagram would better serve

subjects who are looking for answers to questions related to structural parts of a given system.

Examples of questions of this type are “What is the database structure of the given

application?” and “What are the navigational paths of the pages within the application?”

84

Conversely, OPM/Web will be preferable for understanding the dynamic aspects of a system

and the complex relations among various (structural and dynamic) system components.

With respect to construction, OPM/Web, which uses a single model with three scaling

(abstraction-refinement) mechanisms, was expected to be correctly applied more easily than

UML for modeling complex, dynamic applications. The reason for this conjecture, in addition

to the single- vs. multiple view difference between the two approaches, is that OPM/Web

keeps a compact set of graphic alphabet elements, as opposed to the additional element types

which Conallen introduced to UML. Conallen’s UML defines a relatively large set of no less

than 18 domain-specific stereotypes and tagged values, whose syntax and semantics may

seem quite obscure. This set includes, among other things, implementation-dependent

concepts, such as RMI, IIOP, and Java Script, which make the reuse of the same model in

different technology frameworks a difficult task. OPM/Web, on the other hand, extends

OPM's expressive power by providing new options for bindings and relations between

existing elements, implying new semantics. For example, in OPM/Web a link can exhibit

(i.e., be characterized by) features (attributes and operations), while in OPM only things

(objects and processes) can exhibit features. Many of these extended capabilities are currently

being incorporated into the core OPM.

8.2.2 Population Background and Training

As noted, the subjects of the experiment were third year students at the Technion, Israel

Institute of Technology, who took the course “Specification and Analysis of Information

Systems” in the spring semester of the 2002 academic year. Most of them were students of

the Information Systems Engineering program, which is managed jointly by the Faculty of

Industrial Engineering and Management and the Faculty of Computer Science. They had no

previous knowledge or experience in system modeling and specification.

85

Table 5. The syllabus of the course “Specification and Analysis of Information Systems”

Week
no. Lecture (3 hours per week) Recitation (2 hours per week) Assignment

1 Introduction – system
development lifecycle

Relational databases

2 DFD Relational databases
3 DFD and OO approach DFD
4 UML Use Case and Class

Diagrams
DFD Modeling in DFD

5 UML structural model -----
6 UML structural model UML Use Case and Class

Diagrams
7 UML Interaction Diagrams UML structural model
8 UML Statecharts UML Interaction Diagrams Modeling in UML
9 OPM UML Statecharts Modeling in Statechart
10 OPM OPM
11 Conallen’s UML OPM Modeling in OPM
12 OPM/Web Conallen’s UML and

OPM/Web
13 Discussion about analysis

approaches
Rehearsal tutorial

During the 13-week course, the students studied three representative methods: DFD for two

weeks, UML for five weeks, and OPM for two weeks. They also studied Conallen’s UML

and OPM/Web for one additional week each. The students were required to submit four

modeling assignments in order to practice the use of DFD, UML – Use Case Diagrams, Class

Diagrams, and Sequence Diagrams, UML – Statecharts, and OPM. The syllabus of the course

is summarized in Table 5.

The course staff included one adjunct lecturer and two graduate student teaching assistants.

They were all familiar with these methods prior to teaching them, but had no particular

preference or knowledge of any one specific method.

8.2.3 Experiment Design

The experiment took place during the final three-hour examination of the course. The

examination contained three tasks. The two main tasks, which related to Web or distributed

86

applications and counted for 80% of the examination's grade, constituted the experiment. The

third task, which related to DFD, appeared last in the examination, so its effect on the

experiment results, if any, was uniform.

The two experimental tasks referred to two case studies: a project management system

and a book ordering application. The project management system is a distributed, data-

intensive system that handles projects, their tasks, and their intermediate products. The

electronic commerce book ordering application is a Web-based system that enables searching

for books and ordering them. The students were divided arbitrarily into two groups. The size

and tasks of each group are summarized in Table 6.

Table 6. Experiment Design

To verify that the populations of these two groups were identical, a preliminary t-test was

carried out on the grades the students had received in the “Design and Implementation of

Information Systems” course, a prerequisite mandatory course in the Information Systems

Engineering program. No significant difference was found between the groups (t = –0.19,

p < 0.85).

8.2.4 The OPM/Web and UML Models and Questions

The OPM/Web and UML models of the project management system and the electronic

commerce book ordering application and the corresponding questions are presented in

Appendix C. Each model consists of five diagrams followed by eight comprehension

questions and one modeling problem, which called for extending the system model. The

questions on both models for the same case study were identical.

Task Weight Group A
(40 subjects)

Group B
(41 subjects)

Project management system 40% Conallen’s UML OPM/Web

Book ordering application 40% OPM/Web Conallen’s UML

DFD technical question 20% DFD DFD

87

8.3 Results and Discussion

Table 7 summarizes the results (average score) of each question in the examination. Each

comprehension question could score a maximum of 3 points (24 points in total for each

system), while the modeling problem could score as much as 16 points, totaling 40 points for

each system. Incomplete answers, or answers with missing elements, scored less. All the

questions about the project management system (in both Conallen’s UML and OPM/Web)

were graded by one of the two teaching assistants, while the questions about the book

ordering application were graded by the other. This grader assignment scheme (together with

a strict grading policy) was designed to eliminate any potential bias towards one of the

modeling languages in grading the examinations.

Table 7. Experiment Results

Project Management System Book Ordering ApplicationQuestion
No.

Max.
Score Conallen’s UML OPM/Web Conallen’s UML OPM/Web

1 3 2.03 2.82 2.65 1.99

2 3 1.78 1.88 1.79 2.01

3 3 1.53 2.70 1.55 2.58

4 3 2.78 2.85 1.67 2.03

5 3 1.98 2.49 1.85 2.33

6 3 2.24 2.11 2.20 2.23

7 3 1.90 2.16 1.83 2.14

8 3 1.94 2.40 2.78 2.78

9 16 9.18 10.73 8.32 8.95

Total 40 25.33 30.13 24.63 27.01

As Table 7 shows, most of the questions scored higher when the system was modeled

using OPM/Web than when the system was modeled using Conallen’s UML. In particular,

the construction problems for both systems scored higher when students were required to use

OPM/Web.

In the project management system, the only question in which Conallen’s UML scored

slightly (but not significantly) higher related to representing the navigation order of the

88

project management pages (question 6: 2.24 for Conallen’s UML vs. 2.11 for OPM/Web).

However, in the same question about the book ordering system (question 6) the result was

reversed in favor of OPM/Web (2.23 for OPM/Web vs. 2.20 for Conallen’s UML).

The largest gap in favor of OPM/Web in the project management system was in question

3, which was phrased "What is the trigger of the project order handling process? From which

diagram did you conclude it?" For this question, students who got the OPM/Web model

scored 2.70 (out of 3), almost twice as much as the students who got the Conallen's UML

model, who scored 1.53. The reason for this large difference is attributed to the fact that

"project order handling" is a name of an OPM process which explicitly appears in some of

the diagrams, while in the Conallen's UML model the behavior and triggers of this process

need to be searched in the sequence diagram.

The next largest gap between the two languages (1.98 vs. 2.49) was in question 5, which

was: "What database classes are affected by the project order handling process? How? (i.e.,

are they created, destroyed, or changed?)" Here, the facts that OPM/Web combines the

system's structure and behavior in a single view and that the transformation (creation,

destruction, or change) of the process on each object is explicitly shown, has helped getting a

more correct answer.

In the book ordering application, the only question in which Conallen’s UML scored

higher (2.65 vs. 1.99) was question 1, which related to the types of pages that the user can

view and the information presented at each page. This result in favor of UML is probably due

to the fact that Conallen’s UML introduces a special element to represent pages or screens,

the boundary entity, whose symbol and meaning is different than a standard class. OPM/Web,

on the other hand, represents Web pages or screens as standard objects with no special

symbol. Assigning a special symbol to Web pages helps to quickly and more accurately

identify objects of this type. Although the addition of the boundary entity symbol was found

89

to be helpful in answering this particular question, adding special symbols to denote such

elements as components, executables, and libraries, as UML indeed does, comes at the price

of unjustifiably complicating the language. Indeed, Siau and Cao [91] found that the UML

vocabulary is overall 2-11 times more complex than other object-oriented single view

technique.

Table 8. Results of the overall and construction grades – the mixed model

Factor Name Values of Factor
Mean

Grade (%)
F p-level

Method
Conallen’s UML

OPM/Web

62.45

71.48
54.17 0.0001

Case
Project management

Book ordering

69.40

64.53
15.24 0.0002

Overall
Score

Method*Case 1.17 0.2828

Method
Conallen’s UML

OPM/Web

54.65

61.57
7.41 0.0080

Case
Project management

Book ordering

62.28

53.94
10.77 0.0015

Construction
Score

Method*Case 0.46 0.4987

Table 8 presents a summary of all the possible effects between the two experiment factors,

Method and Case (case study), with respect to (1) the overall grade and (2) the construction

question score. The results, normalized to a percentage scale, show significant differences in

the main effects (Method and Case) and insignificant differences in their interaction

(Method*Case). Both the overall and the construction grades were higher in OPM/Web. The

significance of the case study implies that the project management system was less difficult

to handle than the book ordering application. Hence, the methods were compared separately

for each case study. As Table 9 shows, the overall grades were significantly higher in

OPM/Web in both case studies, while the difference of the construction grades was not

90

significant in the book ordering system and only borderline significant (p ~ 0.06) in the

project management system.

Table 9. Results of the overall and construction grades according to the case studies

Case Study Method
Mean

Grade (%)
F p-level

Conallen’s UML 63.32Project
Management OPM/Web 75.33

13.57 0.0004

Conallen’s UML 61.58

Overall
Grade Book

Ordering OPM/Web 67.53
4.35 0.0402

Conallen’s UML 57.38Project
Management OPM/Web 67.06

3.60 0.0613

Conallen’s UML 52.00

Construction
Grade Book

Ordering OPM/Web 55.94
0.70 0.4062

To gain more insight into the comprehension questions, they were divided into three

categories:

1. Structure: questions 1-2 in both case studies, which related to the system structure;

2. Behavior: questions 3-5 in both case studies and question 8 in the book ordering

system, which related to the dynamics of the system; and

3. Distribution: questions 6-7 in both case studies and question 8 in the project

management system, which related to aspects of the system's distributed nature.

The expectations were that since UML has a separate structure view (the class diagram), it

would be better in the structure comprehension category, while OPM/Web will be

favorable in the behavior category due to its structure-behavior integration in a single

view. It could not be argued in advance in favor of either method with respect to

distribution comprehension.

Table 10 summarizes the comprehension results according to the three categories. The

students' grades in each category were converted to a binary type, labeled as success when a

91

student scored more than an average of 2 points (out of 3) in the category, and failure

otherwise.

Table 10. Results of the comprehension grades – the GENMOD model

Category Case Study Method % Success p-level

Conallen’s UML 35.00Project
Management OPM/Web 53.66

0.09

Conallen’s UML 65.85
Book Ordering

OPM/Web 47.50
0.09

Conallen’s UML 50.62

Structure

Total
OPM/Web 50.62

0.99

Conallen’s UML 70.00Project
Management OPM/Web 90.24

0.02

Conallen’s UML 56.10
Book Ordering

OPM/Web 87.50
0.001

Conallen’s UML 62.96

Dynamics

Total
OPM/Web 88.89

<0.0001

Conallen’s UML 30.00Project
Management OPM/Web 60.98

0.005

Conallen’s UML 34.15
Book Ordering

OPM/Web 52.50
0.09

Conallen’s UML 32.10

Distribution

Total
OPM/Web 56.79

0.0009

As noted, one would expect that since UML is object-oriented, and hence focused primarily

on structure, it would be significantly better than OPM/Web in the structure category in both

case studies. However, Conallen’s UML was better only in the book ordering system, while

OPM/Web was better in the project management case study. One explanation for this

difference might be the higher complexity of the book ordering system compared with the

project management application. The students captured the complex structural part of the

book ordering system more easily in the UML class diagram, a separate view, which deals

with structure only. This does not explain though why OPM/Web was better for the project

92

management system. Combining the results of the two case studies, the differences between

the methods are not significant (p = 0.99) with respect to structure. Conversely, with a

confidence level of 0.01, one can argue that they are equivalent.

As expected, in the behavior comprehension category, OPM/Web was significantly better (p

< 0.0001) in both case studies. This outcome might be due to the fact that finding answers to

the behavior questions involved consulting several UML views, while in OPM/Web the

answers are found in the single diagram type, and the only thing one has to do is traverse

across OPDs with different granularity levels. This type of navigation is easier than moving

from one type of diagram to another, with each diagram type using its own set of symbols

and distinct semantics.

As for the distribution comprehension aspect, in both case studies OPM/Web was

significantly better (p = 0.0009) than Conallen’s UML. This difference can be explained by

the fact that the questions in this category involved structural and behavioral aspects of the

system distribution that span across different UML views. In other words, in the Conallen’s

UML model, the students had to integrate information gathered from various diagram types

to fully answer these questions, while in OPM/Web diagrams the same information could be

achieved by moving from a less detailed diagram to a more detailed (in-zoomed) one.

Although the comparison used a specific extension of UML for Web applications, the

findings are quite general. UML’s segregation of the system model into multiple views is a

major source of difficulty in capturing the system as a whole, understanding its parts, and

being able to coherently follow the functionality it performs, as it spans across different

diagram types. Moreover, the use of various sets of extensions (stereotypes, tagged values,

and constraints), whose syntax and semantics are not universal, weakens UML power as a

standard.

93

Part 4. OPM/Web Metamodel8

9. The Metamodeling Technique

A system modeling and development methodology is a combination of a language for

expressing the universal or domain ontology and an approach for developing systems that

makes use of this language. Development activities can be divided into three types with

increasing abstraction levels: real world, model, and metamodel [46, 95]. The real world is

what system analysts perceive as reality or what system architects wish to create as reality. A

model is an abstraction of this perceived or contemplated reality that enables its expression

using some approach, language, or methodology. A metamodel is a model of a model, or

more accurately, a model of the modeling methodology [100]. Metamodels help understand

the deep semantics of a methodology as well as relationships among concepts in different

languages or methods. They can therefore serve as devices for method development (also

referred to as method engineering) and as conceptual schemas for repositories of software

engineering and CASE tools. The level of abstraction at which metamodeling is carried out is

higher than the level at which modeling is normally done for the purpose of generating a

model of a system [46].

The proliferation of object-oriented methods has given rise to a special type of

metamodeling, reflective metamodeling, in which a methodology is modeled using the

means and tools that the methodology itself provides. While metamodeling is a formal

definition of the methodology, reflective metamodeling can serve as a common way to check

and demonstrate the methodology’s expressive power. A reflective methodology, i.e., a

methodology that can model itself, is especially powerful since it is self-contained and does

not require auxiliary means or external tools to specify itself.

8 The met amodel of an OPM-based development process was accepted to ER’2003 [26].

94

Existing object-oriented languages, especially UML, have (partial) reflective

metamodels. The reflective UML metamodel in [68], for example, includes class diagrams,

Object Constraint Language (OCL) [99] constraints, and natural language explanations for

describing the main elements in UML and the static relations among them. This metamodel is

incomplete in more than one way. First, UML is only a language, not a methodology, so only

the language elements are metamodeled, but not any (object-oriented or other) development

process. Second, class diagrams are used to model all UML views and the metamodel does

not constrain any consistency requirements among the various views of a UML system

model. Third, the OCL constraints describes only static invariants.

The Meta Object Facility (MOF) [70] is a standard metadata architecture whose main

theme is extensibility and support of metadata. MOF defines four layers of metadata:

information (i.e., real world concepts, labeled M0), model (M1), metamodel (M2), and meta-

metamodel (M3). The meta-metamodel layer describes the structure and semantics of meta-

metadata. In other words, it is an “abstract language” for defining different kinds of metadata

(e.g., meta-classes and meta-attributes).

The Meta Modeling Facility (MMF) [17] provides a modular and extensible method for

defining and using modeling languages. It comprises a static, object-oriented language

(MML), used to write language definitions; a tool (MMT) used to interpret those definitions;

and a method (MMM) which provides guidelines and patterns encoded as packages that can

be specialized to particular language definitions.

MOF and MMF have been applied to metamodel UML. Since both are object-oriented,

they emphasize UML elements and do not deal with expressing the procedural aspects of the

methodology, such as its development processes. Several “software process models” have

been associated with UML to create complete UML-based methods. One such familiar

development process is the Rational Unified Process (RUP) [80]. Although RUP is not a

95

metamodel-based process, it is specified using class and package diagrams, which specify its

structure and its main modules.

The Software Process Engineering Metamodel (SPEM) [72] uses UML to describe a

concrete software development process or a family of related software development

processes. Nevertheless, this metamodel does not relate to the process enactment due to the

limitations of the UML vocabulary.

The Object-oriented Process, Environment, and Notation (OPEN) [40, 75], as a

methodology, offers a set of principles for modeling all aspects of software development

across the entire system lifecycle. The development process is described by a contract-driven

lifecycle model, which is complemented by a set of techniques and a formal representation

using the OPEN Modeling Language (OML) [45]. The lifecycle process, including its

techniques, tasks, and tools, is described in terms of classes and their structural relations.

The above metamodels, as well as other metamodels that use structural- or object-

oriented methodologies, emphasize the objects and their relations within the metamodel,

while the procedural aspects are suppressed and revealed only through operations of objects

and the messages passed among them [22]. It is therefore difficult and inconvenient to model

a process-oriented component, such as a system development process of a methodology,

using an object-oriented approach. OPM overcomes this shortcoming by recognizing

processes as stand-alone entities. Moreover, since OPM is reflective, there is absolutely no

need for a separate language such as in MOF for specifying the “meta-metamodel” (M4)

level. The OPM framework requires only the first three levels: The application level,

expressed as an OPM model instance, the model level, expressed as an OPM model, and the

(reflective) metamodel level, which refers to OPM as a complex dynamic system and

expresses it in OPM terms. This part of the work presents a reflective metamodel of OPM,

which includes OPM/Web extensions.

96

10. OPM Reflective Metamodel – The Top Level Specification

The System Diagram (SD), which is the top-level, most abstract specification of the OPM

metamodel, is presented in Figure 1. SD contains OPM and its features, which are the

attributes Ontology and Notation, and the operation System Developing. OPM, Ontology, and

Notation are objects, symbolized by rectangles, while System Developing is a process, as its

enclosing ellipse denotes. An exhibition-characterization relation (symbolized by a black

triangle within a white one) connects Ontology, Notation, and System Developing to OPM,

denoting that these objects and process characterize OPM. The OPL sentence that corresponds

to this graphic ensemble is the first one in the OPL paragraph shown in Figure 1: “OPM

exhibits Ontology and Notation, as well as System Developing.” Following OPM's graphics-text

equivalence principle, the rest of the statements expressed graphically in the OPD are also

repeated as natural language statements in the OPL paragraph.

Figure 34. SD, the top level specification, of the OPM reflective metamodel

System Developing, which represents the entire OPM-based set of processes, is handled by

the User, who is the agent of System Developing. This User can be the system architect,

developer, or any other stakeholder who uses OPM to architect, develop and evolve a

System, as well as a team consisting of these stakeholders. The System Developing process

requires OPM’s Ontology and Notation as instruments (unchangeable inputs) to create a new

System.

OPM exhibits Ontology and Notation, as well

as System Developing.
Notation represents Ontology.
System Developing requires

Notation and Ontology.
System Developing yields System.

User is environmental and physical.
User handles System Developing.

SD

97

Ontology encompasses OPM elements (entities and links), their features, and the structural

and procedural relations among them, but it does not specify anything about the symbols used

to denote them. The Notation represents the Ontology both visually, through interconnected

OPD symbols, and textually, through OPL paragraphs and sentences.

Unfolding Notation, SD1 (shown in Figure 35) exposes the detailed relationships between

Ontology and Notation. Notation is characterized by Modality, which has two possible states

(symbolized in the OPD by rounded-corner rectangles): graphical and textual. An OPD

Symbol is a Notation the Modality of which is graphical, while an OPL Sentence is a Notation

the Modality of which is textual.

Ontology consists of Elements.

Notation exhibits Modality.

Modality can be graphical or textual.

Notation represents Ontology.

OPD Symbol is a Notation, the Modality of which is graphical.

OPD Symbol graphically represents an Element.

OPL Sentence is a Notation, the Modality of which is textual.

OPL Sentence consists of at least one OPL Phrase.

OPL Phrase consists of optional OPL Phrases and optional Atomic OPL Phrases.

Atomic OPL Phrase textually represents an Element.

OPL Sentence textually represents at least one Element.

Figure 35. SD1, in which OPM Notation is unfolded

SD1

98

Ontology consists of Elements. Ontology represents Notation either in a graphical

Modality via OPD Symbols or in a textual Modality via OPL Sentences. An OPD Symbol

graphically represents an OPM Element, while an OPL Sentence textually represents several

Elements. An OPL Sentence may consist of several OPL Phrases, each of which can be an

Atomic OPL Phrase or a complex OPL Phrase, i.e., one that consists of other OPL Phrases. An

Atomic OPL Phrase textually represents a single OPM Element.

The rest of this part is organized as follows. Chapter 11 presents the reflective metamodel of

OPM structure (entities and possible structural and procedural links between them), while

chapter 12 presents OPM behavior (complexity management mechanisms and system

development processes). Each section includes informal definitions of OPM’s concepts,

which are exemplified through an ordering system model, and a reflective metamodel of the

relevant ontology concepts using OPM notations (both OPDs and OPL sentences).

99

11. Metamodel of OPM Structure

11.1 Elements

11.1.1 Informal Element Definitions

The OPM ontology consists of two types of elements: entities and links. Entities are classified

into things and states. A thing is a generalization of an object and a process. Objects are

entities that exist, while processes are entities that transform things by generating,

consuming, or affecting them. A state is a situation at which an object exists. Therefore, a

state is not a stand-alone thing, but rather an entity that is "owned" by an object. At any given

point in time, the state-owning object is at one of its states. The status of an object, i.e., the

current state of the object, is changed solely through an occurrence of a process. Objects and

processes are respectively denoted in an OPD by rectangles (as in class diagrams in UML and

earlier notations) and ellipses (as in data-flow diagrams). Following Statecharts

[44] notation, the OPD symbol of a state is a rounded corner rectangle within the rectangle of

its owning object.

A link is an element that connects two entities to represent some semantic relation between

them. Links can be structural or procedural. A structural link is a binary relation between two

entities, which specifies a structural aspect of the modeled system, such as an aggregation-

participation (whole-part) relation or a generalization-specialization. A procedural link

connects an entity with a process to denote a dynamic, behavioral flow of data, material,

energy, or control. An event link is a specialization of a procedural link which models a

significant happening in the system that takes place during a particular moment and might

trigger a process. Links are denoted in an OPD by lines with different types of arrowheads or

triangles, as summarized in Appendix A and explained in Section 11.4.

100

To exemplify specific points in the OPM ontology and notation, we will use a simple

OPM model of an ordering system, shown in Figure 36, in which Order is an object, while

Ordering is a process. Order can be at one of two states, ordered or supplied. Ordering

changes Order from ordered to supplied. The equivalent two-sentence OPL paragraph in

Figure 36 describes the structural relations and procedural links between the entities. The first

sentence is a state enumeration sentence, which specifies that ordered and supplied are the

two states of the object Order. The second sentence is a change sentence. It corresponds to

the pair of procedural links, the input link (from ordered to Ordering) and the output link

(from Ordering to supplied). Together, this pair of links change Order from its ordered state

to its supplied state.

Order can be ordered or supplied.
Ordering changes Order from ordered to supplied.

Figure 36. A simple OPM model of objects, processes, states, and links

Any OPM element can be either systemic or environmental. A systemic element is internal

to the system and has to be completely specified, while an environmental element is external

to the system and may therefore be specified only partially. The OPD symbol of an

environmental element differs from its systemic counterpart in that its borderline is dashed.

The Product Catalog in Figure 37, for example, is an environmental object, which is external

to the system but should be used as an unchangeable input for the Ordering process.

In an orthogonal fashion, an OPM element can also be either physical or informatical. A

physical element is tangible in the broad sense, while an informatical element relates to

information. A physical entity is symbolized in an OPD as a shadowed closed shape –

rectangle, ellipse, or rounded corner rectangle for a physical object, a physical process, or a

101

physical state, respectively. The Receipt in Figure 37 is a physical object resulting from the

Ordering process.

Order can be ordered or supplied.
Product Catalog is environmental.

Receipt is physical.
Ordering requires Product Catalog.
Ordering changes Order from ordered to supplied.

Ordering yields Receipt.

Figure 37. The OPM model of Figure 36 extended with the environmental object Product

Catalog and the physical object Receipt

11.1.2 Element Metamodel

Figure 38 shows the third OPD of the OPM metamodel, labeled SD2, in which Ontology is

unfolded. It specifies that Ontology consists of Entities and Links, each of which is an

Element. An Entity, which exhibits (i.e., is characterized by) a Name, specializes into a Thing

and a State. A Thing further specializes into an Object and a Process. The structural relation

between an Object and a State represents that an Object owns some States, while a State

specifies the status of an Object.

A Link exhibits Homogeneity, which is homogeneous for a Structural Link (that usually

connects two Objects or two Processes) and non-homogeneous for a Procedural Link (that

usually connects an Entity and a Process).

As noted, each Element is characterized by three orthogonal attributes:

(1) Affiliation, which can be systemic (the default) or environmental;

(2) Essence, which can be informatical (the default) or physical; and

(3) Scope, which can be public (the default), protected, or private .

An environmental Element is an Element, the Affiliation of which is environmental. An

environmental Element is external to the system or only partially specified, while a systemic

Element is internal to the system and completely specified.

102

As noted, a physical Element consists of matter and/or energy. It can be a physical Object

(e.g., a Machine), a physical Process (e.g., Manufacturing), a physical State (e.g., tested), or

a physical Link (e.g., a communication line between two remote computers). An informatical

Element relates to information. An example of an informatical Element is the informatical

object Customer that stores information about a real-life, physical customer. Other examples

include the informatical processes Database Updating and Computation, and a link between

the informatical Customer and its Orders.

Element exhibits Affiliation, Essence, and Scope.
Affiliation can be systemic, which is the default, or environmental.
Essence can be informatical, which is the default, or physical.
Scope can be public, which is the default, protected, or private

Ontology consists of Entity and Link.
Entity is an Element.
Entity exhibits Name.
Thing is an Entity.
Object is a Thing.
Object owns optional States.
Process is a Thing.
State is an Entity.
State specifies the status of an Object.
Link is an Element.
Link exhibits Homogeneity.

Homogeneity can be homogeneous or non-homogeneous.
Structural Link is a Link, the Homogeneity of which is homogeneous.
Procedural Link is a Link, the Homogeneity of which is non-homogeneous.
Event Link is a Procedural Link.

Figure 38. SD2, in which Ontology of OPM is unfolded

SD2

103

As in programming languages, the Scope of an Element can be private (i.e., it can be

accessed only by itself), protected (accessible only by itself and its sub-elements), or public

(accessible by any element in the system). Unlike the object-oriented paradigm, where a

method can affect or access only the attributes of the same class, the default Scope in OPM is

public, which implies that any OPM process can use or change all the objects in the model.

While seemingly violating the object-oriented encapsulation principle, this provision

increases the flexibility of modeling patterns of behavior as OPM processes that involve and

cut across several object classes.

11.2 Things

11.2.1 Informal Thing Definitions

A thing is a generalization of an object and a process. An object is a thing that exists, at least

potentially, and represents a class of instances that have the same structure and can exhibit

the same behavior. The Order in Figure 39, for example, is a complex object which exhibits

three simple attributes (each of which is an object in its own right): Order Number, which is

of type integer; Order Date, which is of type date; and Order Price, which is of type float.

Order exhibits Order Number, Order Date, and

Order Price.
Order Number is of type integer.
Order Date is of type date.

Order Price is of type float.
Ordering lasts 1 minute to 5 minutes.
Ordering affects Order.

Figure 39. An OPM model of simple and complex objects and time constrained processes

A process is a class of occurrences (or instances) of a behavior pattern, which transforms at

least one object. Transformation can be change (effect), creation, or consumption of a thing.

To carry out the transformation, the process may need to be enabled by one or more objects

of different types of classes, which are considered instruments (enablers) for that process and

104

are not transformed by the process they enable. A process instance is an occurrence

(execution) of the specific process and it is analogous to an object instance. The execution

time of a process can be constrained by minimal and maximal limits, implying that any

process execution can only take a time interval that falls within these time limits. The time

limits appear in the OPD as [minimal time constraint, maximal time constraint] within the

ellipse representing the process. For example, the specification of the minimal and maximal

time limits of the Ordering process in Figure 39 implies that it must take at least 1 minute and

at most 5 minutes. The corresponding OPL in Figure 39 is “Ordering lasts 1 minute to 5

minutes.”

A process can be atomic, sequential, or parallel. An atomic process is a lowest-level,

elementary action which is not divided into sub-processes, while sequential and parallel

processes are refined (through in-zooming or unfolding) into several sequential or parallel

sub-processes. The time line in an OPD flows from the top of the diagram downwards, and,

hence, the vertical axis within an in-zoomed process defines the execution order: The sub-

processes of a sequential process are depicted in the in-zoomed frame of the process stacked

on top of each other with the earlier process on top of a later one. Analogously, sub-processes

of a parallel process appear in the OPD side by side, at the same height.

In Figure 40, for example, Ordering is in-zoomed to show its two sub-processes, which

are Supplying and Paying. In Figure 40(a), Supplying and Paying are executed in a serial

order: Supplying is executed first, followed by Paying. In Figure 40(b), on the other hand,

Supplying and Paying are executed independently and may occur in parallel. The default

execution order is the sequential one, so only the parallel execution order is specified in the

fourth OPL sentence in Figure 40(b).

105

(a)

Order can be ordered or supplied.

Product Catalog is environmental.
Receipt is physical.
Ordering zooms into Supplying and Paying.

Supplying changes Order from ordered to

supplied.
Paying requires Product Catalog.
Paying yields Receipt.

(b)

Order can be ordered or supplied.
Product Catalog is environmental.

Receipt is physical.
Ordering zooms into Supplying and Paying,

which are executed in parallel.

Supplying changes Order from ordered to

supplied.
Paying requires Product Catalog.

Paying yields Receipt.

Figure 40. An OPM model of sequential and parallel processes.

(a) Supplying and Paying are executed serially.

(b) Paying and Supplying are executed in parallel.

11.2.2 Thing Metamodel

Unfolding Thing of the OPM metamodel, SD2.1 (Figure 41) shows its Perseverance attribute,

which can be static or dynamic. An Object is a Thing with static Perseverance, while a

Process is a Thing with dynamic Perseverance. In addition to Perseverance, a Thing also

exhibits the Concreteness attribute, which determines whether the thing is a class (the

default) or an instance. The difference between an Object class and an Object instance is

similar to the difference between these concepts in the object-oriented approach. A Process

instance is an occurrence of the process class, which, as noted, is a behavior pattern that the

process instances follow. In programming terms, it can be thought of as an executable

version of code, which can be executed a specified finite number of times, while a Process

class is the complete code that can be (re)compiled and executed unboundedly. Following

the UML notation of classes and objects, a thing instance is denoted in OPM by a rectangle

106

or an ellipse, within which the class name is written as :ClassName, where the identifier of

the instance can optionally precede the colon.

An Object can optionally exhibit Type (e.g., integer, float, or string), whether it is

Persistent (i.e., stored in a database), whether it is Key, and optional Indices. Each Index is an

ordered tuple of Objects (each of which is an attribute).

Timed Element exhibits Minimal Time Constraint, Maximal Time Constraint, and an optional Duration
Distribution Function.

Minimal Time Constraint is 0 by default.
Maximal Time Constraint is infinity by default.
Duration Distribution Function exhibits Function Name and optional Parameters.

Thing exhibits Perseverance and Concreteness.
Perseverance can be static or dynamic.
Concreteness can be class, which is the default, or instance.

Object is a Thing, the Perseverance of which is static.
Object exhibits Persistent, Key, optional Indices, and an optional Type.

Persistent is of type Boolean.
Key is of type Boolean.
Index relates to an ordered set of at least one Object.
Type can be integer, unsigned integer, short, long, float, double, boolean, char,
string, date, or time.

Process is a Thing, the Perseverance of which is dynamic.
Process is a Timed Element.
Process exhibits Execution Order.

Execution Order can be atomic, which is the default, sequential, or parallel.
Figure 41. SD2.1, in which Thing of OPM Ontology is unfolded

Process, which is a Thing with a dynamic Perseverance, is also a Timed Element and as

such it inherits Minimal Time Constraint (0 by default) and Maximal Time Constraint (infinity

SD2.1

{ordered}

107

by default). As noted, these constraints limit the Process execution time within the specific

bounds. Process also inherits from Timed Element a Duration Distribution Function, which is

characterized by Function Name and Parameters. This attribute specifies the distribution of

the process duration that determines how long a process execution lasts and it is most useful

for simulation purposes.

In addition, Process exhibits Execution Order, which can be atomic, sequential, or parallel.

Since a process can be either sequential or parallel (but not both), an in-zoomed process will

have sub-processes that are all depicted either stacked or in a row, but not as a mixture of

these two modes.

11.3 States

11.3.1 Informal State Definitions

 A state is a situation in which an object can be for a period of time. It can represent a

consecutive value range or a discrete (enumerated) set of values. Order in Figure 42, for

example, has three top-level, possible states: ordered, paid, and supplied. Both ordered and

paid are initial states, as denoted by the thick borderline rounded corner rectangle. This

implies that Order can be created in either of its ordered or paid states. If not otherwise

specified, Order will be created in its ordered state as denoted by the default mark (the small

downward diagonal arrow that points towards the ordered state). The supplied state is the

final state of Order, as denoted by the double line rounded corner rectangle. When entering

this final state, Order can be consumed (i.e., destroyed or deleted).

Like process durations, state durations can also be limited on both sides. For example, the

ordered state of Order in Figure 42 has a minimal time limit of 2 seconds and a maximal time

limit of 30 seconds, implying that between 2 to 30 seconds must pass from the moment Order

enters its ordered state until it exists this state.

108

Another similarity of states to processes is that like processes, object states can also be in-

zoomed to expose sub-states. In Figure 42, for example, in its paid state, Order can be at two

sub-states: advance paid, which is the default of a paid Order, or completely paid. The in-

zoomed processes of Order Handling show that Advance Paying first changes Order from

ordered to advance paid, then Balance Paying changes Order from advance paid to completely

paid, and finally Supplying changes Order from completely paid to supplied.

Order can be ordered, which is the default, paid, or

supplied.

Ordered is initial and lasts 2 seconds to 30
seconds.
Paid is initial.

Paid zooms into advance paid, which is the

default, and completely paid.
Advanced paid is initial.

Completely paid is final.
Supplied is final.

Order Handling zooms into Advance Paying,

Balance Paying, and Supplying.
Advance Paying changes Order from

ordered to advance paid.
Balance Paying changes Order from

advance paid to completely paid.

Supplying changes Order from

completely paid to supplied.

Figure 42. An OPM model of initial, default, final, and timed states

11.3.2 State Metamodel

As noted, a State (or a value) describes a situation at which an Object can be (or a value it can

assume). Therefore, a State cannot stand alone, but is rather “owned” by the (stateful) object.

At any given point in time, an Object can be at exactly one of the States it owns, or in

transition between two states. Like a Process, a State is a Timed Element, and as such it

exhibits Minimal Time Constraint and Maximal Time Constraint, i.e., the minimal and maximal

bounds for a continuous stay of the owning Object in that State. As a Timed Element, State

also exhibits Duration Distribution Function for simulation purposes.

109

The OPD labeled SD2.2 (Figure 43) specifies that a State has three additional Boolean

attributes: Initial, Final, and Default. Initial determines whether the object can be initially (i.e.,

upon its creation) at this state. Final determines whether the object can be consumed

(destroyed) when it is at that state. Default determines whether this state is the default state

(or value) of the owning object, i.e., the state into which the object enters when there is more

than one initial state. The aggregation loop attached to State indicates that it may recursively

consist of lower-level States, which are nested sub-states.

State is a Timed Element.
State exhibits Initial, Final, and Default.

Initial is of type Boolean and is false by default.
Final is of type Boolean and is false by default.
Default is of type Boolean and is false by default.

State consists of optional States.
Figure 43. SD2.2, in which State of OPM Ontology is unfolded

11.4 Links

Links are the "glue" that holds entities (processes and objects with their states) together and

enables the construction of system modules of ever growing complexity. OPM links are

classified into two types: structural links and procedural links, where the latter are specialized

into event links.

As SD2.3 (Figure 44) shows, a Link exhibits two link ends: Source End and Destination

End. Both are specializations of Link End, which is characterized by Participation Constraint

(also known as multiplicity). Participation Constraint defines the Minimal Cardinality (with 1

SD2.2

110

as its default value) and the Maximal Cardinality (also 1 by default). These specify the

minimal and maximal number of instances that can be connected by the link at the

corresponding (source or destination) Link End. In addition a Link exhibits the Homogeneity

attribute, which has two states: homogeneous and non-homogeneous. A Link is

homogeneous if both its Link Ends, i.e., its Source End and Destination End, are linked to

Things whose Perseverance value are the same. In other words, a homogeneous Link

connects either two Objects or two Processes, while a non-homogeneous Link connects an

Entity to a Process. Structural Links, which denote static, non-temporal relations between the

linked Entities, are usually homogeneous Links. Procedural Links, which model the behavior

of the system along time and represent flows of data, material, energy, or control between the

linked entities, are non-homogeneous Links.

The Essence, Affiliation, and Scope values of a link, inherited from Element, are

determined by the following three rules, which are formulated in more detail in Appendix D.

Link Essence: A physical Link can connect only two physical Elements.

Link Affiliation: An environmental Link can connect only two environmental Elements.

Link Scope: The Scope value of a Link is the widest of the Scope values of the two

connected Elements, where public, protected, and private, are the widest, intermediate, and

most narrow Scope values, respectively.

111

Link End exhibits Participation Constraint.
Participation Constraint exhibits Minimal Cardinality and Maximal Cardinality.

Minimal Cardinality is 1 by default.
Maximal Cardinality is 1 by default.

Link End is linked to an Element.
Link exhibits Source End, Destination End, and Homogeneity.

Source End is a Link End.
Destination End is a Link End.
Homogeneity can be homogeneous or non-homogeneous.

Structural Link is a Link, the Homogeneity of which is homogeneous.
2 Link Ends of Structural Link are either linked to 2 Objects or 2 Processes.
Procedural Link is a Link, the Homogeneity of which is non-homogeneous.
Source End of Procedural Link is linked to an Entity.
Destination End of Procedural Link is linked to a Process.
Event Link is a Procedural Link.

Figure 44. SD2.3, in which Link of OPM Ontology is unfolded

11.4.1 Informal Structural Link Definitions

 A structural link, which is one of the two types of links, denotes a static, time-independent

relation between two elements. It usually connects two objects or two processes. Structural

links further specialize into tagged structural links, which are general structural links, and

four fundamental structural links. A tagged structural link can be unidirectional, graphically

symbolized by , or bi-directional, graphically symbolized by . It denotes a general,

static relation between two objects or two processes, which is labeled by a meaningful

forward tag (for the unidirectional link) or a pair of forward and backward tags (for the bi-

SD2.3

112

directional link). These tags are set by the system architect to convey a meaningful relation

between the two linked entities. In Figure 45, for example, Order and Customer are two

objects that are linked with a general structural link tagged “is placed by”. This link connects

an Order and its Customer. Similarly, Order and Cooperation are linked with a tagged

structural link that is also labeled “is placed by”.

Order exhibits Order Number, Order Date, and

Status, as well as Printing.
Status can be paid or supplied.

Order consists of optional Order Lines.
Order Line exhibits Product and Quantity.

Order is placed by either Customer or

Cooperation.
Supplied Order is an Order, the Status of which

is supplied.
Order 123 is an instance of Order, the Status of

which is paid.
Figure 45. An OPM model with various structural links

The four fundamental structural links are the most prevalent and useful relations and,

hence, are assigned various triangular symbols, which are graphically more appealing to the

eye than the tag text and save the need to type the nature of the relation each time it is used.

The fundamental structural links are:

1. Aggregation-Participation denotes the fact that a thing aggregates (i.e., consists of, or

comprises) one or more (lower-level) things, each of which is a part of the whole. It is

denoted by whose tip is linked to the whole and whose base is linked to the parts. To

achieve the same semantics, we could use "consists of" and "is part of" as the forward and

backward tags of a tagged structural link, respectively, but, as noted, using the black

triangle symbol helps distinguish this relation from any other tagged structural relation

(and the other three fundamental structural relations). In Figure 45, Order consists of 0 or

more Order Lines (as the * denotes).

113

2. Exhibition-Characterization denotes the fact that a link or a thing exhibits, or is

characterized by, another lower-level thing. The exhibition-characterization symbol is .

The features (which can be attributes or operations) are connected to the base of the

triangle. In Figure 45, Order exhibits (is characterized by) the attributes Order Number,

Order Date, and Status and the operation Printing, while Order Line exhibits Product and

Quantity.

3. Generalization-Specialization (Gen-Spec) is a fundamental structural relation between

two entities: the specialized entities share common structural and procedural links with

the generalized entity. The symbol of the gen-spec relation is whose tip is linked to the

generalizing entity and its base – to the specialized entities. In Figure 45, Supplied Order

defines a sub-class of Orders whose Status is supplied. Similar to an Order, a Supplied

Order has its Order Number, Order Date, Status, Order Lines, and owning Customer or

Cooperation, and it can execute the operation Printing.

4. Classification-Instantiation represents a fundamental structural relation between a class

of things and an instance of that class. This type of link is denoted by . The tip of the

shape is linked to the class, while its base – to the instances. Order 123 in Figure 45 is an

instance of an Order whose Status is paid.

Structural links of the same type can be connected by “or” and “xor” relations to specify

alternative structures. An “or” relation is symbolized by a double line, dashed arc connecting

the relevant structural links, while a “xor” relation is denoted by a single line, dashed arc. In

Figure 45, for example, an Order is placed by either a Customer or Cooperation, but not by

both. If there were no arc in the specification, a specific Order would have an owning

Customer and an owning Cooperation.

114

11.4.2 Structural Link Metamodel

SD2.4 (Figure 46) unfolds OPM Structural Links. A Structural Link is characterized by

Orderability, which can be ordered (e.g., an array) or unordered (e.g., a set) by default. An

ordered Structural Link adds the reserved label {ordered} next to the Object classes whose

instances are required to be ordered. In Figure 41, for example, Object is characterized by

optional Indices, each of which is an ordered set of Objects.

SD2.4 also unfolds the two types of Structural Links: Tagged Structural Links and

Fundamental Structural Links. A Tagged Structural Link exhibits Forward Tag, whose default

value is the string “relates to”, and Directionality. A Bi- Directional Tagged Structural Link,

which is a Tagged Structural Link whose Directionality is bi-directional, exhibits in addition

Backward Tag, whose default value is null, and the default value of its Forward Tag is “are

equivalent”.

Fundamental Structural Links are specialized into Aggregation-Participation Links,

Exhibition-Characterization Links, Generalization-Specialization Links, and Classification-

Instantiation Links.

As noted, Structural Links of the same type can be connected by “or” and “xor” relations.

This is specified by the self tagged structural links labeled “is or-connected to” and “is xor-

connected to”, respectively.

115

Structural Link exhibits Orderability.
Orderability can be unordered, which is the default, or ordered.

Tagged Structural Link is a Structural Link.
Tagged Structural Link exhibits Forward Tag and Directionality.

Forward Tag is “relates to” by default.
Directionality can be uni-directional or bi-directional.

Tagged Structural Link is xor-connected to optional Tagged Structural Links.
Tagged Structural Link is or-connected to optional Tagged Structural Links.
Bi-Directional Tagged Structural Link is a Tagged Structural Link, the Directionality of which is bi-
directional.
Bi-Directional Tagged Structural Link exhibits Forward Tag and Backward Tag.

Forward Tag is “are equivalent” by default.
Backward Tag is null by default.

Fundamental Structural Link is a Structural Link.
Aggregation-Participation Link is a Fundamental Structural Link.
Aggregation-Participation Link is xor-connected to optional Aggregation-Participation Links.
Aggregation-Participation Link is or-connected to optional Aggregation-Participation Links.
Exhibition-Characterization Link is a Fundamental Structural Link.
Exhibition-Characterization Link is xor-connected to optional Exhibition-Characterization Links.
Exhibition-Characterization Link is or-connected to optional Exhibition-Characterization Links.
Generalization-Specialization Link is a Fundamental Structural Link.
Generalization-Specialization Link is xor-connected to optional Generalization-Specialization Links.
Generalization-Specialization Link is or-connected to optional Generalization-Specialization Links.
Classification-Initialization Link is a Fundamental Structural Link.
Classification-Initialization Link is xor-connected to optional Classification-Initialization Links.
Classification-Initialization Link is or-connected to optional Classification-Initialization Links.

Figure 46. SD2.4 in which Structural Link of OPM Ontology is unfolded

SD2.4.1 (Figure 47), which unfolds the Fundamental Structural Links, specifies constraints

on the Elements that can be connected by this type of links. Being Structural Links,

SD2.4

* is xor-connected to

* is xor-connected to

* is xor-connected to

* is xor-connected to

* is xor-connected to

* is or-connected to

* is or-connected to

* is or-connected to

* is or-connected to

* is or-connected to

116

Fundamental Structural Links connects two Objects or two Processes. There are two

exceptions to this simple rule specified in SD2.4.1:

1. An Exhibition-Characterization Link connects a Thing or a Link (as its Source End) and

an Entity (as its Destination End). For example, the communication link between

remote computers, which is modeled as a Tagged Structural Link, can be characterized

by the object Transfer Rate and/or the process Encrypting. A Paid Order is

characterized by a Status attribute whose value (state) is paid.

2. A Generalization-Specialization Link can connect two States of different Objects to

represent state inheritance. In this type of link, which is called State Generalization-

Specialization Link, the inherited state has at least the same structural and behavioral

links as the inheriting state.

Aggregation-Participation Link is a Fundamental Structural Link.
Exhibition-Characterization Link is a Fundamental Structural Link.
Source End of Exhibition-Characterization Link is linked to either Link or Thing.
Destination End of Exhibition-Characterization Link is linked to Entity.
Generalization-Specialization Link is a Fundamental Structural Link.
State Generalization-Specialization Link is a Generalization-Specialization Link.
Source End of State Generalization-Specialization Link is linked to State.
Destination End of State Generalization-Specialization Link is linked to State.
Classification-Instantiation Link is a Fundamental Structural Link.

Figure 47. SD2.4.1, in which Fundamental Structural Link of OPM Ontology is unfolded

Table 1 summarizes the possible structural relations between OPM elements in a tabular

way.

SD2.4.1

117

Table 1. Possible structural relations between OPM elements. S and D denote the link

source and destination, respectively. + denotes a legal link.

Tagged Structural Link /
Aggregation-Participation Link

Exhibition-Characterization Link

S

D

Object Process State Link S

D

Object Process State Link

Object + - - - Object + + - +
Process - + - - Process + + - +
State - - - - State + + - +
Link - - - - Link - - - -

Generalization-Specialization Link Classification-Instantiation Link
S

D

Object Process State Link S

D

Object Process State Link

Object + - - - Object + - - -
Process - + - - Process - + - -
State - - + - State - - - -
Link - - - - Link - - - -

11.4.3 Informal Procedural Link Definitions

A procedural link represents a dynamic relation between a process and a thing. It has one of

the following meanings: (1) the thing enables the process, (2) the process transforms the

thing, or (3) the thing triggers the process. Accordingly, procedural links are divided into

enabling links, transformation links, and event links. An enabling link, called an instrument

link, is a procedural link that connects a process with an enabler of that process. The enabler

is a thing that must be present in order for that process to occur, but it is not transformed as a

result of the process occurrence. The instrument link can originate from an object, a process,

or a state, denoting that the object existence, the process existence, or the object in the

specific state is the enabler, respectively. Graphically, an instrument link is symbolized by

, while textually it is represented by the reserved word “requires”. In Figure 48, for

example, Product Catalog, which is a systemic object in this model, is required for the

Ordering process. Nevertheless, the occurrence of Ordering does not affect Product Catalog in

any way. Therefore, Product Catalog is an instrument of the process Ordering. However, for

another process, such as Catalog Updating, Product Catalog would be an affectee, an object

118

affected by Catalog Updating. Hence, being an instrument can be though of as a “role” of an

object class with respect to a particular process class.

Ordering requires Product Catalog.

Ordering affects Product Inventory.

Ordering consumes Product Request.

Ordering yields Receipt.

Figure 48. An OPM model with various procedural links

A transformation link denotes that a thing is transformed by the occurrence of a specific

process. Transformation is a generalization of consumption, result, and effect. A consumption

link is a transformation link that connects an entity to a process which consumes it. A

consumption link is denoted by from the consumed entity to the process, while the

reserved word “consumes” represents it in OPL. In Figure 48, for example, Product Request

is consumed by the process Ordering. In other words, Product Request had existed before an

occurrence of Ordering, disappeared (was destroyed) during this execution, and does not exist

after Ordering is finished. A consumption link originating from a state of an object means that

the process consumes that object only when the object is in that specific state.

A result link is a transformation link that denotes a creation of a thing or an object at a

specific state. It is symbolized in an OPD by from the process to the resultant entity,

while the reserved word “yields” denotes it in OPL. In Figure 48, Ordering creates a Receipt:

the Receipt had not existed before the beginning of Ordering, it was created during this

execution, and it exists after Ordering is finished.

An effect link connects a process with a thing that is affected, i.e., undergoes a state (or

value) change, during that process. The thing had existed before the process occurred and it

keeps existing after the process was finished, but at least one of its states or attribute values

119

changed. The effect link is denoted in an OPD by where the white-headed arrow

pointing towards the affected thing and the black-headed arrow – towards the process. This

reduces a potential ambiguity when an effect link connects two processes. OPL uses the

reserved word “affects” to represent effect links. In Figure 48, for example, Ordering affects

Product Inventory, which is a systemic object that represents the quantity of a product. This

object had existed before an occurrence of Ordering, and it exists thereafter, but its value

before the process occurrence is different from the value afterwards. Assuming that Ordering

reduces Product Inventory by 1, Figure 49 is a refinement of this OPM model in which

Product Inventory is state expressed to expose two states: value and value-1. The effect link is

also refined through its split into an input link from value to Ordering, and an output link

from Ordering to value-1. Overall, the meaning of this phrase is that Ordering changes the

state of Product Inventory from value to value-1. Input and output links can be though of as

specializations of consumption and result links respectively: the process “consumes” the

input state and “yields” the output state. However, the object as a whole is neither consumed

nor generated – it merely changes its state (or its value).

Product Catalog is environmental.

Ordering requires 2 Product Catalogs.
Ordering changes Product Inventory from

value to value-1.

Ordering consumes Product Request.
Ordering yields either Receipt or Error
Message.

Figure 49. A refined OPM model of effect links as consumption and result links

Like structural links, procedural links can have multiplicity constraints, they can be

connected by “or” and “xor” relations, and they can exhibit attributes, such as a set of

conditions governing or guarding the link. For example, in Figure 49, Ordering requires 2

Product Catalogs, while consuming one (the default, when no multiplicity constraint is

2

120

indicated) Product Request and affecting one Product Inventory. Ordering yields either one

Receipt or one Error Message.

A procedural link may have one or more path labels. A path label is a character string label

on a procedural link that removes the ambiguity arising from multiple procedural links

outgoing from the same entity. When procedural links that originate from an entity are

labeled, the one that must be followed is the one whose label is identical with the label of the

procedural link that arrives at the entity. The path labels in Figure 50, for example, specify

two possible scenarios of Order Handling: Symbolized by the path label paying, this process

occurs when Order is at its ordered state, and it changes the state of Order to paid.

Symbolized by the path label supplying, the process occurs when Order is at its paid state,

and it changes the state of Order to supplied. A path label can be put also on an enabling link,

indicating that the thing attached to the link bearing the label is required for the process. For

example, the path label supplying along the instrument link from Warehouse to Order

Handling indicates that Warehouse is required when the state of Order changes from paid to

supplied, but not when it changes from ordered to paid.

Order can be ordered, paid, or supplied.
Ordered is initial.

Following path paying, Order Handling

changes Order from ordered to paid.
Following path supplying, Order Handling
requires Warehouse.

Following path supplying, Order Handling
changes Order from paid to supplied.

Figure 50. An OPM model with path labels on procedural links

11.4.4 Procedural Link Metamodel

Any Procedural Link has a Process as its Destination End, while its Source End is connected

to an Entity. As shown in SD2.5 (Figure 51), a Procedural Link exhibits three attributes: Link

Type, Conditionality, and optional Path Labels. The Link Type of a Procedural Link

supplying

121

distinguishes primarily between enabling and transforming Procedural Links. Transforming

Procedural Links are further divided into affecting, consuming, and resulting Procedural

Links.

Procedural Link exhibits Link Type, Conditionality, and optional Path Labels.

Link Type can be enabling or transforming.

Transforming zooms into affecting, consuming, or resulting.
Conditionality can be conditional or unconditional.

Source End of Procedural Link is linked to Entity.

Destination End of Procedural Link is linked to Process.
Instrument Link is a Procedural Link, the Link Type of which is enabling.
Instrument Link is xor-connected to optional Instrument Links.

Instrument Link is or-connected to optional Instrument Links.
Consumption Link is a Procedural Link, the Link Type of which is consuming.

Consumption Link is xor-connected to optional Consumption Links.
Consumption Link is or-connected to optional Consumption Links.
Result Link is a Procedural Link, the Link Type of which is resulting.

Result Link is xor-connected to optional Result Links.
Result Link is or-connected to optional Result Links.
Effect Link is a Procedural Link, the Link Type of which is affecting.

Effect Link is xor-connected to optional Effect Links.
Effect Link is or-connected to optional Effect Links.

Figure 51. SD2.5, in which Procedural Link of OPM Ontology is unfolded

A conditional Procedural Link, i.e., a Procedural Link whose Conditionality is conditional,

enables the Process execution only if the condition it symbolizes holds, else the Process is

skipped and the next process in turn is examined for possible execution. With the exception

of Result Link, each type of procedural link can be a conditional Procedural Link or

unconditional Procedural Link. A Result Link cannot be a conditional Procedural Link because

SD2.5

is xor-
connected to
* is xor-

connected to
*is xor-

connected to

*
is xor-
connected to

*

is or-connected to

*

is or-connected to

*

is or-connected to

*

is or-connected to

*

122

the Entity which the Process generated upon its completion cannot be a condition for the

Process that generated it. For simplicity, this assertion is defined in Appendix E by the OCL

constraint (1).

The difference between an enabling link and a conditional enabling link is demonstrated in

Figure 52. The Process in Figure 52(a) waits until the Object is at the state. In Figure 52(b),

on the other hand, the Process is executed only if the Object is at the state. Otherwise, the

control is passed to the next process that should be executed. The OPD symbol of a

conditional Procedural Link is similar to its non-conditional counterpart, except that it has the

letter “c” inside or next to the link symbol (see Appendix A). In OPL, an occurrence sentence

is added for a conditional Procedural Link, as demonstrated in Figure 52(b).

(a) Instrument link

Semantics: Process waits until Object

is at State.
Process requires state Object.

(b) Conditional Instrument link

Semantics: Process executes only if

Object is at State, otherwise it is skipped

and control moves to the next process.
Process occurs if Object is state.

Figure 52. An OPM model of an instrument link (a) and a conditional instrument link (b)

Like a Structural Link, a Procedural Link can be connected by “xor” relations to other

Procedural Links of the same type, as shown by the self tagged structural links labeled “is

xor-connected to” and “is or-connected to” in SD2.4.

11.4.5 Informal Event Link Definitions

An event is a significant happening in the system that takes place during a particular moment

and triggers some process in the system. An event is represented in OPM by an event link,

123

which is a procedural link that connects a source entity with a destination process. The

semantics of this type of links is that the source entity attempts to trigger the destination

process. The process does not start unless the event link is enabled, i.e., the event occurs and

all the process pre-conditions, represented by the incoming procedural links, are satisfied.

There are five types of event links in OPM: agent, state change, general event, invocation,

and timeout. These are defined and exemplified next.

Agent Link

An agent is an intelligent object, a human or an organization consisting of humans, that

controls a process by supplying input. An agent link is an event link which connects an agent

with the process it triggers. For example, the process Ordering in Figure 53 starts only when

its agent, the physical and environmental (external) User, enables its occurrence. The OPD

symbol of an agent link is from the agent to the triggered process. In the OPL

paragraph, this link is represented by the reserve word “handles”.

User is environmental and physical.

User handles Ordering.

Ordering affects Order.

Figure 53. An OPM model of an agent link

State Change Event Link

An object state can cause two different types of events: a state entrance event and a state exit

event. A state entrance event occurs when the object enters the particular state, while a state

exit event occurs when the object exits that state. A state change event is a generalization of a

state entrance event and a state exit event. A state change event link connects an object state

with the process it triggers when entering or exiting the state. After the destination process

occurs, the source entity of a state change event can either remain unchanged or be consumed

or affected. A state entrance event link in which the source entity remain unchanged is

symbolized by an enabling state entrance event link, e . The symbol e , on the other

124

hand, is a consumption state entrance event link, which denotes the fact that the event source

entity is consumed or affected. Similarly, a state exit event link can be an enabling link,

symbolized by e , or a consumption link, symbolized by e . If at some level of the

OPM model there is no specification if the state change event link represents state entrance or

state exit event, it will be simply symbolized by e or e from the state to the

triggered process.

In OPL, a triggering sentence is added to the OPL sentence representing the procedural

link. Figure 54 specifies an OPM model of a Supplying process, which is triggered when the

Order object enters its paid state. Two OPL sentences describe this link: a triggering sentence,

which expresses the event aspect of the link, and a change sentence, which represents the

procedural nature of this link.

Order can be paid or supplied.

Order triggers Supplying when it enters paid.

Supplying changes Order from paid to supplied.

Figure 54. An OPM model of a state entrance event link

For a state exit event link, the second sentence in Figure 54 would be “Order triggers

Supplying when it exits paid,” while for a state change event link that sentence would be

“Order triggers Supplying when it is paid.”

General Event Link

A general event can be an external stimulus, a change in an object state or value, etc. The

source of a general event link is a thing (object or process). Figure 55, for example,

specifying that Reporting is triggered any time Order changes its state. This single link could

be replaced by two state entrance event links from each one of the states of Order, but the

notation in Figure 55 is graphically more compact and conceptually more intuitive. Order

itself, which triggers the Reporting process, does not change during Reporting, as denoted by

125

the circle in the symbol e . A general event link can also be of type consumption,

symbolized by e , or effect, symbolized by e , denoting respectively that the

source thing (object or process) is consumed or affected by the triggered process.

If the source entity of this link is an object with states, then the corresponding OPL

sentence is “Order triggers Reporting when its state changes.” Otherwise, the OPL sentence is

simply “Order triggers Reporting.”

Order can be paid or supplied.

Order triggers Reporting when it state

changes.

Reporting requires Order.

Reporting yields Log Record.

Figure 55. An OPM model of a general event link

Invocation Link

An invocation link is an event link between an invoking process and an invoked one. As

noted, the vertical axis in an OPD denotes the time line within an in-zoomed process. The

invocation link enables overriding this timeline default which is needed for example in cases

such as loops or when the involved processes do not appear in the same context. An

invocation link can trigger the invoked process when the invoking process starts, represented

by , when it ends, denoted by , when it starts or ends, represented by , or

at any time during its execution, represented by . Figure 56 specifies that Reporting,

which uses Order as an instrument to create a Log Record, is triggered any time Supplying

terminates.

126

Order can be paid or supplied.

Order triggers Supplying when it enters paid.

Supplying changes Order from paid to

supplied.

Supplying triggers Reporting when it ends.

Reporting requires Order.

Reporting yields Log Record.

Figure 56. An OPM model of an invocation link

Timeout Event Link

A timeout event link connects a timed element, which can be a process, a state, or an event

link, with a process which is triggered when the element violates its time constraints. When

the element violates its minimal time constraint, the minimal timeout event link, denoted by

, is followed. When the element violates its maximal time constraint, the maximal

timeout event link, denoted by , is followed. The symbol represents a timeout

event link which is followed whenever the minimal or maximal time constraints are violated,

while represents an unspecified timeout violation event. In all cases, the box head of

the link points towards the triggered process.

Order can be paid or supplied.

Order triggers Supplying when it enters paid.

Supplying lasts between 0 to 5 minutes.

Supplying changes Order from paid to

supplied.

Supplying triggers Error Handling when it

lasts more than 5 minutes.

Error Handling requires Order.

Error Handling yields Report.

Figure 57. An OPM model of a timeout event link

127

The Supplying process in Figure 57, for example, is specified to last between 0 to 5

minutes. If it lasts more than 5 minutes, it triggers the Error Handling process, reporting the

existing error.

The minimal and maximal time constraints of an event link define the minimal and

maximal reaction timeout constraints: if the triggered process does not start within the

interval [minimal time constraint, maximal time constraint] after a stimulus occurred, a

timeout event occurs. In Figure 58, for example, Reporting should be triggered within 2

seconds to 5 minutes after a change in the Order state. If Reporting is not triggered within 5

minutes from the Order state change, Error Handling is triggered, creating a Report (using the

Order information).

Order triggers Reporting when its state

changes, with a reaction time of 2 seconds to 5

minutes. This link triggers Error Handling when

its reaction time lasts more than 5 minutes.

Reporting requires Order.

Reporting yields Log Record.

Error Handling requires Order.

Error Handling yields Report.

Figure 58. An OPM model of a reaction timeout event

11.4.6 Event Link Metamodel

As noted, an Event Link, which is unfolded in SD2.6 (Figure 59), is a Timed Element, and as

such, it inherits Minimal Time Constraint, Maximal Time Constraint, and Duration Distribution

Function as its attributes. The Duration Distribution Function of an Event can be used for

system simulation to define the distribution of the time that passes from the event occurrence

to the start of the corresponding triggered process.

128

Event Link is a Timed Element.
Timeout Event Link is an Event Link.
Timeout Event Link can be minimum, maximum, minimum or maximum, or unspecified.
Source End of Timeout Event Link is linked to a Timed Element.
Timeout Event Link is xor-connected to optional Timeout Event Links.
Timeout Event Link is or-connected to optional Timeout Event Links.
Invocation Link is an Event Link.
Invocation Link can be process started, process ended, process started or ended, or unspecified.
Source End of Invocation Link is linked to a Process.
Invocation Link is xor-connected to optional Invocation Links.
Invocation Link is or-connected to optional Invocation Links.
General Event Link is an Event Link.
Source End of General Event Link is linked to a Thing.
General Event Link is xor-connected to optional General Event Links.
General Event Link is or-connected to optional General Event Links.
State Change Event Link is an Event Link.
State Change Event Link can be entered, exited, entered or exited, or unspecified.
Source End of State Change Event Link is linked to a State.
State Change Event Link is xor-connected to optional State Event Links.
State Change Event Link is or-connected to optional State Event Links.
Agent Link is an Event Link.
Source End of Agent Link is linked to an Object.
Agent Link is xor-connected to optional Agent Links.
Agent Link is or-connected to optional Agent Links.

Figure 59. SD2.6, in which Event Link of OPM Ontology is unfolded

SD2.5.1 also specifies the five types of Event Links:

1. Agent Link.

2. State Change Event Link, which can be entered State Change Event Link, exited State

Change Event Link, entered or exited State Change Event Link, or unspecified State

Change Event Link;

SD2.6

is or-connected to

*

is xor-connected to

*

is or-connected to

*

is xor-connected to

*

is or-connected to

*

is xor-connected to

*

is or-connected to

*

is xor-connected to

*

is or-connected to

*

is xor-connected to

*

129

3. General Event Link;

4. Invocation Link, which can be process started Invocation Link, process ended Invocation

Link, process started or ended Invocation Link, or unspecified Invocation Link; and

5. Timeout Event Link, which can be minimum Timeout Event Link, maximum Timeout

Event Link, minimum or maximum Timeout Event Link, or unspecified Timeout Event

Link.

An Event Link can be any Procedural Link, except for the Result Link, since the Entity of a

Result Link is created during the Process and, hence, it cannot be the source that triggers the

process. An Event Link does not represent a Condition either, but an attempt to trigger a

process which succeeds if and only if the conditions, represented by the links that are coming

into the process, hold. These constraints are also defined in OCL by constraint (2) in

Appendix E.

130

12. Metamodel of OPM Behavior

12.1 Complexity Management

Complexity management aims at balancing the tradeoff between two conflicting

requirements: completeness and clarity. Completeness requires that the system details be

stipulated to the fullest extent possible, while the need for clarity imposes an upper limit on

the level of complexity and does not allow for an OPD that is too cluttered or overloaded

with entities and links among them. The seamless, recursive, and selective OPM scaling, i.e.,

refinement-abstraction, enables presenting the system at various detail levels without losing

the “big picture” and the comprehension of the system as a whole.

12.1.1 Informal Refinement and Abstraction Mechanism Definitions

OPM features three built-in refinement-abstraction mechanisms, which are in-zooming and

out-zooming, unfolding and folding, and state-expressing and state-suppressing.

In-Zooming and Out-Zooming

In-zooming and out-zooming are a pair of refinement and abstraction mechanisms,

respectively, which can be applied to all the three entity types: objects, processes, and states.

In-Zooming, i.e., zooming into an entity, decreases the distance of viewing it, such that lower-

level elements enclosed within the entity become visible. Conversely, out-zooming, i.e.,

zooming out of a refined entity increases the distance of viewing it, such that all the lower-

level elements that are enclosed within it become invisible.

Table 11 demonstrates zooming into a process, a state, and an object in both OPD and

OPL. In Table 11(a), the Ordering process of Table 11(b) is in-zoomed to expose its two sub-

processes: Supplying and Paying. This in-zoomed view also specifies that the Order state is

changed during the first phase of Ordering, called Supplying, while Receipt is created during

the second phase of Ordering, which is Paying. In Table 11(c), the state paid of Order in Table

131

11(d) is in-zoomed to expose its two sub-states: advance paid and completely paid. Finally,

the in-zoomed OPD in Table 11(e) exposes the resource and computational components of

the physical Computer object shown in Table 11(f). These components include the objects

Order, Product Catalog, and Receipt, and the process Ordering.

An OPL paragraph that is equivalent to an in-zoomed OPD starts with an in-zooming

sentence, as demonstrated at the bottom of Table 11. These sentences are for the cases when

the in-zooming operation creates a new diagram. If the in-zooming operation is carried out in

the same diagram, the diagram names do not appear in the OPL sentences. For example,

“Ordering zooms into Supplying and Paying.”

Table 11. Examples of the three entity types in their in-zoomed and out-zoomed versions.

(a) The process Ordering in-zoomed (b) Ordering out-zoomed (c) The state paid in-zoomed

(d) paid out-zoomed (e) The object Computer in-zoomed (f) Computer out-zoomed.

Process State Object

In-Zoom
ing

(a) SD1 - Ordering in-zoomed (c) SD1 - paid in-zoomed (e) SD1 - Computer in-zoomed

O
ut-Zoom

ing

(b) SD (d) SD (f) SD

O
PL

Ordering from SD zooms in SD1 into

Supplying and Paying.

Paid from SD zooms in SD1 into

advance paid and completely paid.
Advance paid is initial.

Computer from SD zooms in

SD1 into Order, Receipt, and

Product Catalog, as well as

Ordering.

Computer

Comput

132

Unfolding and Folding

Unfolding and folding are a pair of refinement and abstraction mechanisms, respectively,

which can be applied to things – objects or processes. Unfolding reveals a set of lower-level

entities that are hierarchically below a relatively higher-level thing. The hierarchy is with

respect to one or more structural links. The result of unfolding is a graph the root of which is

the thing being unfolded. Linked to the root are the things that are exposed as a result of the

unfolding. Conversely, folding is applied to the tree from which the set of unfolded entities is

removed, leaving just the root.

Table 12. Examples of the two thing types in their unfolded and folded versions. (a) The

object Order unfolded. (b) Order folded. (c) The process Ordering unfolded.

(d) Ordering folded.

Object Process

U
nfolding

(a) SD1 – Order unfolded (c) SD1 – Ordering unfolded

Foldin

(b) SD (d) SD

O
PL

Order from SD unfolds in SD1 to consist of

optional Order Line, to exhibit Date and

Number, and to be owned by Customer.

Ordering from SD unfolds in SD1 to consist of Paying
and Supplying and to exhibit Last Order Number.

The object Order of Table 12(b) is unfolded in Table 12(a) three times. The first is

aggregation unfolding, which exposes the parts of Order, one or more Order Lines. The

second unfolding is exhibition unfolding, which exposes the features (attributes only in this

case) of Order, Date and Number. The third unfolding of Order is tagged unfolding, which

Order Ordering

133

lists the things of Order connected to it via a tagged structural link, Customer. Order Line, in

turn, is unfolded to show its Product and Quantity attributes.

Processes can be unfolded just like objects. In Table 12(c), for example, the process

Ordering from Table 12(d) is unfolded to expose its parts, Paying and Supplying, and its

feature (in this case an attribute which is an internal variable), Last Order Number.

Table 12 also specifies the OPL unfolding sentences for the cases where the unfolding

operation creates a new diagram.

State Expressing and State Suppressing

State expressing is a refinement mechanism applied to objects which reveals a set of states

inside an object. State Suppressing is the abstraction mechanism which conceals a set of

states inside an object. Table 13(a) expresses the three states of Order: ordered, paid, and

supplied, while Table 13(b) suppresses them. The equivalent OPL sentence is “Order can be

ordered, paid, and supplied.”

Table 13. Examples of state expressing and state suppressing. (a) The object Order is state

expressed. (b) Order is state suppressed.

State Expressing State Suppressing OPL

Order can be ordered , paid, or

supplied.

Ordered is initial.
Paid is initial.

12.1.2 Refinement and Abstraction Mechanism Metamodel

In SD3 (Figure 60) System from SD is tag unfolded to expose the fact that it is specified by

one or more OPM Components. Each OPM Component is a stand-alone model of a system that

can be reused as a subsystem in another, more complex system. An OPM Component is

graphically represented by an OPD-set or, equivalently, by an OPL Script. When a system is

composed of more than one OPM Component, each component is denoted as being distinct

(a) (b)

Order

134

both graphically and textually. Graphically, each component is enclosed within the

component symbol, (which is the same as the UML package symbol). In the textual

counterpart, the prefix “The component” or “the component” precedes the Component Name.

For example, if a Web portal system includes an Auction component, the OPL sentence will

read “Web Portal consists of the component Auction.” Like any complex object, a component

can be in-zoomed, and this is expressed in a component in-zooming sentence, such as, “The

component Auction of SD zooms in SD1 into Bidder, Start Price, and Caller, as well as Bidding

and Winning.”

Each OPM Component is composed of at least one View, which is an OPD (the graphic

expression) or an OPL Paragraph (the textual expression), respectively. An OPD is

characterized by an OPD ID (e.g., SD, SD1.3, etc.), while an OPL Paragraph has a

corresponding Paragraph ID, which is the OPD ID to which the letter P (for Paragraph) is

appended (e.g., SDP, SD1.3P, etc.).

A View in an OPM Component consists of Element Instances, each of which is an

appearance of an Element. An Element Instance can be visible or invisible, which determines

whether the Element Instance appears (is visible) in the OPD along with the equivalent OPL

Sentences in which it participates. Like the Element hierarchy, an Element Instance

specializes into an Entity Instance, which in turn specializes into Thing Instance that further

specializes into Object Instance. An Entity Instance, a Thing Instance, and an Object Instance

are appearances of an Entity, a Thing, and an Object, respectively.

An Entity Instance exhibits Scaling, which is an operation that changes the level of detail

at which the system, or parts of it, is specified. Scaling, which is unfolded in SD3.1 (Figure

61), has three attributes: Purpose, Mode, and Diagram. Purpose, which can be elaboration or

simplification, indicates whether the specification is refined or abstracted, respectively.

Refining is elaboration Scaling, i.e., Scaling the Purpose of which is elaboration. Refining

135

means exposing more details of the system by showing more entities and how they

interconnect. Abstracting, the inverse of Refining, which means hiding details, is

simplification Scaling, i.e., Scaling the Purpose of which is simplification.

OPD-set consists of at least one OPD.
OPD is a View.
OPD exhibits OPD ID.

OPL Script consists of at least one OPL Paragraph.
OPL Paragraph is a View.
OPL Paragraph exhibits Paragraph ID.
OPL Paragraph and OPD are equivalent.

OPD-Set and OPL Paragraph are equivalent.
System is specified by at least one OPM Component.
OPM Component exhibits Component Name.
OPM Component consists of at least one View.

View consists of at least one Element Instance.
Element Instance can be visible or invisible.
Element Instance is an appearance of an Element.
Entity Instance is an Element Instance.
Entity Instance exhibits Scaling.
Entity Instance is an appearance of an Entity.
Entity Instance zooms into optional Element Instances.
Thing Instance is an Entity Instance.
Thing Instance is an appearance of a Thing.
Thing Instance unfolds into optional Element Instances.
Object Instance is an Thing Instance.
Object Instance is an appearance of an Object.

OPM Component is graphically represented by an OPD-set.
OPM Component is textually represented by an OPL Script.

Figure 60. SD3, in which System is unfolded

The Scaling Mode attribute, which can be visibility, hierarchy, or manifestation, expresses

the graphic way by which the Scaling is done. Visibility Mode Scaling means showing or

SD3

136

hiding the inner content of an Entity (Object, Process, or State). Hierarchy Mode Scaling

means showing or hiding the hierarchical tree structure of a Thing, which becomes the root of

that tree. Manifestation Mode Scaling expresses (shows) or suppresses (hides) the State

contents of an Object.

Scaling exhibits Purpose, Mode, and Diagram.
Purpose can be elaboration or simplification.
Model can be visibility, hierarchy, or manifestation.
Diagram can be new, which is the default, or same

Refining is Scaling, the Purpose of which is elaboration.
Abstracting is Scaling, the Purpose of which is simplification.
Abstracting and Refining are inverse operations.
Entity Instance exhibits In-Zooming and Out-Zooming.

In-Zooming is Refining, the Mode of which is visibility.
Out-Zooming is Abstracting, the Mode of which is visibility.
In-Zooming and Out-Zooming are inverse operations.

Thing Instance is an Entity Instance.
Thing Instance exhibits Unfolding and Folding.

Unfolding is Refining, the Mode of which is hierarchy.
Folding is Abstracting, the Mode of which is hierarchy.
Unfolding and Folding are inverse operations.

Object Instance is a Thing Instance.
Object Instance exhibits State Expressing and State Suppressing.

State Expressing is Refining, the Mode of which is manifestation.
State Suppressing is Abstracting, the Mode of which is manifestation.
State Expressing and State Suppressing are inverse operations.

Figure 61. SD3.1, in which Scaling is unfolded

Refining whose Mode is visibility is called In-Zooming, while Abstracting whose Mode is

visibility is called Out-Zooming. Hierarchy Mode Scaling is called Unfolding when its Purpose

SD3.1

137

is elaboration and Folding when its Purpose is simplification. Similarly, Manifestation Mode

Scaling is called State Expressing when its Purpose is elaboration and State Suppressing

when its Purpose is simplification.

As noted, In-zooming and Out-zooming are operations of an Entity (Process, State, and

Object), while Unfolding and Folding are operations of a Thing (Object and Process). State

Expressing and State Suppressing can be applied only to Objects.

The third attribute of Scaling is Diagram. It relates to the target OPD in which the Scaling

(Refining or Abstracting) operation is done. The Diagram attribute has two values: new

(which is the default) and same. New Diagram Scaling generates a new OPD, in which the

entity of interest is scaled (refined or abstracted), while same Diagram Scaling uses the

exiting OPD to scale the entity of interest. A newly created diagram is automatically given a

name, which consists of an identifier and a description. The identifier of the top-level (level

zero) OPD is SD, for System Diagram. The identifier of any OPD generated by refining an

entity in SD is SDi, where i is 1,2, etc. The identifier of any OPD generated by refining an

entity in SDi is SDi.j, where j is 1,2, and so on.

SD3.2 (Figure 62) unfolds Entity Instance, showing its scaling mechanisms, In-Zooming

and Out-Zooming. As noted, In-Zooming is a refining mechanism which exposes the inner

details of an Entity Instance within its frame, while Out-Zooming is its inverse abstracting

mechanism. In-Zooming into an Entity makes the in-zoomed Element Instances inside the

Entity visible. Conversely, Out-Zooming of an Entity makes the visible (in-zoomed) Element

Instances inside the Entity invisible. This functionality is also defined by the OCL constraint

(3) in Appendix E. Moreover, this constraint and SD3.2 also specify that the in-zoomed

Element Instances of a State Instance can be only State Instances. In other words, only states

can be nested within a state.

138

Element Instance can be visible or invisible.
Entity Instance is an Element Instance.
Entity Instance exhibits In-Zooming and Out-Zooming.

In-Zooming changes Element Instance from invisible to visible.
Out-Zooming changes Element Instance from visible to invisible.
In-Zooming and Out-Zooming are inverses.

Entity Instance zooms into optional Element Instances.
State Instance is an Entity Instance.
State Instance is an appearance of a State.
State Instance zooms into optional State Instances.

Figure 62. SD3.2, in which Entity Instance is unfolded

Element Instance can be visible or invisible.
Thing Instance is an Element Instance.
Thing Instance exhibits Unfolding and Folding.

Unfolding changes Element Instance from invisible to visible.
Folding changes Visibility of Element Instance from visible to invisible.
Unfolding and Folding are inverses.

Thing Instance unfolds into optional Element Instances.
Figure 63. SD3.3, in which Thing Instance is unfolded

SD3.3 (Figure 63) unfolds Thing Instance which exhibits an additional scaling mechanism,

Unfolding and Folding. In Unfolding, structural relations are used for refining and detailing the

structural parts of a Thing, while Folding is the inverse abstracting mechanism of Unfolding.

SD3.2

SD3.3

zooms into

*

139

The functionality of the folding and unfolding mechanisms is textually stated by the OCL

constraint (4) in Appendix E.

SD3.4 (Figure 64) unfolds Object Instance, showing its State Instances. These State

Instances can be expressed or suppressed by the State Expressing and State Suppressing

operations of an Object Instance. State Expressing changes the State Instances of the current

object to visible (i.e., the object states are shown or expressed). Conversely, State

Suppressing changes the State Instances of the current object to invisibile (i.e., the object

state instances are hidden or suppressed). The OCL constraint (5) in Appendix E enforces the

change (from visible to invisible or vice versa) on all the State Instances of the current Object

Instance.

State Instance can be visible or invisible.
State Instance is an appearance of a State.
State Instance specifies the status of an Object Instance.
Object Instance exhibits State Expressing and State Suppressing.

State Expressing changes State Instance from invisible to visible.
State Suppressing changes State Instance from visible to invisible.
State Expressing and State Suppressing are inverses.

Object Instance is a appearance of an Object.
Object Instance owns optional State Instances.

Figure 64. SD3.4, in which Object Instance is unfolded

Sometimes, especially when the number of states is large, it is desirable to show only a

subset of the states in an object in a particular OPD, especially those that are input to or

output of processes shown in that OPD. To this end, OPM also allows selective State

SD3.4

140

Expressing and selective State Suppressing, in which only a selected subset of states is

expressed or suppressed, respectively.

12.1.3 Informal Consistency Rule Definitions

While abstracting (folding, out-zooming, or state-suppressing) an Entity, all the procedural

links connecting an Entity outside the abstracted Entity with an Entity inside the abstracted

Entity migrate to the circumference of the abstracted Entity, because all the internal entities

disappear. However, OPM mandates that two entities are not linked by more than one

procedural link. Hence, if more than one link type results in from abstracting, only one of

them must be selected as the representative of all the resulting links. To maintain consistence,

the selected link is the one that is most abstract of all the possible link candidates.

Table 14 determines the abstraction order of procedural links by defining for each pair of

"competing" procedural links a third procedural link (which may be one of the two) that has

to be selected while abstracting an Entity. In Figure 65(a), for example, Order is implicitly

connected to Ordering through Date with an enabling instrument link and through Quantity of

Order Line via an effect link. This implies that Ordering changes Quantity of an Order Line

and uses Date of Order without changing it. Since effect can be viewed as a combination of

use and change, an effect link is more abstract than an instrument link, as denoted in Table

14. Hence, when folding Order, Order and Ordering are linked by an effect link. In Figure

65(b), a result link connects Creating of Ordering to Order, an effect link links Order to

Updating of Ordering, and an instrument link connects Order to Printing of Ordering. Since

creation can be viewed as an effect in which the existence of the created thing is changed

from non-exist to exist and consumption can be viewed as an effect in which the existence of

the consumed thing is changed from exist to non-exist, an effect link is more abstract than

both result and consumption links.

141

Table 14. Abstraction order of procedural links

c c c

e

e

e

e

e

e

e

e

e e e

c c c c e e e e e e e

c c c e e e e e e e

c c e e e e e e e

e e e e e e e

e e e e e e e

e e e e e e e

e

e

e

e

e e e e e e e

e

e

e

e

e e e e e e

e
e e e e e

e
e e e e

e
e e e

142

Figure 65. Example for scaling consistency rules. (a) Folding of the object Order. (b) Out-

zooming of the process Ordering. (c) State suppressing of the object Order.

Hence, when Ordering is out-zoomed, Ordering and Order are linked via an effect link. In

Figure 65(c), Order is connected to Ordering through its ordered state with a consumption

(input) link and through its supplied state via a result (output) link. When state-suppressing

Order, Order and Ordering are linked by an effect link, since an effect link is the abstraction

of result and consumption links, which means that “Ordering changes Order from ordered to

supplied.”

12.1.4 Metamodel of the Abstraction Procedural Link Consistency Rule

The abstraction procedural link consistency rule is stated as follows:

While abstracting an entity E that is linked with more than one procedural link to another

entity E', the selected procedural link between E and E' is the most abstract link among the

links that had existed between E' and the refineables of E. If this link cannot connect the

relevant entities according to the metamodel constraints, no link will be shown at the more

abstract level.

Folding Out-Zooming State- Suppressing

(a) (c)(b)

143

Consistent is of type Boolean.
OPM Component exhibits Consistency Checking.

Consistency Checking requires optional Entity Instances, optional Procedural Link
Instances, Abstraction Order Table, and Ontology.
Consistency Checking yields Consistent.

OPM Component consists of at least one View.
View consists of at least one Element Entity.

Entity Instance is an Element Instance.
Entity Instance exhibits Abstracting.

Abstracting triggers Consistency Checking when it ends.
Entity Instance is refined into optional Element Instances.
Procedural Link Instance is an Element instance.
Procedural Link Instance is an appearance of a Procedural Link.
Figure 66. SD3.5, in which the consistency rule is specified

SD3.5 (Figure 66) defines the inputs and outputs required for the Consistency Checking

process, which is triggered whenever an Abstracting operation finishes executing.

Consistency Checking requires the Abstraction Order Table (defined in Table 14), OPM

Ontology, Entity Instances, and Procedural Link Instances. It defines whether the OPM

Component is Consistent or not. Consistency Checking functionality, defined by the OCL

constraints (6) and (7) in Appendix E, verifies that the Procedural Link Instance that directly

connects two Entity Instances is actually the possible most abstract link that can connect

between the two Entities according to the OPM Ontology and the Abstraction Order Table.

++

SD3.5

144

12.2 Metamodel of an OPM-based Development Process

As noted, a system development process is part of any methodology and, hence, should be

part of its metamodel. The system development model, presented in this section, follows

generic concepts of systems evolution and lifecycle, namely requirement specification,

analysis and design, implementation, usage and maintenance. As such, it is not specific to

OPM-based system development, neither to Web application development. The elaborate

backtracking options of this model, which are built-in at all levels, make it flexible enough to

represent a variety of information system development approaches, ranging form the classical

waterfall model through incremental development to prototyping.

12.2.1 Main Development Stages

Zooming into System Developing of SD (Figure 34), SD4 (Figure 67) shows the common

sequential stages of system developing processes: Requirement Specifying, Analyzing &

Designing, Implementing, and Using & Maintaining. All of these processes use the same OPM

Ontology, a fact that helps narrow the gaps between the different stages of the development

process. Figure 67 shows that the Client and the System Architect, who, along with the

Implementer, specialize User, handle the Requirement Specifying sub-process. Requirement

Specifying takes OPM Ontology as input and creates a new System, which, at this point,

consists only of a Requirement Document. The termination of Requirement Specifying starts

Analyzing & Designing, the next sub-process of System Developing.

145

User is environmental and physical.
Client, which is environmental and physical, is a User.
Client handles Requirement Specifying and Using & Maintaining.
System Architect, which is environmental and physical, is a User.

System Architect handles Requirement Specifying and Analyzing & Designing.
Implementer, which is environmental and physical, is a User.

Implementer handles Implementing and Using & Maintaining.
System consists of Requirement Document, Analysis & Design Document, and Implementation.

Requirement Document is a Deliverable.

Analysis & Design Document is a Deliverable.
Implementation is a Deliverable.

System Developing zooms into Requirement Specifying, Analyzing & Designing, Implementing, and Using

& Maintaining.
System Developing requires Ontology and optional Systems.

Requirement Specifying yields Requirement Document.

Requirement Specifying invokes System Developing.
Analyzing & Designing requires Notation and Requirement Document.

Analyzing & Designing yields Analysis & Design Document.
Analyzing & Designing invokes System Developing.
Implementing requires Requirement Document and Analysis & Design Document.

Implementing yields Implementation.
Implementing invokes System Developing.
Using & Maintaining requires Requirement Document and Analysis & Design Document.

Using & Maintaining affects Implementation.
Using & Maintaining invokes System Developing.

Figure 67. SD4, in which System Developing is in-zoomed

The agent of the Analyzing & Designing stage is the System Architect, who uses the

Requirement Document and OPM Notation to create a new part of the system, the Analysis &

*

SD4

146

Design Document. When the Analyzing & Designing process terminates, the Implementer

(programmer, DBA, etc.) starts the Implementing phase, which uses the Requirement

Document and the Analysis & Design Document in order to create the Implementation. Finally,

the Implementer changes the system Implementation during the Using & Maintaining stage,

while the Client uses the System.

Each System Developing sub-process can invoke restarting of the entire development

process, which potentially enables the introduction of changes to the requirements, analysis,

design, and implementation of the System. These invocations give rise to an iterative

development process, in which an attempt to carry out a sub-process reveals faults in the

deliverable of a previous sub-process, mandating a corrective action.

12.2.2 The Requirement Specifying stage

In SD4.1 (Figure 68), Requirement Specifying is in-zoomed, showing its four sub-processes.

First, the System Architect and the Client define the problem to be solved by the system (or

project). This Problem Defining step creates the Problem Definition part of the current system

Requirement Document. Next, through the Requirement Reusing sub-process, the System

Architect may reuse requirements that fit the problem at hand and are adapted from any

existing System (developed by the organization). Reuse helps achieve high quality systems

and reduce their development and debugging time. Hence, when developing large systems,

such as some Web applications or real-time systems, it is important to try first to reuse

existing artifacts adapted from previous generations, analogous systems, or commercial off-

the-shelf (COTS) products that fits the current system development project. Existing, well-

phrased requirements are often not trivial to obtain, so existing relevant requirements should

be treated as a potential resource no less than code. Indeed, as SD4.1 shows, reusable artifacts

include not only components (which traditionally have been the primary target for reuse), but

also requirements.

147

System consists of Requirement Document.

Requirement Document consists of Problem Definition and Requirements.
Client, which is environmental and physical, handles Problem Defining and Requirement Adding.
System Architect, which is environmental and physical, handles Problem Defining, Requirement Reusing,

and Requirement Adding.
Requirement Specifying zooms into Problem Defining, Requirement Reusing, Requirement Adding, and

Development Process Backtracking, as well as Is Backtracking Required?.

Is Backtracking Required? is of type Boolean.
Problem Defining yields Problem Definition.
Requirement Reusing requires optional Systems.

Requirement Reusing yields optional Requirements.
Requirement Adding requires Problem Definition and Ontology.

Requirement Adding yields Is Backtracking Required? and optional Requirements.
Development Process Backtracking occurs if Is Backtracking Required? is true.
Development Process Backtracking invokes System Developing.

Figure 68. SD4.1, in which Requirement Specifying is in-zoomed

After optional reuse of requirements from existing systems (or projects), the System

Architect and the Client, working as a team, add new Requirements or update existing ones.

This step uses OPM Ontology in order to make the Requirement Document amenable to be

processed by other potential OPM tools, and in particular to an OPL compiler. Since the

System Architect and the Client use OPM Ontology in defining the new requirements, the

resulting Requirement Document is indeed expressed, at least partially, in OPL in addition to

explanations in free natural English. Such structured OPM-oriented specification enables

*

*

*

SD4.1

148

automatic translation of the Requirement Document to an OPM analysis and design skeleton

(i.e., a skeleton of an OPD-set and its corresponding OPL script). Naturally, at this stage the

use of free natural language beside OPM seems mandatory to document motivation,

alternatives, considerations, etc.

Finally, the Requirement Adding process results in the Boolean object “Is Backtracking

Required?”, which determines whether System Developing should be restarted. If so,

Development Process Backtracking invokes the entire System Developing. Otherwise,

Requirement Specifying terminates, enabling the Analyzing & Designing process to begin.

12.2.3 The Analyzing and Designing stage

During the Analyzing & Designing stage, shown in SD4.2 (Figure 69), a skeleton of an OPL

Script is created from the Requirement Document for the current system. As noted, in order to

make this stage as effective and as automatic as possible, the Requirement Document should

be written using OPM, such that the resulting OPL script can be compiled. The System

Architect can then optionally reuse analysis and design artifacts from previous systems

(projects), creating a basis for the current system analysis and design. Finally, in an iterative

process of Analysis & Design Improving (which is in-zoomed in SD4.2.1, Figure 70), the

System Architect can engage in OPL Updating, OPD Updating, System Animating, General

Information Updating, or Analysis & Design Terminating.

Any change a user makes to one of the modalities representing the model triggers an

automatic response of the development environment software to reflect the change in the

complementary modality. Thus, as SD4.2.1 shows, OPD Updating (by the System Architect)

affects the OPD-set and immediately invokes OPL Generating, which changes OPL Script

according to the new OPD-set. Conversely, OPL Updating (also activated by the System

Architect) affects the OPL Script, which invokes OPD Generating, reflecting the OPL changes

in the OPD-set.

149

System Architect, which is environmental and physical, handles Analysis & Design Reusing and Analysis &

Design Improving.
System consists of Analysis & Design Document.

Analysis& Design Document consists of General Information, OPD-set, OPL Script, and Element
Dictionary.
OPD-set and OPL Script are equivalent.

Analyzing & Designing zooms into Analysis & Design Skeleton Generating, Analysis & Design Reusing,

Analysis & Design Improving, and Development Process Backtracking, as well as Is Backtracking

Required?.
Analyzing & Designing requires Ontology, Notation, and Requirement Document.

Is Backtracking Required? is of type Boolean.

Analysis & Design Skeleton Generating yields OPD-set and OPL Script.
Analysis & Design Reusing requires optional Systems.
Analysis & Design Reusing affects OPD-set and OPL Script.

Analysis & Design Improving affects Analysis & Design Document.
Analysis & Design Improving yields Is Backtracking Required?.
Development Process Backtracking occurs if Is Backtracking Required? is true.

Development Process Backtracking invokes System Developing.

Figure 69. SD4.2, in which Analyzing & Designing is in-zoomed

Since OPM enables modeling system dynamics and control structures, such as events,

conditions, branching, and loops, System Animating simulates an OPD-set, enabling System

Architects to dynamically examine the system at any stage of its development. Presenting live

animated demonstrations of system behavior reduces the number of design errors percolated

to the implementation phase. Both static and dynamic testing help in detecting discrepancies,

inconsistencies, and deviations from the intended goal of the system.

*

SD4.2

150

System Architect, which is environmental and physical, handles OPL Updating, OPD Updating, System
Animating, General Information Updating, and Analysis & Design Terminating.
Analysis & Design Document consists of General Information, OPD-set, and OPL Script.

OPD-set and OPL Script are equivalent.
Analysis & Design Document exhibits OPD Generating and OPL Generating.

OPD Generating requires OPL Script.
OPD Generating affects OPD-set.
OPL Generating requires OPD-set.
OPL Generating affects OPL Script.

Is Backtracking Required? is of type Boolean.
Analysis & Design Improving zooms into OPL Updating, OPD Updating, System Animating, General
Information Updating, and Analysis & Design Terminating.
Analysis & Design Improving requires Ontology, Notation, and Requirement Document.

OPL Updating affects OPL Script.
OPL Updating invokes OPD Generating and Analysis & Design Improving.
OPD Updating affects OPD-set.
OPD Updating invokes OPL Generating and Analysis & Design Improving.
System Animating affects OPD-set.
System Animating invokes Analysis & Design Improving.
General Information Updating affects General Information.
General Information Updating invokes Analysis & Design Improving.
Analysis & Design Terminating yields Is Backtracking Required?.

Figure 70. SD4.2.1, in which Analysis & Design Improving is in-zoomed

As part of the dynamic testing, the simulation enables designers to track each of the system

scenarios before writing a single line of code. Any detected mistake or omission is corrected

at the model level, saving costly time and effort required if the error were only treated at the

implementation level. Avoiding and eliminating design errors as early as possible in the

SD4.2.1

151

system development process and keeping the documentation up-to-date contribute also to

shortening the system's delivery time ("time-to-market").

Upon termination of the Analysis & Design Improving stage, if needed, the entire System

Developing process can restart or the Implementing stage begins.

12.2.4 The Implementing stage

The Implementing stage, in-zoomed in SD4.3 (Figure 71), begins by defining the

Implementation Profile, which includes the target Language (e.g., Java, C++, or SQL) and a

default Directory for the artifacts. Then, the Implementation Skeleton Generating process uses

the OPL Script of the current system and inner Generation Rules in order to create a skeleton

of the Implementation. A Generation Rule saves pairs of OPL sentence types (templates) and

their associated code templates in various target Languages. Chapter 14 details about the

automatic OPM implementation generator.

The initial skeleton of the Implementation, which includes both the structural and behavioral

aspects of the system, is then modified by the Implementer during the Implementation

Reusing and Implementation Improving steps. In the Testing & Debugging stage, the resulting

Implementation is checked against the Requirement Document in order to verify that it meets

the system requirements defined jointly by the Client and the System Architect. If any

discrepancy or error is detected, the System Developing process is restarted, else the system is

finally delivered, assimilated and used. These sub-processes are embedded in the Using &

Maintaining process at the bottom of SD4 (Figure 67). While Using & Maintaining takes place,

the Client collects new requirements that are eventually used when the next generation of the

system is initiated. A built-in mechanism for recording new requirements in OPM format

while using the system would greatly facilitate the evolution of the next system generation

[23].

152

Implementer, which is environmental and physical, handles Parameter Determining, Implementation

Reusing, Implementation Improving, and Testing & Debugging.
System consists of Requirement Document and Analysis & Design Document.

Analysis & Design Document consists of OPL Script.
Implementing requires Ontology.
Implementing zooms into Parameter Determining, Implementation Skeleton Generating, Implementation

Reusing, Implementation Improving, Testing & Debugging, and Development Process Backtracking, as

well as Implementation Profile, Generation Rule, and Is Backtracking Required?.

Implementation Profile exhibits Language and Directory.
Is Backtracking Required? Is of type Boolean.
Parameter Determining yields Implementation Profile.

Implementation Skeleton Generating requires OPL Script, Generation Rules, and Implementation
Profile.
Implementation Skeleton Generating yields Implementation.

Implementation Reusing requires optional Systems.
Implementation Reusing affects Implementation.
Implementation Improving affects Implementation.

Testing & Debugging requires Requirement Document.
Testing & Debugging affects Implementation.

Testing & Debugging yields Is Backtracking Required?.
Development Process Backtracking occurs if Is Backtracking Required? is true.
Development Process Backtracking invokes System Developing.

Figure 71. SD4.3, in which Implementing is in-zoomed

*

+

SD4.3

153

Part 5. Summary and Implementation Issues

13. Summary and Contribution

Existing hypermedia authoring techniques and system development methods are not up to the

task of complete and accurate modeling of all the complex structural and dynamic aspects of

Web applications. Moreover, the aspects that are supported by these techniques are usually

spread across various views, which make the comprehension and integrity of the system as a

whole difficult. To meet the challenges posed by the Web, OPM/Web augments OPM to

enable specification of Web applications in a single, coherent view without adding to OPM

vocabulary new concepts, but rather enabling additional ways of using the existing elements.

This increases the expressiveness of OPM, such that OPM models remain valid also in

OPM/Web.

OPM/Web improves the accuracy and expressiveness of existing Web application

modeling languages and methods in the following ways.

• OPM/Web combines the physical, static, behavioral, and functional views of a

system within a single framework, enabling coherent, clear, and precise modeling

of code mobility concepts, design paradigms, and dynamic architectures. Mental

integration of the structure and behavior of Web applications in order to

comprehend them in their entirety can be achieved with current methods only with

great difficulty due to the multiplicity of views that need to be consulted. The

segregation of a UML model, for example, into multiple views, which span across

different diagram types, was found as a source of difficulty in capturing and

understanding the system as a whole [78]. Indeed, comparing the complexity metric

values of UML with other object-oriented techniques, Siao and Cao [91] found that

each diagram in UML is not distinctly more complex than techniques in other

object-oriented methods, but as a whole, UML is 2-11 times more complex than

154

other object-oriented methods. Moreover, the single view of OPM/Web enables

specifying mutual effects between the various aspects of Web applications that

cannot be done in the standard UML. For example, an elementary operation of

transferring a computational component from one physical location to another and

executing it there, which can be modeled by OPM/Web in a straightforward

manner, is difficult to model with UML.

• OPM/Web applies a variety of scaling mechanisms for seamlessly and flexibly

changing the level of detail of the system being designed. Complexity is inherent in

real-life systems, so a set of tools for controlling and managing this complexity

should be an integral part of a system development methodology. Complexity

management entails a tradeoff between two conflicting requirements: completeness

and clarity. OPM introduces three refinement-abstraction mechanisms, which are

extended and formalized in this work.

• OPM/Web enables modeling stand-alone processes, which are at the heart of Web

applications and are best expressed without the need to break them apart and

distribute the parts as operations (or methods) of the governing objects, as the

object-oriented paradigm and its UML design standard require. Modeling the

system behavior in UML is spread across up to five different views: use case

diagrams, in which the system functionality is defined; class diagrams, in which the

operations are specified as being owned by objects; interaction diagrams, in which

the messages that pass among the different objects is specified; Statecharts, which

represent the change in object states over time; and activity diagrams, which specify

the performance and flow of the system actions or sub-activities. Each of these

diagrams has its own set of symbols, syntax, and semantics, and the human modeler

must mentally traverse back and forth among these views. In spite of this model

155

multiplicity, none of the models capture the whole functionality of a process as a

pattern along with its effects on different objects it involves. Indeed, as the

experiment presented in this work has shown, OPM/Web is better than UML in

capturing and understanding the behavior of Web applications.

• OPM/Web provides for a technology-independent method (known in the MDA

nomenclature as Platform Independent Model, or PIM), in which process triggers,

pre-conditions, and post-conditions are specified generically. Once the application

is modeled, a solid and detailed skeleton of the technology-dependent

implementation (known in MDA as Platform Specific Model, or PSM) can be

automatically generated and simulated. This skeleton includes not only the structure

of the application, but also its behavior, enabling design verification and leaving to

the implementer only the coding at the bottom level. In contrast, UML requires that

a set of stereotypes (denoted by different graphical symbols), tagged values, and

constraints be defined for each domain of discourse. Such extension mechanisms

undermine UML standardization efforts, since each researcher or company working

in a particular domain can develop a different set of extensions. Lack of a universal

set of such extension entities inhibits the efforts to develop reusable components.

As noted, OPM/Web makes it a point not to enlarge the OPM vocabulary, but rather

to enable new modes of using and combining existing elements. Indeed, a

significant number of OPM/Web extensions have been incorporated into the core

OPM, enabling system architects to use a single, relatively simple development

methodology that is suitable for modeling systems in a variety of domains.

• OPM/Web advocates maintaining reusable components at a high level of

abstraction and refining them in specific contexts. The OPM combination of object-

and process-oriented paradigms enables modeling partially specified structures and

156

behaviors and adapting them to specific target components in a clean and clear way.

The ability to weave objects and processes in the same OPM/Web model

significantly improves upon existing Component-Based Development (CBD)

approaches and methods, which primarily refer to black box reuse of structures.

• OPM/Web has an elaborate underlying ontology and a bi-modal notation, which are

expressed in a reflective way using Object-Process Diagrams (OPDs) and

corresponding Object-Process Language (OPL) paragraphs. Although object-

oriented methods have reached the conclusion that a system model should also

describe its behavioral aspects (e.g., UML interaction diagrams), for the most part,

metamodels of these methods depict their structural parts. Being an object-process

approach, OPM enables reflective metamodeling of a complete methodology,

including its ontology, language (notation), and development process. The

reflective OPM/Web metamodel provides a definition of OPM/Web elements,

relations, and consistency constraints. The bimodal, dual representation of OPM

increases the processing capability of humans according to the cognitive theory [60]

and engages the power of "both sides of the brain" – the visual interpreter and the

lingual one.

Table 15 maps OPM/Web features to the requirements that a complete Web

application modeling method must satisfy. These requirements were discussed and listed

in the introduction.

157

Table 15. Mapping of OPM/Web concepts to the requirements of a Web application

modeling method

Requirement OPM/Web Concepts
Complex dynamic and
distributed architecture

• Physical and informatical things
• In-zooming mechanism
• Link characterization

Catering to an unlimited
number of heterogeneously
skilled users

• Refinement-abstraction scaling mechanisms
• Agent link characterization
• Component reuse

Security and privacy
support

• Link characterization by pre-defined processes
• Authorization by agent links

Up-to-date, heterogeneous
information sources

• Customized multiplicity of features and parts
• Partially specified structures and behaviors

Dynamic behavior
modeling

• Link characterization
• Identical path name
• Migration processes of complete code (process

classes) and executable code (process instances)

The evaluation of OPM/Web in comparison to a Web application extension of UML

[18], presented in this work, has shown that OPM/Web is easier to understand and apply for

untrained users. The comparison included comprehension and modeling (constructing)

questions on two representative Web applications. Two major factors contributed to the better

results obtained by OPM users in the comprehension questions concerning the system

dynamics and distribution. One is the single OPM diagram type, which supports the various

structural and dynamic aspects throughout the system lifecycle. The other is the ability of

OPM to model stand-alone processes, which specify the system’s behavior in its entirety.

Another experiment which was conducted on 20 advanced students who studied UML and

OPM for a year showed similar results. In that experiment, the students had rehearsal tutorials

about the core UML and OPM. None of them had studied the extensions of the two modeling

languages to the Web application domain. The experiment includes two models and nine

comprehension questions. The two models were a webSales system, which handles sales

158

through the internet, in Conallen’s UML and the GLAP system (see chapter 5.5.1) in

OPM/Web. The comprehension questions which refer to system dynamics and distribution

were better answered using OPM/Web models. The students noted that the single view and

the technology-independent model in OPM/Web helped them understand the system purpose,

functionality, and architecture.

14. Implementation Issues

Formal visual analysis and design methods have been evolving at a high pace in part due to

their claim to be implementation-independent. Developers using these methods communicate

with each other on the basis of a common ontology rather than on a specific programming

language or technology. Moreover, complex systems often involve various kinds of

programming languages. For example, objects in a Web application can be implemented as

HTML documents, while processes of the same application can be written in Java. Formal

development methods help system architects design systems conceptually and then generate

different portions of their models in the most appropriate programming languages.

The translation of a system design to an implementation is increasingly done by automatic

code generators. The benefits of using such tools include higher productivity and quality of

the developed systems; enabling mechanical and repetitive operations to be done quickly,

reliably and uniformly; relieving designers from mundane tasks so they can focus on essence;

and enforcing the generation of legible code by human programmers. This tendency to

automate code generation is in line with the widespread observation that the most complex

task in the implementation phase is generating the design and implementation model at the

semantic level and not in the detailed code writing.

Existing code generators define rules for translating visual constructs to corresponding

code blocks in the target programming languages. These rules are strict and reflect the insight

and the style of the code generator implementers. Changing the translation rules or the visual

159

constructs usually requires rewriting the code generator. The eXtendible Markup Language

(XML) [71], which has become popular as the prime language for the Internet, provides a

universal means for communicating between methods in general and for translating models

among various programming languages in particular. OPM’s code generator uses XML as an

infrastructure for translating OPL sentences to various programming languages.

Figure 72 describes the architecture and functionality of the generic OPM code generator

in which the transformation rules are external to the code generator and hence can be

modified and adapted to different writing styles and implementation frameworks.

Figure 72. The architecture and functionality of the generic OPM code generator

OPCAT TIP (Templates for Implementation Generation) Handling is a component with

which Super Users can communicate to insert and update conversion rules into the Templates

& Translations DB. Figure 73 is a snapshot of the OPL tab of the main OPCAT TIP screen. In

160

this tab the OPL templates are handled. For example, the exhibition sentence, shown in this

figure, has three constituents: ObjectName, which is mandatory, ExhibitedObject, which is a

template that can appear 0 or more times, and Operation, which is a string that can appear 0

or more times. The XML schema which is automatically generated for this template and

appears in the XML tab is:

<xs:element name="ObjectExhibitionSentence">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "ObjectName" type="xs:string"/>
 <xs:element ref="ExhibitedObject" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name = "Operation" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

Figure 73. OPCAT TIP screen snapshot – the OPL tab

161

An example of an OPL sentence of this type is “A exhibits B and C, as well as Ping.” The

XML presentation of this sentence is:

<ObjectExhibitionSentence>

<ObjectName> A </ObjectName>

<ExhibitedObject10> <ObjectName> B </ObjectName> </ExhibitedObject>

<ExhibitedObject> <ObjectName> C </ObjectName> </ExhibitedObject>

<Operation> Ping </Operation>

</ObjectExhibitionSentence>

Figure 74 is a snapshot of the translations part of the OPCAT TIP screen. In this tab the

subject template is translated into various programming languages, for example, HTML and

Java, using pre-defined functions, listed in Table 16. Figure 75 presents the “operation

details” screen, in which the functions (with the given parameters) are called when some

conditions are satisfied.

Figure 74. OPCAT TIP screen snapshot – the Translations tab

10 ExhibitedObject is a template which contains a multiplicity constraint and ObjectName. The multiplicity is 1

by default and, hence, this sub-element does not appear here.

162

Figure 75. OPCAT TIP screen snapshot – operation details

OPCAT TIP generates a Templates and Translations XML File, which includes an XML

schema for each OPL template (see Appendix B) and its translations (conditions + actions) to

the various supported programming languages.

OPL-XML Generating in Figure 72 uses OPCAT DB in order to generate a System OPL-XML

Script. This script is the basis for OPL paragraphs of OPM specifications on one hand and an

input for the Implementation Generating process on the other hand. Implementation

Generating gets the Templates and Translations XML File from OPCAT TIP Handling and the

System OPL-XML Script from OPL-XML Generating. It yields the system Implementation,

which is composed of DB Schema, Code, and User Interface. Implementation Generating finds

matches between the XML file representing a specific system and the XML schema in the

Templates and Translations XML File. When such a match is found, the implementation

generator acts according to the translation rules. After creating the implementation files,

another pass is required to transform these files, which are in XML format, to regular

implementation files in the target languages. This is done by changing the tags to comments

or omitting them.

163

Table 16. Supported functions in OPCAT TIP translations

Type Function Signature Function Description

none() Always true

templateContains (template t) The current OPL template contains t as its sub-
element

translationContains (path p, file f, tagName tn,
attributeName an, attributeValue av)

The translation file f at path p contains <tn
an=”av”…>

equals (element e, value v) The value of the sub-element or sub-attribute e
of the current OPL template equals to v

C
ondition Functions

Complex condition A combination of several atomic conditions
using and, or, and not connectors

createDirectory (path p) Creates a directory in path p

createFile (path p, file f, translation t) Creates a file named f at path p with the initial
content of t

translate4all (path p, file f, template t) Translates all the sub-elements of type t of the
current OPL template into file f at location p

replaceContent (path p, file f, tagName tn,
attributeName an, attributeValue av,
translation t)

Replaces the content of <tn an=”av”…> in file f
at path p with the content of t

A
ction Functions insertAtLocation (path p, file f, location l,

tagName tn, attributeName an, attributeValue
av, translation t)

Inserts the content of t at the location l in
respect to <tn an=”av”…> in file f at path p. l
can be one of BEFORE_STARTING_TAG,
BEFORE_ENDING_TAG,
AFTER_STARTING_TAG,
AFTER_ENDING_TAG.

This generic and flexible implementation generator supplies a complete environment for

generating Web application models to various target languages, including HTML, Java, PHP,

and WSDL [98].

164

Appendix A. OPM/Web Concepts and Symbols

Table 17. Entities – Things and States

Entity Type Entity Symbol

Systemic, informatical object

Environmental, informatical object

Systemic, physical object
Object

Environmental, physical object

Systemic, informatical process

Environmental, informatical process

Systemic, physical process
Process

Environmental, physical process

Regular state

Initial state

Final state
State

Default state

Package

Table 18. Structural Relations, their OPD symbols, and OPL sentences

Structural Relation Name OPD Symbol OPL Sentence

Aggregation-Participation A consists of B.

Exhibition-Characterization
A exhibits B.

Generalization-Specialization B is an A.

Classification-Instantiation B is an instance of A.

Tagged Structural Link
A relates to B.

A and B are equivalent.

XOR relation E.g., A relates to either B or C.

OR relation E.g., A relates to B or C.

165

Table 19. Procedural Links, their OPD symbols, and OPL sentences

Type Link Name Semantics OPD Symbol OPL Sentence

Enabling

Links Instrument

The process requires the

entity, but does not

change it during

execution.

P requires A.

Consumption
The process consumes

the entity.
P consumes A.

Result
The process generates

(creates) the entity.
P yields A.

Transform
ing

Links

Effect
The process changes

(affects) the thing.
P affects A.

Instrument

The process occurs if

the entity exists (in

some state). The process

requires the entity.

P occurs if A exists.

P requires A.

Consumption

The process occurs if

the entity exists (in

some state). The process

consumes the entity.

P occurs if A exists.

P consumes A.
C

onditional

Links

Effect

The process occurs if

the thing exists. The

process changes

(affects) the thing.

P occurs if A exists.

P affects A.

XOR relation
E.g., P affects either A
or B.

Logical R
elations OR relation E.g., P affects A or B.

c

c

c

166

Table 20. Event links, their semantics and symbols

Event Type Semantics OPD Symbol OPL Sentence

Agent The process is triggered by
the intelligent object. A handles P.

State Change

The process is triggered
when the object enters or
exits the state. The object
may be changed.

Enter: e , e

Exit: e , e

Both: e , e

Unspec.: e , e

A triggers P when it
enters/exists/enters or
exists st.
St A triggers P.

General
Event

The process is triggered
when the object or process
is changed or cause external
stimuli. The object may be
consumed or changed.

e , e , e

If the object has states:
A triggers P when it
changes.
Otherwise:
A triggers P.

Invocation
The process is triggered
when the source process
starts or ends.

Start:

End:

Both:

Unspec.:

P invokes P1 when it
starts/ends/starts or
ends.

P invokes P1.

Minimal or
Maximal

State Timeout

The process is triggered
when the object violates its
minimal or maximal time
constraints for staying at the
state.

Min:

Max:

Both:

Unspec.:

A triggers P when st
lasts less than Time/
more than Time/less
than Time or more
than Time.
Timeout of st A triggers
P.

Minimal or
Maximal
Process
Timeout

The process is triggered
when the process violates its
minimal or maximal
execution time constraints.

Min:

Max:

Both:

Unspec.:

P1 triggers P when it
lasts less than Time/
more than Time/less
than Time or more
than Time.
Timeout of P1 triggers P.

Reaction
Timeout

The process is triggered
when the event link violates
its minimal or maximal
triggering time constraints.

Min:

Max:

Both:

Unspec.:

This link triggers P
when its reaction time
lasts less than Time/
more than Time/less
than Time or more
than Time.
This link timeout triggers
P.

XOR relation E.g., A triggers either P
or Q when it changes.

OR relation E.g., A triggers P or Q
when it changes.

Comments:

1. Unspec. stands for “unspecified”.

2. The OPL sentences in this table are for the event aspect of the link. For each event link, an additional OPL

sentence, which represents its procedural aspect, should be added.

167

Appendix B. The XML Schema of the Object-Process Language (OPL)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">
<xs:element name="AffectingClause">

<xs:complexType>
<xs:sequence>

<xs:element name="ObjectName" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="AffectingSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="AffectingClause" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="AggregatedObject">

<xs:complexType>
<xs:sequence>

<xs:element name="MinimalCardinality" type="xs:integer"/>
<xs:element name="MaximalCardinality" type="xs:integer"/>
<xs:element name="ObjectName" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ChangingClause">

<xs:complexType>
<xs:sequence>

<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="SourceValueName" type="xs:string"/>
<xs:element name="DestinationValueName" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ChangingSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="ChangingClause" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ConditionClause">

<xs:complexType>
<xs:sequence>

<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="ValueName" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ConditionSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="PathName" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="ConditionClause" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ConsumingClause">

<xs:complexType>
<xs:sequence>

<xs:element name="ConsumedObjectName" type="xs:string"/>
<xs:element name="ValueName" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

168

</xs:element>
<xs:element name="ConsumingSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="ConsumingClause" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="DestinationWithCardinality">

<xs:complexType>
<xs:sequence>

<xs:element name="MinimalCardinality" type="xs:integer"/>
<xs:element name="MaximalCardinality" type="xs:integer"/>
<xs:element name="DestinationName" type="xs:string"/>

</xs:sequence>
<xs:attribute name="sourceName" type="xs:string" use="required"/>
<xs:attribute name="relationName" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="EnablingClause">

<xs:complexType>
<xs:sequence>

<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="StateName" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="EnablingSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="EnablingClause" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ExhibitedObject">

<xs:complexType>
<xs:sequence>

<xs:element name="MinimalCardinality" type="xs:integer"/>
<xs:element name="MaximalCardinality" type="xs:integer"/>
<xs:element name="AttributeName" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="MaxTimeValue">

<xs:complexType>
<xs:sequence>

<xs:element name="Years" type="xs:integer" minOccurs="0"/>
<xs:element name="Months" type="xs:integer" minOccurs="0"/>
<xs:element name="Weeks" type="xs:integer" minOccurs="0"/>
<xs:element name="Days" type="xs:integer" minOccurs="0"/>
<xs:element name="Hours" type="xs:integer" minOccurs="0"/>
<xs:element name="Minutes" type="xs:integer" minOccurs="0"/>
<xs:element name="Seconds" type="xs:integer" minOccurs="0"/>
<xs:element name="MilliSeconds" type="xs:integer" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="MinTimeValue">

<xs:complexType>
<xs:sequence>

<xs:element name="Years" type="xs:integer" minOccurs="0"/>
<xs:element name="Months" type="xs:integer" minOccurs="0"/>
<xs:element name="Weeks" type="xs:integer" minOccurs="0"/>
<xs:element name="Days" type="xs:integer" minOccurs="0"/>
<xs:element name="Hours" type="xs:integer" minOccurs="0"/>
<xs:element name="Minutes" type="xs:integer" minOccurs="0"/>
<xs:element name="Seconds" type="xs:integer" minOccurs="0"/>
<xs:element name="MilliSeconds" type="xs:integer" minOccurs="0"/>

169

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ObjectAggregationParagraph">

<xs:complexType>
<xs:sequence>

<xs:element ref="ObjectAggregationSentence"/>
<xs:element ref="ThingSentenceSet" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ObjectAggregationSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ObjectName" type="xs:string"/>
<xs:element ref="AggregatedObject" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ObjectBiDirectionalRelationSentence">

<xs:complexType>
<xs:sequence>

<xs:element ref="SourceWithCardinality"/>
<xs:element ref="DestinationWithCardinality"/>
<xs:element name="RelationName" type="xs:string "/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ObjectEnvironmentalPhysicalSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="environmental" type="xs:Boolean"/>
<xs:element name="physical" type="xs:Boolean"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ObjectExhibitionParagraph">

<xs:complexType>
<xs:sequence>

<xs:element ref="ObjectExhibitionSentence"/>
<xs:element ref="ThingSentenceSet" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ObjectExhibitionSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ObjectName" type="xs:string"/>
<xs:element ref="ExhibitedObject" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="Operation" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ObjectInheritanceSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="InheritanceFatherName" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ObjectStateParagraph">

<xs:complexType>
<xs:sequence>

<xs:element ref="ObjectStateSentence"/>
<xs:element ref="StateClause" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

170

<xs:element name="ObjectStateSentence">
<xs:complexType>

<xs:sequence>
<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="DefaultState" type="xs:string" minOccurs="0"/>
<xs:element name="StateName" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ObjectUniDirectionalRelationSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="RelationName" type="xs:string"/>
<xs:element ref="DestinationWithCardinality"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="OPLscript">

<xs:complexType>
<xs:sequence>

<xs:element ref="ThingSentenceSet" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="systemName" type="xs:string" use="required"/>
<xs:attribute name="targetDirectory" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="ProcessAggregationParagraph">

<xs:complexType>
<xs:sequence>

<xs:element ref="ProcessAggregationSentence"/>
<xs:element ref="ThingSentenceSet" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ProcessAggregationSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="AggregatedProcess" type="xs:string" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ProcessBiDirectionalRelationSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="DestinationProcessName" type="xs:string"/>
<xs:element name="RelationName" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ProcessEnvironmentalPhysicalSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="environmental" type="xs:Boolean"/>
<xs:element name="physical" type="xs:Boolean"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ProcessExhibitionParagraph">

<xs:complexType>
<xs:sequence>

<xs:element ref="ProcessExhibitionSentence"/>
<xs:element ref="ThingSentenceSet" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ProcessExhibitionSentence">

171

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="OperationName" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="ExhibitedObject" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ProcessInheritanceSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="InheritanceFatherName" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ProcessInZoomingParagraph">

<xs:complexType>
<xs:sequence>

<xs:element ref="ProcessInZoomingSentence"/>
<xs:element ref="ThingSentenceSet" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ProcessInZoomingSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="InZoomedProcessName" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="InZoomedObjectName" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ProcessUniDirectionalRelationSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="RelationName" type="xs:string"/>
<xs:element name="DestinationProcessName" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ResultingClause">

<xs:complexType>
<xs:sequence>

<xs:element name="ResultantObjectName" type="xs:string"/>
<xs:element name="ValueName" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ResultingSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="ResultingClause" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="SourceWithCardinality">

<xs:complexType>
<xs:sequence>

<xs:element name="MinimalCardinality" type="xs:integer"/>
<xs:element name="MaximalCardinality" type="xs:integer"/>
<xs:element name="SourceName" type="xs:string"/>

</xs:sequence>
<xs:attribute name="destinationName" type="xs:string" use="required"/>
<xs:attribute name="relationName" type="xs:string" use="required"/>

</xs:complexType>

172

</xs:element>
<xs:element name="StateClause">

<xs:complexType>
<xs:sequence>

<xs:element name="StateName" type="xs:string"/>
<xs:element name="Initial" type="xs:Boolean" minOccurs="0"/>
<xs:element name="Final" type="xs:Boolean" minOccurs="0"/>
<xs:element ref="MinTimeValue" minOccurs="0"/>
<xs:element ref="MaxTimeValue" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ThingSentenceSet">

<xs:complexType>
<xs:choice>

<xs:sequence>
<xs:element ref="ObjectEnvironmentalPhysicalSentence" minOccurs="0"/>
<xs:element ref="ObjectInheritanceSentence" minOccurs="0"/>
<xs:element ref="ObjectStateParagraph" minOccurs="0"/>
<xs:element ref="ObjectExhibitionParagraph" minOccurs="0"/>
<xs:element ref="ObjectAggregationParagraph" minOccurs="0"/>
<xs:element ref="ObjectUniDirectionalRelationSentence" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element ref="ObjectBiDirectionalRelationSentence" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:sequence>

<xs:element ref="TypeDeclarationSentence"/>
</xs:sequence>
<xs:sequence>

<xs:element ref="ProcessEnvironmentalPhysicalSentence" minOccurs="0"/>
<xs:element ref="ProcessInheritanceSentence" minOccurs="0"/>
<xs:element ref="ProcessExhibitionParagraph" minOccurs="0"/>
<xs:element ref="ProcessAggregationParagraph" minOccurs="0"/>
<xs:element ref="ProcessUniDirectionalRelationSentence" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element ref="ProcessBiDirectionalRelationSentence" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element ref="ConditionSentence" minOccurs="0"/>
<xs:element ref="EnablingSentence" minOccurs="0"/>
<xs:element ref="AffectingSentence" minOccurs="0"/>
<xs:element ref="ChangingSentence" minOccurs="0"/>
<xs:element ref="ConsumingSentence" minOccurs="0"/>
<xs:element ref="ResultingSentence" minOccurs="0"/>
<xs:element ref="ProcessInZoomingParagraph" minOccurs="0"/>

</xs:sequence>
</xs:choice>
<xs:attribute name="subjectThingName" type="xs:string" use="required"/>
<xs:attribute name="subjectExhibitionFatherName" type="xs:string" use="required"/>
<xs:attribute name="subjectAggregationFatherName" type="xs:string" use="required"/>
<xs:attribute name="systemName" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="TypeDeclarationSentence">

<xs:complexType>
<xs:sequence>

<xs:element name="ObjectName" type ="xs:string"/>
<xs:element name="ObjectType" type="xs:string"/>
<xs:element name="InitialValue" type="xs:string" minOccurs="0"/>
<xs:element name="ObjectScope" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

173

Appendix C. The OPM/Web vs. Conallen’s UML experiment Forms

The Project Management System – Models and Questions

Server Client

Payment
System

<<internet>>

<<encrypted>>

Figure 76. Conallen’s UML specification of the project management system – Deployment

diagram

orderDate <
requestedEndDate

project details screen

(from Use Case View)

project handling screen

(from Use Case View)

Project Details
projectCode : char[10]
projectStatus : char
startDate : Date
actualEndDate : Date
agreedPrice : float
tasks : array of
products : array of

validateDates() : Boolean
createProducts()

<<server page>>

Project Update
id : char[10]
orderDate : Date
requestedEndDate : Date
projectType : char[10]
remark : char[50]
maxPrice : float
tasks : array of Ass ignment
products : array of Product

validateDates() : Boolean

<<server page>>

customer detail screen

(from Use Case View)

Assignment
id : char[10]
startDate : Date
description : char[100]

Project
code : char[10]
startDate : Date
tentativeEndDate : Date
actualEndDate : Date
status : char
projectType : char[10]
remark : char[50]
agreedPrice : float

calcCompletionPercentage() : float

nn
views

views

customer details
id : char[10]
name : char[40]
email : char[20]
creditNo : char[20]

checkEmail() : Boolean
checkCreditNo() : Boolean

<<server page>>

Product
id : char[10]
deliveryDate : Date
description : char[100]
price : float

nn

relates to

customer
id : char[10]
name : char[40]
email : char[20]
creditNo : char[20]

nn

has

views

Debiting Details
id : char[10]
productPrice : float

<<server page>>

views

views
file for payment system

(from Use Case View)

Figure 77. Conallen’s UML specification of the project management system – Class diagram

174

Project Status

ordered

50%
completed

supplied

ordered

50%
completed

true(calcCompletionPercentage =50)[not in (not paid)]

supplied

projectCreated

Payment Status

not paid

advance
paid

completely paid

not paid

advance
paid

projectCreated

FirstDayOfMonth / pay=0.1*agreedPrice

completely paid

FirstDayOfMonth / pay=agreedPrice
true(calcCompletionPercentage =100)[in (completely paid)]

Figure 78. Conallen’s UML specification of the project management system – Statechart of

project and payment status

project

projec t update project details

payment system

project handling screen project details screenfile for payment system

product

employee

debiting details

customer detail screen

Customer

Customer details

Figure 79. Conallen’s UML specification of the project management system – Site map

diagram

()

()

175

 : employee : proje ct handl ing screen
 : Project

Update
 : Project : Assignment : Product : custome r : customer

detai ls : customer detai l scre en

project detai ls inserting
create()

res=val ida teDates()

[res=true] create()

[*i=1..n] cre ate()

customer detai ls inderting

create()

res1=checkEmai l()

res2=checkCreditNo()

[res1=true an d res2=true] create()

prod uct detai ls inserting
createProducts()

[*i=1..n] create()

Figure 80. Conallen’s UML specification of the project management system – Sequence

diagram of Project Order Handling

Figure 81. OPM/Web specification of the project management system – Top level diagram

176

Figure 82. OPM/Web specification of the project management system – DB unfolded

Figure 83. OPM/Web specification of the project management system – Interface Handling

in-zoomed

177

Figure 84. OPM/Web specification of the project management system – Database Handling

in-zoomed

Figure 85. OPM/Web specification of the project management system – Project Order

Handling in-zoomed

178

Answer all the following questions about the project management system model.

1. What are the classes which form the application's database?

2. Does the structure of the system support the following query: "who is the customer that

ordered a specific product?" Explain.

3. What is the trigger of project order handling? From which diagram did you conclude it?

4. Is it possible that only the advance (10%) of a project of which 50% had been completed

was paid? Explain.

5. What database classes are affected by project order handling? How? (i.e., are they created,

destroyed, or changed?)

6. What is the navigation order in the application? How did you conclude it?

7. What is the internal architecture (nodes and links) of the system?

8. What are the system activities from the moment the employee connects to the site and till

he/she gets the project details? From which diagrams did you conclude it?

9. Add to the model a possibility to view a report of all the projects which 50% of their

assignments were completed, but the projects have not supplied yet. The report will be

viewed as a result of a manager request after he/she inserts a date range for the report.

Figure 86. Questions related to the project management system

179

The Book Ordering System – Models and Questions

Client Server

publisher
system

<<internet>>

<<encrypted>>

Figure 87. Conallen’s UML specification of the book ordering system – Deployment diagram

file from publisher sys tem

(from Use Case View)

cart line
quantity : int

book searching screen

(from Use Case View)

customer details screen

(from Use Case View)

book choosing screen

(from Use Case View)

author
firstName : char[10]
lastName : char[30]

getDetails() : char[40]

book searching
criterion : {title, publish, author}
searchString : char [50]
searchResult : array of book

validatesearchString()

<<server page>>

book inventory updating
ISBN : char[10]
title : char[50]
publishYear : int
price : float
quantity : int
AuthorFirstName : char[10]
AuthorLastName : char[30]

updateBook()

<<server page>>

nn

updates

book choosing
userId : char[10]
password : Date
ISBN : char[10]
cartCode : char[10]

validateInputs()

<<server page>>

book
ISBN : char[10]
title : char[50]
publishYear : int
price : float
quant ityInStock : int

getDetails() : char[100]

n
n

n
n

wrote

views

n

n

n

n

views

nn

updates

customer updating
id : char[10]
name : char[40]
email : char[20]
password : char[10]

checkEmail()
checkPassword()

<<server page>>

cart
code : char[10]
startTime : Time
totalPrice : float
status : {act ive, close}

views

nn

customer
id : char[10]
name : char[40]
email : char[20]
password : char[10]

views

Figure 88. Conallen’s UML specification of the book ordering system – Class diagram

180

Active

Close

CartCreated

BookAdded(Quantity) / SetQuantityInStock(Quantity)

CartClosed|Price=Sum(BookPrice*Quantity)

Figure 89. Conallen’s UML specification of the book ordering system – Statechart of cart

status

customer

customer updating

customer details screen book choosing screen

cart

user

book searching screen

publisher system

book choosing book searching

file from publisher system

book author

book inventory updating

Figure 90. Conallen’s UML specification of the book ordering system – Site map diagram

181

 : author

 : user

 : customer
updating

 : customer : book
searching

 : book

 : customer details screen

customer details insert ing
create

[res1=true and res2=true] create()

res1=checkEmail()

res 2 = checkPassword()

 : book searching

search a book
create()

res3=validatesearchString()

[res3=true] [*i=1..n] getDetails()

[*i=1..n] getDetails()

Figure 91. Conallen’s UML specification of the book ordering system – Sequence diagram of

book searching

Figure 92. OPM/Web specification of the book ordering system – Top level diagram

182

Figure 93. OPM/Web specification of the book ordering system – DB unfolded

Figure 94. OPM/Web specification of the book ordering system – Interface Handling in-

zoomed

183

Figure 95. OPM/Web specification of the book ordering system – Database Handling in-

zoomed

Figure 96. OPM/Web specification of the book ordering system – Book Choosing Handling

in-zoomed

184

Answer all the following questions about the book ordering system model.

1. Which types of pages can the user view? What is the information presented at each page?

2. Does the structure of the system support the following query: ”who are the customers that

ordered a specific book?” Explain.

3. What is the trigger of customer details update handling? From which diagram did you

conclude it?

4. What are the inputs and outputs of book searching? What are the database classes used in

this process?

5. What database classes are affected by customer details update handling? How? (i.e., are

they created, destroyed, or changed?)

6. What is the navigation order in the application? How did you conclude it?

7. What is the internal architecture (nodes and links) of the system?

8. What are the states of cart from the moment it is created till it is closed? What are the

activities in each state and how does the system transform between the states? From which

diagrams did you conclude it?

9. Add to the model a possibility to print a report of all the active carts. The report will be

automatically printed at the beginning of each week.

Figure 97. Questions related to the book ordering system

185

Appendix D. Definitions of Link Essence, Affiliation, and Scope

There are three rules in OPM for determining the essence, affiliation, and scope values of a

link. The first rule, the Link Essence rule shown in Figure 98, states that a physical Link

connects two physical Elements. The second rule, the Link Affiliation rule specified by the

OPM model in Figure 99, states that an environmental Link connects two environmental

Elements. The third and last rule, the Link Scope rule depicted in Figure 100, requires that

the Scope value of a Link is the widest of the Scope values of the two connected Elements,

where public, protected, and private, are the widest, intermediate and most narrow Scope

values, respectively.

Element exhibits Essence.
Essence can be informatical, which is
the default, or physical.

Physical Element is an Element, the Essence of
which is physical.
Link exhibits Essence.

Essence can be informatical, which is
the default, or physical.

Physical Link is a Link, the Essence of which is
physical.
Physical Link exhibits Source End and
Destination End.

Source End is linked to Physical
Element.
Destination End is linked to Physical
Element.

Figure 98. An OPM specification of the Link Essence rule

Element exhibits Affiliation.
Affiliation can be systemic, which is the
default, or environmental.

Environmental Element is an Element, the
Affiliation of which is environmental.
Link exhibits Affiliation.

Affiliation can be systemic, which is the
default, or environmental.

Environmental Link is a Link, the Affiliation of
which is environmental.
Environmental Link exhibits Source End and
Destination End.

Source End is linked to
Environmental Element.
Destination End is linked to
Environmental Element.

Figure 99. An OPM specification of the Link Affiliation rule

186

Source Element is an Element.
Source Element exhibits Scope.

Scope can be public by default, protected, or private.
Destination Element is an Element.
Destination Element exhibits Scope.

Scope can be public by default, protected, or private.
Link exhibits Source End, Destination End, and Scope, as well as Link Scope Declaring.

Source End is linked to Source Element.
Destination End is linked to Destination Element.
Scope can be public by default, protected, or private.
Following path a, Link Scope Declaring occurs if Scope of Source Element is private and
Scope of Destination Element is private.
Following path a, Link Scope Declaring yields private Scope of Link.
Following path b, Link Scope Declaring occurs if Scope of Source Element is private and
Scope of Destination Element is protected.
Following path b, Link Scope Declaring yields protected Scope of Link.
Following path c, Link Scope Declaring occurs if Scope of Source Element is private and
Scope of Destination Element is public.
Following path c, Link Scope Declaring yields public Scope of Link.
Following path d, Link Scope Declaring occurs if Scope of Source Element is protected
and Scope of Destination Element is private.
Following path d, Link Scope Declaring yields protected Scope of Link.
Following path e, Link Scope Declaring occurs if Scope of Source Element is protected
and Scope of Destination Element is protected.
Following path e, Link Scope Declaring yields protected Scope of Link.
Following path f, Link Scope Declaring occurs if Scope of Source Element is protected
and Scope of Destination Element is public.
Following path f, Link Scope Declaring yields public Scope of Link.
Following path g, Link Scope Declaring occurs if Scope of Source Element is public and
Scope of Destination Element is private.
Following path g, Link Scope Declaring yields public Scope of Link.
Following path h, Link Scope Declaring occurs if Scope of Source Element is public and
Scope of Destination Element is protected.
Following path h, Link Scope Declaring yields public Scope of Link.
Following path i, Link Scope Declaring occurs if Scope of Source Element is public and
Scope of Destination Element is public.
Following path i, Link Scope Declaring yields public Scope of Link.

Figure 100. An OPM specification of the Link Scope

187

OCL Alternative Rule Formulation

OCL can be used as an alternative to OPM for defining the static invariants expressed

before. These constraints demonstrate the declarative nature of OCL vs. the procedural nature

of OPM. While OCL defines invariants which should be preserved in the model in any point

of time, OPM defines a lower level processes which check the consistency rule and update

the models accordingly.

a. A physical link connects two physical elements.
Link

(self.essence = #physical)

implies (self.source_End.essence = #physical and

self.destination_End.essence = #physical)

b. An environmental link connects two environmental elements.
Link
(self.affiliation = #environmental)
implies (self.source_End.affiliation = #environmental and
self.destination_End.affiliation = #environmental)

c. The scope value of a link is the widest of the scope values of the two
connected elements.
Link

if (self.source_End.scope = #public or

 self.destination_End.scope = #public) then

 self.scope = #public

 else if (self.source_End.scope = #private and

 self.destination_End.scope = #private) then

 self.scope = #private

 else

 self.scope = #protected

 endif

endif

if (self.scope = #public) then

 (self.source_End.scope = #public or

 self.destination_End.scope = #public)

else if (self.scope = #protected) then

 (self.source_End.scope <> #public and

 self.destination_End.scope <> #public and

 (self.source_End.scope = #protected or

 self.destination_End.scope =

 #protected))

 else

 (self.source_End.scope = #private and

 self.destination_End.scope = #private)

 endif

endif

188

Appendix E. OPM Metamodel Constraints in OCL

(1) A result link cannot represent a condition that enables a process execution.

Procedural_Link

self.type = #resulting implies self.condition = #no

(2) An event link cannot be a result link neither represent a condition.

Event_Link

self.type <> #resulting

self.condition = #no

(3) In-Zooming of an entity instance makes its in-zoomed element instances visible, while out-

zooming makes them un-visible.

Entity_Instance

(self.oclIsTypeOf(state_Instance)) implies

self.zooms_into -> forAll (ei | ei.oclIsTypeOf(state_Instance)

Entity_Instance :: In-Zooming()

post: result = self.zooms_into -> forAll (ei | ei = #visible)

Entity_Instance :: Out-Zooming()

post: result = self.zooms_into -> forAll (ei | ei = #invisible)

(4) Unfolding of a thing instance makes its unfolded element instances visible, while folding makes

them un-visible.

Thing_Instance :: Unfolding()

post: result = self.unfolds_into -> forAll (ei | ei = #visible)

Thing_Instance :: Folding()

post: result = self.unfolds_into -> forAll (ei | ei = #invisible)

(5) State expressing of an object instance makes its state instances visible, while state suppressing

makes them un-visible.

Object_Instance :: State Expressing()

post: result = self.owns -> forAll (s | s = #visible)

Object :: State Suppressing()

post: result = self.owns -> forAll (s | s = #invisible)

(6) Two entities can be connected via a single type of procedural link within an OPM view.

View

// Defining useful functions

EntityInstanceSetInCurrentView(e)≡

189

self.entity_Instance->select(is_an_appearance_of_an=e)

ConnectingProceduralLinkInstances(ei1, ei2)≡

self.procedural_Link_Instance-> select((source_End=ei1 ∧

destination_End=ei2)∨(source_End=ei2 ∧ destination_End= ei1))

// The constraint

self.entity_Instance.is_an_appearance_of_an -> forAll(e1, e2|

ConnectingProceduralLinkInstances(EntityInstanceSetInCurrentView(e1),

EntityInstanceSetInCurrentView(e2)) -> forAll (pli1, pli2 | pli1.

is_an_appearance_of_a.type = pli2. is_an_appearance_of_a.type))

(7) The direct link between two entities is the most abstract link between their refineables. If this link

cannot connect the relevant entities according to the metamodel constraints, no link will be shown

in the more abstract level.

OPM_Component::Consistency_Checking(): Boolean

// Defining a useful function

SingleConsistencyChecking(ei1, ei2, pli)≡ ((pli.source_End=ei1 ∧

pli.destination_End=ei2) implies

(self.Procedural_Link_Instance-> select(source_End ∈ ei1.zooms_into ∪

ei1.unfolds_into ∪ ei1.owns ∧

destination_End ∈ ei2.zooms_into∪ei2.unfolds_into∪ei2.owns)->forAll (pli2 |

pli.isMoreAbstractThen12(pli2))))

// The constraint

self.OPM_View -> forAll (ei1, ei2: entity_Instance, pli: Procedural_Instance |

SingleConsistencyChecking(ei1, ei2, pli))

12 isMoreAbstractThen is a function derived from Table 14.

190

Appendix F. OPCAT – Object-Process CASE Tool13

OPCAT (Object-Process CASE Tool) is an integrated system development software

environment that supports system development using OPM. Being an OPM-based CASE

tool, OPCAT enjoys the advantages of supporting most of the system development lifecycle

tasks, starting from requirement analysis, through system design and implementation, to

system testing, simulation, and validation. Since OPM enables modeling system dynamics

and control structures, such as events, conditions, branching, and loops, the generated

implementation can definitely be more advanced than a mere standard skeleton code.

Moreover, OPM's ability to capture the system's structure and behavior in a single view also

enhances OPCAT simulation capabilities and makes it most suitable for interactive testing

and validation.

Case Tool Utilization

CASE tools have been developed with the objective of assisting developers in producing high

quality software systems and products. To this end, CASE tools are designed to relieve the

system architects and developers from mundane software engineering activities, leaving them

more time to focus on the non-trivial, insight- and creativity-demanding tasks. Over the years,

several studies have surveyed the way organizations use CASE tools. Lending and Chervany

[55] found out that “it was difficult to find companies using CASE tools.” Even in the

companies that did use CASE tools, the extent of their deployment was very small. The

CASE tool features that these companies employed were divided into two groups: analysis

functionality (e.g., testing for consistency between a process model and a data model), and

13 A version of this appendix was published in the International Conference of Enterprise Information Systems

(ICEIS’2003) [25].

191

transformation functionality (e.g., generating executable code in several languages). The

overall result for using features from both functionalities was low.

McMurtrey et. al. [61] surveyed the use of CASE technology inquiring professionals from

different company types (insurance, manufacturing, consulting firms, etc.). They focused on

the most popular features that CASE tools possessed and the gap between them and the

developer needs. The features most often cited as being needed and used were the ability to

represent a design in terms of data models and process or flow models. This reflects the fact

that representing the model's structure and behavior aspects is the most useful aspect of

current CASE tools.

In order to overcome some of the CASE tools flexibility drawbacks, a new type of CASE

tools, called meta-CASE tools, or Computer Aided Method Engineering (CAME) tools, was

introduced. These tools feature flexible metamodeling facilities that users can reconfigure to

support whatever metamodel they wish to deploy. Examples of such tools are MetaEdit+ [94]

and AToM3 [54]. However, these tools are not widely used, since employing them is not a

trivial task.

Method engineering and CASE tool designers have paid little, if any, attention to the

human cognition theory. For example, the cognitive theory has shown that the human

information processing system involves separate channels for processing visual and verbal

material, and that the processing capability of each channel is quite limited [60]. The existing

CASE tools address only the visual channel, neglecting the verbal one.

OPCAT Overview

OPCAT14 has been developed as an academic project. It is designed to support the entire

system development lifecycle through OPM. The two main benefits of OPCAT over existing

14 OPCAT can be download for free from http://www.objectprocess.org/

192

object-oriented CASE tools are its bimodal graphic-textual single view representation and its

simulation capability. The bimodal representation of OPCAT increases OPM accessibility to

heterogeneously skilled users engaged in the system development process. The intuitive,

bimodal model representation enables development teams consisting of system architects and

domain experts to jointly engage in the development process on an ongoing basis. Such

collaboration, which is not feasible with other CASE tools, is highly desirable, because it

enables requirements to be put to test while modeling. Improving the system documentation

quality is yet another benefit of OPCAT's bimodal representation, since the textual

representation provides the system documentation.

OPCAT's simulation capability enables “running” a system model, testing its functionality

against the requirement specifications, and debugging them at the model level, prior to the

beginning of the implementation phase. OPCAT capabilities are demonstrated through a case

study of a travel management system. The system manages company employee professional

travels, including travel request, approval, finance and expense reporting.

The Bimodal Graphic-Text Representation

Catering to the modality principle of cognitive theory, OPCAT enables modeling systems

graphically via an OPD-set and textually using OPL, a subset of English. OPCAT

automatically translates an OPD-set into its equivalent OPL paragraph and vice versa. This

way, users who are not familiar with the graphic notation of OPM can validate their

specifications by inspecting the OPL sentences, which are automatically generated on the fly

in response to the user's graphic input. Another cognitive principle – the limited channel

capacity – is addressed in OPM through the abstraction/refinement mechanisms. These

provide for creating diagrams and corresponding OPL paragraphs that are limited in size,

thereby avoiding information overload and enabling comfortable human processing. The

relatively small set of OPD symbols and corresponding OPL sentence types increases the

193

Travel Document Set is physical.
Employee, which is environmental and physical, handles Travel
Managing.
Clock, which is environmental and physical, triggers Travel
Managing.
Travel Managing yields Report and Travel Document Set.

accessibility of OPM to both system architects and domain experts. The automatic translation

into an OPL script also improves the documentation quality of the developed system. The

automatic implementation generation, currently under development, will ensure that the

specification designed by the system architects and endorsed by the domain experts is indeed

reflected without any translational gap in the actual system.

Figure 101. The OPCAT GUI showing the top-level specification of the travel

management system

 Figure 101, which is a snapshot of an OPCAT 2 screen, shows the bimodal OPD-OPL

representation for the travel management system. The graphic window in the upper part of

the screen shows the top-level OPD, while the lower part of the screen is the text window,

which contains the equivalent OPL paragraph. Interpreting the OPD or the OPL paragraph,

the model specifies that the Travel Managing process is handled by the Employee, which is an

environmental (dashed) and physical (shadowed) object, linked to Travel Managing via an

agent link. The corresponding OPL sentence that expresses this is: "Employee, which is

environmental and physical, handles Travel Managing." Travel Managing is also triggered by the

physical and environmental Clock, which generates external timing events. Report and Travel

194

(a)

(b)

Document Set (which, as the shadow denotes, is physical) are the artifacts resulting as objects

from the execution of Travel Managing.

OPCAT 2 performs extensive syntax checking, starting from the validation of simple

constraints, such as checking that two objects are not linked via a procedural link, continuing

with complex constrains, such as disallowing a loop within a generalization-specialization

hierarchy in an OPD, and ending with inter-OPD consistency checking operations.

Figure 102. (a) The new OPD, created in response to the user's in-zooming operation on the

Travel Managing process. (b) The OPD after the user has filled in details within the in-

zoomed Travel Managing process.

To specify the details of the behavior of Travel Managing, the developer can use the in-

zooming refinement mechanism. Applying this refinement on Travel Managing in Figure 101

yields a new OPD shown in Figure 102(a), titled "Travel Managing in-zoomed." The in-

zoomed Travel Managing process appears enlarged in the center of the newly generated

195

diagram. All the entities connected to Travel Managing in the top level specification are also

connected to it in the new OPD with the same link types.

The developer can now specify the sub-processes of Travel Managing and any pertinent

interim objects within its elliptical frame, as shown in Figure 102(b). This refinement

specifies that through the Option Determining sub-process, the Employee first chooses between

the Option states: travel, department, passenger, and exit. This selection is a condition to the

occurrence of the appropriate process, which can be one of Travel Requesting, Department

Handling, Passenger Handling, or nothing.

Simulation and Dynamic System Testing

Being both object- and process-oriented, OPM enables designing the structural and

behavioral aspects of a system in the same model. The fact that these two central system

aspects are represented in the same diagram type, OPD, which is the only OPM graphic view,

enables OPCAT to visually simulate the behavior of the system being developed. This is an

important capability, as it enables system architects to dynamically examine the system at any

stage of its development and verify with the domain experts that it addresses the client

requirements and expectations. Presenting live animated demonstrations of system behavior,

instead of static, printed models, enhances the communication between system architects and

clients. This dynamic testing capability enhances the static testing option through examining

the OPD set and comparing it to the corresponding OPL script.

Both static and dynamic testing can be carried out on an ongoing basis at any point in time

along the system analysis and design processes to detect discrepancies, inconsistencies, and

deviations from the intended goal of the system. As part of the dynamic testing, the

simulation enables designers to track each of the system scenarios (also known in UML

terminology as use cases) before writing a single line of code that implements the modeled

behavior. Any detected mistakes or omissions are corrected or added at the model level,

(a

)

196

saving costly time and efforts that would be needed to do so at the implementation level.

Avoiding and eliminating design errors as early as possible in the system development

process and keeping the documentation up-to-date contribute to shortening the system's

delivery time ("time-to-market").

Although some UML supporting CASE tools provide simulation tools, the lack of a single

clean formalism for expressing processes in UML and the fact that the dynamic views are

separate from the static ones, makes such simulations much less comprehensible, as they can

only run on a subset of the nine UML diagram types (sequence diagrams, state machines, or

collaboration diagrams), overwhelming the limited human cognitive channels and making it

extremely difficult to grasp the behavior of the system in its entirety.

OPCAT simulation is performed graphically on the model itself. It is affected by following

parameters: process duration, step duration, and reaction time, where each of them can be

specified as a fixed number of time units or as some probability distribution function with the

pertinent parameters. Such non-deterministic duration definitions enable the simulation of

real-life situations as in discrete event simulation systems.

After determining these parameters, the designer may manually activate entities, in

particular enabling objects (agents and/or instruments) that are connected to system processes

via external event links. By default, all the objects that are not created by processes in the

model are defined as active, but the user can override this default. For example, simulating

the travel management system behavior, in the initial situation only Employee and Clock are

active (grayed). These objects existed before the Travel Managing process started. Travel

Managing itself is not active, because no (internal or external) event has triggered it yet. The

user can then start, stop, pause, and continue the simulation. The user can also set up

breakpoints within the system model, run the simulation forward or backward any specified

number of steps, or track it step by step. At each point in time during the simulation, all the

197

active OPDs, i.e., all the diagrams that contain active processes, are tiled and shown

simultaneously to the user on the same screen.

 The simulation algorithm determines the next step according to process activation rules

derived from the OPM semantics. The guidelines of these rules are as follows. A process

becomes active when its containing process is active and its turn activation time is due

according to the time progression along the vertical time axis in the OPD (from top to

bottom). A process becomes active when an event link connected to it is active. A process is

executed if its pre-condition set holds. After executing a process, its post-condition set holds.

Continuing with the simulation of the travel management system, in order to invoke the

Travel Managing process, the user has to activate the agent link from Employee to Travel

Managing, simulating the employee action in the real system. As a result of this activation,

Travel Managing and two of its internal objects, Department and Passenger, which already exist

and are not generated by the system, become active. Note that Option does not become active

yet, since it is created by the system in this scenario. When the in-zoomed Travel Managing

process becomes active, it makes its first sub-process, Option Determining, active too for an

interval of time determined by the process duration parameter. When Option Determining

terminates, Option becomes active and Option Determining reverts to be non-active, as shown in

Figure 103. Since Option has no initial or default states, the simulation must wait for the user

to determine (select) the state of Option. The user simulates the Employee choice in the real

system by manually activating one of Option states. This way, designers can selectively

simulate use cases within the modeled system. Assuming that the designer activated travel, the

simulation can continue to the next step, which is to activate the Travel Requesting process.

The simulation algorithm now examines the pre-conditions of this process: Option needs to be

in its travel state. Since this pre-condition set holds, Travel Requesting executes, creating Travel

198

Request, Travel Document Set, and Report. Since this is the last sub-process of the Travel Managing

super-process, Travel Managing terminates, ending the simulation as depicted in Figure 104.

Figure 103. The situation of the travel management system after the Option Determining sub-

process of Travel Managing has terminated and Option was generated

Figure 104. The final situation of the travel management system after running the simulation

If Travel Managing is triggered again, the number (multiplicity) of Travel Document Set and

Report would increase, denoting that the same class has several instances created during

consecutive executions of Travel Managing.

Summary and Work in progress

OPCAT, an OPM-supporting CASE tool, is an integrated software and system development

environment that exhibits a number of unique features. OPCAT implements two important

cognitive theory principles, the modality principle and the limited channel capacity principle.

To implement the modal principle, OPCAT provides a dual, graphic and textual model

199

representation. The human limited channel capacity is addressed by implementing the various

abstraction/refinement mechanisms OPM offers.

Designed to support OPM, OPCAT uses the universal OPM ontology, specified in Part 4,

to provide the basic elements – objects, processes, states, and structural and procedural links

– required to model a wide range of system types, including structure-oriented, process-

oriented, and reactive systems. These elements are the building block required to provide the

enhanced expressiveness developers seek. Hence, OPCAT addresses the expressiveness

needs that cause the arising of the meta-CASE tools.

Another major benefit of OPCAT, which is made possible due to OPM's coherent single

model representation, is its advanced simulation capabilities. Simulation helps visualize the

operation of the system at any level of detail, providing an additional tool for early error

detection and correction.

OPCAT has been studied and used in an undergraduate system analysis course for the past

two years. Students' responses to OPCAT are enthusiastic. They indicate its reliability, user

friendliness, ease of use, accessibility to untrained users, and inspiring simulation

capabilities.

OPCAT is currently undergoing major expansion. The following work in progress is

underway.

• Analysis and design document generation: OPCAT document generator facilitates selective

generation of general information, OPDs, OPL paragraphs, and element dictionary. The

documents are produced in an HTML format according to user-defined templates that

provide flexibility of the resulting artifacts.

• Implementation generation: The implementation generator is designed to support

conversion rules to various target programming languages and databases. Using OPL

grammar, system developers will have to define once the translation rules from each OPL

200

template to a specific language, and the implementation generator will automatically

generate the system from its OPL script. Since OPM describes also the behavioral aspects

of systems, the generated implementation will not be just a skeleton code.

• OPM-to-UML conversion: Since UML is the standard modeling method within the

software engineering community, a conversion utility from OPM to UML is being

developed. OPCAT generates uses case, class, sequence, Statecharts, activity, and

deployment diagrams from the single OPM model using XML Metadata Interchange (XMI)

[73] standard. The inverse UML-to-OPM translation direction is also planned to be

incorporated as part of OPCAT. This bi-directional conversion is an important utility, as it

enables system developers to enjoy the integrity and user friendliness of OPM and OPCAT

while not having to worry about not sticking with the industry standard; transformation to

(and soon also from) UML is always available.

• Future features, aimed at further enhancing the usability of OPCAT, include support of

automatic layout, a requirement management module, automatic test case generation,

configuration management, intelligent knowledge base querying, weaving and merging

mechanisms for integrating several OPM models to a single system, and a multi-user

version, which enables collaboration of project teams.

201

References

1 Allen, R., R. Douence and D. Garlan, Specifying and Analyzing Dynamic Software

Architectures, In Fundamental Approaches to Software Engineering, volume 1382 of

Lecture Notes in Computer Science, E. Astesiano, Ed., Springer-Verlag, Lisbon,

Portugal, 1998, pp. 21-37.

2 AOSD, The Aspect-Oriented Software Development site, http://aosd.net/

3 AspectJ Web Site. http://www.eclipse.org/aspectj/

4 Back, R.J.R. and Kurki-Suonio, R. Decentralization of Process Nets with Centralized

Control. Distributed Computers, 3, 1989, pp. 73-87.

5 Barber, K.S., Graser, T.J. and Jernigan, S. R. Increasing Opportunities for Reuse

through Tool and Methodology Support for Enterprise-wide Requirements Reuse and

Evolution. Proc. of the 1st International Conference on Enterprise Information Systems,

1999, pp. 383-390.

6 Baumeister, H., N. Koch and L. Mandel, Towards a UML Extension for Hypermedia

Design, In Proceedings of the 2nd International Conference on the Unified Modeling

Language- Beyond the Standard (UML’99), volume 1723 of Lecture Notes in

Computer Science, R. France and B. Rumpe, Eds., Springer-Verlag, Fort Collins, CO,

1999, pp. 614-629.

7 Becker, U. D2AL – A design-based aspect language for distribution control. Proc. of the

European Conference on Object-Oriented Programming (ECOOP), 1998.

http://trese.cs.utwente.nl/aop-ecoop98/papers/Becker.pdf

8 Bloomer, J. Power Programming with RPC. O’Reilly and Associates, 1992.

9 Booch, G. Object-Oriented Analysis and Design with Application.

Benjamin/Cummings Publishing Company, Inc., 1994.

10 Bosch, J. Superimposition: A Component Adaptation Technique. Information and

Software Technology, 41 (5), 1999, pp. 257-273.

11 Bouge, L. and Francez, N. A Compositional Approach to Superimposition. Proc. of

ACM POPL88 Symposium, 1998, pp. 240-249.

12 Carzaniga, A., G.P. Picco, and G. Vigna. Designing Distributed Applications with

Mobile Code Paradigms. Proceedings of the 1997 International Conference on Software

Engineering, pp. 22-32, 1997.

202

13 Ceri, S., P. Fraternali and A. Bongio, Web Modeling Language (WebML): a modeling

language for designing Web sites, In Proceedings of the 9th World Wide Web

Conference (WWW9), Computer Networks, Amsterdam, the Netherlands, 2000, pp.

137-157.

14 Chakravarthy, S. and D. Mishra, SNOOP: An expressive Event Specification Language

for Active Databases, Data and Knowledge Engineering journal 14, 1, 1994, 1-26.

15 Clarke, S. Extending standard UML with model composition semantics. Science of

Computer Programming, Elsevier Science, 44 (1), 2002, pp. 71-100.

http://www.cs.tcd.ie/people/Siobhan.Clarke/papers/SoCP2001.pdf

16 Clarke, S. and Walker, R.J. Composition Patterns: An Approach to Designing Reusable

Aspects. Proceedings of the International Conference on Software Engineering, 2001,

pp. 5-14.

17 Clark, T., Evans, A., and Kent, S. Engineering Modeling Languages: a Precise Meta-

Modeling Approach. http://www.cs.york.ac.uk/puml/mmf/langeng.ps

18 Conallen, J., Building Web Applications with UML, First Edition, Addison-Wesley,

Reading, MA, 1999.

19 Constantinides, C. A., Bader, A., and Elrad, T. An Aspect-Oriented Design Framework

for Concurrent Systems. Proc. of the European Conference on Object-Oriented

Programming (ECOOP), 1999, pp. 340-352.

20 Czarnecki, K., Eisenecker, U. W. and Steyaert, P. Beyond Object: Generative

Programming. Proc. of the Aspect-Oriented Programming Workshop at ECOOP’97,

1997, pp. 1-8.

21 Dale, J. and D. DeRoure. A Mobile Agent Architecture to Support Distributed

Resource Information Management. Proceedings of the International Workshop on the

Virtual Multicomputer, 1997.

http://www.mmrg.ecs.soton.ac.uk/publications/archive/dale1997b/vim97.pdf

22 Domínguez, E., Rubio, A.L., Zapata, M.A. Meta-modelling of Dynamic Aspects: The

Noesis Approach. International Workshop on Model Engineering, ECOOP’2000, pp.

28-35, 2000.

23 Dori, D., Object-Process Methodology - A Holistic Systems Paradigm, Springer

Verlag, Heidelberg, NY, 2002.

24 Dori, D. Why Significant UML Change Is Unlikely. Communications of the ACM, 45

(11), 2002, pp. 82-85.

203

25 D. Dori, I. Reinhartz-Berger, A. Sturm, OPCAT - A Bimodal CASE Tool for Object-

Process Based System Development. Proceedings of IEEE/ACM 5th International

Conference on Enterprise Information Systems (ICEIS 2003), pp. 286-291, 2003.

26 D. Dori, I. Reinhartz-Berger, An OPM-Based Metamodel of System Development

Process, accepted to the International Conference on Conceptual Modeling ER’2003.

27 D’Souza, D. and Wills, A.C. Objects, Frameworks and Components with UML – The

Catalysis Approach. Addison-Wesley, 1998.

28 Eckstein, S., Ahlbrecht, P. and Neumann, K. Increasing Reusability in Information

Systems Development by Applying Generic Methods. Proc. of the 13th International

Conference CAiSE’01, LNCS 2068, 2001, pp. 251-266.

29 Firstenberg, Y., Katz, S. and Shmueli O. An Object-Oriented Program Accelerator

Using Impersonation, Technion Computer Science Department Technical Report, CS-

2002-06, 2002.

30 Flatt, M., S. Krishnamurthi, and M. Felleisen. Classes and Mixins. Proceedings of

ACM Symposium on Principles of Programming Languages, 1998, pp. 171-184

31 Foo, S., P. C. Leong, S. C. Hul, and S. Liu, Security Considerations in the Delivery of

Web-Based Applications: a case study, Information Management and Computer

Security 7, 1, 1999, 40-49.

32 Frakes, W. and Terry, C. Software Reuse: Metrics and Models. ACM Computing

Surveys, 28 (2), 1996, pp. 415-435.

33 Franklin, S. and A. Graesser. Is it an Agent, or just a Program?: A Taxonomy for

Autonomous Agents. Proceedings of the 3rd International Workshop on Agent Theories,

Architectures, and Languages, Budapest, Hungary, Springer-Verlag, pp. 21-36, 1996.

34 Franklin, M. and S. Zdonik. Data In Your Face: Push Technology in Perspective.

Proceedings of the ACM SIGMOD international conference on Management of Data,

pp. 516-519, 1998, http://www.cs.berkeley.edu/~franklin/Papers/datainface.pdf

35 Fraternali, P., Tools and Approaches for Developing Data-Intensive Web Applications:

A Survey, ACM Computing Surveys 31, 3, 1999, 227-263.

36 Fugetta, A., G. Picco, and G. Vigna. Understanding Code Mobility. IEEE Transactions

on Software Engineering, 24, 5, 1998, pp. 342-361.

37 Gamma, E., Helm, R., Johnson, R. Vlissides, J.O. Design Patterns: Abstraction and

Reuse of Object-Oriented Design. Proc. of the European Conference on Object-

Oriented Programming (ECOOP), LNCS 707, 1993, pp. 406-431.

204

38 Garzotto, F. and L. Mainetti, HDM2: Extending the E-R approach to hypermedia

application design, In Proceeding of the 12th International Conference on Entity

Relationship Approach (ER’93), R. Elmasri, V. Kouramajian, and B. Thalheim, Eds.,

Dallas, TX, 1993, pp. 178-189.

39 Garzotto, F., P. Paolini, and D. Schwabe, HDM – A Model Based Approach to

Hypertext Application Design, ACM Transactions on Information Systems 11, 1, 1993,

1-26.

40 Graham, I., Henderson-Sellers, B., and Younessi, H. The OPEN Process Specification.

Addison-Wesley Inc., 1997.

41 Gray, R., D. Kotz, G. Cybenko, and D. Rus. Mobile Agent: Motivations and State-of-

the-art Systems. In Bradshaw J. M. (Ed.), Handbook of Agent Technology, AAAI/MIT

Press, 2000. ftp://ftp.cs.dartmouth.edu/TR/TR2000-365.ps.Z.

42 Grundy, J. Multi-Perspective Specification, Design and Implementation of Software

Components using Aspects. International Journal of Software Engineering and

Knowledge Engineering, 10 (6), 2000, pp. 713-734.

43 Halpin, T. and Bloesch, A. A Comparison of UML and ORM for Data Modeling.

Proceedings of the third International Workshop on Evaluation of Modeling Methods in

Systems Analysis and Design (EMMSAD’98), 1998.

44 Harel, D., Statecharts: a Visual Formalism for Complex Systems, Science of Computer

Programming, 8, 1987, 231-274.

45 Henderson-Sellers, B., OML: proposals to enhance UML, The Unified Modeling

Language (UML’98): Beyond the Notation, volume 1618 of Lecture Notes in

Computer Science, J. Bezivin and P.A. Muller, Eds., Springer-Verlag, Mulhouse,

France, 1998, pp. 349-364.

46 Henderson-Sellers, B. and Bulthuis, A. Object-Oriented Metamethods, Springer Inc.,

1998.

47 Hillegersberg, J.V., Kumar, K. and Welke, R.J. Using Metamodeling to Analyze the Fit

of Object-Oriented Methods to Languages. Proceedings of the thirty first Hawaii

International Conference on System Sciences (HICSS'98), 1998.

48 Isakowitz, T., E. A. Stohr, and P. Balasubramanian, RMM: A Methodology for

Structured Hypermedia Design, Communication of the ACM 38, 8, 1995, 34-44.

49 Katz, S., A Superimposition Control Construct for Distributed Systems, ACM

Transactions on Programming Languages and Systems 15, 2, 1993, 337-356.

205

50 Kersten, M. and G. C. Murphy, Atlas: A Case Study in Building a Web-Based Learning

Environment using Aspect-Oriented Programming, In Proceedings of the Object-

Oriented Programming, Systems, Languages and Applications (OOPSLA’99), ACM

SIG-PLAN Notices, Denver, CO, 1999, pp. 340-352.

51 Kim, Y.G. and March, S.T. Comparing Data Modeling Formalisms for Representing

and Validating Information Requirements. Communications of the ACM, 38 (6), 1995,

pp. 103-115.

52 Klein, C., A. Rausch, M. Shiling, and Z. Wen. Extension of the Unified Modeling

Language for Mobile Agents. On Siau, K. and Halpin, T. (Eds.), The Unified Modeling

Language: Systems Analysis, Design and Development Issues, Idea Group Publishing

Book, pp. 116-128, 2001.

http://www4.in.tum.de/~rausch/publications/2001/MobileUML.pdf

53 Lange, D., An Object-Oriented Design Approach for Developing Hypermedia

Information Systems, Journal of Organizational Computing, 6, 3, 1996, 269-293.

54 Lara, J. and Vangheluwe, H., 2002. Using AToM3 as a Meta-CASE Tool. Proc. of the
4th Int. Conference On Enterprise Information Systems (ICEIS’2002),.

55 Lending , D. and Chervany N.L., 1998. The Use of CASE Tools. Proc. of the

Conference on Computer Personnel Research, pp. 49-58.

56 Lester, N. G., Wilkie, F. G. and Bustard, D. W. Applying UML Extensions to Facilitate

Software Reuse. The Unified Modeling Language (UML'98) - Beyond the Notation.

LNCS 1618, 1998, pp. 393-405.

57 Lin, M. and B. Henderson-Sellers, Adapting the OPEN methodology for Web

development, In Proceedings of the 6th Annual Conference of BCS Information

Systems Methodology Specialist Group: Methodologies for Developing and Managing

Emerging Technology Based Information Systems, A.T. Wood-Harper, N. Jayaratna

and J.R.G. Woods, Eds., Springer-Verlag, Salford, UK, 1999, pp. 117-129.

58 Lowe, D. and B. Henderson-Sellers, Characteristics of Web Development Process, In

Electronic Proceeding of the International Conference Advances in Infrastructure for

Electronic Business, Science, and Education (SSGRR’2001), 2001,

http://www.ssgrr.it/en/ssgrr2001/papers/David%20Lowe.pdf

59 Mapelsden, D., Hosking, J., and Grundy, J. Design Patterns Modelling and Instantiation

using DPML. 40th International Conference on Technology of Object-Oriented

Languages and Systems (TOOLS), 2002.

http://www.jrpit.flinders.edu.au/confpapers/CRPITV10Mapelsden.pdf

206

60 Mayer, R.E. Multimedia Learning. Cambridge University Press, New York, 2001.

61 McMurtrey, M. E., Teng, J.T.C., Grover, V., and Kher, H. V., 2000. Current utilization

of CASE technology: lessons from the field. Industrial Management & Data Systems,

100 (1), pp. 22-30.

62 Mens, T., Lucas, C. and Steyaert, P. Giving Precise Semantics to Reuse and Evolution

in UML. Proc. PSMT'98 Workshop on Precise Semantics for Modeling Techniques,

1998.

63 Mezini, M. and Lieberherr, K. Adaptive Plug-and-Play Components for Evolutionary

Software Development. Conference on Object-Oriented Programming, Systems,

Languages and Applications (OOPSLA), 1998, pp. 97-116.

64 Mili, H., Mili, F. and Mili, A. Reusing Software: Issues and Research Directions. IEEE

transactions on Software Engineering, 21 (5), 1995, pp. 528-562.

65 Muscutariu, F. and M.P. Gervais. On the Modeling of Mobile Agent-Based Systems.

http://www-scr.lip6.fr/homepages/Marie-Pierre.Gervais/MATA2001.pdf

66 Nielsen, J. Hypertext and Hypermedia: the Internet and Beyond. Academic Press, 1995.

67 Nielsen, J., User Interface Directions for the Web, Communications of the ACM, 42, 1,

1999, 65-72.

68 Object Management Group (OMG). UML 1.4 - UML Semantics. OMG document

formal/01-09-73, http://cgi.omg.org/docs/formal/01-09-73.pdf

69 Object Management Group. The common object request broker: Architecture and

specification. Technical Report Version 2.0, 1995,

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/cover.htm

70 Object Management Group (OMG). Meta Object Facility (MOF) Specification. OMG

document formal/02-04-03, http://cgi.omg.org/docs/formal/02-04-03.pdf

71 Object Management Group (OMG). Extensible Markup Language (XML),

http://www.w3.org/XML/

72 Object Management Group (OMG). Software Process Engineering Metamodel

(SPEM), version 1.0, OMG document formal/02-11-14,

http://www.omg.org/technology/documents/formal/spem.htm

73 Object Management Group (OMG). XML Metadata Interchange (XMI), version 1.2.

http://www.omg.org/cgi-bin/doc?formal/2002-01-01

207

74 Odell, J., H.V.D. Parunak, and B. Bauer. Extending UML for Agents. In Wagner, G.,

Lesperance, Y., and Yu, Er. (Eds.), proceedings of the Agent-Oriented Information

Systems Workshop at the 17th National conference on Artificial Intelligence, Austin,

TX, pp. 3-17, 2000.

75 OPEN, The OPEN Web site, http://www.open.org.au/

76 Otero, M.C. and Dolado, J.J. An Initial Experimental Assessment of the Dynamic

Modeling in UML. Empirical Software Engineering, 7, 2002, 99. 27-47.

77 Peleg, M. and D. Dori, Extending the Object-Process Methodology to Handle Real-

Time Systems, Journal of Object-Oriented Programming, 11, 8, 1999, 53-58.

78 Peleg, M. and D. Dori, The Model Multiplicity Problem: Experimenting with Real-

Time Specification Methods, IEEE Transaction on Software Engineering, 26, 8, 2000,

742-759,

http://iew3.technion.ac.il:8080/Home/Users/dori/Model_Multiplicity_Paper.pdf

79 Perrault, D., A Study of Business Rules Concept for Web Application, Master Thesis,

Faculty of Engineering, Politecnico di Milano, Milano, Italy, 1998.

80 Rational Software. Rational Unified Process for Systems Engineering – RUP SE1.1. A

Rational Software White Paper, TP 165A, 5/02, 2001,

 http://www.rational.com/media/whitepapers/TP165.pdf

81 Reinhartz-Berger, I., Dori, D. , and Katz, S. Developing Web Applications with

OPM/Web. workshop on Data Integration over the Web (DIWeb'01), CAiSE, 2001, pp.

47-61.

82 Reinhartz-Berger, I., Dori, D., and Katz, S. OPM/Web - Object-Process Methodology

for Developing Web Applications. Annals on Software Engineering (ASE) - Special

Issue on OO Web-based Software Engineering, 13, pp. 141-161, 2002.

83 Reinhartz-Berger, I., Dori, D. , and Katz, S. Modeling Code Mobility Paradigms in

OPM/Web. The Israeli Workshop on Programming Languages & Development

Environments, IBM, 2002. http://www.haifa.il.ibm.com/info/ple/papers/code.pdf

84 Reinhartz-Berger, I., Dori, D., and Katz, S. Open Reuse of Component Designs in

OPM/Web. 26th annual international Computer Software and Applications Conference

(COMPSAC'02), pp. 19-26, 2002.

85 Renaud, P. E. Introduction to Client/Server Systems: A Practical Guide for Systems

Professionals. Wiley & Sons, 1993.

86 Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W. Object-Oriented

Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ, 1991.

208

87 Siau, K. and Q. Cao, Unified Modeling Language (UML) – A Complexity Analysis,

Journal of Database Management 12, 1, 2001, 26-34.

88 Schwabe, D. and G. Rossi, Developing Hypermedia Applications using OOHDM, In

Electronic Proceedings of the 1st Workshop on Hypermedia Development Processes,

Methods and Models (Hypertext'98), ACM, Pittsburg, KS, 1998,

http://heavenly.nj.nec.com/266278.html

89 Schwabe, D., G. Rossi, and S. Barbosa, Systematic Hypermedia Application Design

with OOHDM, In Proceedings of the 7th ACM conference on Hypertext, ACM,

Washington DC, WA, 1996, pp. 116 – 128.

90 Shoval, P. and Shiran, S. Entity-Relationship and Object-Oriented Data Modeling – an

Experimental Comparison of Design Quality. Data & Knowledge Engineering, 21,

1997, pp. 297-315.

91 Siau, K. and Cao, Q. Unified Modeling Language (UML) – A Complexity Analysis.

Journal of Database Management 12 (1), 2001, pp. 26-34.

92 Stamos, J. and G. Gifford. Remote Evaluation. ACM Transactions on Programming

Languages and Systems, 12, 4, pp. 537-565, 1990.

93 Suzuke, J. and Y. Yamamoto, Extending UML with Aspects: Aspect Support in the

Design Phase, In Proceedings of the 3rd Aspect-Oriented Programming (AOP)

Workshop at the Europe Conference on Object-Oriented Programming (ECOOP’99),

volume 1628 of Lecture Notes in Computer Science, R. Guerraoui, Ed., Springer-

Verlag, Lisbon, Portugal, 1999, pp. 299-300.

94 Talvanen, J. P., 2002. Domain-Specific Modelling: Get your Products out 10 Times

Faster. Real-Time & Embedded Computing Conference,

http://www.metacase.com/papers/Domain-specific_modelling_10X_faster_than_UML.pdf

95 Van Gigch, J. P. System Design Modeling and Metamodeling. Plenum press, 1991.

96 Verheijen, G.M.A. and Van Bekkum, J. NIAM: An Information Analysis Method. In

Olle et al. 1986, pp. 289–318.

97 Vilain, P., D. Schwabe and C. S. de Souza, A diagrammatic Tool for Representing User

Interaction in UML, In Proceedings of the 3rd International Conference on the Unified

Modeling Language- Advancing the Standard (UML’2000), volume 1939 of Lecture

Notes in Computer Science, A. Evans, S. Kent and B. Selic, Eds., Springer-Verlag,

York, UK, 2000, pp. 133-147.

98 W3C Consortium. Web Services Description Language (WSDL) 1.1.

http://www.w3.org/TR/wsdl

209

99 Warmer, J.B. and A. G. Kleppe, The Object Constraint Language: Precise Modeling

with UML, First Edition, Addison-Wesley, Reading, MA, 1998.

100 What is metamodelling, and what is a metamodel good for?

http://www.metamodel.com/

