Developing Web Applications With Object-Oriented

Approaches and Object-Process Methodology

Iris Reinhartz-Berger

Developing Web Applications With Object-Oriented

Approaches and Object-Process Methodology

Research Thesis

Submitted in Partial Fulfillment of the
Requirements for the

Degree of Doctor of Philosophy

Iris Reinhartz-Berger

Submitted to the Senate of

the Technion — Israel Institute of Technology

TAMOOZ 5763 HAIFA JULY 2003

The research thesisw as done under
the supervision of Prof. Dov Dori and Prof. Shmuel Katz

in the faculty of Industrial Engineering and Management.

The generous financial help of the Technion is gratefully acknowledged.

List of Content;

ADSITACE oottt ettt h e bt h et a e eh e bt e b e b e e bt et e e et e e a et ehe e eh e e bt et e ea et ea b e et e e eb e e bt e b e enbeenteenees 1
Symbols and ADDIEVIATIONS LLiSt.......ueecuiiiiiieeiieiiieeitieerieeeit et eie e st e et e sbeesebeesbeessbeessbaessseesssaessseessseessseessseesssens 3
Part1. Introduction and Back@roundcoocoiiiiiiiiiiiiiii ettt 4
Lo IIETOAUCTION ..ttt ettt b e st eb e bbb et et e bt sb e bt e bt ea s et et et e sbeebeebeenb et entenbenaeas 4
2. Literature Review: Web Application Features and Modeling Methodsc.cceceveeeiininininininceicnicncncnne 6
2.1 WEB APPLICATION FEATURES. ..ottt st 6

2.2 CURRENT WEB APPLICATION DEVELOPMENT TECHNIQUES.....c..cotruiruiriieieieieniinienieeieeieeenennenienne e 8
2.2.1 Hypermedia Authoring TECHRIGUEScccoovciioiiiiiiieiieeiee ettt 9

2.2.2 Object-Oriented Modeling Methods and TeChNiqUescccccoeeeeviioiiieniienieeee e, 11

2.2.3 Behavior-Oriented Modeling APPTOGCRES...............ccccooviiiiiiiiiiiiieiiie e 12

2.2.4 Structure- and Behavior-Oriented APProaCRes..............c.cccceviviiiiiiiiiiiiiieecieie et 13

3. Object-Process Methodology (OPM)......c.cooiiiiiiiiiiieiieiieie ettt te e st seeeteenseesbessaesseenseeseenseennes 14
3.1 OPM ONTOLOGY ..ouiiuiiiiiiiiniiiieiiiieiteite sttt ettt st s et sa e s en e aesne e 14

3.2 THE BIMODAL GRAPHIC-TEXT REPRESENTATION OF OPM......cccociiininiiniiiiiiiinieniececeeeeieie e 15

4. Research Objectives and MethodOIOZYcc.eeiiiiiiiiiieiieeee et 16
Part2. OPM/Web — OPM Extensions for Web Application Modelingccccooceninniiiiiiinennn. 19
5. OPM/Web Overview and EXAMPLEScccvieriiiiiieiieiiieeciieeiteeite et eieeeteeeaeesteeebeesstaeenseesnsaesnseesnseesnseesns 19
5.1 COMPLEXITY MANAGEMENT.......ccciiiiiiiiiiiiiiiiiiiiie ettt st s s 19

5.2 STRUCTURAL ARCHITECTURE REPRESENTATION AND LINK CHARACTERIZATIONScccccveveiinnennnne 21

5.3 INTEGRATING THE REPRESENTATION OF ARCHITECTURE STRUCTURE AND BEHAVIOR...........ccccucuue. 22

5.4 SYSTEM INTEGRITY CONSTRAINTSccuiiiiiiiiiiiiiiiiieiie sttt st s s 24
5.4.1 Data Integrity CONSIFAINES..........cc.oceeeeieeeteeeteeeie ettt ettt ettt ettt e e enees 24

5.4.2 Concurrency and Distribution Control CONSIFQINLScc.cccvueevuveeieeeiieeeeeeeiee e eieeeaae e 26

5.4.3 System Status Integrity CONSIFAINLS...........ccooiueiieiiii ettt 27

5.5 OPM/WEB VS. UML: THE GLAP SYSTEM CASE STUDYccceecteriiriiriniinieeireienienienieereeneeneenensensenaeas 28
5.5.1 OPM/Web Model of the GLAP SYSIEMcc.cccomiiriiiiiiiiiiiiieiesi ettt 28

5.5.2 A Comparison to the UML Model of the GLAP SYStemccccveieviioiioiineniiiniaineaenns 32

6. Modeling Code Mobility and Migration Specification in OPM/WeDbccccoocvviirienienieiieeeieeeeee e 36
6.1 MODELING CODE MOBILITY: DESIGN PARADIGMS AND MODELING TECHNIQUES........ccceeeeeeeeennnneee.. 37
6.1.1 The Client-Server Paradigm and Related ApProacRes.................c.ccooeeevciioiiaceioiiiiiieiieeans 38

6.1.2 Design Paradigms for Code MOBIlity..............cccoooiioiiiiiiiieiiiii ittt 38

6.1.3 Modeling Techniques for Specifying Code Mobility and Migration...................cccccoeeveeveeeenne.. 40

6.2 OPM/WEB AND MOBILE COMPONENTScccteutiieiinientinieeitentetenteniesueeseeseessessensessesaeesesneensensensensensens 41
6.2.1 Mapping Mobility Terms onto OPM/Web CONCEPLS............cccoevueviiiriiiiiiiiieieneie e 41

6.2.2 Modeling the Client-Server Paradigm using OPM/Webccccoccuvvoiioiiviniiniiniiniiiianenns 43

6.2.3 Simulating Mobile Specifications wWith OPCATccccccoeiviriiiiiiiiiiiiieieeeie e 46

6.3 OPM/WEB MODELS OF CODE MOBILITY DESIGN PARADIGMScc.couteiriieiieieienieniieieeeenereienie e 46
0.3.1 ReMOLE EVAIUALIONcc.ooeeeeiieeieeie ettt ettt ae et tae et e taeetveesnseesseens 49

6.3.2 COde-0N-DEMANGcccoeeiiiiieeeee e 50

0.3.3 PUSH. ..ottt e e 51

0.3.4 MODBIle AGENLS ...t 52

6.4 REUSING OPM/WEB CODE MOBILITY MODELS: THE QOS SYSTEM EXAMPLE..........ccceevveeerreennnnne, 53

7. Component-Based Development With OPM/WEDccoiiiieiiiiiiiiiciieieeee et 58
7.1 REUSE OF DESIGN COMPONENTS IN EXISTING MODELING TECHNIQUEScccccceiiiuiiiiiiiiiieiiienes 59

7.2 WEAVING OPM/WEB COMPONENTScouiiiiiiiiiiiiiitiiiiiincis ittt 62
7.2.1 Designing Reusable Generic COMPONEALSccceoueioeirienianiae ettt 62

7.2.2 Intra-Model Weaving RUIES................ccoociiiiiiiiiiieie et e 64

7.2.3 Creating Raw Woven COMPONENLSc..ccceiueeueereiieiee sttt ettt e e 65

7.2.4 Inter-Model Weaving RUIESccoeouiiieiieiie et 68

7.2.5 Merged COMPONERLS.ccocoueiiriiaiiiii ettt ettt 71

7.2.6 Weaving VS. MEFGINGcccceiiiiiiiiiiiiiii ittt 73

7.2.7 Enhancing Raw Woven COMPONENLS...........c..cccocuriiiroiiiiiaieeeneesie sttt 74

7.3 REUSING OPM/WEB COMPONENTS: THE WEB-BASED ACCELERATED SEARCH CASE STUDY............. 74
7.3.1 Designing the Acceleration and Multi Search COMPONENLSccocceevieieeiereiiiiieieeeene 75

7.3.2 Weaving the Raw Accelerated Multi Search COMPONENtcc.cccovceeiieniiaiiiiieie e 77

7.3.3 Refining the Raw Woven Accelerated Multi Search Component................cccoceevcevviiocnoenenene. 78
Part3. OPM/Web Evaluationccoooiiiiiiiiiiiiiie e 81
8. OPM/Web vs. UML — AN EXPEIIMENL......cccuiiiiiiiiiierieiieii et ete et steesiteteeaesaeseeesseeseenseessessaessaeseesesnsennnes 81
8.1 COMPARING MODELING TECHNIQUES — RELATED WORKcccoiiitiriiieeeeeeiiirreeeeeeeeeiirreeeeeeeeeennreeens 81

8.2 EXPERIMENT GOAL, HYPOTHESES, AND DESIGNcccoiiiiuirriieeeeeiiiireeeeeeeeeeiinrreeeeeeeeeennreeeeeseeeennsenens 83
8.2.1 EXPEriMeENt HYPOIRESEScccuveiveeaeieiiieeieeeieeeieeetteetee et e st e saveeessaesbaessaessbaeensaessbeesnseesareas 83

8.2.2 Population Background and Traifing................cccccovoiiiiiiiiiiiiiet e 84

8.2.3 EXPEFIMENT D@SIQI ..ottt e 85

8.2.4 The OPM/Web and UML Models and QUESIIONScc.ccvveeeeeicrieaiiieiiiieeeeeeiieeieeeveessee s 86

8.3 RESULTS AND DISCUSSIONccuiiiiiiiiiiiniitiiieiietcerestetc ettt &7
Part4. OPM/Web Metamodelocooiiiiiiiiiiiii 93
9. The Metamodeling TECRNIQUE.........ccuiiiiiieiieieeie ettt et et e s e snaesseeseeseensesnnes 93
10.OPM Reflective Metamodel — The Top Level SpecifiCationcccoceveeriieriieciieieeiesiiesieeie e 96
11. Metamodel Of OPM SEIUCLUIEc.eeiuiiiiiiiieiiete ettt ettt ettt ettt e bt e bt et e teseeeseeenbeeneeenee 99
11.1 ELEMENTS ..ottt bbb 99
11.1.1 Informal Element DEfiNitionsS..............ccuoeeueiiueeeiueeeiiieecieesteeeteesteesaeesveesseesseesnseesnseesnsee e 99

11.1.2 Element Metamodel..................ccccccooiiiiiiiiiiii it 101

11.2 THINGS ..ttt ettt e b e atea et b e sh e bt e bt ea e et et et e st bt ebeebt et et et e e e b e 103
11.2.1 Informal Thing DefiNitions.c.cccccuciuiriiiiiiiiiiit ittt 103

11.2.2 Thing Metamodelccociiiiiiiiiiiiiiii ittt 105

11.3 STATES ..ot e e e e 107
11.3.1 INformal State DEfINTtiONScccveivuveeiiiiiiieeie et eete ettt se e e et e e sveenaseesibeenssaens 107

11.3.2 S1A1e MEIAMOAEL..............coeeeiieeee ettt 108

114)5 100 SRR 109

11.4.1 Informal Structural Link DefiRitions.............cccoccviiiieeiieiiieeiieeieeeie st sveesve e 111

11.4.2 Structural Link Metamodelcccccooooiiiiiiiiiiiiiiiee et 114

11.4.3 Informal Procedural Link Definitions..............c.ccccocuivuioieniniiiiiiiiiieeeseee et 117

11.4.4 Procedural Link Metamodelccc.cccueeeeiiieiaieiiiiieecee e 120

11.4.5 Informal Event Link Defilitions..............ccociviiiiiioiiiiiiiiieiiniieet ettt 122
11.4.6 Event Link Metamodelccc.ccouoovuiiiieiieiiiieeeiee e 127

12. Metamodel 0f OPM BERaviorcoouiiiiiiiiiiiieieee ettt 130
12.1 COMPLEXITY MANAGEMENToiuiiiiiiiiiiiiiiiiieiiiiec it 130
12.1.1 Informal Refinement and Abstraction Mechanism Definitionsccceecvevcuveecreencueencnnns 130

12.1.2 Refinement and Abstraction Mechanism Metamodel..................cc.cccovvoueviianceeeniienireennnns 133

12.1.3 Informal Consistency Rule Definitionsc.ccccuveoeriniiiiiniiiiiiiieiesese et 140

12.14 Metamodel of the Abstraction Procedural Link Consistency Rule...............c.cc.ccoccvcvveeenne. 142

12.2 METAMODEL OF AN OPM-BASED DEVELOPMENT PROCESSccccooiiiiiiiiiiiiiiiiicicicicce 144
12.2.1 Main Development SIAZES............c.cccccueririiiiriiiiiteeeeeee sttt 144

12.2.2 The Requirement SPeCifyiNg SIAZEc.cccueeueeieiiiieiieee et 146

12.2.3 The Analyzing and DeSiQNing SAZE..............c.cccueveiieieiiieei ettt 148

12.2.4 The IMPlementing SAZEcccuevueeiieieeieeeee ettt 151
Part5. Summary and Implementation ISSUES...............coccuiiiiiiiiiiniiiiiie e 153
13. Summary and CONIIDULIONccueeiieiieieeie et ettt ettt et et e e e ebesaeseaesseesseenseenseensesssesssesseenseenseensesnnes 153
14, IMPLemMENtAtiON ISSUCS......ciieiiieitieiieie ettt ettt et e ettt e bt et e et e s aessaesseesseenseenseenseessessaesseenseensesnsennnes 158
Appendix A. OPM/Web Concepts and SYMDOISccocierieriieiieiieiesieseeee et 164
Appendix B. The XML Schema of the Object-Process Language (OPL)c.coccvveviieeiieniienieeciieee e 167
Appendix C. The OPM/Web vs. Conallen’s UML experiment FOImMS..........ccoccveeriieriieeniienie e ceie e 173
Appendix D. Definitions of Link Essence, Affiliation, and SCOPEcccveervierieiriienieerieesee e 185
Appendix E. OPM Metamodel Constraints in OCL..........ccccuviiiieiieeiiieeieeiie e eseeeseeesireeseeesteeesaneeneeeesaneeees 188
Appendix F. OPCAT — Object-Process CASE TOOL........cccoorieiieiieieeiesiesieee ettt 190

1) 1= 1 Lot 1 RSP RSRR 201

List of Figures:

Figure 1.

Figure 2.

Figure 3.
Figure 4.

Figure 5.
Figure 6.

Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

Figure 15.

Figure 16.

Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.

Applying OPM scaling mechanisms to process P1. (a) Process P1 is unfolded. (b) Process P1

IS TN-ZOOMICA. ...ttt ettt st e e b et e bt et e bt e s bt e b e e bt emee e st e satesbee bt enteeateeneenneens 20
Suppressing and expressing of Printer states. State expressing of (a) yields (b) and state

expressing of “on” in (b) yields (c). State suppressing moves from (c) to (b) to (a). ..eeeveveereencnnee. 20
An OPD of a typical Web application architeCture.............cccocuerierieriieiiieieeieseeseee e 21
Modeling the Form Verifying transferring process. (a) The top-level version. (b) The detailed
version — Form Verifying is unfolded and Code Transferring is in-zoomed.ccccoceevevveniencnnenne. 23
An OPD of the data integrity €XamPIe.........ceeuerieriieriiiiie ittt e e aesnesseesneeseenes 25
Deterministic and non-deterministic executions of processes P1, P2 and P3. (a) P2 and P3 are
independently executed after the termination of P1. (b) P2 or P3 (but not both) are

independently executed after the termination of P1. (b) P2 or P3 (or both) are independently
executed after the termination OFf Pl ..ot 27
A status integrity cONStraint €XamPle..........ccueeierierieiieie ettt 28
The top level OPD of the GLAP SYStEM......cccieiiieiieiieieeiieeieie ettt esee e se s 29
(a) IGlossary, unfolded. (b) Server Web Pages, unfolded.ccoecvevieiienieniiiceeeeeeee s 30
GLAP Server Executing, in-ZOOMEc..cooiiriiiiiiiiiiiiiierieie ettt 31
Browser Processing, iN-ZOOMEAc.ceccuieiiieiiieiiieeieeriteste et e saeesereesaeeseseesseessseessseessseessseesssens 31
The use case and site map diagrams of the GLAP SYStem.......cccceoeviiiiiniiniinieieeeeeeeeecee e 32
The package diagram and the ‘Browsing Detail’ class diagram of the GLAP System.........c..c......... 33

A generic OPM/Web model of a Component Transferring process. (a) Component
Transferring transfers Component's code, leaving the original Component intact. (b)

Component Transferring transfers an instance of Component, leaving the original Component

TIIEACE. .ttt ettt ettt ettt ettt b e bt b e bt ea et et b e bt e bbbt et et bbbt bt bt et et b e bbbt eh e et et e nae e bes 43
An OPM/Web model of the Client-Server (CS) paradigm: (a) The OPD (b) The corresponding

OPL PAragraph....c..couiiiiiieiie ettt ettt st a ettt e a e a e bbb e 44
OPCAT 2 simulation snapshots before (a) and after (b) executing CS Interacting. Existing

things in @ SNAPSOt APPEAT TN LAY . .euveerrieerieiiiieeitieeieeeteesteeereesteeebeesbeeeseesnseeeseesnseeesseesnsaesnseesns 46
A generic OPD of the REV paradigimc.oevevieiiieiiiiie ettt 49
A generic OPD of the COD Paradigi.........c.oevevieriieiiieiieiie ettt ae e seeesneeseenes 50
A generic OPD of the PUSH paradigimc.cccvevuieriieiiiiiieiie ettt 51
A generic OPD of the MA paradigim..........ccueeieiiieniieiiieie ettt se e 53
The top level OPM/Web diagram of the QO0S SYStem........cccuveeeiiiiiiireiiieiiieeee et 54
Detailing the Client — ISP AZeNCY INtEIraACtION.cc.ieiirieriietietieieete ettt 55
Detailing the ISP Agency — Router Agency interactiono.cceoeereerierienieniienieeie e eees 56
A reusable generic Time Stamped EXecution COMPONENLtccvevvveireierienienieenieeie e seeeseeeeeenns 63

The possibilities of connecting two entities in OPM/Web. (a) Two systemic entities can be
linked by a systemic link. (b) An environmental entity and a systemic one can be linked by a
systemic link. (¢) Two environmental entities can be linked by a systemic link. (d) Two

environmental entities can be linked by an environmental link.............ccccoevviiiriieniieniienieeieeeee, 65

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.
Figure 32.

Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.

Figure 38.
Figure 39.
Figure 40.

Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.

A raw OPM/Web woven component in which the generic Time Stamped Execution component

(top) is woven into the target Product Handling component (bottom)ccceeeevveeneenieninienieneens 67
The raw woven component of Figure 26, in which Concrete Node, its binding with Node, and

the binding of Product to Data Item eXplicitly appear...........cccevveriieriieciieieeieseeseee e e 70
The merged component which is derived from the woven component in Figure 26 and is

CUUIVALEIIE £0 T8 ...eeutieniieiiieteeieeieese et ettt et e st e et et e esteesteesaesseesseenseensesseesseenseenseenseansesnsenseeseenseensennnes 72
The Acceleration component. (a) SD is the top-level diagram. (b) SD1 has Accelerating of SD
in-zoomed. (c) SD1.1 has Full Process Activating of SD1 in-zoomed.........ccccccvvevvrerveeneeenieeereenne 75
The Multi Search component. (a) SD is the top-level diagram. (b) SD1 has Multi Searching of

SD IN=ZOOIMEA. ...ttt ettt ettt ettt et ea e et e e b e sb e e bt e bt e eeesaeesae e s bt e bt e bt eateenteeneenneens 76
The Accelerated Multi Search COMPONENL..........cccvieiiieieeieeieiiee ettt eae s 78
Improving the Result Merging algorithm of the Accelerated Multi Search component by

BNKING 110 DB ..ottt ettt et e et e s e st e st e b e enteenbeenaeese e teenseenneennes 79
Reusing the Log Recording component in the Accelerated Multi Search componentc.c....... 80
SD, the top level specification, of the OPM reflective metamodel............ccceevevveriienciieniieniiecieeeen. 96
SD1, in which OPM Notation i8S UNfOIAEd........cccuvviiiiiiiiiieiiie e 97
A simple OPM model of objects, processes, states, and lnksccccooceereriiiiniinienieiccieeienene 100
The OPM model of Figure 36 extended with the environmental object Product Catalog and the
PhSICAl ODJEC RECEIPLcuvieuieieiiiiieciieeiieit ettt sttt st ettt e enbessaessae s s eeseenseenseennas 101
SD2, in which Ontology of OPM is unfolded..........c.cccviieiieiieiiii e 102
An OPM model of simple and complex objects and time constrained processes..........cc.ceoerverrennene 103
An OPM model of sequential and parallel processes. (a) Supplying and Paying are executed

serially. (b) Paying and Supplying are executed in parallel............ccocoviiiiiniiniininiiee 105
SD2.1, in which Thing of OPM Ontology is unfolded..........c.ccoooeiiiiiniiniiniieeeeeeee e, 106
An OPM model of initial, default, final, and timed Statesccevvviiiiiiiiiiieeiiiieeeeeeeeeeeeeeeee e 108
SD2.2, in which State of OPM Ontology is unfolded............cccoeeiriiroiiriiiniiieeeeeeeee e 109
SD2.3, in which Link of OPM Ontology is unfolded............cccoeveriiiriiriinieieeee e 111
An OPM model with various structural linkscccccueviniiinininiiieceeeceeese e 112
SD2.4 in which Structural Link of OPM Ontology is unfoldedccceoverievieciniieieieeeeeee, 115
SD2.4.1, in which Fundamental Structural Link of OPM Ontology is unfolded............c.cccoceennenee. 116
An OPM model with various procedural liNKScccoecvieriiieriiieniieniie e 118
A refined OPM model of effect links as consumption and result linkscccceeveiienceeniiienieenen. 119
An OPM model with path labels on procedural links...........ccceecuirriiieriieniieeniiecieeceeceeeee e 120
SD2.5, in which Procedural Link of OPM Ontology is unfolded...........cccoceevieviecinienieieeeeeee, 121
An OPM model of an instrument link (a) and a conditional instrument link (b)........ccccccevenencnnene 122
An OPM model of an agent lNK..........ccoooieiiieiiiiieciesieseee e 123
An OPM model of a state entrance event linkc..cooiiiiiiiiiiiini e 124
An OPM model of a general event 1INkccoeviiiiiiiiiiiieiiieciieceecee et 125
An OPM model of an invocation HNK...........cocoriiiiiiiiiiiiieeeee e 126

An OPM model of a timeout €VENt 1INK...........oveiiiiiiiiiiiiiiiiieeceee e 126

Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.

Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.

Figure 79.
Figure 80.

Figure 81.
Figure 82.
Figure §3.
Figure 84.
Figure 85.

Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.

Figure 92.

An OPM model of @ reaction tIMEOUL €VENTccooevuiiieeiieiieiieeeeeeeeeeeiire e e e e eeeaeeeeeeeeeearaeeeeeeeeas 127

SD2.6, in which Event Link of OPM Ontology is unfolded...........ccccoevviiviiiniieniiiiieieeieeeee 128
SD3, in which System is Unfolded............ceriirieiiieiieeeeeee e 135
SD3.1, in which Scaling is Unfolded............ccoerieiieeiieieieeee e 136
SD3.2, in which Entity Instance is unfolded............c.ocvrierierieiiii e 138
SD3.3, in which Thing Instance is unfolded............ccoeoirrierienieiie e 138
SD3.4, in which Object Instance is unfolded...........ccoooiiiiriiiiiiiiiee e 139
Example for scaling consistency rules. (a) Folding of the object Order. (b) Out-zooming of the

process Ordering. (c) State suppressing of the object Order............coceeveveiiiiiinienienceceeeeene 142
SD3.5, in which the consistency rule is SPeCified.........ccveviiirviiiriieiiieriiecre e 143
SD4, in which System Developing iS iN-Z0OMEdccuerieriierieeiieeieeieriee e 145
SD4.1, in which Requirement Specifying is in-Zo0omed............ccceeeuerierierieniieiieie e 147
SD4.2, in which Analyzing & Designing is in-Z00mMed...........ccceevereririeieriniineneneeceeeeeese e 149
SD4.2.1, in which Analysis & Design Improving is in-zo0med.............cceeverrerirecieeiesieneeneeeeenes 150
SD4.3, in which Implementing is iN-ZOOMEdcccueriiiiiriiiii e 152
The architecture and functionality of the generic OPM code generatorccceeeveeecveerreenveenen. 159
OPCAT TIP screen snapshot — the OPL tab........ccceevciiiiiiiiiiieiiiecieecieeceeee st 160
OPCAT TIP screen snapshot — the Translations tab..........c.ccceevierienieieeiieie e 161
OPCAT TIP screen snapshot — operation detailS...........ccoecuvevueeierieniereeeeee e 162
Conallen’s UML specification of the project management system — Deployment diagram............. 173
Conallen’s UML specification of the project management system — Class diagram............c.cccc..... 173

Conallen’s UML specification of the project management system — Statechart of project and
PAYITIENE STATUS ..eeuvvieeereeriiieeieesteesteesteesteessteesseessseessseeasseessseessseessseessseessseessseesssessssesssseessseessseesssees 174
Conallen’s UML specification of the project management system — Site map diagram 174

Conallen’s UML specification of the project management system — Sequence diagram of

Project Order Handling...........cc.oiieiioiieieee ettt ettt ae e ssae e esseeseenseenseesnensnens 175
OPM/Web specification of the project management system — Top level diagram..............ccccueeneen. 175
OPM/Web specification of the project management system — DB unfoldedcccceccecvininininnene 176
OPM/Web specification of the project management system — Interface Handling in-zoomed 176
OPM/Web specification of the project management system — Database Handling in-zoomed........ 177

OPM/Web specification of the project management system — Project Order Handling in-

/410311 1<Ts EO OSSPSR TRRPPOUPRRRPRN 177
Questions related to the project ManagemMent SYStEIMc..eeuerierieriereeieeie e neenee e eiee e 178
Conallen’s UML specification of the book ordering system — Deployment diagram....................... 179
Conallen’s UML specification of the book ordering system — Class diagram..............cccceecvrerennne 179
Conallen’s UML specification of the book ordering system — Statechart of cart status................... 180
Conallen’s UML specification of the book ordering system — Site map diagramccccceeeeneee 180

Conallen’s UML specification of the book ordering system — Sequence diagram of book
SCATCIINEeeuviieiie ettt ettt ettt eette et e et e et e etee e tbeesbee e taeesseesssaeenseeesseeenseesnsaeenseesnsaeenseesnsaeensaesnseennseeans 181
OPM/Web specification of the book ordering system — Top level diagram..........ccccoceeviriniennnen. 181

Figure 93. OPM/Web specification of the book ordering system — DB unfoldedcccooviniininnnnnnnnn. 182

Figure 94. OPM/Web specification of the book ordering system — Interface Handling in-zoomed 182
Figure 95. OPM/Web specification of the book ordering system — Database Handling in-zoomed.................. 183
Figure 96. OPM/Web specification of the book ordering system — Book Choosing Handling in-zoomed 183
Figure 97. Questions related to the book 0rdering SYSteMevveriieriesiiiie et 184
Figure 98. An OPM specification of the Link ESSENCe rule.........ccevierieiiiiiiiiieiieeieiccee e 185
Figure 99. An OPM specification of the Link Affiliation 1ule..........ccceeeviieiiienieiiiieieee e 185
Figure 100. An OPM specification of the Link SCOPEcceeviieriiiiiiiiiieiiecie et 186
Figure 101. The OPCAT GUI showing the top-level specification of the travel management system............ 193

Figure 102. (a) The new OPD, created in response to the user's in-zooming operation on the Travel
Managing process. (b) The OPD after the user has filled in details within the in-zoomed Travel
IMEANAZING PIOCESS. -.cuveuverrieteeieeutetententesieete et ettestestesbesteebeebees s et entesbesbeebesbeess et enbenbesbeebeeueensensensensenaeas 194
Figure 103. The situation of the travel management system after the Option Determining sub-process of
Travel Managing has terminated and Option was generated.............coceeeeienienenenenerieeienienenenaens 198

Figure 104. The final situation of the travel management system after running the simulation....................... 198

List of Tables:

Table 1.
Table 2.
Table 3.

Table 4.

Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.

Table 12.

Table 13.

Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.

Comparison of existing modeling approaches to the Web application domain............cccceeveercenenee. 17
Dependency relations between distributed and concurrent ProCesSeseecvveereeereerrreeeireesseenireens 27
The resource and computational components in Requesting Site (the client) and Processing Site

(the server) before and after an activation of CS Interacting...........ccceceeveenerneiniiienienieeeieeeenens 45
The resource and computational components in Requesting Site (the “client””) and Resource

Site (the “server”) before and after an activation of the transfer processes in each one of the

four code mobility design PAradigimS.......cceervieriierieiiieeierieree et ettt e e sae e e steenseensesnnennaens 48
The syllabus of the course “Specification and Analysis of Information Systems”........ccccccceeverennenne. 85
EXPEriment DE@SIZI «...ecuviiuiiiiiiieiiee ettt ettt ettt st b ettt et e aeesb e b e e e ae e 86
EXPeriment RESUILS......cccuiiiiiiiiiieiiieeiie sttt sttt st e et e st e et e e sbeeesbeessaeeesseessseeenseesnseesnseesnsaennsenans 87
Results of the overall and construction grades — the mixed model...........ccccecviiiieeiiiiiiieeiie e 89
Results of the overall and construction grades according to the case studies........c.ccceceereereercencnnne. 90
Results of the comprehension grades — the GENMOD modelccccoovenieniieiiieciiniecieeeeeeee. 91

Examples of the three entity types in their in-zoomed and out-zoomed versions. (a) The
process Ordering in-zoomed (b) Ordering out-zoomed (c) The state paid in-zoomed (d) paid
out-zoomed (e) The object Computer in-zoomed (f) Computer out-zoomed.cccceveeeeeruennennnnns 131

Examples of the two thing types in their unfolded and folded versions. (a) The object Order

unfolded. (b) Order folded. (c) The process Ordering unfolded. (d) Ordering folded. 132
Examples of state expressing and state suppressing. (a) The object Order is state expressed. (b)

Order 1S StAte SUPPIESSEU. ..eeuvervreriiertieiieieeieeteetertt et et eeteesaessaesseeseeseessesnsessnesseesseenseanseensesssensaens 133
Abstraction order of procedural lINKSc.occveiiiiieiieiieeee e 141

Mapping of OPM/Web concepts to the requirements of a Web application modeling method........ 157

Supported functions in OPCAT TIP translations............ccueeverieereeiieeeiesieniereeie e seesee e 163
Entities — Things and StateS........cccieriiieiiiieiiieiieeeiie ettt ettt sreesreesteeseaeesaeessbeesaeessseessseessseas 164
Structural Relations, their OPD symbols, and OPL Sentences..........ccceevverveeriienieenieenreesreeneneenees 164
Procedural Links, their OPD symbols, and OPL SENtences...........cccceeveerieeniieniieenieenieenveesveenenens 165

Event links, their semantics and SYMDOIScceeriieiiiiiiiieiieeciieceeeie et sve e sve e 166

Abstract

The exponential growth of the Web during the last two decades and its expected spread in the
next years has set the stage for increasing use of Web applications. Web applications, which
can be classified as hybrids between hypermedia and information systems, have a relatively
simple distributed architecture from the user viewpoint but a complex dynamic architecture
from the designer viewpoint. They need to respond to operation by an unlimited number of
heterogeneously skilled users, address security and privacy concerns, access heterogeneous,
up-to-date information sources, and exhibit dynamic behaviors that involve such processes as
code transferring. Common system development methods can model some of these aspects,
but none of them is sufficient to specify the large spectrum of Web application concepts and
requirements. The main reason for this is that these techniques are either structure- or
behavior-oriented, but not both. This work presents the development and evaluation of
OPM/Web, which is an extension to the Object-Process Methodology (OPM) that satisfies
the functional, structural and behavioral Web-based information system requirements in a
single frame of reference.

The work consists of five parts. The first part reviews Web applications modeling needs and
critiques existing development techniques in this field. It also define the research goals and
methodology. The second part presents OPM/Web extensions. The main extensions of
OPM/Web with respect to OPM are: (1) adding properties to links to express such
requirements as encryption; (2) extending zooming and unfolding facilities to increase
modularity within a single model and to improve component reuse; (3) defining components
and weaving rules for their composition; (4) separating declarations of process classes
(representing code) from their instances to model code migration; and (5) adding global data
integrity and control constraints to express dependence or temporal relations among

(physically) separate modules.

The third part evaluates OPM/Web by experimentally comparing it to a Web extension of
UML, the standard object-oriented modeling language. The experiment, whose subjects were
third year undergraduate information systems engineering students, included comprehension
and construction questions about two representative Web application models. OPM/Web was
found to be more comprehensible when answering questions about the system dynamics and
distribution and easier to use when constructing or extending existing models. No significant
differences were found with respect to comprehension of the system's structure.

In the forth part of the work, OPM/Web is formally metamodeled using OPM ontology and
notation. This metamodel captures the ontology and notation of OPM/Web, as well as a
generic OPM-based development process. This capability of OPM (and OPM/Web) to model
itself is indicative to its expressive power.

In the fifth, final part of the work, I summarize the contribution of this research, its

application in OPCAT, the Object-Process CASE Tool, and refer to implementation issues.

Symbols and Abbreviations List

Code Full Name
AOD Aspect-Oriented Design
AOP Aspect-Oriented Programming
CAME Computer Aided Method Engineering
CASE Computer Aided Software Engineering
CBD Component-Based Development
COD Code On Demand
CORBA Common Object Request Broker Architecture
COTS Commercial Of-The Shelf
CS Client-Server
DB Database
DBMS Database Management System
DFD Data Flow Diagram
ECA Event — Condition — Action
EER Extended Entity Relationship
EORM Enhanced Object Relationship Model
ER Entity-Relation
GUI Graphical User Interface
HDM Hypertext Design Model
HTML HyperText Markup Language
MA Mobile Agent
MDA Model-Driven Architecture
MMF Meta Modeling Facility
MOF Meta Object Facility
NIAM Nijssen Information Analysis Method
OCL Object Constraint Language
OML OPEN Modeling Language
OMT Object Model Technique
00 Object-Oriented
OOHDM Object-Oriented Hypertext Design Model
OPCAT Object-Process CASE Tool
OPD Object-Process Diagram
OPEN Object Process, Environment, and Notation
OPL Object-Process Language
OPM Object-Process Methodology
ORM Object Role Model
RDF Resource Description Framework
REV Remote Evaluation
RMM Relationship Management Methodology
RPC Remote Procedure Call
RUP Rational Unified Process
UML Unified Modeling Language
WebML Web Modeling Language
WSDL Web Services Description Language
XML eXtendible Markup Language

Part 1. Introduction and Background

1. Introduction

The exponential growth of the Web and the progress of Internet-based architectures have set
the stage for the sprouting of Web applications. Web applications are diverse and include
electronic catalogs with secure and on-line transaction processing, real-estate listing services,
inventory management systems, private membership services, job matching applications,
interactive discussion groups and chat rooms, interactive training, internet commerce
solutions, and many more. Built on the foundations of the World Wide Web, Web
applications, which provide a rich interactive environment, are completely cross-platform and
can be accessed anywhere in the world at any time. The only client-side software needed to
access and execute Web applications is a Web browser environment. In recent years, the
World Wide Web has become the platform of choice for developing distributed systems. This
preference is based on the Web's powerful browsing communication paradigm and on its
open architectural standards, which facilitate the integration of different types of content and
systems [35].

Web applications can be classified as hybrids between hypermedia and information systems
[66]. Like hypermedia, which is based on computer-addressable files that contain links to
multimedia information (e.g., text, graphics, video, or audio), information on the Web is
accessed in an exploratory way rather than through “canned" interfaces. The way in which
the navigation is done and presented in Web applications is therefore of prominent
importance. Like information systems, the size and volatility of data and the distribution of
applications requires consolidated architectural solutions based on such technologies as
database management systems and client-server computing.

Due to the hybrid nature of Web applications, methodologies and software tools from both

hypermedia and information systems may greatly assist mastering the complexity of these

4

applications. The three major design dimensions that characterize many Web applications

are:

1. The structure that describes the organization of the information managed by the
application, as well as its user interface;

2. The behavior that concerns the facilities for accessing information, manipulating it, and
navigating across the application content; and

3. The architecture that specified the static and dynamic distribution of the application.

Hypermedia authoring techniques [66], which help design hypermedia applications, focus
on modeling the structure, content, and navigation of a system, but they tend to neglect the
architecture and behavior of many complex, dynamic Web applications. Hence, these
techniques are primarily suitable for modeling and developing content-rich applications that
are published once and are hardly changed.

In the information systems area, the object-oriented paradigm and the Unified Modeling
Language (UML) [68] are commonly used. UML, which has become the industrial standard
of the object-oriented methods, models the system structure through classes, while system
behavior is expressed through services and message passing between objects. The static
system architecture is modeled in yet another view. The use of the multi-view in UML and
the lack of clear, separate mechanism for specifying processes weaken UML models integrity
and expressiveness [24, 78, 87].

Hypermedia authoring techniques and information system development methods model
some Web application requirements, but each one of them on its own, or even a combination
of them, is not sufficient for specifying all the aspects of Web applications. This work
extends the Object-Process Methodology (OPM) to respond to Web application domain

needs. The motivation for this extension, which is called OPM/Web, its features, its

evaluation and comparison to the standard UML, and its formal metamodel are the focus of

this research.

2. Literature Review: Web Application Features and Modeling Methods

2.1 Web Application Features

Although the variety of Web applications is very wide, several features, which are listed
below, are common to most Web applications [13, 35, 58].

Complex dynamic and distributed architecture

The general architecture of Web applications is client-server, which consists of three
components: one or more Web servers, a network connection (mainly http), and client
browsers. A contrast exists between a simplistic user perspective, which views Web
applications as resident on a server and accessed remotely, and a relatively complex
designer’s viewpoint of architectural reality with many structural and behavioral aspects [1].
Unlike stand-alone systems, in which architecture is known at compilation time and does not
change, most Web applications feature dynamic architecture, which can change and evolve
during run-time. Therefore, a specification method for Web applications should support
modeling logical distributed elements, their bindings to physical elements, and algorithms for
detecting system architecture and its dynamic changes during run-time.

Unlimited, heterogeneously skilled users

The Web allows universal access to its applications for an unlimited number of users of all
skill levels. In addition, the competition among different solutions (Web sites) for the same
user segment emphasizes user interface design as one of the first priorities. Any modeling
technique for Web applications should therefore meet two main user interface requirements:
expressiveness and complexity management. Expressiveness means that the technique should

be able to model all the applicable structures, such as complex GUI classes of Java or

navigational capabilities of HTML. Moreover, since the developer obviously cannot represent
every single Web object in a flat user interface, a variety of techniques are required to reduce
the clutter. Some wuseful techniques for complexity management are aggregation,
summarization, filtering, and example-based representations [67].

Security and privacy support

Although the Web is reachable by any connected user around the world, Web applications
potentially deal with private information or restricted user group information. Therefore, Web
applications should prevent the users from causing (either intentionally or unintentionally)
harm to the systems, by security and privacy management [31]. Recent attacks and defacing
of Web sites underscore this need. ISO 7498-2 (1989) defines five main categories of security
services: authentication, access control, confidentiality (privacy), data integrity, and non-
repudiation (of the transaction by the performer). These types of security services should be
specified in the early stages of system development, i.e. during the analysis and design
phases.

Heterogeneity of information sources

Web applications must handle and integrate heavy, complex, hierarchical data, as well as
unstructured or semi-structured data. These data can reside directly in documents and might
be static (text, pictures, etc.), dynamic (Java applets, HTML forms, etc.), or linking
components. The data may also be stored in different systems and distributed over multiple
sites, possibly through a distributed DBMS, which increases security, provides for shared
access, and boosts performance. A Web application modeling method should be able to
specify this variety of information sources.

Up-to-date Information

Updates of data input into Web applications are done in real-time or near real-time.

Moreover, some Web applications should run continuously, forcing the developer to be able

to add new constructs and functionality without disturbing the working version. One way of
facilitating concurrent updating is to apply modularity, which is essential for maximizing
conceptual clarity, modifiability, understandability, and reusability of the specifications.
Modular programs are easier to develop and test, especially for a team of designers and
programmers. They are also easier to understand and maintain, because certain changes do
not require extensive modifications or re-testing of the entire application and can be
implemented locally.

Dynamic behavior

Most Web applications are dynamic. They access data, manipulate it, ask the server for code,
verify different types of constraints, and produce results for the users or updates for the
server. The behavior of Web applications results from the trade-off between evolving
functionality requirements and existing bandwidth limitations. The dynamic behavior can be
exhibited through animations, dynamic presentations, or filling in interactive forms, where
executing code at the client side is required. In order to be able to reuse specifications of Web
applications, modeling methods should support specifying conceptual Web terms separately
from the technical solutions. An example is modeling code transferring processes that can be

implemented as Java applets or mobile agents.

2.2 Current Web Application Development Techniques

As noted, existing system and software development approaches can be divided into two
groups: hypermedia authoring techniques and information system development methods. The
later group can be further divided into object-oriented approaches, behavior-oriented ones,

and hybrids of the two.

2.2.1 Hypermedia Authoring Techniques

Hypermedia authoring techniques are based either on the Entity-Relation (ER) model (e.g.,
HDM, RMM, and WebML) or on the object-oriented model (OOHDM or EORM).
Employing the hypermedia authoring approach, the Web application structure, navigation,
and presentation are designed.

The Hypertext Design Model (HDM) [38, 39] shifts the focus from hypertext data models
as a means to capture the structuring primitives of hypertext systems, to hypertext models as
a means for capturing the semantics of a hypermedia application domain. It prescribes the
definition of an application schema, which specifies classes of information elements in terms
of their common presentation characteristics, their internal organization structure, and the
types of their mutual interconnections. Web structure is expressed by means of entities, sub-
structured into a tree of components. Navigation can be internal to entities (along part-of
links), cross-entity (along generalized links), or non-contextual (using access indexes, called
collections).

The Relationship Management Methodology (RMM) [48] evolves HDM by embedding
its hypermedia design concepts into a structured methodology, splitting the development
process into seven distinct steps and giving guidelines for the tasks. The development cycle
steps in RMM are ER design, slice design, navigation design, conversion protocol design,
user-interface design, runtime behavior design, and construction & testing.

The Web Modeling Language (WebML) [13] enables specifying the core features of a site
at a high level, without committing to low-level architectural details. The specification of a
site in WebML consists of four orthogonal perspectives: (1) The structural model which
expresses the data content of the site in terms of the relevant entities and relationships; (2) the
hypertext model that describes one or more hypertexts that can be published in the site. Each

different hypertext defines a so-called site view, each of which consists of two sub-models:

the composition model (i.e., the hypertext that compose the pages) and the navigation model
(expressing how pages and content units are linked to form the hypertext); (3) the
presentation model that expresses the layout and graphic appearance of pages, independently
of the output device and of the rendition language. This model is represented by means of an
XML syntax; and (4) the personalization model which defines users, user groups, and
permissions.

The Object-Oriented Hypertext Design Model (OOHDM) [88, 89] is a direct descendant
of HDM. It differs from HDM in its object-oriented nature, and in that it includes special-
purpose modeling primitives for both navigational and interface design. OOHDM comprises
four different activities: conceptual design, navigational design, abstract interface design, and
implementation. During each activity, except for the implementation, a set of object-oriented
models describing particular design concerns are built or enriched from previous iterations.

The Enhanced Object Relationship Model (EORM) [53] is defined as an iterative process
concentrating on the enrichment of the object-oriented model by the representation of
relations between objects (links) as objects. The technique is based on three frameworks of
reusable libraries: one for class definition, one for composition (link class definition), and one
for GUIs. EORM differs from OOHDM mainly in that OOHDM clearly separates
navigational from conceptual design concerns by defining different modeling primitives for
each step, while EORM combines them all together. The advantages of EORM over
OOHDM are that relations become semantically rich as they are extensible constructs, they
can participate in other relations, and they can be part of reusable libraries.

All the hypermedia authoring techniques emphasize content and presentation modeling but
do not adequately describe complicated behaviors. Since these techniques do not support

physical architecture representation and security and privacy management either, they may be

10

suitable for designing content-rich applications with a low to medium level of dynamic

behavior, but not for high-volume, distributed Web-based systems.

2.2.2 Object-Oriented Modeling Methods and Techniques

Object-orientation is a general paradigm for developing systems that focuses on the objects
that build the system. The most common object-oriented modeling language is the Unified
Modeling Language (UML) [68]. UML is a general-purpose visual modeling language,
which is applied mainly for specifying, constructing, and documenting the artifacts of
software systems. The structural models of UML define the classes of objects important to a
system and to its implementation and the relationships among them. The dynamic behavior
defines the history of objects over time and the communications among them. Web
applications, like other software-intensive systems, are represented by a set of UML models,
including a use-case model, a class model, an interaction (collaboration) model, a state
transition model, and a deployment model. There are several UML extensions for the Web
application domain, including [6, 18, 97]. All of these extensions are based on the UML
built-in extension mechanisms, which are tagged values, stereotypes and constraints.

The Object Process, Environment, and Notation (OPEN) [57, 75], which is a complete
methodology that uses the OPEN Modeling Language (OML) [45] as its notation, offers a set
of principles for modeling all aspects of software development across the system lifecycle.
The development process is described by a contract-driven lifecycle model, which is
complemented by a set of techniques and a formal representation using a modeling language
(e.g., OML or UML).

The strength of object-oriented techniques is in modeling the structural aspects of a system.
However, they are far less suitable for representing the dynamic and functional aspects of an
application. In particular, they do not have a single concept or mechanism for specifying

stand-alone processes, which do not belong to a specific object and do not follow the

11

encapsulation principle. This is a major hindrance to developing Web applications, which, as

noted, typically feature complex dynamic behaviors.

2.2.3 Behavior-Oriented Modeling Approaches

The behavior-oriented approaches specify the conditions or constraints that are required to
activate some (perhaps partly specified) functionality at a desired moment. Three of the
behavior-oriented design techniques, which also address the development of Web
applications and distributed systems, are the superimposition approach, Aspect-Oriented
Design and the Event-Condition-Action paradigm.

The superimposition approach [10, 11, 49] introduces a procedure-like control structure,
called a superimposition, that allows convenient expression of the superimposition of one
algorithm on another. In this construct, both formal processes and schematic abstractions
(called role-types) are declared, each with formal parameters and a sequential communicating
algorithm using those parameters. The declaration captures a distributed algorithm that is
designed separately, but intended to be executed in conjunction with other activities in the
same state space. The construct is combined with an existing collection of communicating
processes by instantiating the formal processes and associating each process of the collection
with one role-type.

Aspect-Oriented Design (AOD) [2, 50, 93] is an abstraction principle intended to help
software developers separate multiple concerns in their design and source code. An aspect
modularizes the features for a particular concern and describes how those features should be
integrated (woven) into the system design. In object-oriented methods, an aspect is typically
spread across multiple methods in multiple classes. In AOD, an aspect can be separated from
the classes to which it applies. The aspect-oriented approach emerged through the
development of Aspect] [3], a programming language based on Java. This was followed by

attempts to percolate this concept to earlier stages in the application development lifecycle,

12

i.e., to the design stage. Most of the methods relying on this approach use UML. Suzuke and
Yamamoto [93], for example, have extended the UML metamodel with another classifier
element (in addition to Class, Interface, Component, and Node), called Aspect. Kersten and
Murphy [50] have introduced the aspect notion as a new notation — a diamond and an
associated rectangle, which consists of four sections: attributes, operations, introduce
members, and advice methods.

The Event Condition-Action Paradigm (ECA) [14] is used in information systems in
general and database systems in particular in order to apply the concept of triggers in
specifying the behavior of a system. A trigger is a procedural processing element, stored in a
database and executed automatically by the DBMS server under specific conditions. A trigger
is composed of three components: Event, Condition and Action. It may also take the form of
an “Event Condition then Action else Action” (also called ECAA principle). In Web
applications those principles can be used, for example, to model business rules [79],
expressed by an XML-likeobject -oriented meta-language.

These approaches incorporate new functionality to existing models and define conditions
for the execution of processes. However, they tend to pay less attention to the system’s
structural organization, the physical architecture representation, and the detailed design of the

system dynamics.

2.2.4 Structure- and Behavior-Oriented Approaches

Proponents of both structure- and behavior-oriented approaches have reached the
conclusion that focusing on just one aspect of a system while neglecting the other is
counterproductive. To remedy this shortcoming, each approach adopted some technique of its
counterpart. DFD-based techniques, for example, rely on ER or class diagrams for modeling
the static data scheme. UML incorporates several process-oriented diagrams, including

interaction and Statecharts, which are state transition diagrams.

13

The need for adequate representation of both the static and dynamic aspects of a system,
while keeping the model as simple as possible, was a prime motivation for the development
of Object-Process Methodology (OPM) [23]. OPM is an integrated modeling approach that
uses objects, processes, and links to represent the system's structure and behavior in the same
diagram type. This way, OPM attempts to solve two of the main deficiencies of the object-
oriented model: the complexity management problem and the model multiplicity problem
[24, 78].

Although OPM is a promising candidate for modeling distributed systems, such as Web
applications, in its current state it is not fully suitable to accurately specify some of the
mentioned Web application requirements, such as the dynamic architecture and security and

privacy management.

3. Object-Process Methodology (OPM)

The Object-Process Methodology (OPM) [23] is a holistic approach to the modeling, study,
and development of systems. It integrates the object-oriented and process-oriented paradigms
into a single frame of reference. Structure and behavior, the two major aspects that each
system exhibits, co-exist in the same OPM model without highlighting one at the expense of
suppressing the other. Contrary to UML and its nine diagram types, OPM shows system’s
structure, behavior, and architecture in the same diagram type, enabling the expression of
mutual relations and effects between them and reinforcing the understanding of a system as a

whole.

3.1 OPM Ontology

The elements of OPM ontology are entities (things and states) and links. A thing is a
generalization of an object and a process — the two basic building blocks of any OPM-based

system model. At any point in time, each object is at some state, and object states are

14

changed through occurrences of processes. Analogically, links can be structural or
procedural. Structural links express static relations between pairs of objects or processes.
Aggregation, generalization, characterization, and instantiation are the four fundamental
static relations.

The behavior of a system is manifested in three major ways: (1) processes can transform
(generate, consume, or change) things; (2) things can enable processes without being
transformed by them; and (3) things can trigger events that (at least potentially, if some
conditions are met) invoke processes. Accordingly, a procedural link can be a transformation
link, an enabling link, or an event link.

The complexity of an OPM model is controlled through three refinement/abstraction
mechanisms: in-zooming/out-zooming, in which the entity (primarily a process or a state)
being detailed is shown enclosing its constituent elements; unfolding/folding, in which the
entity (primarily an object) being detailed is shown as the root of a structural graph; and state
expressing/suppressing, which allows for showing or hiding the possible states of an object.
These mechanisms enable OPM to recursively specify a system to any desired level of detail

without losing legibility and comprehension of the complete system.

3.2 The Bimodal Graphic-Text Representation of OPM

Two semantically equivalent modalities, one graphic and the other textual, jointly express the
same OPM model. A set of inter-related Object-Process Diagrams (OPDs), constitute the
graphical, visual OPM formalism. Each OPM element is denoted in an OPD by a symbol, and
the OPD syntax specifies correct and consistent ways by which entities can be connected via
structural and procedural links. The Object-Process Language (OPL), defined by a grammar,
is the textual counterpart modality of the graphical OPD set. OPL is a dual-purpose language,
oriented towards humans as well as machines. Catering to human needs, OPL is designed as a

constrained subset of English, which serves domain experts and system architects, jointly

15

engaged in analyzing and designing a system. Every OPD construct is expressed by a
semantically equivalent OPL sentence or phrase. Designed also for machine interpretation
through a well-defined set of production rules, OPL provides a solid basis for automating the
generation of the designed application. This dual representation of OPM increases the
processing capability of humans according to an accepted cognitive theory [60].

The OPD formalism goes hand in hand with the OPL in the following meaning: Anything
that is expressed graphically by an OPD is also expressed textually in the corresponding
OPL paragraph, and vice versa. OPCAT, a Java-based Object-Process CASE Tool,
automatically translates each OPD into its equivalent OPL paragraph (collection of OPL

sentences) and vice versa, as explained in Appendix F.

4. Research Objectives and Methodology

The main objective of this research has been to develop and evaluate a complete
methodology that supports the entire life-cycle of distributed systems in general and Web
applications in particular. As argued in Section 2.2, none of the hypermedia authoring
techniques and the information system development approaches can specify all the features
that Web applications require. The main reason for this is that these approaches pertain
mostly either to the system’s structure or its behavior. Table 1 presents an evaluation of the
level of structuredness, modularity and reusability, physical architecture representation, user
interface modeling, dynamic behavior modeling, and security and privacy management of
these techniques and modeling languages. Based on these criteria, OPM was found as the
most suitable basis for a complete Web application development methodology. However, in
its basic configuration and scope, OPM still cannot address some of the distribution concerns,
such as dynamic architecture, message passing, and consistency constrains, neither can it

adequately specify code migration. This research extends OPM to OPM/Web, which

16

augments OPM with features required to model and develop distributed and Web

applications.
Table 1. Comparison of existing modeling approaches to the Web application domain
Criterion Hypermedia Authoring Object-Oriented Behavioral- OPM
Oriented
Level of Average Good Poor Good
Structuredness | (limited to ER concepts) (built on top of (inherits the object-
existing structure) orientation)
Modularity and Poor Average Average+ Average+
Reusability (does not concern reuse) (concern reuse of (does not support (inherits the
structure) partially specified behavioral-orientated
component reuse) approach)
Physical Poor Average Poor Average
Architecture (does not concern (concerns architecture (does not concern (concerns architecture
Representation architecture) structure only) architecture) structure only)
User Interface Average Average Poor Average

Modeling (concerns navigational (concerns user (does not concern (concerns user
interface of hypertext) interface classes) user interface) interface classes)
Dynamic Poor Average Average Good
Behavior (concerns navigation, but | (breaks behaviors into (models different (enables stand-alone
Modeling not behavior) methods/services) functionalities at processes)
separate levels)
Security and Poor Average Poor Average

Privacy

Management

(does not concern
security and privacy,

supports personalization)

(supports security and
privacy through
stereotypes)

(does not concern

security and

privacy)

(supports privacy
through authorization

of agent links)

The research objective is achieved in the following steps:

1. Extending OPM to OPM/Web, which includes improving the complexity management

mechanisms of OPM, enabling specifications of the static and dynamic aspects of the

system architecture, enabling modeling of system integrity constraints, and improving the

reuse of partially specified OPM components. Both OPD notation and OPL grammar are

extended to OPM/Web, leaving existing OPM models valid in OPM/Web. OPM/Web

17

extensions are presented in Part 2 of this work and were published in the Annals of
Software Engineering [82], the Computer Software and Applications Conference [84],
CAiSE workshop on Data Integration over the Web [81], and IBM workshop on
Programming Languages & Development Environments [83].

. Evaluating OPM/Web expressiveness, comprehension, and adequacy for specifying Web
applications and comparing them to the standard UML. Although OPM/Web does not add
to OPM concepts, it is important to check its ease of use by untrained designers. The
experiment and its outcomes are presented in Part 3.

. Formalization of OPM/Web through a reflective-metamodel. This metamodel, which is
expressed by an OPD-set and equivalent OPL paragraphs, includes OPM ontology and
notation definitions, as well as a development process suitable for modeling centric and
distributed systems in OPM/Web. The complete metamodel of OPM/Web is described in
Part 4. A paper about the metamodel of an OPM-based development process was

accepted to the International Conference on Conceptual Modeling ER’2003 [26].

18

Part 2. OPM/Web — OPM Extensions for Web Application Modeling

Chapter 5 presents an overview of OPM/Web extensions through representative examples,
while chapters 6 and 7 elaborate on two main OPM/Web extensions: specifying code
mobility and migration applications and improving OPM models reusability. The OPM/Web

legend of all the examples is summarized in Appendix A.

5. OPM/Web Overview and Examples'

The OPM/Web extensions explained and demonstrated in this chapter concern complexity
management, structural architecture representations, link characterization, integrative
representation of architecture structure and behavior, and system integrity constraint

definition.

5.1 Complexity Management

As noted, OPM manages complex system models through abstraction/refinement
mechanisms, which address the main requirements from a methodology: completeness and
clarity. Completeness means that the system must be specified to the last relevant detail,
while clarity means that the resultant model must be legible and comprehensible. Hence OPM
has two scaling (abstraction/refinement) mechanisms: unfolding/folding and in-zooming/out-
zooming. The unfolding/folding mechanism uses structural relations for refining/abstracting
the structural parts of a thing (object or process). For example, in Figure 1(a), the process P1
is unfolded to expose its parts, processes P1.1 and P1.2, and its feature, object B1.1. The in-

zooming/out-zooming mechanism exposes/hides the inner details of a thing within its frame.

" An extended version of this section was published in Annals on Software Engineering (ASE) — Special Issue

on Object-Oriented Web-based Software Engineering [82].

19

In Figure 1(b), the process P1 is in-zoomed, showing the process flow — first P1.1 is executed

and creates object B1.1, and then process P1.2 is activated, consuming object B1.1.

(a) (b)
Figure 1. Applying OPM scaling mechanisms to process P1.

(a) Process P1 is unfolded. (b) Process P1 is in-zoomed.

OPM's abstraction/refinement mechanisms facilitate focusing on a particular subset of
things (objects and/or processes), elaborating on their details by drilling down to any desired
level of detail. The complexity of the entire system is managed by keeping each Object-
Process Diagram (OPD) at a reasonable size and keeping track of the parent-child

relationships among the various OPDs in the OPD-set.

Frinter Printer
(a) (b)

Frinter

off

PoWer save an printing
rmode mode

(c)
Figure 2. Suppressing and expressing of Printer states. State expressing of (a) yields (b) and

state expressing of “on” in (b) yields (c). State suppressing moves from (c) to (b) to (a).
Following the Statechart approach [44], OPM/Web introduces a hierarchical state
expressing/suppressing complexity management mechanism. This enables exposing and
hiding of object class states and sub-states. For example, Figure 2 depicts the state

suppression/expression mechanism for states of a printer. A Printer can be in “on” or in “off”.

20

The state “off” is the initial state of the Printer. If the Printer is in “on”, it can be in a “power

save mode” sub-state (which is the initial state of the super state “on”), or in a “printing mode”.

5.2 Structural Architecture Representation and Link Characterizations

OPM and hence OPM/Web can model the structural aspect of the physical architecture using
a combination of physical and informatical things (objects and processes). A physical object
consists of matter and/or energy, is tangible in the broad sense and can be detected by one or
more of our senses, while an informatical object is a piece of information. A physical process
is a change that a physical object undergoes. Similarly, an informatical process is some
transformation (or manipulation) of an informatical object. Figure 3 models a typical
architecture of a Web application, in which the Server and the Client are physical objects. The
Server stores a database (DB), which is an informatical object, while the Client stores an
informatical object, called User Profile, which gathers the system knowledge about the client

(the browser type, configuration, etc.).

Server > Client

/A

[
i [=4
’ @
User
DE Profile

Figure 3. An OPD of a typical Web application architecture
The bi-directional structural relation between the Server and the Client is physical, since it
connects two physical objects. In OPM, there are two different types of links: structural links,
which specify static aspects of the modeled system and procedural links, which capture
behavior (such as transformations and events). Both structural and procedural links are
characterized only by their types (aggregation, agent, inheritance, etc.) and their multiplicity

(e.g., one, many, between 2 to 5). This limits the ability to model certain link properties, such

21

as the encryption algorithm associated with a physical structural link and sets of possible user
activities (a mouse clicking, a button pressing, etc.) associated with a procedural link.
OPM/Web supports link characterizations that can associate with each link type any number
of features (attributes, which are objects, and/or operations, which are processes). In Figure 3,
for example, the Encrypting process class is an operation of the physical structural link
between the Server and the Client. It can be further in-zoomed to specify a particular

encryption algorithm.

5.3 Integratig the Representation of Architecture Structure and Behavior

As discussed in Section 2.1, modeling the static-structural aspects of a system is not enough.
Essential dynamic aspects of the architecture, such as dynamic net programming constructs,
must also be modeled. The best known and most prevalent such constructs are Java applets.
An appletis a small program that is transmitted to be embedded inside another application
and run within it. An applet can be sent to a user either separately or along with a Web page
and run on the client computer without having to send a user request back to the server. Other
known constructs are worms and cookies. Worms are computer programs that replicate
themselves and are self-propagating. Cookies are special pieces of information about the user,
which are stored in text files on the client hard disk and can be accessed by the server when
the client connects to a Web site that requires this information, while associated code in the
client can gather this information.
OPM/Web supports modeling of dynamic code and construct transmission by applying two
principles:
e The thing class, be it an object or a process, is separated from its instances. The
thing classes are denoted by rectangles for object classes and by ellipses for process
classes. Following the UML notation of classes and objects, a thing instance is

denoted in OPM/Web by a rectangle/ellipse within which the thing class name is

22

written as :ThingClassName, where the identifier of the instance can optionally

precede the colon. The thing class is connected to its instances via an instantiation
link (denoted by a black circle within a blank triangle). It serves as a template from
which the individual instances are generated. Using this principle, the designer can
model separately the system classes, which are usually located on the server side,
and their instances, which are generated on the server side and transferred to the
client side.

e Objects and processes are defined as dual things that can be used by processes in
order to perform other activities. The developer is able to use either object instances

or process instances as inputs and outputs for performing an operation.

erifying

F CA Transferring
orm Local
Verifying Resources
Server Client

(a)

Farm
Werifying

sFom
Verifying
S —

Code Requesting

s Form
Werifying

Code
Request

Local
Resources

Client

Server

&

Code Sending

Code Activating

Code
Transferring

O

(b)

Figure 4. Modeling the Form Verifying transferring process. (a) The top-level version.

(b) The detailed version — Form Verifying is unfolded and Code Transferring is in-zoomed.
As an example for the above extensions, Figure 4(a) models Code Transferring from the
Server to the Client. The Form Verifying process class, which can be implemented as a Java
applet, should verify the information within a form already filled by the user. This process

class resides in the server; hence it appears within the in-zooming frame of the physical

23

object Server. The client side instance of this process is created through the Code Transferring

process, which is an operation that characterizes the relation between the Server and the

Clients.

The Code Transferring process is divided in Figure 4(b) into three sub-processes:

1. Code Requesting — When the Code Transferring process is activated, for example after the
user pushes the “OK” or “Send” button in the relevant form, the Code Requesting part
starts executing. This subprocess creates a Code Request message, asking for an instance
of the Form Verifying process.

2. Code Sending — This subprocess uses an instance of the Form Verifying process class and
sends it to the Client.

3. Code Activating — The Code Transferring process finishes by activating the client side

instance of Form Verifying, which affects the Local (client) Resources.

5.4 System Integrity Constraints

Integrity constraints of Web applications are distributed and global in nature, and they
involve constraints that are related to such issues as security management and dynamic
updating. Web application constraints can be divided into three categories: data integrity
constraints over the objects, concurrency and distribution control constraints over the
processes, and global status integrity constraints over the system states. The following
subsections explain the nature of these constraint types and how OPM/Web supports their

validation.

5.4.1 Data Integrity Constraints
Data integrity refers to the completeness of the system information, which is modeled in the
object-oriented paradigm as object classes. The integrity is achieved by defining dependency

relations between different pieces of information (i.e., objects). For example, the Object

24

Constraint Language (OCL) [99], which was designed to accompany UML models, is an
expression language that enables describing constraints on object-oriented models and other

object modeling artifacts.

m aKes
Course 1 Student
Course No - Student-In- A Name :
integer Course char[50]
Course Mame /\ :
Address :
chart20) A char{50]
Max Capacity :
integer Phone :
char[10]
Statistics
Semester: Statistics
char[10] Updating
Average
float

Median Score :
float

Figure 5. An OPD of the data integrity example

In OPM/Web, a dependency relation among objects is expressed in a procedural way by
defining stand-alone processes. These processes automatically enforce certain constraints on
the involved objects. For example, Figure 5 shows three top-level objects: Student, Course,
and Statistics. The object Student stores the attributes Name, Address, and Phone of an actual
student. Course stores the catalog information of the course (Course Number, Course Name, and
Maximum Capacity). The relation between Student and Course is characterized by an object
called Student-In-Course, which stores the student Grade in a specific course. The Grade is
changed by the Grade Updating process, which is a service of Student-In-Course. The third top
level object, Statistics, maintains statistical information about a course given in a specific
semester (Semester, Average, and Median Score). One of the system responsibilities is that

whenever a change (adding, deleting, or editing) in a student’s grade occurs, the statistics

25

should be recalculated. In other words, the Statistics Updating process is activated whenever a
change in a grade takes place. This is expressed by the event link between the Grade object
and the Statistics Updating process. This process changes the attribute values of the Statistics

object and thus expresses a dependency relation between those objects.

5.4.2 Concurrency and Distribution Control Constraints

In OPM and OPM/Web the time axis is directed from the top of the diagram to its bottom
within the frame of an in-zoomed process. This way, concurrent processes are located at the
same height, while sequential processes are located one below the other. Constraints on the
duration of an individual process can be specified in parentheses determining the lowest and
uppest bounds of the process duration time.

In distributed systems, a problem arises when dependent processes occur in various
physical locations. For example, a process executed at the server site may be required to
terminate three seconds before another process begins at the client site. This time period is
required for the central database to become stable. In order to support such concurrency
control constraints, OPM/Web is augmented with timed invocation links between processes.
An invocation link is denoted by a lightning arrow, as shown and explained in Table 2.
Regular (round) parentheses or square brackets are used to denote open or closed time
intervals. For example, (2s, 5s] means “a time interval greater than 2 seconds and smaller
than or equal to 5 seconds”. The default time constraints are [0, o).

This extension also provides the ability to express non-deterministic execution, using
OPM xor and or relations between links. Figure 6 demonstrates the three possibilities of

deterministic and non-deterministic executions.

26

Table 2. Dependency relations between distributed and concurrent processes

Symbol Semantics

(min, max) Q must begin within a time period, which is between min

COor>CD

and max time units after the beginning of P

(mmin, max) Q must begin within a time period, which is between min

CO—»CD

and max time units after the end of P

IR GCD
(a) (b) (c)

Figure 6. Deterministic and non-deterministic executions of processes P1, P2 and P3. (a) P2
and P3 are independently executed after the termination of P1. (b) P2 or P3 (but not both)
are independently executed after the termination of P1. (b) P2 or P3 (or both) are

independently executed after the termination of P1.

5.4.3 System Status Integrity Constraints

Constraints on the general status of the system involve relations among the states of the
model. For example, a Status object, which is an attribute of Client, is in the state “ok” if and
only if the Database object, which is on the Server side, is in its “stable” state. This implies that
the system should not be concurrently at states “ok” and “unstable”, and whenever this occurs,
the system will take steps to correct the situation. OPM/Web handles this kind of constraints
through error handling processes, as shown in Figure 7. Wrong Status Error Handling is triggered
by Status being at the wrong state and changes Database from stable to unstable. An analogous

chain of events occurs with Unstable Database Error Handling. When Status is wrong and

27

Database 1S unstable, another process, Error Correcting (not shown), is activated and upon its

successful completion it restores Status to its ok state and Database to its stable state.

Slorgg

Client f= Server
A
4 Wrong Status
’ Error Handling
ey
Status
Database
stable unstable
6 ,ﬂ
&

Unstable Database
Error Handling

Figure 7. A status integrity constraint example

5.5 OPM/Web Vs. UML: The GLAP System Case Study

To demonstrate OPM/Web extensions, a Web-based glossary application, called GLAP, is
used. The GLAP system [18] provides an online version of a software development project’s
glossary of terms. The project’s team members can access the database of terms, using a
common Web browser. Team members may also update, add entries to the database, and

remove entries from it, using the same browser interface.

5.5.1 OPM/Web Model of the GLAP System

Figure 8 is the top level OPD of the GLAP system that shows the Server and the Clients as two
physical object classes. The Server stores the Server Components, which consist of the IGlossary
object, and the Server Web Pages. It also stores Form Verifying and GLAP Server Executing process
classes. The last mentioned process is activated by Client Requests (as the event link from
Client Request t0 GLAP Server Executing indicates), uses Server Web Pages as inputs, updates the
IGlossary, and creates Client Pages. The Client stores Browser Processing and activates it

according to the User commands (as the agent link from User to Browser Processing indicates)

28

and the Client Pages. The Server and the Clients communicate through the Encrypted Transferring
process. This process transfers Client Requests from the Client to the Server (path a), Client Pages
from the Server to the Clients (path b), and instances of Form Verifying from the Server to the
Clients (path c). The Encrypted Transferring process can further be divided into sub-processes in
order to specify its exact algorithm. For example, Encrypted Transferring is responsible (among
other things) to transfer the instance of Form Verifying from the Server to the Clients as a
response to a Client Request for a search or an edit form. In addition it activates the client
instance which uses the relevant Client Page and creates a Client Request for page searching or

edit confirming, respectively.

Server
Components
Client
Fage
IGlossary 74 N\ Browser
-Form rocessing
Vernfying
Form
GLAP Server Verifying /_ bt
Executing 2 —_—
o, Client
Request
Client
Server sl
Web Pages Client [
Request | § eaaalbol \
Server ¢ User |
' 1

Figure 8. The top level OPD of the GLAP system
The OPD in Figure 9(a) elaborates the top level OPD by unfolding the IGlossary object to its
constituents, IGlossary Entry. Each IGlossary Entry is characterized by one attribute (MDSN) and
seven services (Get Entries Starting With, Search Entries, New Entry, Update Entry, Remove Entry,
DSN, and Message Text).
The Server Web Pages object is unfolded in Figure 9(b) to its constituents Process Search,
Process Form, Get Entries, and SP Edit Entry, each of which has its own set of attributes and

services.

29

|Glossary

(a)

|Glossary
Entry

A

A

MDSN :
char[50]

Get Entries
Starting With

(b)

Server
Web Pages

Process
Search

Search Word : gAg

char[50]

Search Description :
char[100]

char[50]

Get
Entries

Word :
char[50

Description :
char[100]

Search Char :
char

ZI
&

char[50]

Word :
char[50]

Description :
char[100]

Message Word :
char[50]

G| oy
Co o
G —

o0
0

Write Letter

e

0o

Figure 9. (a) IGlossary, unfolded. (b) Server Web Pages, unfolded.

In the OPM/Web model, separate processes describe the functionality of the client side
(Browser Processing) and of the server side (GLAP Server Executing). This separation enables the
developer to model the client-server communications, construct passing, and code
transferring.

The server stores the stand-alone process, GLAP Server Executing, which is in-zoomed in
Figure 10 into three sub processes: Glossary Reading, Glossary Searching, and Glossary Entry
Editing. All three sub-processes use Server Web Pages but do not change them, as expressed by
the instrument link between the Server Web Pages and the GLAP Server Executing process. The
Glossary Reading and Glossary Searching processes use IGlossary as an instrument, while the
Glossary Entry Editing process affects IGlossary Entry (of IGlossary). Glossary Reading is executed
in response to a read page Client Request. Glossary Searching is activated in response to either a
search form Client Request Or a search page Client Request, and it creates accordingly either search
form Client Page Or search page. Similarly, Glossary Entry Editing is activated in response to either

an edit form Client Request Or an edit confirmation Client Request, and it creates accordingly either

an edit form Client Page Or an edit confirmation Client Page.

30

Client
Request

|Glossa
M [read J [search} [search] [edit J [edit]
pfge form p?ge forrrl1 conﬂrlmatlun
m | IGlossary
Entry
LAP Server W Sbeger
Executing eb Pages
P —
Glossa Glossary lossary Entry
eadmn‘r earchin Editin

N

Yool

read search search edit edit
form page form confirmation

Figure 10. GLAP Server Executing, in-zoomed
The client side Browser Processing, shown in Figure 11, expresses the navigational
functionality of the client computer and is executed in response to the command the User
1ssues. The Reader can activate Client Read Interface Managing Or Client Search Interface Managing
to create read page Client Requests Or search form Client Requests, respectively. The Editor can, in

addition, activate Client Edit Interface Managing that creates edit form Client Requests.

User | g‘clg;t
1

------- search search edit edit
form page form confirmation

\
, Reader | é
I |}
777777 !
' V Status
—
Client Read
Interface Managing

Processing

Client Page

Client Edit Displaying

Interface Managing

Browser
Client Search
Interface Managing

Client
W % Request M
read search search edit edit
page form page farm confirmation

Figure 11. Browser Processing, in-zoomed
In the OPM/Web model, the client pages are not part of the server side and they are not

statically linked with structural pointers to the creating pages of the server. Instead, they are

31

formed by the server processes, transferred to the client side, and displayed there by the Client

Page Displaying process.

5.5.2 A Comparison to the UML Model of the GLAP System
Figure 12 and Figure 13 show part of an UML model of the same GLAP system, presented in
[18]. The model includes a use-case diagram, a site map diagram, a package diagram, and the
‘browsing detail’ class diagram as a sample class diagram. The complete model includes, in
addition to the ones shown here, four class diagrams and five sequence diagrams, which
specify several system scenarios.

The use case diagram shows the main actors of the system: readers, who read the data, and
editors, who change the data. The main use cases are Read Glossary, Search Glossary, and

Edit Glossary Entry.

Use-Case Diagram Site Map Diagram

D0
Q j!\/ Home Page _Browse Glossary Q

o / Read Glossary Rea der\’—O
/Glossary Entry

Browse Results

Reader\O @\@

i Search Glossary o R‘ySearch Glossary
N

R = e S
\O Search Form

Editor

Edit Glossary Entry Editor Update Glossary

Entry Form

Figure 12. The use case and site map diagrams of the GLAP system
The site map diagram is a class diagram which shows an abstraction of the Web pages and
navigation routes throughout the system. The GLAP system site map specifies that the

Reader can view directly the home page, the browse results page, the search results page, and

32

the search form. The Editor can, in addition, view the entry form. The browse results page,

for example, activates the browse glossary which accesses the glossary entry.

| Package Diagram LEGEND
Glossary %
] Actor
Server Components O Use-case
<<Interface>> .
1Glossary A Inheritance
] (from Server Components) —— Bi-directional association
WEB Pages &mdsn : String —> Uni-directional association
*GetEntriesStartingWith() —> Dependency relationship
:SeathmriesO "O Boundary object
NewEntry()))
*UpdateEntry() Q Entity object
SRemoveEntry() 6 Control object
- [e
@MessageText() Package
|:| Class/Interface
P Browsing Detail
ession
&:dsn : String = "Glossary" Class Diasram <<V‘ll)eb Servser Pagr;]e>>
rocess Searc
<<Web Html Form>> &SearchWord : String
Search Form &;SearchDescription : String

<<Web Client Page>>
Glossary Home

<<submit>> |@nl : String

<<Text>> Word
&)<<Tex o &;Message Word : String

&;<<Text>> Description

&< <Submit>> Search wMain0
<<link>> ®W riteEntry()
$GetEntries()
{BeginWith}
+Glossary, <<build>>
+letterEntry | 26 <<Interface>>
IGlossary +Glossary
<<Web Server Page>> | (from Server Components) \ <<Web Client Page>>
Get Entries Search Results
&;SearchChar : String +Glossary o
@nl : String
i 0..n
Main 0 +EditEntry
$GetEntries() <build>> <<Web Server Page>>
$WriteEntry() \ sp Edit Entry
*WriteLetterIndex() ~ &id : long
+LetterEntry]\ 55 <<Web Client Page>>| {id} +EditEntry &word : String

Entrylisting oun @;description : String

#Main()
$GetEntry()

<<link>>

Figure 13. The package diagram and the ‘Browsing Detail’ class diagram of the GLAP
System

The package diagram divides the system into two sub-packages: Server Components (which

include the IGlossary interface object) and Web Pages. The Browsing Detail class diagram

33

includes the Web server pages and the Web client pages needed for modeling the glossary
browsing functionality. It also specifies the structural relations among these classes, their
inner structure and methods, and their constraints.

This simple example demonstrates some of the OPM/Web benefits over UML. A developer
who uses UML to model the system has to remember many different symbols and to
associate each symbol with the correct type of diagram. For example, to specify a string
attribute in a Web HTML form, the developer has to use the stereotype <<text>> (e.g., the
“Word” attribute of the “Search Form” class in the Browsing Detail class diagram). However,
in other locations in the same class diagram, the reserved type “String” is used (e.g., the
“Search Word” attribute of the “Process Search” class). Another example is using the “Search
Results” class. In the site map diagram “Search Results” is used as a boundary object, which
represents the interface between the actor and the system, while in the class diagram it refers
to a Web client page. In contrast with UML, OPM/Web uses a single visual framework that
makes it easier to understand the system as whole, enables the developer to grasp the system
structure, behavior and functionality at the same time, and minimizes the likelihood of
making design and integration errors.

The built-in scaling mechanisms of OPM/Web support automatic integration and
compatibility checking, without losing the whole picture of a system. UML, on the other
hand, requires the application of different diagram types for specifying distinct views of the
same system, and the relationships among these views are not explicitly modeled or
constrained.

While UML does not have a single clean mechanism for expressing processes, OPM/Web
enables specifying the system’s behavior by services or stand-alone processes, which can be
described to any desired level of detail. Hence, in UML the designer should use a

combination of sequence diagrams, collaboration diagrams and activity diagrams, which

34

describe possible scenarios, but do not capture the entire process framework in the context of
the use cases or the class services. Thus, in the UML version of the GLAP example, the
relation between a Web server page and its corresponding Web client page (in the ‘browsing
detail’ class diagram) is structural. This means that there is a pointer from the server page to
the client page, although the actual implementation is most likely dynamic. In the actual
implementation, the server page builds the client page through a process, as the OPM/Web
version explicitly expresses. Moreover, UML does not support modeling the code
transferring processes, such as in Java applets, because it does not provide for specifying

stand-alone processes.

35

6. Modeling Code Mobility and Migration Specification in OPM/Web’

The tradeoff between the functional requirements from Web applications and existing
bandwidth limitations requires addressing issues related to code mobility and code migration.
Code mobility is the capability of software systems to dynamically reconfigure the binding
between the software components of an application and their physical locations (nodes)
within a computer network [36]. Mobile Code is a piece of code that exhibits the mobility
property, i.e., code that can be transmitted across a network and executed on another node.
Code migration is the function which controls how code mobility is achieved [21]. Although
most applications do not require mobile code, adding this capability to applications supports
disconnected operations and can enhance system flexibility, reduce bandwidth consumption
and total completion time, and improve fault tolerance [36].

The code migration process involves determining the operation targets, transferring the
code, and integrating it into the target system. In static system architectures, the targets can be
determined at compilation time. If the system architecture is dynamic, the operation targets
should be computed immediately prior to transferring the code. Following the target
determination, the code can be transferred by applying one of the design paradigms for code
mobility, which extend the traditional client-server paradigm from data to code. Once
transferred, the code can be integrated with the local target system by activating an instance
of it, connecting it to existing data or code, or continuing its transfer over the network to yet

another target. Modeling the code migration process also includes defining the process

* An extended abstract of this section was published in the Israeli Workshop on Programming Languages &
Development Environments (PLE), IBM [83]. An extended version of it is submitted to the International Journal

on Web Engineering Technology (IJWET).

36

triggers, its preconditions and postconditions, and handling security issues and possible
transfer errors.

Current techniques for modeling code mobility and migration support determining the
operation targets separately from the transferring stage (e.g., by class services) and do not
specify how the code is to migrate. The main reason for the insufficient expressive power of
these methods is the fact that they are structure-oriented in nature. Hence, although most of
the systems, such as mobile applications, usually involve structure and behavior in complex,
intertwined ways, current methods model these systems in an unbalanced way, emphasizing
their objects and structural relations. OPM/Web enables completely specifying mobile
applications within a single view by considering objects and processes as two equally

important classes of entities.

6.1 Modeling Code Mobility: Design Paradigms and Modeling Techniques

Applications that involve code mobility are defined in terms of components, interactions, and
sites [12]. Componentsare the building blocks of system architecture. They are further
divided into resource components, which are objects (architectural elements representing
data, or physical devices), and computational components, which are programs that embody
flows of control. A resource component is represented in object-oriented terms as an object
with attributes and operations (services) that contain knowledge about how to execute a
particular task, while a computational component, which contains code, may also be
characterized by private data, an execution state, and bindings to other (resource or
computational) components. Inferactions are events that involve two or more components
communicating with each other. Sifes are nodes or execution environments — they host

components and provide support for the execution of computational components.

37

6.1.1 The Client-Server Paradigm and Related Approaches

The Client-Server (CS) paradigm [85] is the traditional design approach for distributed
communication among sites, in which messages are transferred from one site to another, but
actual code is not. In a typical client-server interaction, site Sg, which acts as the interaction
server, offers a set of services. It also hosts the resources and the knowledge needed for
executing these services. Site Sa, which is the operation client, requests the execution of
some service offered by Sg by sending it a message. As a response, Sg performs the requested
service and delivers the result back to S, in a subsequent interaction. If the server does not
have all the data and knowledge required, it can act as a client in another client-server
interaction.

The CS paradigm has been criticized as being too low-level, requiring developers to
determine network addresses and synchronization points. CS interaction is also too specific,
since the client must “know” the exact services that the server can provide [21]. The Remote
Procedure Call (RPC) [8] tries to overcome these shortcomings by enabling the client to
request a service to be executed on a server in the same way that it would make a local
function call; the location of the server, the initiation of the service, and the transportation of
the results are handled transparently to the client. The object-oriented approach attempts to
make the CS paradigm more accessible and uniform by adopting reuse, inheritance, and
encapsulation principles. OMG’s Common Object Request Broker Architecture (CORBA)

[69], for example, is a CS technology that is based on the object-oriented approach.

6.1.2 Design Paradigms for Code Mobility

Design paradigms for code mobility extend the CS paradigm by transporting computational
components across a network. Four common design paradigms for code mobility are Remote
Evaluation (REV), Code-on-Demand (COD), PUSH, and Mobile Agents (MA). These

paradigms differ in their preconditions, postconditions, and triggers.

38

In the Remote Evaluation (REV) paradigm [92], a computational component, C, located at
Sa, has the knowledge (represented by code) necessary to perform a service, but it lacks the
required resource components, which are located at a remote site Sg. Therefore, C is
transferred from S to Sg and is executed there. The results of this execution are delivered
back to S, in an additional interaction.

In the Code-on-Demand (COD) paradigm [12], site S5 can access the resource components
needed for a service, but it does not have the knowledge required to process them. Therefore,
Sa requests the service execution knowledge, i.e., the computation component C, from its
hosting site, Sg. Sg delivers the knowledge to S4, which subsequently processes C at site Sy
on the resource components residing there. Contrary to REV, in COD the code is executed at
the client.

In the PUSH paradigm [34], site Sg sends a (computational or resource) component to site
Sa in advance of any specific request. This push-based operation is often preceded by a
profiling operation, in which S4 specifies a profile that reflects its users’ interests. The profile
is sent to site Sg, saved there, and used by Sy to decide which components S, should receive
and when to send them. The advantage of this paradigm over COD is that the users do not
have to know when to pull new components and where to pull them from. Rather, the system
automatically sends necessary new components when they become available, and they are
often used later by the receiving node.

In the Mobile Agent (MA) paradigm [41], site S owns the service execution knowledge,
C, but some of the required resource components are located at site S,. Hence, C migrates to
Sa and completes the service using the resource components available there. The migration is
usually initiated by the agent (C), but it might be requested by Sa or Sg. Contrary to the REV,

COD, and PUSH paradigms, which focus on the transfer of just code between sites, the

39

mobile agent migrates to the remote site as a whole computational component, along with its
state, the code it needs, and some of the resource components required to perform the task.
Discussing these design paradigms for code mobility, Carzaniga et al. [12] claim that none
of them is absolutely better than the others and suggest choosing the most appropriate
paradigm for a system under development on a case-by-case basis according to the

application type.

6.1.3 Modeling Techniques for Specifying Code Mobility and Migration

Code mobility is supported by such programming environments as Java, Telescript, and
D’Agents. However, current modeling techniques that are used in the analysis and design
phases of Web applications do not address the code mobility concept, including triggers,
conditions, and security issues, at a satisfactory level.

Hypermedia authoring techniques model the content and navigational aspects of an
application, but not its functionality, physical architecture, or security requirements.
Therefore, they do not explicitly address code-related issues, such as code migration.

Object-oriented development methods, notably UML, enable modeling of the application
functionality through class services and message passing among objects. Concepts involving
code mobility, such as Java applets, are modeled in separate views using pre-declared UML
stereotypes. Therefore, modeling these concepts with an object-oriented method is
technology-dependent (e.g., specific to the Java language and its applets). Moreover, UML
does not handle the code migration process as a whole pattern, including its preconditions
(e.g., the existence of a request in the client site and source code at the server site),
postconditions (e.g., the existence of executable code at the client site), and triggers (e.g., a
change in a server component). Trying to overcome these shortcomings, UML has been
extended by various research teams, including the mobile agent extension [52], Agent UML

(AUML) [74], and MASIF-DESIGN [65]. Even though the proliferation of such extensions

40

undermine and weaken UML standardization efforts, they still do not separate the execution
knowledge (services) from the resource components (classes). It should come as no surprise
that such separation is not possible, since doing so would work against the encapsulation of
operations within object classes, which is a major principle in the object-oriented approach.

Behavior-oriented techniques model the system functionality separately from the
application structure. They enable static binding of processes to sites, but do not support the
modeling of dynamic configurations and the actual migration process.

OPM enables specifying the architecture of the system along with its structure and behavior.
It also enables transfer of objects between sites. Nevertheless, code migration specification

cannot be carried out in OPM.

6.2 OPM/Web and Mobile Components

As noted, OPM/Web clearly distinguishes between thing classes and instances. An object
class(abbreviated as an object) is a set of object instances which exist, or at least have the

potential of stable, unconditional physical or logical existence. A process class (abbreviated
as a process) is a pattern of transformation of one or more object classes. A program, an
operation, a procedure, and an algorithm are examples of process classes. An actual execution
of a process (such as the carrying out of an executable version of a program or an algorithm)

is a process instance. The code migration process can transfer process classes or instances.

6.2.1 Mapping Mobility Terms onto OPM/Web Concepts

The terms used in the various design paradigms for code mobility are mapped to OPM/Web

concepts as follows.

e A resource component is an informatical or physical object. An informatical object is a
piece of information, such as the data required for a process execution. A physical

object is tangible in the broad sense, for example a device.

41

o A computational component is a process. It can own private data (objects) and include
sub-processes. The migration process can transfer the computational component
source code (i.e., a process class), which can be compiled at the target site and run
there any number of times, or an executable version of the code (i.e., a process
instance), which can run at the target site only a specified number of times.

e A site, which is analogous to a node in the UML implementation model, is a physical
object in OPM/Web. This physical object can be in-zoomed to expose its resource and
computational components.

e An interaction has both structural and dynamic aspects. The structural aspect of an
interaction specifies how two sites can communicate with each other, irrespective of a
specific point in time. This aspect is modeled in OPM/Web by a (unidirectional or bi-
directional) structural link between the communicating sites, which, as noted, are
physical objects. The dynamic aspect of an interaction is the ability to transfer data
(objects) or code (processes) between two sites and is specified in OPM/Web by an
event-driven process. Since interaction conceptually characterizes the communication
between the sites, the interaction process is associated in the model to the structural
link that connects the two interacting sites. The implementation of this interaction may
still be carried out as two inter-related processes, one at each interacting site.

The basic code transferring operation is represented by the generic OPD in Figure 14. The
computational Component on the left of Figure 14(a) and Figure 14(b), which is a process
class denoted by an ellipse, is the input for the Component Transferring process, as the
instrument link between them indicates. In Figure 14(a) the Component Transferring process
transfers Component’s source code, while in Figure 14(b) Component Transferring transfers a
process instance, i.e., only an executable version of Component, denoted by :Component. The

semantics of the arrow with the white (blank) arrowhead from Component Transferring to the

42

right appearance of Component is of a result link, which means that Component Transferring
creates (a copy of) the process class Component, as in Figure 14(a), or an instance of it, as in
Figure 14(b). In the original OPM, processes are not connected, and, hence, there is no
difficulty to determine which is the processing entity. To remove the ambiguity arising from
connecting two processes in OPM/Web via consumption or result links, a consumption link is
denoted as a black-headed arrow from the consumed entity to the consuming process, while
the semantics of a white-headed arrow from a process to an entity remains a result link. The
identical path labels’ on the instrument and result links and the identical component names
indicate that Component Transferring transfers Component as is rather than computing it from an

input.

patn patn Component patn .
%‘;Tspf%ﬂﬁﬂ; Component O Transferring 3> :Component

(b)

Figure 14. A generic OPM/Web model of a Component Transferring process.
(a) Component Transferring transfers Component's code, leaving the original Component
intact. (b) Component Transferring transfers an instance of Component, leaving the original

Component intact.

6.2.2 Modeling the Client-Server Paradigm using OPM/Web

Based on the mapping of code mobility terms onto OPM/Web concepts, an OPM/Web model
of the traditional client-server paradigm, presented in Figure 15, consists of two
complementary modalities: graphical — the OPD in Figure 15(a), and textual — the OPL
paragraph in Figure 15(b). The objective of this unique dual representation is to enhance the

readability of the model by humans: graphics-oriented model readers, who are familiar with

> A path label in OPM is a label on a procedural link that removes the ambiguity arising from multiple

incoming/outgoing procedural links. Here identical path labels on the incoming link to and the outgoing link

43

OPM and its diagrammatic notation, can relate to the OPD, while text-oriented readers, or
those who are new to the OPM graphic notation, can refer to the OPL paragraph and learn the

correspondence between each OPL sentence or phrase and its OPD construct counterpart.

COMITIUNICaE

Activation

Fequest
"“}(,Q,Qj
&w“'ﬁ’:{

Requested
Processing

Activation
Request

Result
Requesting
Required Data Requested i i S Result
Result N\ _Retrieving

CS Interacting

sult senuny Requested
> Result

N
Frocessing Site Requesting Site

(b) Requesting Site, which is physical, zooms into Activation Request and Requested Result.
Activation Request triggers CS Interacting.

Processing Site, which is physical, zooms into Activation Request, Required Data, and

Requested Result, as well as Requested Processing.
Activation Request triggers Requested Processing.

Requested Processing consumes Activation Request of Processing Site.
Requested Processing affects Required Data.
Requested Processing yields Requested Result of Processing Site.

Many Requesting Sites and many Processing Sites communicate. This link exhibits CS Interacting.
CS Interacting zooms into Result Requesting and Result Retrieving.
Following path request sending, Result Requesting consumes Activation Request of
Requesting Site.
Following path request sending, Result Requesting yields Activation Request of
Processing Site.
Following path result sending, Result Retrieving consumes Requested Result of
Processing Site.
Following path result sending, Result Retrieving yields Requested Result of Requesting
Site.

Figure 15. An OPM/Web model of the Client-Server (CS) paradigm:
(a) The OPD (b) The corresponding OPL paragraph

from the Component Transferring process are used to denote the transfer flow.

44

Examining Figure 15, one can see that Requesting Site (the client) and Processing Site (the
server) are both physical objects (as denoted by shadowed rectangles). The computational
component, Requested Processing, resides in the Processing Site, which also hosts the resource
components required for that computation, Required Data and (later on) Requested Result. The
two sites are connected via a bi-directional structural link, tagged communicate, which exhibits
(i.e., is characterized by) the CS Interacting process. A change in (an instance of) Activation
Request at the Requesting Site initiates the CS Interacting process, as the event link (the circle-
headed link with the letter 'e' inside it) between the two things shows. Following the request
sending path, the first sub-process of the CS Interacting process, which is Result Requesting,
transfers a copy of Activation Request to the Processing Site. As soon as this copy is placed at
the Processing Site, it activates the Requested Processing, as the consumption event link (the
black-headed arrow with the letter 'e' next to it) denotes. This Requested Processing potentially
affects the Required Data object and yields (produces) the Requested Result object. The creation
of Requested Result enables the second stage of the interaction, executed by Result Retrieving.
Following the result sending path, this process moves the local copy of the generated
Requested Result from the Processing Site to the Requesting Site.

Table 3 summarizes the structure of Requesting Site and Processing Site before and after an
activation of a CS Interacting process.

Table 3. The resource and computational components in Requesting Site (the client) and

Processing Site (the server) before and after an activation of CS Interacting

Design
Paradigm Time Requesting Site Processing Site

(Process Name)

Requested Processing (code
) Before Activation Request q 9 ()
Cllent SeI‘vel’ Required Data

(CS Interacting) Requested Processing (code
After Requested Result q 9 ()

Required Data

45

6.2.3 Simulating Mobile Specifications with OPCAT

Using the new version 2.1 of OPCAT (OPM CASE Tool), with which the OPM models in
this work were generated, a system model can also be simulated by animation. In the CS
paradigm, for example, the simulation starts by making the precondition set of the CS
Interacting process true. This is done by enabling (through highlighting) all the components
(objects and processes) which are not created by processes in the given model, i.e., the
objects Activation Request of Requesting Site and Required Data and the process Requested
Processing, as shown in Figure 16(a). While executing CS Interacting, the Activation Request at
the Processing Site becomes highlighted, then the Requested Result at the Processing Site, and
finally the Requested Result at the Requesting Site. After the transfer process has been
completed, its postcondition set becomes true, i.e., Requested Result at the Requesting Site,
Required Data at the Processing Site, and Requested Processing are highlighted, as shown in
Figure 16(b). Using this simulation capability of OPCAT, design errors that were not
detected in the static model can be spotted and corrected before starting the implementation.

Appendix F elaborates on OPCAT 2 in general and its simulation capability in particular.

Activation
Reaquest

Activation
Request
B

Activation
Request
A

Result
Requesting

rosun fenarly Result
Retrieving

CS Interacting

Result
Requesting

Result
Retrieving

CS Interacting

Y

Requested
Result

Requested
esul

- um_b-

Requesting Site

3sUK Seua . Requested
Result

Reqguesting Site

I‘
/X
el
3

Processing Site Processing Site

() (b)
Figure 16. OPCAT 2 simulation snapshots before (a) and after (b) executing CS Interacting.

Existing things in a snapshot appear in gray.
6.3 OPM/Web Models of Code Mobility Design Paradigms

OPM/Web enables precise modeling of the REV, COD, PUSH, and MA paradigms, which
were explained informally in Section 6.1.2. In this section, generic OPM/Web models for

these design paradigms are presented. In all of these models, Requesting Site is the transaction

46

client, and as such, it obtains a copy of the Requested Result and keeps it at the end of the
process. Activation Request is the trigger for the code transferring process. The Resource Site is
the transaction server, i.e., it hosts the Requested Processing (as in COD, PUSH, and MA) or
the Required Data (as in REV). The COD, PUSH, and MA models describe transferring a one-
time executable version of code (i.e., a process instance) from the Resource Site to the
Requesting Site, and executing it in the remote site. The REV model specifies a process that
transfers an executable version of code from Requesting Site to Resource Site and executes it
there. Replacing the process instance with a process class supports transfer of source code
that can later be instantiated, i.e., compiled and executed. Removing the execution part and
connecting the transferred process class to other local things support mixins
[30]. The various code mobility models can become generic components in specifications of
mobile applications, as explained and demonstrated in Section 6.4.

Table 4 summarizes the components that reside at the Requesting Site and the Resource Site
before and after the transfer of a process instance in each one of the four mobile code design
paradigms. Note that the table reflects the situation before Requested Processing took place, so
Requested Result does not yet exist. After this transfer, the executable code may be activated,

creating Requested Result.

47

Table 4.

The resource and computational components in Requesting Site (the “client””) and

Resource Site (the “server”) before and after an activation of the transfer processes in

each one of the four code mobility design paradigms.

Code Mobility
Design Paradigm Time Requesting Site Resource Site
(Process Name)
Activation Request
. Before Required Data
Remote Evaluation Requested Processing code
(REV Interacting) . Required Data
After | Requested Processing code
Requested Processing instance
Activation Request
Before Requested Processing code
Required Data
Code-on-Demand
. Required Data
(COD Interacting) Requested Processing code
After Requested Processing
instance
Requested Processing code
Before | Required Data Profile
PUSH
Activation Request
(PUSH
Required Data
Interacting) . Requested Processingcode
After | Requested Processing
) Profile
instance
Requested Processing instance
Before | Required Data (+ Execution Status + Private
Data
Mobile Agent)
. Required Data If clones:
(MA Interacting)
Aft Requested Processing Requested Processing instance
er

instance (+ Execution Status

+ Private Data)

(+ Execution Status + Private
Data)

48

6.3.1 Remote Evaluation
The OPD in Figure 17 is an OPM/Web model of the Remote Evaluation (REV) paradigm.

The following OPL paragraph describes the same REV model textually.

Requesting Site, which is physical, zooms into Activation Request and Requested Result, as well
as Requested Processing.
Activation Request triggers REV Interacting.
Resource Site, which is physical, zooms into Required Data and Requested Result, as well as
Requested Processing instance.
Requested Processing instance affects Required Data.
Requested Processing instance yields Requested Result of Resource Site.
Many Requesting Sites and many Resource Sites communicate. This link exhibits REV
Interacting.
REV Interacting consumes Activation Request.
REV Interacting zooms into Code Sending, Code Activating, and Result Retrieving.
Following path code sending, Code Sending requires Requested Processing of
Requesting Site.
Following path code sending, Code Sending yields Requested Processing instance of
Resource Site.
Code Activating invokes Requested Processing instance of Resource Site.
Following path result sending, Result Retrieving consumes Requested Result of
Resource Site.
Following path result sending, Result Retrieving yields Requested Result of

Requesting Site.

Activation
/ Request

o sanding

* Requested
FTocessimng
Code

Sending

Code
Activating
Requested ult sen
Rasult resul sends o Result

A\ Retrieving

Resource Site REY Interacting

Requested
Processing

Required
Data

Requested

it sending
[T ——3> Result

Requesting Site

Figure 17. A generic OPD of the REV paradigm

49

6.3.2 Code-on-Demand
The OPD in Figure 18 is a generic model of the Code-on-Demand (COD) paradigm, while

the OPL paragraph below is its textual counterpart.

Requesting Site, which is physical, zooms into Activation Request, Required Data, and Requested Result, as
well as Requested Processing instance.
Activation Request triggers COD Interacting.
Requested Processing instance affects Required Data.
Requested Processing instance yields Requested Resulit.
Resource Site, which is physical, zooms into Requested Processing.
Many Requesting Sites and many Resource Sites communicate. This link exhibits COD Interacting.
COD Interacting consumes Activation Request.
COD Interacting zooms into Code Retrieving and Code Activating.
Following path code sending, Code Retrieving requires Requested Processing of Resource Site.
Following path code sending, Code Retrieving yields Requested Processing instance of Requesting
Site.

Code Activating invokes Requested Processing instance of Requesting Site.

communicale

" Activation
/ Request

Requested
Processing

ud Senyin,
Code
Retrieving

Code
Activating

Required Requested
Data Result

Resource Site Requesting Site

COD Interacting

Figure 18. A generic OPD of the COD paradigm
Figure 18 clearly shows that processing (i.e., the activation of a Requested Processing
instance) in the COD model occurs at the Requesting Site, whereas in the REV model, shown
in Figure 17, the processing takes place in the Resource Site. The fact that Requested Processing
is not initially at the Requesting Site is denoted in Figure 18 by the result link (the white
arrowhead) whose destination is the Requested Processing instance at the Requesting Site,
indicating that the Requested Processing instance was created there only after the first stage of

COD Interacting, which is Code Retrieving, occurred. As described in Section 6.2.3, OPCAT 2

50

enables simulation of the behavior of this system, showing more vividly the sequence of
occurrences. When the animated simulation is run, the Requested Processing instance appears

only in the postcondition set of Code Retrieving.

6.3.3 PUSH

Figure 19 is a generic model of the PUSH paradigm. The following OPL sentences describe

the model.

Requesting Site, which is physical, zooms into Required Data and Requested Result, as well as Requested
Processing instance.
Requested Processing instance affects Required Data.
Requested Processing instance yields Requested Resulit.
Resource Site, which is physical, zooms into Activation Request and Profile, as well as Requested
Processing.
Many Activation Requests relates to many Profiles.
Activation Request triggers PUSH Interacting.
Many Requesting Sites and many Resource Sites communicate. This link exhibits PUSH Interacting.
PUSH Interacting occurs if Profile of Resource Site is requesting site.
PUSH Interacting consumes Activation Request.
PUSH Interacting zooms into Code Retrieving and Code Activating.
Following path code sending, Code Retrieving requires Requested Processing of Resource Site.
Following path code sending, Code Retrieving yields Requested Processing instance of
Requesting Site.

Code Activating invokes Requested Processing instance of Requesting Site.

communicate

Activation
Request

' Elequested
Pracessing

Profile

fequesting
site

Code
Retrieving

-O

Required Requested

e
ot Data Result

Code
Activating

Requested

Processing Requesting Site

PUSH Interacting

Resource Site

Figure 19. A generic OPD of the PUSH paradigm
The condition link from requesting site Profile to PUSH Interacting specifies that when triggered
(by Activation Request), Requested Processing is transferred only to sites that were registered in

the Profile.

51

6.3.4 Mobile Agents

Various definitions of an agent [33] agree that all software agents are computer programs, but
not all programs are agents. Each agent definition indicates some properties that differentiate
an agent from a “conventional” program. An agent is expected to be reactive, autonomous,
goal-oriented, temporally continuous, communicative, learning, mobile, and flexible. Agents
of the same class or of different classes can communicate with each other using objects.
These definitions of an agent as a computer program with additional characteristics call for
modeling an OPM/Web agent as a process instance, which belongs to a process class. These
process instances (agents) initiate their own migration at specific points of their execution.

Figure 20 and the corresponding OPL paragraph describe a mobile agent model for the case

in which the agent is cloned from the Resource Site to the Requesting Site.

Requesting Site, which is physical, zooms into Required Data and Requested Result, as well as Requested
Processing instance.
Requested Processing instance exhibits Execution Status and Private Data.
Execution Status can be transfer or local.
Requested Processing instance affects Required Data.
Requested Processing instance yields Requested Result.
Resource Site, which is physical, zooms into Requested Processing instance.
Requested Processing instance exhibits Execution Status and Private Data.
Execution Status can be transfer or local.
Execution Status triggers MA Interacting when it enters transfer.
Many Requesting Sites and many Resource Sites communicate. This link exhibits MA Interacting.
MA Interacting zooms into Agent Migrating and Agent Activating.
Following path code sending, Agent Migrating requires Requested Processing instance of
Resource Site.
Following path code sending, Agent Migrating yields Requested Processing instance of Requesting
Site.
Agent Activating changes Execution Status of Requested Processing instance of Requesting Site
from transfer to local.

Agent Activating invokes Requested Processing instance of Requesting Site.

52

commumical®

Required Requested

Data Result
N/

=Requested
Frocessing

: Requested
Frocessing

Agent
Q\ Migrating

Agent
Activating

P[liiv?te Execution Status
ata
2| !

ENJVA Interacting N Execution Status PS;?;E
N)
A oo)
Resource Site Requesting Site

Figure 20. A generic OPD of the MA paradigm
The instrument link from the agent (the Requested Processing instance at the Resource Site) to
Agent Migrating (Within MA Interacting) denotes that this migration clones (i.e., makes a copy of)
the Resource Site‘s agent at the Requesting Site. Alternatively, MA Interacting might move the
agent, in which case a consumption link from Requested Processing instance of Resource Site to
Agent Migrating replaces the instrument link, implying that the agent at the Resource Site

disappears.

6.4 Reusing OPM/Web Code Mobility Models: The QoS System Example

As noted, transferring a (resource or computational) component between sites involves
determining the source and target sites, integrating the transferred component within the
target sites, addressing network security issues, and handling errors that may occur in the
process. These aspects can be incorporated in the single view of OPM/Web models by
reusing one or more of the code migration design paradigms, presented in the previous
section. To demonstrate the value of OPM/Web approach, a partial model of a Quality of
Service (QoS) system is presented [52]. This system is a mobile application in which
software components from multiple parties collaborate to provide a particular service to end

Uusers.

53

As the top level diagram in Figure 21 shows, the QoS system consists of three types of
sites: Client, ISP (Internet Service Provider) Agency, and Router Agency, each of which may
have multiple instances. Each site type is modeled as a physical object that inherits from Site,
which represents a network node. At this level of abstraction, the Client is shown to include
only the QoS Interface Handling process, with which the Service User interacts. The Service User
is an actor using the system and is therefore modeled as an external (dashed) and physical
(shadowed) object. Not knowing which routers provide the requested service, the Service User
interacts via the QoS Interface Handling process, which the Client site hosts. This interaction is
indicated in Figure 21 by the agent link from Service User to QoS Interface Handling. Each Client
is connected to ISP Agencies, and each ISP Agency is connected to several sites of type Router

Agency.

Site
Clignt m communicates with ISP T Router
= | Agency n | Agency
QoS Interface
Handling
\ Service |

Figure 21. The top level OPM/Web diagram of the QoS System
In UML, this system would need three different types of UML diagrams: deployment
diagrams to describe the system physical architecture, use case diagrams to describe the user-
system interactions, and sequence diagrams to describe scenarios of the communication
processes. However, even these three diagram types combined do not describe the details of
the interaction processes, as do the next two OPDs in Figure 22 and Figure 23.
Refining the interaction between the Client and the ISP Agency, Figure 22 shows that their

communication structural relation exhibits two operations: CS Interacting and COD Interacting.

54

The details of the models of the Client-Server (CS) and Code-on-Demand (COD) paradigms
have been presented earlier. COD Interacting, for example, is the same as the process modeled
in Figure 18, where ISP Agency is the server (Resource Site), Parameter Check Request is
Activation Request, and Parameter Checking iS Requested Processing. Therefore, CS Interacting and

COD Interacting are not in-zoomed further here.

' Sevice |
' User

._.l'_-l

communicates wih

Senvice Provider

QoS Parameter Catalog
Set

QoS Interface
Handling

sent

cancelled

1

o QoS Choice
Handling

QoS Parameter Set "“-.
[creat\ecl] [checl;l} [J [}\

j//

Service Control

A, Interacting %ﬁ'{;‘gﬂ?ﬁ‘;" Message
D)
Checki
1 hecking e
racti Processing
Parameter Checl P Interacting ISP |
Request Adoncy

Client

Figure 22. Detailing the Client — ISP Agency interaction

When weaving these models into a complete application, the combined model can be
enhanced to handle security issues and possible transfer errors. Since the security and privacy
algorithms are, most likely, pre-defined computational components, they can be modeled as
OPM/Web processes, from which the transfer processes can inherit the functionality and
interface. The different kinds of transfer errors, such as communication failures, unknown
addresses, and timeout exceptions, can be traced using OPM event links. These links model a
variety of events, including process timeout, process termination, state change, state entrance,
state timeout, and external events [77].

In addition to showing the details of the interaction between the Client and the ISP Agency
components, Figure 22 also zooms into the Client and the ISP Agency components, exposing a

more refined view of their internal objects and processes. QoS Interface Handling, which is the

55

computational component of the Client, handles requests that the Service User submits. When
activated by the Service User, QoS Interface Handling creates the objects QoS Parameter Set and
Parameter Check Request. Upon its creation, Parameter Check Request activates COD Interacting,
which transfers an instance (one-time executable version) of Parameter Checking from the ISP
Agency to the Client. This Parameter Checking execution (at the client site) changes the state of
QoS Parameter Set from created to either checked or wrong (as denoted by the dashed arc).
Through the QoS Interface Handling process, the Service User can continue affecting QoS
Parameter Set, in order to request services (via the update path) or to cancel them (via the
cancel path). These requests are transferred to ISP Agency by the CS Interacting process, which
does not need to wait for a response from the ISP Agency.

Unlike UML and its extension mechanisms, OPM/Web specifies the communication
processes generically, regardless of their implementation technology. For example, the cob
Interacting process specifies a common design paradigm for code mobility without limiting it
to specific implementation language constructs (such as Java applets or C# in the .NET
environment). As this example shows, OPM/Web also supports modeling the events which

trigger the communication processes, as well as the conditions that enable their activations.

QoS Parameter . communicates With

Set
Service Provider
—

Local
Database

L QoS Agent
Processing

‘I

05 Choice Qo3 Agent
Handling Processing

Service Address

- -
Sewice Caontral
Message
Farameter -
Checking Semg:sgggtm\ / 3| update
e) P cancel
=
Agency

ISP
Agency

Figure 23. Detailing the ISP Agency — Router Agency interaction

56

Figure 23 is a refinement of the interaction between ISP Agency and Router Agency. Since not
all the Router Agencies provide all the services, the QoS Choice Handling uses a Service Provider
Catalog as an instrument for creating a Service Control Message and the Service Address object,
which defines a router agency address for the required service. If the Service Control Message
requests a new service (which is the case when its state is create), then the REV Interacting
process is activated, transferring an executable version of QoS Agent Processing to the Router
Agency according to the Service Address. If the Service Control Message is created in its update or
cancel states, it is transferred as is to the Router Agency by the CS Interacting process, enabling
the continuous running of QoS Agent Processing in the Router Agency, where it can use the
Service Control Message and affect the Local Database.

Other OPM/Web code mobility models could be plugged and linked into the QoS
application for specific purposes. For example, if the QoS Agent Processing is required to be
able to move or clone itself among various Router Agencies according to the Mobile Agent
(MA) paradigm, explained in Section 6.3.4, a structural relation between Router Agency and
itself could be added. This relation would exhibit the MA Interacting process as its operation.
The simulation of the system would provide for interactive verification of the system already

at the early design stage, saving time and human resource efforts.

57

7. Component-Based Development with OPM/Web*

The last few decades have witnessed increasing interest in software reuse, i.e., the use of
existing software artifacts or knowledge to create new software [32]. Software reuse aims at
improving software quality and productivity by integrating existing components, such as
commercial off-the-shelf (COTS) products or tested modules from other projects. Early
software reuse concerned the combination of reusable source code components to produce
application software [64]. The object-oriented paradigm has highlighted the importance of
reusability as part of the entire software system development process by using classes,
packages (modules), and the inheritance mechanism as primary linguistic vehicles for reuse
[9]. The current definition of software reuse encompasses the variety of resources that are
generated and used during the development process, including requirements, architecture,
design, implementation, and documentation.

Software engineering approaches refer to reuse in various ways: plug-and-play software
component technologies, design patterns, aspect-oriented and superimposition approaches,
subject-oriented methods, etc. Many of these reuse approaches rely on the Unified Modeling
Language (UML). While UML has undoubtedly contributed to the communicability of
software designs during the system development process, two significant drawbacks reduce
UML's suitability for component-based development: its model multiplicity and its confused
behavior modeling [24]. A major problem with UML is the relatively large number of
different views, which require nine diagram types, and the lack of integration and consistency

validation among them. On top of this model multiplicity problem, UML lacks a coherent

* A short version of this section was published in the 26" annual international Computer Software and
Applications Conference (COMPSAC'02) [84]; while an extended version of it is submitted to ACM
Transactions of Software Engineering and Methodology (TOSEM).

58

single mechanism to specify system dynamics. The interaction of processes with external
entities is shown in the use case view; their behavior is broken into services, which are
distributed among different classes in the class diagram. Their effects on the system's objects
are shown in the Statecharts view, while their flows of control are specified in the activity
and interaction diagrams. This unbalanced object-oriented, multiple-view system
representation complicates the reuse of behavioral components that cut across various object
classes. OPM/Web remedies this major obstacle to modeling system dynamics in general and
dynamics-rich components in particular by enabling reuse of partially specified components
that combine structure and behavior. Web applications can serve as examples of complex
structural and behavioral systems whose qualities and delivery times can be improved by
reusing existing components.

In this section, an OPM component-based development (CBD), which encompasses the
design of generic components and their complex integration with the system under
construction, is introduced and exemplified. This process does not fit only for developing
Web applications, but any system that requires reuse of existing, partially specified

components.

7.1 Reuse of Design Components in Existing Modeling Techniques

Current object-oriented modeling techniques and languages, notably UML [56, 62, 68§],
emphasize the importance of reuse during the development process and facilitate it through
classes, packages, and the inheritance mechanism. Plug and play software component
technologies treat classes and packages as closed, black boxes with interfaces, through which
other parts of the component or other components can communicate [5]. This approach
hinders reusing generic components in different contexts, where they can be effectively
woven into various locations throughout an application under development. Moreover,

Mezini and Lieberherr [63] claim that object-oriented programs are more difficult to maintain

59

and reuse because their functionality is spread over several methods, making it difficult to get
the “big picture.” They suggest designing components that facilitate the construction of
complex systems in a manner that supports the evolutionary nature of both structure and
behavior.

To respond to this challenge, aspect-oriented programming (AOP) approaches [3, 20]
modularize the features for a particular concern and enable these features to be woven, i.e.,
incorporated and integrated into the system model on the level of programming languages.
Superimposition language constructs [4, 10, 11, 49] similarly extend the functionality of
process-oriented systems, again cutting across the software architecture of process hierarchy.
These techniques allow the imposition of predefined, but configurable, types of functionality
on reusable components.

Recently, attempts have been made to extend the aspect notion from programming to
software design [7, 19, 50] and to software engineering [2, 42]. Most aspect-oriented
modeling techniques are based on UML and employ stereotypes to model the new aspect-
oriented concepts. Catalysis [27], for example, is a methodology for component and
framework-based development. It enables describing complex systems based on coherent
perspectives and views. Catalysis also provides consistency rules across models and
mechanisms for composing these views to describe complete systems. Troll [28] and
Composition Patterns [16] suggest adding parameterization and binding capabilities to UML
packages.

Design patterns [37] describe common design solutions that can be reused in different
contexts. They are typically described using a combination of natural languages, UML
diagrams, and program code. Since, as noted, UML visualization suffers from unbalanced

representation of the static and dynamic aspects of the design patterns [59], UML is extended

60

using its built-in mechanism of stereotypes. These extensions increase the language
vocabulary and complexity, and consequently hinder its comprehension.

Subject oriented design methods try to reduce the gap between the functional-oriented
requirements and the object-oriented design models by enabling compositions of models,
each of which specifies a user requirement. Clarke [15], for example, has extended UML
with two types of composition relations: merge and override. They both involve an entire
UML unit — attribute, method, class, etc. As noted by the author, this approach should be
customized to each one of the nine UML diagram types, but for now the extension handles
only class and sequence diagrams.

While these methods are intuitive for reusing complete structural units, such as classes,
packages, or collaborations, they are limited and inconvenient in their support of behavioral
and functional component reuse with more intricate relations to an existing system.
Furthermore, most of them do not relate to subsequent phases of the system development that
need to be accounted for after reusing generic components. Complete integration often
requires that certain changes be made to parts of the original component units. This implies
that components cannot be black boxes, but rather white or transparent boxes, whose contents
can be accessed and modified. This kind of support is often essential for optimizing and
enhancing the design of an entire system, a mission that goes beyond binding existing
components together. OPM/Web enables weaving partially specified components and evolve
them to complete system models by further enhancing and optimizing them during the
analysis and design phases. The evolution is made possible through further specification and
specialization of the original constituents of the generic components in a way that best suits

the task at hand, while maintaining their original core function.

61

7.2 Weaving OPM/Web Components

The weaving of OPM/Web components is a three-step process, which includes (1) designing
reusable generic and target components; (2) integrating them to create raw woven
components; and (3) enhancing the raw woven components into complete systems or

applications.

7.2.1 Designing Reusable Generic Components

Generic components are the building blocks of the weaving process. For each pair of
components to be woven (combined), one component is defined as generic, and is partially
specified, while the other is a specific target component. The components are each modeled
using OPM/Web.

Each thing (object or process) in OPM exhibits the affiliation attribute, which determines
if the thing belongs to the system or to the system’s environment. A systemic thing belongs to
(is affiliated with) the system, while an environmental thing is either completely external to
the system (and interacts with it) or requires further specification in a target component to
which it is bound. A compound environmental thing has a partially specified structure and/or
behavior, containing at least one environmental element and possibly one or more systemic
elements.

In OPM/Web, states and links also exhibit affiliation and hence may also be systemic or
environmental. An environmental state is owned by an environmental object, while an
environmental (structural or procedural) link connects a pair of environmental entities. As
explained in Section 7.2.4 below, an environmental element in a generic component requires
the existence of a corresponding element in the target component.

Figure 24 is a model of a generic reusable Time Stamped Execution component, which adds
time recording capability to a process execution. This component attaches to each Data Item a

timestamp, called Recorded Time. Data ltem and Recorded Time characterize (i.e., are the

62

attributes of) the environmental object Node. Node must be environmental, because it exhibits
the environmental Data Item. Data Item itself is environmental since it needs to be refined and
adapted to the various contexts in which it is reused. Each object bound (assigned) to Data
Item must have at least one state that corresponds to the state created of Data Item. Regardless
of the context of Data Item, Recorded Time is systemic, since it requires no further refinement

when woven into the target concrete component.

Recaorded
Time

' v Data Handling - - T |
i |

'\ ~5______,45.__4:@\||;r:.at_f"lem |

PR =S !

| |

created |
\ ’

« lime Stamped .~ 2T T 7 L
~ . Executing -

-

- -
- ™

Figure 24. A reusable generic Time Stamped Execution component

Similarly, Time Recording, which is a sub-process within the Time Stamped Executing
process, is systemic. Data Handling, which should be bound and adapted to a process in the
target component, is denoted as an environmental process. The environmental effect link
between Data Handling and Data Iltem means that in the target component bound to the Time
Stamped Execution component, a systemic effect link must exist between the process bound to
Data Handling and the object bound to Data Iltem. This implies that the Data Handling process in
the Time Stamped Execution component must be bound to a process that affects Data Item, i.e., a
process that changes its value. If Data Item and Data Handling were not linked in the Time
Stamped Execution component, Data Handling could be bound to a process in the target
component that is linked to the object bound to Data Item by any possible procedural link, or it

might not be linked at all.

63

The systemic event link from the state created of Data Item to Timed Stamped Executing
indicates that the process is triggered each time Data Item enters its created state. In other
words, whenever a new data item is created, the process that records the time of its creation is

invoked.

7.2.2 Intra-Model Weaving Rules

In addition to OPM consistency and legality rules, formally defined in Part 4 of this work,
OPM/Web components are required to abide by two types of weaving rules: intra-model rules
and inter-model rules. Inter-model weaving rules, which are discussed in Section 7.2.4,
concern the weaving of two or more components. Intra-model weaving rules, which include
the refinement and the link attachment rules defined below, state what can and what cannot
be done within a single OPM/Web component.

The refinement rule: The refineables (parts, specializations, features, or instances) of an
environmental thing can be either environmental or systemic, while those of a systemic thing
can only be systemic. In other words, an environmental thing can be refined (unfolded, in-
zoomed, or state expressed) by environmental or systemic entities, while a systemic thing is
already fully defined and, hence, can only be refined by other systemic entities.

To see an application of this rule, consider Figure 24, in which Time Stamped Executing must
be environmental, since it contains the environmental process Data Handling. Similarly, the
object Node must be environmental, since one of its refineables, in this case the attribute Data
Item, is environmental. The environmental Data Item object owns an environmental state,
called created.

The link attachment rule: An environmental link connects two environmental entities,
while a systemic link connects two entities that may be systemic or environmental.

Figure 25 shows the four possible variations of linking two entities in a generic OPM/Web

component. Two systemic entities or a systemic entity and an environmental one can be

64

linked only by a systemic link (as shown in Figure 25(a) and Figure 25(b), respectively). Two
environmental entities can be linked by either a systemic or an environmental link (as Figure
25(c) and Figure 25(d) show). A systemic link between two environmental entities (as in

Figure 25¢) implies that after the binding, the two systemic counterparts which are bound to
the linked entities in the generic component must be connected by the systemic link, even
though this link may not be present in the original target component. It should be noted that
both A and B in Figure 25 can be any type of entity — object, process, or state, and the link
between them can be any type of procedural or structural link that can legally connect the two

entities.

A <&— B 1 A Ke——1 B
(c) (d)

Figure 25. The possibilities of connecting two entities in OPM/Web. (a) Two systemic entities
can be linked by a systemic link. (b) An environmental entity and a systemic one can be
linked by a systemic link. (¢) Two environmental entities can be linked by a systemic

link. (d) Two environmental entities can be linked by an environmental link.

7.2.3 Creating Raw Woven Components

Having obtained or created a set of reusable generic OPM/Web components, the system
architect should decide which ones are to be woven into the target component and how to
weave each one of them so that the resulting specification meets the system requirements. A
woven component includes one or more generic or target components, each of which is
enclosed in a package. A package is graphically symbolized as in UML (see Appendix A)
and is in-zoomed to expose its OPD-set. As noted, in each pair of components to be woven,
one component is defined as generic, while the other is the target. A generic component in

one combination can be a target in another, and vice versa. The result of the weaving of the

65

generic and target components is a single woven component, which can be entirely systemic
(i.e., all of its entities are systemic, or concrete), or it may still contain one or more
environmental entities, implying that it should be further woven with additional components
until all the elements are systemic. Only then is the system specification considered complete.

While weaving, the designer has to link one or more environmental entities in the generic
component with corresponding (environmental or systemic) entities in the target component.
In Figure 26, for example, the generic Time Stamped Execution component of Figure 24 is
woven into a target Product Handling component, such that the combined specification contains
two components. Since each component may contain entities that are bound at different levels
of refinement, the appropriate series of refining and binding steps needs to be applied in order
to get the final specification. In Figure 26, for example, the generic Time Stamped Execution
component shows Time Stamped Executing in-zoomed, while the target Product Handling
component shows Product Handling in-zoomed. This way, the latter process can be bound as a
specialization of the former. At the in-zoomed, more detailed level shown in Figure 26,
Product Updating is bound to Data Handling as its specialization.

The generalization-specialization relation is the primary means for binding a thing from
the generic component to its counterpart in the target component, although the components
can be connected by any (structural or procedural) link. The generalization-specialization
(gen-spec) relation in OPM/Web extends its object-oriented counterpart by providing not
only for object inheritance, but also for process and state inheritance. As in the object-
oriented paradigm, object inheritance implies that the sub-object class exhibits at least the
same set of features (attributes and operations) and static relations as the super-object class.
Process inheritance means that the sub-process class has at least the same interface (i.e., the
set of procedural links) and behavior (i.e., sub-processes) as the super-process class. The

interface and behavior of the inheriting process class may be extended. This way, things can

66

inherit not just complete classes, as in UML, but also partially specified behaviors. In state
inheritance, the specialized state inherits the structure (i.e., sub-states) and the interface (i.e.,

the set of procedural links) in which the generalized state is involved.

Time Stamped Execution |

- A= S.. 1 Node '
r’ T Seeeee I
* (Time Recording s
’
' “‘\b Recorded
N v Time
1 -
! .- ~e—T .
\) i
. Data Handling * K i Data ltem
\ A PR - ~ - —_——
0]
) N

v Time Stamped L7 DN I
~. Executing

-

Produgt Handling | T

-

Product

Repart Product

Catalog

Product
pdating

Product

o]

Consistency
Message

Figure 26. A raw OPM/Web woven component in which the generic Time Stamped Execution

component (top) is woven into the target Product Handling component (bottom)

Each of the three gen-spec relations in Figure 26 binds an entity of the generic component
to a corresponding one in the target component. These relations imply that (1) Product
Handling inherits the systemic Time Recording process (which, in turn, affects Recorded Time),
(2) Product Updating inherits the instrument link from Recorded Time, and (3) Product Handling
inherits the event link and is thus triggered when Data Item is generated, i.e., when it enters its
created state. The state gen-spec relation between created Data Item and proper Product implies
that proper is a specialization of created, such that Product Handling is triggered whenever
Product enters its proper state. This relation also implicitly connects Data Item to Product

(implying that Product is a Data Item).

67

7.2.4 Inter-Model Weaving Rules
Each woven component is required to preserve the intra-model weaving rules, which are
defined in Section 7.2.2, and three inter-model weaving rules, which apply to the integration
of two components. The inter-model weaving rules are the mandatory binding rule, the
hierarchy congruence rule, and the link abstraction rule, which are defined next.

(1) The mandatory binding rule: This rule concerns binding of three types of elements:
entities, links, and states.

(1.1) Entity binding: Each environmental entity (object, process, or state) in a generic
component can be bound to a corresponding entity in the target component, either explicitly
or implicitly. Explicit binding applies a direct gen-spec relation. In implicit binding, which is
applicable only to a compound environmental entity, the gen-spec relation is not visible
directly. Rather, it is implied from the context, as follows. For each compound environmental
entity A in the generic component, which is not explicitly bound to an entity in the target
component, a default systemic entity, whose name is Concrete A, is automatically generated in
the target component. This new entity has a refineables (parts, specializations, features, or
instances) set which includes all the systemic entities bound to the environmental refineables
of A.

As an example, for the unbound environmental object Node in the generic component of
Figure 26, a default systemic object, whose name is automatically set to Concrete Node, is
generated in the target component. The object Concrete Node exhibits Product as its attribute
and inherits the systemic object Recorded Time from Node.

(1.2) Link binding: The binding of an environmental link is implicitly determined from the

bindings of the entities it connects.

68

For example, the environmental effect link between Data Item and Data Handling in the generic
component in Figure 26 is implicitly bound to the systemic effect link between Product and
Product Handling in the target component.

(1.3) State binding: The binding of an environmental state implies the binding of the
(environmental) object owning this state.

In Figure 26, for example, Product is implicitly bound to Data Item, since its proper state is
bound to the created state of Data Item.

Figure 27 extends the raw woven component of Figure 26 with the above implicit bindings.
One should bear in mind that Figure 27 is only drawn to explicitly illustrate the various
bindings, but in practice the two added bindings are implicitly implied from Figure 26 and
need not be explicitly specified as in Figure 27.

(2) The hierarchy congruence rule: The hierarchy structure of entities in a target
component must be congruent with the hierarchy structure of the corresponding entities that
bind them in the target component.

For example, in the woven component of Figure 27, Node is bound to Concrete Node, while
Data Item is bound to Product. Hence, Concrete Node and Product of the target Product Handling
component must preserve the exhibition-characterization relation that exists between Node
and Data Item in the generic Time Stamped Execution component. The same congruence exists in
the raw woven component in Figure 26, albeit implicitly.

As another example, the systemic Product Handling process is bound to the environmental
Time Stamped Executing process, while the systemic Product Updating process is bound to the
environmental Data Handling process. The in-zooming (containment) relation between Time
Stamped Executing and Data Handling in the generic component is maintained in the target
component, as Product Handling zooms into (contains) Product Updating. The hierarchy

congruence rule forbids concurrent binding of Time Stamped Executing with Consistency

69

Checking and Data Handling with Product Updating, because this would violate the hierarchy
congruence of the processes required by the generic Time Stamped Execution component.
Similarly, the congruence of the relation between the created state and Data Item in the generic

component is preserved in the target component by the proper state and the Product object,

respectively.
Time Stamped Execution |
L= ~a. ¢ Node |
;’ . . “ _______
A
K Time Recording (_“__b Recorded
J . Time
I 1
v et - / _______
-"41‘?ata Handling < X . Dataltem
N Tt - \r'\ -~ N cre_atal
'\ Time Stamped .* S
~. Executing ,:l
Proquct Handling | A N T jx
]
Product Concrete
Report Product Product Node
Listing Catalog
Product i E
datin A
Consistency
Consistency Checking Product
Message Product Handling proper defective
Figure 27. The raw woven component of Figure 26, in which Concrete Node, its binding with

Node, and the binding of Product to Data Item explicitly appear
(3) The link abstraction rule: Environmental links can be bound to systemic links which
are at least as strong as their environmental counterparts according to the link abstraction
order. OPM’s procedural link abstraction order is summarized in Setion 12.1.3.
As an example, the link abstraction rule implies that the procedural link between Product
and Product Updating in the target component in Figure 26, must be at least as strong as an

effect link, which connects Data Item and Data Handling in the generic component. Hence,

70

Product and Product Updating can not be linked, for example, by instrument or condition links,

which are weaker than the effect link.

7.2.5 Merged Components

The semantics of the gen-spec relation between an entity in a generic component and its
counterpart in the target component is similar to the semantics of this type of relation
between entities within a single component: a target entity inherits the structure and behavior
of a generic (environmental) entity.

The target component “absorbs” the generic one, resulting in a merged component, which
is the single component constructed by applying the weaving rules and the semantics of the
raw woven components explained above. By definition, the raw woven component and the
merged one, which is derived from it, are equivalent.

Figure 28 is the merged component, which is derived from and equivalent to the woven
component in Figure 26. In this merged component, Concrete Node exhibits two attributes,
Recorded Time and Product, the latter being part of Product Catalog. Zooming into Product
Handling shows that it consists of four sub-processes: Time Recording, Product Listing, Product
Udating , and Consistency Checking. Product Updating, for example, has an instrument link from
Recorded Time, required by the generic Time Stamped Execution component, and an effect link
with Product, as the target Product Handling component implies. In other words, Product Updating
uses Recorded Time as an input and affects Product. The proper state of Product inherits an event
link to Product Handling from the environmental created state of Data Item in the generic Time

Stamped Execution component.

71

Product

Report
Product Time Product
Listing ecordin Concrete Catalog
Mode
Prggﬁlﬁt Recorded
Time
Consistency
Checking Product
Consistency Product Handling
Message

Figure 28. The merged component which is derived from the woven component in Figure 26

and is equivalent to it
The layout of the processes within an in-zoomed process in an OPD defines a partial
execution order: two independent or concurrent sub-processes appear at the same vertical
level, while sequential processes follow each other. The gen-spec relations between processes
of different components merge the partial orders from each component into a single
combined partial order. In Figure 26, for example, there is a total order in both the generic
Time Stamped Execution component (first Time Recording and then Data Handling) and in the
target Product Handling component (first Product Listing, then Product Updating, and finally
Consistency Checking). The gen-spec relation between Data Handling and Product Updating in
Figure 28 defines a partial order, in which Time Recording and Product Listing are independently
executed first, followed by Product Updating, and finally by Consistency Checking6.
If after absorbing the generic component into the target one, more than one link exists
between two environmental entities in the generic component and their corresponding entities

in the target component, then the more abstract link according to the link abstraction order,

® The sub-processes within an in-zoomed process are either parallel or sequential (but not both). Hence, the
OPD in Figure 28 is equivalent to an OPD in which Product Handling is zoomed into 3 sequential sub-
processes: Pre-Handling, Product Updating, and Consistency Handling, where Pre-Handling is further

zoomed into 2 parallel sub-processes: Product Listing and Time Recording.

72

defined in Section 12.1.3, prevails. For example, if in Figure 26 there were a systemic
instrument link between Data Item and Data Handling in the generic component, it would have
been subsumed by the effect link between Product and Product Updating in the merged

component, because an effect link is more abstract than an instrument link.

7.2.6 Weaving vs. Merging

A raw woven component can be maintained either as is, or as a merged component. Each
option has its advantages and disadvantages. The raw woven component is more succinct and
abstract. Its main advantage is the ability to maintain and develop each component separately.
Once a generic component is improved, each target component automatically benefits from
this improvement. The main advantage of the merged component is its explicit presentation of
all the elements from both building components in a single model. However, once merged,
this merged component loses its linkage with the generic component, so no change made to
the generic component will be reflected in the merged component.

Components can be maintained in libraries that may be distributed over many nodes
(computers). According to the flexible usage approach, each time an application is compiled,
the most up-to-date components that comprise the application are imported, thereby enabling
potential constant improvement in various performance aspects. In another configuration,
only future uses of the component benefit from the new, improved version of the component,
while existing bindings use an older version of the component with which they were
originally complied. To increase flexibility and ensure that the application enjoys potential
improvements in generic library components, it is recommended maintaining the woven
component version and generating the merged components only to facilitate the readability of

the application's OPM/Web model.

73

7.2.7 Enhancing Raw Woven Components

Having created the raw woven component, the system architect can refer to it as a single
component, while further refining the system specification in a separate layer without
affecting the generic nature of the composing components. This layer includes the gen-spec
relations and additional links among the components. The refinement stage enables
optimization of the combined component as a complete application, offering functionality that
exceeds the sum of the individual component functionalities. The weaving process can be
successively employed in order to reuse additional components for meeting new requirements

or modeling various concerns or aspects, as demonstrated next.

7.3 Reusing OPM/Web Components: The Web-Based Accelerated Search Case Study

To demonstrate the weaving process described in Section 7.2, a case study of an OPM/Web
component-based development of an accelerated search system is presented. The system
implements an algorithm for improving the performance of a Web search engine, which
employs time-consuming search algorithms. The design of the accelerated search system
includes two components — the generic Acceleration component and the target Multi Search one.
The Acceleration component [29] specifies a generic algorithm that reduces the execution time
of an input-output part of a system by trying first to retrieve the output, which is determined
by the input, from a database. It is assumed that the sought Web-based items rarely change,
so they are relatively static. This implies that results of subsequent activations of a query with
the same input remain valid and can therefore be stored to avoid executing the costly
calculation each time a query with that input is submitted. If the entry is not already in the
database, the algorithm activates a process that calculates the sought output and records it in
the database to accelerate future executions of the query with the same input. The Multi Search
component implements a new search engine that benefits from existing search engines by

combining their results and ordering them according to a weighted score.

74

7.3.1 Designing the Acceleration and Multi Search Components

Figure 29 shows the Acceleration component. At the top level system diagram (SD) shown in

Figure 29(a), Accelerating requires Input to produce Output and affects (updates) the database

DB. According to Figure 29(b), the Accelerating process zooms into (consists of) the following

sub-processes: DB Searching, which searches the DB for an input-output entry; Output Retrieving,

which retrieves the output if it was found in the database; and Full Process Activating, which

activates the full-blown process of Output Computing otherwise. As Figure 29(c) shows, during

Full Process Activating, Output Computing first computes the output, and then DB Updating records

the input-output pair in the database for future searches.

-
- -
- -

DE .
v InpLt . s emeee-)
- + ' '
ol 8 e sl . ' Input
:*Accelerating K . e
------ bes ' n\/
____;l{__‘ 7 Input is found? \
v Output : - ," H
OEL ; ':
M L]
: .
1] Li
Input is found? ' :
............ 3 T W
" ancﬁggﬁgs T, ' +“ FulProcess * .
‘ ‘s, Activating)
(c) SD1.1 (b) SD1
Figure 29. The Acceleration component. (a) SD is the top-level diagram. (b) SD1 has Accelerating

of'SD in-zoomed. (c) SD1.1 has Full Process Activating of SD1 in-zoomed.

The Acceleration component contains two environmental objects, Input and Output, and one

simple (atomic) environmental process, Output Computing. The refinement rule implies that

Full Process Activating must also be environmental, since it contains the environmental process

Output Computing. Following the same line of reasoning, Accelerating, which is at a yet more

abstract level, must also be environmental. All the other things, including the object DB, the

75

Boolean object “Input is found?,” and the processes DB Searching and Output Retrieving, are
systemic. They are internal to the Acceleration component and would not change when this
component is woven into a target component.

Figure 30 is a specification of the Multi Search algorithm, executed by the Multi Searching
process. Figure 30(a) is the top-level diagram, which specifies the inputs, Term and Query
Result Message, and outputs, Query Message and Search Result, of the Multi Search algorithm.
Assuming that the algorithm operates concurrently on three different search engines, the
diagram in Figure 30(b) shows that Search Starting requires Term, from which it creates three
queries, one for each engine. Query Sending then creates from the three queries three Query
Messages, which are sent in parallel to the relevant search engines (the sending part is not
included in this model). Result Collecting waits until all three replies, called Query Result
Message 1, 2, and 3, arrive. It then outputs them as Result 1, 2, and 3, respectively. Finally,

Result Merging combines these three results to get the Search Result.

Term
Multi Searching
Query Result
Query Message Search Starting Message
Search Result Term M
r Cluery 2 Cluery 3 Query Result
Query Quary 1 Hery Y Message 1
Message 1
Query Query Result
Message 2 Guery Sending Message 2
Query Result .
ety Message Messags . Measlel.glgye 3 Query Result
M 3
Result Arriving ESsage
Result Merging
Search Result
(2) SD (b) SD1

Figure 30. The Multi Search component. (a) SD is the top-level diagram. (b) SD1 has Multi

Searching of SD in-zoomed.

76

The Multi Searching process depends on the speed of each search engine, the network
response time, and the number and size of results supplied by each search engine. Any
combination of these factors can slow down the Multi Searching response time. To improve the
system’s performance, the Acceleration component (Figure 29) is woven into the Multi Search
component (Figure 30). This way, the most recently searched terms and their corresponding
results are saved in a local database, and, for each new query, the local database is searched
before invoking the entire Multi Searching process. Only if the result is not found in the

database, the system executes the Multi Searching process.

7.3.2 Weaving the Raw Accelerated Multi Search Component

Figure 31 shows the generic Acceleration component, derived from SD1.1 of Acceleration in
Figure 29(c), woven into SD of the Multi Search component in Figure 30(a) to create the raw
woven component, called Accelerated Multi Search. Three gen-spec relations connect the things
in the generic component to the corresponding things in the target one. Two of these relations
are between object classes, specifying that Term is an Input and that Search Result is an Output.
The third gen-spec relation is between two process classes, specifying that the systemic Multi
Searching process specializes the environmental Output Computing process.

In each of the three bindings, an atomic thing in the generic component generalizes a
corresponding thing in the target component: Input, Output, and Output Computing generalize
Term, Search Result, and Multi Searching, respectively. According to the intra-weaving rules, the
environmental process Full Process Activating is implicitly bound to a default systemic process,
called Concrete Full Process Activating, which includes just Multi Searching.

Merging the Acceleration and Multi Search components would result in an explicit model,
which is equivalent to the woven component modeled in Figure 31. However, this model is
both specific to the problem and more complex than the woven component. Furthermore, in

order to reuse the acceleration part of this merged component in another system, such as a

71

system that finds the shortest path between two nodes in a network, the system architect
would have to remodel the acceleration functionality to fit the new problem. Conversely, the
generic nature of the Acceleration component in Figure 29 makes the same core architecture
reusable for a variety of related functions. Enhancements to the (non-merged) generic library
Acceleration component can automatically be reflected in any model into which this
component is woven. Physically, the Acceleration component may reside in any repository.
Assuming constant update of the components is desired, new versions of the Acceleration
component can be broadcast, published, or pushed to its customer applications whenever it is

updated.

SD1.1 of Acceleration |

Inputis found?

s

SD of Multi Search |

Search Result
Term
Multi Searching
Query Result
Message
Query Message

Figure 31. The Accelerated Multi Search component

7.3.3 Refining the Raw Woven Accelerated Multi Search Component
The equivalent semantics of the woven and the merged component make it possible to treat

woven components as generic or as target components. The system architect can continue

78

specifying the system into which a component has been woven as a complete application.
Two refinements that enhance the raw woven Accelerated Multi Search component obtained in
Section 7.3.2 are demonstrated. The first refinement improves the Result Merging algorithm
within Multi Searching by treating DB as an additional input, while the second one adds to the
system an entire generic Log Recording component. Any combination of these two refinements

can be part of the system design, and they may be incorporated into the system in any order.

SD1.1 of Acceleration |

Inputis found?

P
\@ .*=° FullProcess =~
s * Activating .
-

SD1 of Multi Search |

Query Message

Term

Multi Searching

Query Result
Message

Search Starting

L\ W
Query 3 Query Result
Query Message 1
Message 1
Query) Query Result
Messags 2 [Guery Sending Messags 2
Query .
Message 3 ?\Hglsysa!?ge:glt
Result Arriving

Result Merging

Search Result [<

Figure 32. Improving the Result Merging algorithm of the Accelerated Multi Search component by

linking it to DB
Improving the Result Merging process is achieved by adding the capability to retrieve related
term-result pairs from the database and use them to decide how to score the new search

results. To carry out this function, an extra instrument link from DB (of the generic

79

Acceleration component) to Result Merging (of the specific Multi Search component) is added in
Figure 32. This makes DB an additional input to Result Merging. To be able to express this
binding, the Multi Searching process is shown in SD1 of the Multi Search component (see Figure
30(b)). Further zooming into Result Merging would contain details specifying how the database
(DB), added by the Acceleration component, improves the merging of the query results.

Figure 33 shows how the Accelerated Multi Search component is enhanced with the ability to
maintain a log file. The generic Log Recording component includes a systemic Log File along
with its Log Records and a Recording operation. The only environmental thing in this
component is the object Input. When weaving the Log Recording component into the Accelerated
Multi Search component, Term is bound to Input. The two components are also connected with
an event link and an invocation link, denoting the two possible triggers of Recording: a DB
change event triggers Recording via the event link, while a Multi Searching process termination
event triggers Recording via the invocation link. The dashed arc between the two events

represents a “logical-xor” relation between them.

SD of Accelerated Multi Search [
SD1.1 of Acceleration |

Input Is Found?

.....] o8

-

Al T

\@,”Full Process . -
7 Activating /V SD of Log Recording |
A

Log File

m

Log Record

BD of Multi Search [

| | 4+
L Search
Result
IvILIlt . —
Searchin %

Query I
Message QueryResut f| | | S\ T
Message

Figure 33. Reusing the Log Recording component in the Accelerated Multi Search component

80

Part 3. OPM/Web Evaluation

8. OPM/Web vs. UML — An Experiment’

In order to establish the level of comprehension of a given OPM/Web model and the quality
of the models constructed using it, OPM/Web was experimentally compared to Conallen’s
extension of UML to the Web application domain. Third year undergraduate information
systems engineering students had to respond to comprehension and construction questions
about two representative Web application models. This chapter describes the experiment

hypothesis, design, results, and conclusions.

8.1 Comparing Modeling Techniques — Related Work

The emergence of a large number of software system modeling methods over the years has
raised the need to evaluate them either theoretically or empirically. Theoretical approaches
use techniques, such as metamodeling or defining objective criteria for language
comparisons, to examine various attributes of the modeling methods, such as expressiveness,
complexity, and accuracy. In one theoretical approach, using metamodeling, Hillegersberg et
al. [47] studied the fitness of the Booch method [9], an object-oriented analysis and design
method, to the object-oriented programming languages Smalltalk, Eiffel and C++. Halpin and
Bloesch [43] examined the relative strengths and weaknesses of the Object Role Model
(ORM) and UML for data modeling according to criteria of expressiveness, clarity, semantic
stability, semantic relevance, validation mechanisms, abstraction mechanisms, and formal
foundation. Siau and Cao [91] compared the complexity metric values of UML with other

object-oriented techniques. Their comparison related to seventeen complexity metrics,

7 An extended version of this section is submitted to the Empirical Software Engineering journal.

81

including independent metrics (such as the number of object types per technique) and
aggregate metrics (e.g., the division of work in a specific technique).

Modeling methods can also be compared empirically. Empirical studies are based on
experiments, in which the results are examined quantitatively according to certain criteria,
and the subjects may be untrained people, students, or professional systems analysis and
design experts. Kim and March [51] compared Extended Entity Relationship (EER) and
Nijssen Information Analysis Method (NIAM) [96] for user comprehension, which was
measured by counting the number of correct answers to questions about the various modeling
constructs. Shoval and Shiran [90] compared EER and object-oriented data models from the
point of view of design quality. They measured quality in terms of correctness of the
achieved model, time to complete the design task, and designer’s preferences for the models.
Otero and Dolado [76] compared the semantic comprehension of three different notations for
representing behavior in UML: sequence diagrams, collaboration diagrams, and state
diagrams. The comparison relied on the total time and score. They found that the
comprehension of dynamic modeling in object-oriented designs depends on the complexity of
the system. Peleg and Dori [78] compared OPM/T, an extension of OPM to real-time
systems, with a variation of Object Modeling Technique (OMT) [86] to the same domain
(T/OMT). They examined the specification quality and its comprehension on both the
structural and behavioral aspects of a system. The subjects were asked to fill in a
questionnaire consisting of statements on a system modeled in one of the methods and to
specify another system using the second method. The conclusion was that the single view of
OPM/T is more effective than the multiple-view of T/OMT in generating a better system
specification. Most of the errors in T/OMT resulted from the lack of integration among the
method’s different views and the need to maintain consistency and gather information that is

scattered across these views. According to the comprehension part of the experiment, a

82

significant difference was found in favor of T/OPM in three issues: (1) identifying triggering
events of processes; (2) identifying processes that are triggered by a given event; and (3)
identifying objects that participate in a process. T/OMT, on other hand, was found better in
two categories: (1) identifying events that affect objects by changing their state, and (2)

determining the order of process execution.

8.2 Experiment Goal, Hypotheses, and Design

Following the empirical approach for evaluating modeling techniques, OPM/Web was
compared to Conallen’s extension of UML to Web applications [18]. This extension, called
Conallen’s UML for short, is based on a set of UML stereotypes, tagged values, and
constraints, which are commonly used with Web applications, as well as a set of well-
formedness rules. The reason for choosing this extension over other UML extensions for the
Web application domain was its adoption by the UML standard user community.

The goal of the experiment was to compare OPM/Web to Conallen’s UML with respect to
two aspects: (1) comprehension: the level of comprehending a given model expressed in each
language, and (2) construction: the quality and ease of modeling a given system in each

language.

8.2.1 Experiment Hypotheses

The experiment conjecture (the null hypothesis) regarding comprehension was that questions
that can be answered by inspecting a single UML view would be more correctly answered
using UML than OPM/Web. More specifically, since UML is object-oriented and is
comprised of multiple views (diagram types), the UML class diagram would better serve
subjects who are looking for answers to questions related to structural parts of a given system.
Examples of questions of this type are “What is the database structure of the given

application?” and “What are the navigational paths of the pages within the application?”

83

Conversely, OPM/Web will be preferable for understanding the dynamic aspects of a system
and the complex relations among various (structural and dynamic) system components.

With respect to construction, OPM/Web, which uses a single model with three scaling
(abstraction-refinement) mechanisms, was expected to be correctly applied more easily than
UML for modeling complex, dynamic applications. The reason for this conjecture, in addition
to the single- vs. multiple view difference between the two approaches, is that OPM/Web
keeps a compact set of graphic alphabet elements, as opposed to the additional element types
which Conallen introduced to UML. Conallen’s UML defines a relatively large set of no less
than 18 domain-specific stereotypes and tagged values, whose syntax and semantics may
seem quite obscure. This set includes, among other things, implementation-dependent
concepts, such as RMI, IIOP, and Java Script, which make the reuse of the same model in
different technology frameworks a difficult task. OPM/Web, on the other hand, extends
OPM's expressive power by providing new options for bindings and relations between
existing elements, implying new semantics. For example, in OPM/Web a link can exhibit
(i.e., be characterized by) features (attributes and operations), while in OPM only things
(objects and processes) can exhibit features. Many of these extended capabilities are currently

being incorporated into the core OPM.

8.2.2 Population Background and Training

As noted, the subjects of the experiment were third year students at the Technion, Israel
Institute of Technology, who took the course “Specification and Analysis of Information
Systems” in the spring semester of the 2002 academic year. Most of them were students of
the Information Systems Engineering program, which is managed jointly by the Faculty of
Industrial Engineering and Management and the Faculty of Computer Science. They had no

previous knowledge or experience in system modeling and specification.

84

Table 5. The syllabus of the course “Specification and Analysis of Information Systems”

‘Y:)ek Lecture (3 hours per week) Recitation (2 hours per week) Assignment
1 | Introduction — system Relational databases
development lifecycle
2 | DFD Relational databases
DFD and OO approach DFD
4 | UML Use Case and Class DFD Modeling in DFD
Diagrams
UML structural model || -
6 | UML structural model UML Use Case and Class
Diagrams
7 | UML Interaction Diagrams UML structural model
8 | UML Statecharts UML Interaction Diagrams Modeling in UML
9 | OPM UML Statecharts Modeling in Statechart
10 | OPM OPM
11 | Conallen’s UML OPM Modeling in OPM
12 | OPM/Web Conallen’s UML and
OPM/Web
13 | Discussion about analysis Rehearsal tutorial
approaches

During the 13-week course, the students studied three representative methods: DFD for two
weeks, UML for five weeks, and OPM for two weeks. They also studied Conallen’s UML
and OPM/Web for one additional week each. The students were required to submit four
modeling assignments in order to practice the use of DFD, UML — Use Case Diagrams, Class
Diagrams, and Sequence Diagrams, UML — Statecharts, and OPM. The syllabus of the course
is summarized in Table 5.

The course staff included one adjunct lecturer and two graduate student teaching assistants.
They were all familiar with these methods prior to teaching them, but had no particular

preference or knowledge of any one specific method.

8.2.3 Experiment Design
The experiment took place during the final three-hour examination of the course. The

examination contained three tasks. The two main tasks, which related to Web or distributed

85

applications and counted for 80% of the examination's grade, constituted the experiment. The
third task, which related to DFD, appeared last in the examination, so its effect on the
experiment results, if any, was uniform.

The two experimental tasks referred to two case studies: a project management system
and a book ordering application. The project management system is a distributed, data-
intensive system that handles projects, their tasks, and their intermediate products. The
electronic commerce book ordering application is a Web-based system that enables searching
for books and ordering thenilhe students were divided arbitrarily into two groups. The size
and tasks of each group are summarized in Table 6.

Table 6. Experiment Design

Task Weight Group A Group B
(40 subjects) (41 subjects)
Project management system 40% Conallen’s UML OPM/Web
Book ordering application 40% OPM/Web Conallen’s UML
DFD technical question 20% DFD DFD

To verify that the populations of these two groups were identical, a preliminary t-test was
carried out on the grades the students had received in the “Design and Implementation of
Information Systems” course, a prerequisite mandatory course in the Information Systems
Engineering program. No significant difference was found between the groups (t = —0.19,

p <0.85).

8.2.4 The OPM/Web and UML Models and Questions

The OPM/Web and UML models of the project management system and the electronic
commerce book ordering application and the corresponding questions are presented in
Appendix C. Each model consists of five diagrams followed by eight comprehension
questions and one modeling problem, which called for extending the system model. The

questions on both models for the same case study were identical.

86

8.3 Results and Discussion

Table 7 summarizes the results (average score) of each question in the examination. Each
comprehension question could score a maximum of 3 points (24 points in total for each
system), while the modeling problem could score as much as 16 points, totaling 40 points for
each system. Incomplete answers, or answers with missing elements, scored less. All the
questions about the project management system (in both Conallen’s UML and OPM/Web)
were graded by one of the two teaching assistants, while the questions about the book
ordering application were graded by the other. This grader assignment scheme (together with
a strict grading policy) was designed to eliminate any potential bias towards one of the
modeling languages in grading the examinations.

Table 7. Experiment Results

Question | Max. Project Management System Book Ordering Application
No. | Score | Conallen’s UML | OPM/Web | Conallen’s UML | OPM/Web
1 3 2.03 2.82 2.65 1.99
2 3 1.78 1.88 1.79 2.01
3 3 1.53 2.70 1.55 2.58
4 3 2.78 2.85 1.67 2.03
5 3 1.98 2.49 1.85 2.33
6 3 2.24 2.11 2.20 2.23
7 3 1.90 2.16 1.83 2.14
8 3 1.94 2.40 2.78 2.78
9 16 9.18 10.73 8.32 8.95
Total 40 25.33 30.13 24.63 27.01

As Table 7 shows, most of the questions scored higher when the system was modeled
using OPM/Web than when the system was modeled using Conallen’s UML. In particular,
the construction problems for both systems scored higher when students were required to use
OPM/Web.

In the project management system, the only question in which Conallen’s UML scored

slightly (but not significantly) higher related to representing the navigation order of the

87

project management pages (question 6: 2.24 for Conallen’s UML vs. 2.11 for OPM/Web).
However, in the same question about the book ordering system (question 6) the result was
reversed in favor of OPM/Web (2.23 for OPM/Web vs. 2.20 for Conallen’s UML).

The largest gap in favor of OPM/Web in the project management system was in question
3, which was phrased "What is the trigger of the project order handling process? From which
diagram did you conclude it?" For this question, students who got the OPM/Web model
scored 2.70 (out of 3), almost twice as much as the students who got the Conallen's UML
model, who scored 1.53. The reason for this large difference is attributed to the fact that
"project order handling” is a name of an OPM process which explicitly appears in some of
the diagrams, while in the Conallen's UML model the behavior and triggers of this process
need to be searched in the sequence diagram.

The next largest gap between the two languages (1.98 vs. 2.49) was in question 5, which
was: "What database classes are affected by the project order handling process? How? (i.e.,
are they created, destroyed, or changed?)" Here, the facts that OPM/Web combines the
system's structure and behavior in a single view and that the transformation (creation,
destruction, or change) of the process on each object is explicitly shown, has helped getting a
more correct answer.

In the book ordering application, the only question in which Conallen’s UML scored
higher (2.65 vs. 1.99) was question 1, which related to the types of pages that the user can
view and the information presented at each page. This result in favor of UML is probably due
to the fact that Conallen’s UML introduces a special element to represent pages or screens,
the boundary entity, whose symbol and meaning is different than a standard class. OPM/Web,
on the other hand, represents Web pages or screens as standard objects with no special
symbol. Assigning a special symbol to Web pages helps to quickly and more accurately

identify objects of this type. Although the addition of the boundary entity symbol was found

88

to be helpful in answering this particular question, adding special symbols to denote such
elements as components, executables, and libraries, as UML indeed does, comes at the price
of unjustifiably complicating the language. Indeed, Siau and Cao [91] found that the UML
vocabulary is overall 2-11 times more complex than other object-oriented single view
technique.

Table 8. Results of the overall and construction grades — the mixed model

Mean
Factor Name Values of Factor F p-level
Grade (%)
Conallen’s UML 62.45
Method 54.17 | 0.0001
OPM/Web 71.48
Overall
Project management 69.40
Score Case 15.24 | 0.0002
Book ordering 64.53
Method*Case 1.17 0.2828
Conallen’s UML 54.65
Method 7.41 0.0080
OPM/Web 61.57
Construction
Project management 62.28
Score Case 10.77 | 0.0015
Book ordering 53.94
Method*Case 0.46 0.4987

Table 8 presents a summary of all the possible effects between the two experiment factors,
Method and Case (case study), with respect to (1) the overall grade and (2) the construction
question score. The results, normalized to a percentage scale, show significant differences in
the main effects (Method and Case) and insignificant differences in their interaction
(Method*Case). Both the overall and the construction grades were higher in OPM/Web. The
significance of the case study implies that the project management system was less difficult
to handle than the book ordering application. Hence, the methods were compared separately
for each case study. As Table 9 shows, the overall grades were significantly higher in

OPM/Web in both case studies, while the difference of the construction grades was not

&9

significant in the book ordering system and only borderline significant (p ~ 0.06) in the
project management system.

Table 9. Results of the overall and construction grades according to the case studies

Mean
Case Study Method F p-level
Grade (%)
Project Conallen’s UML 63.32
13.57 | 0.0004
Overall | Management OPM/Web 75.33
Grade Book Conallen’s UML 61.58
. 4.35 0.0402
Ordering OPM/Web 67.53
Project Conallen’s UML 57.38
3.60 0.0613
Construction | Management OPM/Web 67.06
Grade Book Conallen’s UML 52.00
. 0.70 0.4062
Ordering OPM/Web 55.94

To gain more insight into the comprehension questions, they were divided into three
categories:
1. Structure: questions 1-2 in both case studies, which related to the system structure;
2. Behavior: questions 3-5 in both case studies and question 8 in the book ordering
system, which related to the dynamics of the system; and
3. Distribution: questions 6-7 in both case studies and question 8 in the project
management system, which related to aspects of the system's distributed nature.
The expectations were that since UML has a separate structure view (the class diagram), it
would be better in the structure comprehension category, while OPM/Web will be
favorable in the behavior category due to its structure-behavior integration in a single
view. It could not be argued in advance in favor of either method with respect to
distribution comprehension.
Table 10 summarizes the comprehension results according to the three categories. The

students' grades in each category were converted to a binary type, labeled as success when a

90

student scored more than an average of 2 points (out of 3) in the category, and failure
otherwise.

Table 10. Results of the comprehension grades — the GENMOD model

Category Case Study Method % Success p-level
Project Conallen’s UML 35.00 0.09
Management OPM/Web 53.66 '
Conallen’s UML 65.85
Structure Book Ordering 0.09
OPM/Web 47.50
Conallen’s UML 50.62
Total 0.99
OPM/Web 50.62
Project Conallen’s UML 70.00 0.00
Management OPM/Web 90.24 '
Conallen’s UML 56.10
Dynamics Book Ordering 0.001
OPM/Web 87.50
Conallen’s UML 62.96
Total <0.0001
OPM/Web 88.89
Project Conallen’s UML 30.00
0.005
Management OPM/Web 60.98
Conallen’s UML 34.15
Distribution Book Ordering 0.09
OPM/Web 52.50
Conallen’s UML 32.10
Total 0.0009
OPM/Web 56.79

As noted, one would expect that since UML is object-oriented, and hence focused primarily
on structure, it would be significantly better than OPM/Web in the structure category in both
case studies. However, Conallen’s UML was better only in the book ordering system, while
OPM/Web was better in the project management case study. One explanation for this
difference might be the higher complexity of the book ordering system compared with the
project management application. The students captured the complex structural part of the
book ordering system more easily in the UML class diagram, a separate view, which deals

with structure only. This does not explain though why OPM/Web was better for the project

91

management system. Combining the results of the two case studies, the differences between
the methods are not significant (p = 0.99) with respect to structure. Conversely, with a
confidence level of 0.01, one can argue that they are equivalent.

As expected, in the behavior comprehension category, OPM/Web was significantly better (p
< 0.0001) in both case studies. This outcome might be due to the fact that finding answers to
the behavior questions involved consulting several UML views, while in OPM/Web the
answers are found in the single diagram type, and the only thing one has to do is traverse
across OPDs with different granularity levels. This type of navigation is easier than moving
from one type of diagram to another, with each diagram type using its own set of symbols
and distinct semantics.

As for the distribution comprehension aspect, in both case studies OPM/Web was
significantly better (p = 0.0009) than Conallen’s UML. This difference can be explained by
the fact that the questions in this category involved structural and behavioral aspects of the
system distribution that span across different UML views. In other words, in the Conallen’s
UML model, the students had to integrate information gathered from various diagram types
to fully answer these questions, while in OPM/Web diagrams the same information could be
achieved by moving from a less detailed diagram to a more detailed (in-zoomed) one.

Although the comparison used a specific extension of UML for Web applications, the
findings are quite general. UML’s segregation of the system model into multiple views is a
major source of difficulty in capturing the system as a whole, understanding its parts, and
being able to coherently follow the functionality it performs, as it spans across different
diagram types. Moreover, the use of various sets of extensions (stereotypes, tagged values,
and constraints), whose syntax and semantics are not universal, weakens UML power as a

standard.

92

Part 4. OPM/Web Metamodel®

9. The Metamodeling Technique

A system modeling and development methodology is a combination of a language for
expressing the universal or domain ontology and an approach for developing systems that
makes use of this language. Development activities can be divided into three types with
increasing abstraction levels: real world, model, and metamodel [46, 95]. The real world is
what system analysts perceive as reality or what system architects wish to create as reality. A
model is an abstraction of this perceived or contemplated reality that enables its expression
using some approach, language, or methodology. A metamodel is a model of a model, or
more accurately, a model of the modeling methodology [100]. Metamodels help understand
the deep semantics of a methodology as well as relationships among concepts in different
languages or methods. They can therefore serve as devices for method development (also
referred to as method engineering) and as conceptual schemas for repositories of software
engineering and CASE tools. The level of abstraction at which metamodeling is carried out is
higher than the level at which modeling is normally done for the purpose of generating a
model of a system [46].

The proliferation of object-oriented methods has given rise to a special type of
metamodeling, reflective metamodeling, in which a methodology is modeled using the
means and tools that the methodology itself provides. While metamodeling is a formal
definition of the methodology, reflective metamodeling can serve as a common way to check
and demonstrate the methodology’s expressive power. A reflective methodology, i.e., a
methodology that can model itself, is especially powerful since it is self-contained and does

not require auxiliary means or external tools to specify itself.

¥ The me amodel of an OPM-based development process was accepted to ER’2003 [26].

93

Existing object-oriented languages, especially UML, have (partial) reflective
metamodels. The reflective UML metamodel in [68], for example, includes class diagrams,
Object Constraint Language (OCL) [99] constraints, and natural language explanations for
describing the main elements in UML and the static relations among them. This metamodel is
incomplete in more than one way. First, UML is only a language, not a methodology, so only
the language elements are metamodeled, but not any (object-oriented or other) development
process. Second, class diagrams are used to model all UML views and the metamodel does
not constrain any consistency requirements among the various views of a UML system
model. Third, the OCL constraints describes only static invariants.

The Meta Object Facility (MOF) [70] is a standard metadata architecture whose main
theme is extensibility and support of metadata. MOF defines four layers of metadata:
information (i.e., real world concepts, labeled M0), model (M1), metamodel (M2), and meta-
metamodel (M3). The meta-metamodel layer describes the structure and semantics of meta-
metadata. In other words, it is an “abstract language” for defining different kinds of metadata
(e.g., meta-classes and meta-attributes).

The Meta Modeling Facility (MMF) [17] provides a modular and extensible method for
defining and using modeling languages. It comprises a static, object-oriented language
(MML), used to write language definitions; a tool (MMT) used to interpret those definitions;
and a method (MMM) which provides guidelines and patterns encoded as packages that can
be specialized to particular language definitions.

MOF and MMF have been applied to metamodel UML. Since both are object-oriented,
they emphasize UML elements and do not deal with expressing the procedural aspects of the
methodology, such as its development processes. Several “software process models” have
been associated with UML to create complete UML-based methods. One such familiar

development process is the Rational Unified Process (RUP) [80]. Although RUP is not a

94

metamodel-based process, it is specified using class and package diagrams, which specify its
structure and its main modules.

The Software Process Engineering Metamodel (SPEM) [72] uses UML to describe a
concrete software development process or a family of related software development
processes. Nevertheless, this metamodel does not relate to the process enactment due to the
limitations of the UML vocabulary.

The Object-oriented Process, Environment, and Notation (OPEN) [40, 75], as a
methodology, offers a set of principles for modeling all aspects of software development
across the entire system lifecycle. The development process is described by a contract-driven
lifecycle model, which is complemented by a set of techniques and a formal representation
using the OPEN Modeling Language (OML) [45]. The lifecycle process, including its
techniques, tasks, and tools, is described in terms of classes and their structural relations.

The above metamodels, as well as other metamodels that use structural- or object-
oriented methodologies, emphasize the objects and their relations within the metamodel,
while the procedural aspects are suppressed and revealed only through operations of objects
and the messages passed among them [22]. It is therefore difficult and inconvenient to model
a process-oriented component, such as a system development process of a methodology,
using an object-oriented approach. OPM overcomes this shortcoming by recognizing
processes as stand-alone entities. Moreover, since OPM is reflective, there is absolutely no
need for a separate language such as in MOF for specifying the “meta-metamodel” (M4)
level. The OPM framework requires only the first three levels: The application level,
expressed as an OPM model instance, the model level, expressed as an OPM model, and the
(reflective) metamodel level, which refers to OPM as a complex dynamic system and
expresses it in OPM terms. This part of the work presents a reflective metamodel of OPM,

which includes OPM/Web extensions.

95

10. OPM Reflective Metamodel — The Top Level Specification

The System Diagram (SD), which is the top-level, most abstract specification of the OPM
metamodel, is presented in Figure 1. SD contains OPM and its features, which are the
attributes Ontology and Notation, and the operation System Developing. OPM, Ontology, and
Notation are objects, symbolized by rectangles, while System Developing is a process, as its
enclosing ellipse denotes. An exhibition-characterization relation (symbolized by a black
triangle within a white one) connects Ontology, Notation, and System Developing to OPM,
denoting that these objects and process characterize OPM. The OPL sentence that corresponds
to this graphic ensemble is the first one in the OPL paragraph shown in Figure 1: “OPM
exhibits Ontology and Notation, as well as System Developing.” Following OPM's graphics-text
equivalence principle, the rest of the statements expressed graphically in the OPD are also

repeated as natural language statements in the OPL paragraph.

SD OPM exhibits Ontology and Notation, as well
as System Developing.

e Notation represents Ontology.

* taquned s System Developing requires
Notation and Ontology.

Developing

System Developing yields System.
User is environmental and physical.
User handles System Developing.

Figure 34. SD, the top level specification, of the OPM reflective metamodel

System Developing, which represents the entire OPM-based set of processes, is handled by
the User, who is the agent of System Developing. This User can be the system architect,
developer, or any other stakeholder who uses OPM to architect, develop and evolve a
System, as well as a team consisting of these stakeholders. The System Developing process
requires OPM’s Ontology and Notation as instruments (unchangeable inputs) to create a new

System.

96

Ontology encompasses OPM elements (entities and links), their features, and the structural
and procedural relations among them, but it does not specify anything about the symbols used
to denote them. The Notation represents the Ontology both visually, through interconnected
OPD symbols, and textually, through OPL paragraphs and sentences.

Unfolding Notation, SD1 (shown in Figure 35) exposes the detailed relationships between
Ontology and Notation. Notation is characterized by Modality, which has two possible states
(symbolized in the OPD by rounded-corner rectangles): graphical and textual. An OPD
Symbol is a Notation the Modality of which is graphical, while an OPL Sentence is a Notation

the Modality of which is textual.

Motation

Ontology

SD1

OPL Sentence

A

OPL Phrase

Atomic OPL -
Phrase

Madalit

laraphical extual

HE

Element

Ontology consists of Elements.

Notation exhibits Modality.
Modality can be graphical or textual.

Notation represents Ontology.

OPD Symbol is a Notation, the Modality of which is graphical.

OPD Symbol graphically represents an Element.

OPL Sentence is a Notation, the Modality of which is textual.

OPL Sentence consists of at least one OPL Phrase.
OPL Phrase consists of optional OPL Phrases and optional Atomic OPL Phrases.
Atomic OPL Phrase textually represents an Element.

OPL Sentence textually represents at least one Element.

Figure 35. SD1, in which OPM Notation is unfolded

97

Ontology consists of Elements. Ontology represents Notation cither in a graphical
Modality via OPD Symbols or in a textual Modality via OPL Sentences. An OPD Symbol
graphically represents an OPM Element, while an OPL Sentence textually represents scveral
Elements. An OPL Sentence may consist of several OPL Phrases, each of which can be an
Atomic OPL Phrase or a complex OPL Phrase, i.e., one that consists of other OPL Phrases. An
Atomic OPL Phrase textually represents a single OPM Element.

The rest of this part is organized as follows. Chapter 11 presents the reflective metamodel of
OPM structure (entities and possible structural and procedural links between them), while
chapter 12 presents OPM behavior (complexity management mechanisms and system
development processes). Each section includes informal definitions of OPM’s concepts,
which are exemplified through an ordering system model, and a reflective metamodel of the

relevant ontology concepts using OPM notations (both OPDs and OPL sentences).

98

11. Metamodel of OPM Structure

11.1 Elements

11.1.1 Informal Element Definitions

The OPM ontology consists of two types of elements: entities and links. Entities are classified
into things and states. A thing is a generalization of an object and a process. Objects are
entities that exist, while processes are entities that transform things by generating,
consuming, or affecting them. A state is a situation at which an object exists. Therefore, a
state is not a stand-alone thing, but rather an entity that is "owned" by an object. At any given
point in time, the state-owning object is at one of its states. The status of an object, i.e., the
current state of the object, is changed solely through an occurrence of a process. Objects and
processes are respectively denoted in an OPD by rectangles (as in class diagrams in UML and
earlier notations) and ellipses (as in data-flow diagrams). Following Statecharts
[44] notation, the OPD symbol of a state is a rounded corner rectangle within the rectangle of
its owning object.

A link is an element that connects two entities to represent some semantic relation between
them. Links can be structural or procedural. A structural link is a binary relation between two
entities, which specifies a structural aspect of the modeled system, such as an aggregation-
participation (whole-part) relation or a generalization-specialization. A procedural link
connects an entity with a process to denote a dynamic, behavioral flow of data, material,
energy, or control. An event link is a specialization of a procedural link which models a
significant happening in the system that takes place during a particular moment and might
trigger a process. Links are denoted in an OPD by lines with different types of arrowheads or

triangles, as summarized in Appendix A and explained in Section 11.4.

99

To exemplify specific points in the OPM ontology and notation, we will use a simple
OPM model of an ordering system, shown in Figure 36, in which Order is an object, while
Ordering is a process. Order can be at one of two states, ordered or supplied. Ordering
changes Order from ordered to supplied. The equivalent two-sentence OPL paragraph in
Figure 36 describes the structural relations and procedural links between the entities. The first
sentence is a state enumeration sentence, which specifies that ordered and supplied are the
two states of the object Order. The second sentence is a change sentence. It corresponds to
the pair of procedural links, the input link (from ordered to Ordering) and the output link
(from Ordering to supplied). Together, this pair of links change Order from its ordered state

to its supplied state.

Order

Ordering changes Order from ordered to supplied.

Order can be ordered or supplied.

Figure 36. A simple OPM model of objects, processes, states, and links
Any OPM element can be either systemic or environmental. A systemic element is internal
to the system and has to be completely specified, while an environmental element is external
to the system and may therefore be specified only partially. The OPD symbol of an
environmental element differs from its systemic counterpart in that its borderline is dashed.
The Product Catalog in Figure 37, for example, is an environmental object, which is external
to the system but should be used as an unchangeable input for the Ordering process.
In an orthogonal fashion, an OPM element can also be either physical or informatical. A
physical element is tangible in the broad sense, while an informatical element relates to
information. A physical entity is symbolized in an OPD as a shadowed closed shape —

rectangle, ellipse, or rounded corner rectangle for a physical object, a physical process, or a

100

physical state, respectively. The Receipt in Figure 37 is a physical object resulting from the

Ordering process.

Order
Order can be ordered or supplied.

Product Catalog is environmental.

Receipt is physical.

Ordering

Ordering requires Product Catalog.
U Product Ordering changes Order from ordered to supplied.
 Catalog

Receipt

Ordering yields Receipt.

Figure 37. The OPM model of Figure 36 extended with the environmental object Product

Catalog and the physical object Receipt

11.1.2 Element Metamodel

Figure 38 shows the third OPD of the OPM metamodel, labeled SD2, in which Ontology is
unfolded. It specifies that Ontology consists of Entities and Links, each of which is an
Element. An Entity, which exhibits (i.e., is characterized by) a Name, specializes into a Thing
and a State. A Thing further specializes into an Object and a Process. The structural relation
between an Object and a State represents that an Object owns some States, while a State
specifies the status of an Object.

A Link exhibits Homogeneity, which is homogeneous for a Structural Link (that usually
connects two Objects or two Processes) and non-homogeneous for a Procedural Link (that
usually connects an Entity and a Process).

As noted, each Element is characterized by three orthogonal attributes:
(1) Affiliation, which can be systemic (the default) or environmental,
(2) Essence, which can be informatical (the default) or physical; and
3) Scope, which can be public (the default), protected, or pivate .

An environmental Element is an Element, the Affiliation of which is environmental. An
environmental Element is external to the system or only partially specified, while a systemic

Element is internal to the system and completely specified.

101

As noted, a physical Element consists of matter and/or energy. It can be a physical Object
(e.g., a Machine), a physical Process (e.g., Manufacturing), a physical State (e.g., fested), or
a physical Link (e.g., a communication line between two remote computers). An informatical
Element relates to information. An example of an informatical Element is the informatical
object Customer that stores information about a real-life, physical customer. Other examples
include the informatical processes Database Updating and Computation, and a link between

the informatical Customer and its Orders.

SD2 Ontology

N _ Affiliation

Structural Link

N Essence
physical

N _Scope

protectad)
private

Hormogeneity

non-
homogeneaus

Procedural Link

y

)

Ewvent Link

Element exhibits Affiliation, Essence, and Scope.

Affiliation can be systemic, which is the default, or environmental.

Essence can be informatical, which is the default, or physical.

Scope can be public, which is the default, protected, or private
Ontology consists of Entity and Link.

Entity is an Element.

Entity exhibits Name.

Thing is an Entity.

Object is a Thing.

Object owns optional States.

Process is a Thing.

State is an Entity.

State specifies the status of an Object.

Link is an Element.

Link exhibits Homogeneity.

Homogeneity can be homogeneous or non-homogeneous.

Structural Link is a Link, the Homogeneity of which is homogeneous.

Procedural Link is a Link, the Homogeneity of which is non-homogeneous.

Event Link is a Procedural Link.

Figure 38. SD2, in which Ontology of OPM is unfolded

102

As in programming languages, the Scope of an Element can be private (i.e., it can be
accessed only by itself), protected (accessible only by itself and its sub-elements), or public
(accessible by any element in the system). Unlike the object-oriented paradigm, where a
method can affect or access only the attributes of the same class, the default Scope in OPM is
public, which implies that any OPM process can use or change all the objects in the model.
While seemingly violating the object-oriented encapsulation principle, this provision
increases the flexibility of modeling patterns of behavior as OPM processes that involve and

cut across several object classes.

11.2 Things

11.2.1 Informal Thing Definitions

A thing is a generalization of an object and a process. An object is a thing that exists, at least
potentially, and represents a class of instances that have the same structure and can exhibit
the same behavior. The Order in Figure 39, for example, is a complex object which exhibits
three simple attributes (each of which is an object in its own right): Order Number, which is

of type integer; Order Date, which is of type date; and Order Price, which is of type float.

Order exhibits Order Number, Order Date, and

Order Price.
(Ordering i .
e [1m, Sm] Order Number is of type integer.
A\ Order Date is of type date.

[I]

Order Number Order Date I Order Price :
integer

Order Price is of type float.

date float

Ordering lasts 1 minute to 5 minutes.

Ordering affects Order.

Figure 39. An OPM model of simple and complex objects and time constrained processes
A process is a class of occurrences (or instances) of a behavior pattern, which transforms at

least one object. Transformation can be change (effect), creation, or consumption of a thing.

To carry out the transformation, the process may need to be enabled by one or more objects

of different types of classes, which are considered instruments (enablers) for that process and

103

are not transformed by the process they enable. A process instance is an occurrence
(execution) of the specific process and it is analogous to an object instance. The execution
time of a process can be constrained by minimal and maximal limits, implying that any
process execution can only take a time interval that falls within these time limits. The time
limits appear in the OPD as [minimal time constraint, maximal time constraint] within the
ellipse representing the process. For example, the specification of the minimal and maximal
time limits of the Ordering process in Figure 39 implies that it must take at least 1 minute and
at most 5 minutes. The corresponding OPL in Figure 39 is “Ordering lasts 1 minute to 5
minutes.”

A process can be atomic, sequential, or parallel. An atomic process is a lowest-level,
elementary action which is not divided into sub-processes, while sequential and parallel
processes are refined (through in-zooming or unfolding) into several sequential or parallel
sub-processes. The time line in an OPD flows from the top of the diagram downwards, and,
hence, the vertical axis within an in-zoomed process defines the execution order: The sub-
processes of a sequential process are depicted in the in-zoomed frame of the process stacked
on top of each other with the earlier process on top of a later one. Analogously, sub-processes
of a parallel process appear in the OPD side by side, at the same height.

In Figure 40, for example, Ordering is in-zoomed to show its two sub-processes, which
are Supplying and Paying. In Figure 40(a), Supplying and Paying are executed in a serial
order: Supplying is executed first, followed by Paying. In Figure 40(b), on the other hand,
Supplying and Paying are executed independently and may occur in parallel. The default
execution order is the sequential one, so only the parallel execution order is specified in the

fourth OPL sentence in Figure 40(b).

104

(a) (b)

Ordering

Order Ordering Receipt

Order

fordered Receipt ordered
! y
supplied supplied s EAY b S Sl
Fo====- ' :

' Product | " Product |

| Coog | | Gy |
Order can be ordered or supplied. Order can be ordered or supplied.
Product Catalog is environmental. Product Catalog is environmental.
Receipt is physical. Receipt is physical.

Ordering zooms into Supplying and Paying. Ordering zooms into Supplying and Paying,
which are executed in parallel.

Supplying changes Order from ordered to | Supplying changes Order from ordered to

supplied. supplied.
Paying requires Product Catalog. Paying requires Product Catalog.
Paying yields Receipt. Paying yields Receipt.

Figure 40. An OPM model of sequential and parallel processes.
(a) Supplying and Paying are executed serially.
(b) Paying and Supplying are executed in parallel.

11.2.2 Thing Metamodel

Unfolding Thing of the OPM metamodel, SD2.1 (Figure 41) shows its Perseverance attribute,
which can be static or dynamic. An Object is a Thing with static Perseverance, while a
Process is a Thing with dynamic Perseverance. In addition to Perseverance, a Thing also
exhibits the Concreteness attribute, which determines whether the thing is a class (the
default) or an instance. The difference between an Object class and an Object instance is
similar to the difference between these concepts in the object-oriented approach. A Process
instance is an occurrence of the process class, which, as noted, is a behavior pattern that the
process instances follow. In programming terms, it can be thought of as an executable
version of code, which can be executed a specified finite number of times, while a Process
class is the complete code that can be (re)compiled and executed unboundedly. Following

the UML notation of classes and objects, a thing instance is denoted in OPM by a rectangle

105

or an ellipse, within which the class name is written as :ClassName, where the identifier of
the instance can optionally precede the colon.

An Object can optionally exhibit Type (e.g., integer, float, or string), whether it is
Persistent (i.c., stored in a database), whether it is Key, and optional Indices. Each Index is an

ordered tuple of Objects (each of which is an attribute).

SD2.1 Thing
Timed
Element
" Concreteness
e
S
f Perseverance
Maximal Time -
Constraint Pracess
Duration
Dﬁwc]tlinolﬁﬂ Persistent
A Execution Order boolean

atomic | [sequential | |parallel oy -

'
boolean
~ Index

Type

Function
Narne

Parameter

Timed Element exhibits Minimal Time Constraint, Maximal Time Constraint, and an optional Duration
Distribution Function.
Minimal Time Constraint is 0 by default.
Maximal Time Constraint is infinity by default.
Duration Distribution Function exhibits Function Name and optional Parameters.
Thing exhibits Perseverance and Concreteness.
Perseverance can be static or dynamic.
Concreteness can be class, which is the default, or instance.
Object is a Thing, the Perseverance of which is static.
Object exhibits Persistent, Key, optional Indices, and an optional Type.
Persistent is of type Boolean.
Key is of type Boolean.
Index relates to an ordered set of at least one Object.
Type can be integer, unsigned integer, short, long, float, double, boolean, char,
string, date, or time.
Process is a Thing, the Perseverance of which is dynamic.
Process is a Timed Element.
Process exhibits Execution Order.
Execution Order can be atomic, which is the default, sequential, or parallel.

Figure 41. SD2.1, in which Thing of OPM Ontology is unfolded
Process, which is a Thing with a dynamic Perseverance, is also a Timed Element and as

such it inherits Minimal Time Constraint (0 by default) and Maximal Time Constraint (infinity

106

by default). As noted, these constraints limit the Process execution time within the specific
bounds. Process also inherits from Timed Element a Duration Distribution Function, which is
characterized by Function Name and Parameters. This attribute specifies the distribution of
the process duration that determines how long a process execution lasts and it is most useful
for simulation purposes.

In addition, Process exhibits Execution Order, which can be atomic, sequential, or parallel.
Since a process can be either sequential or parallel (but not both), an in-zoomed process will
have sub-processes that are all depicted either stacked or in a row, but not as a mixture of

these two modes.

11.3 States

11.3.1 Informal State Definitions
A state is a situation in which an object can be for a period of time. It can represent a
consecutive value range or a discrete (enumerated) set of values. Order in Figure 42, for
example, has three top-level, possible states: ordered, paid, and supplied. Both ordered and
paid are initial states, as denoted by the thick borderline rounded corner rectangle. This
implies that Order can be created in either of its ordered or paid states. If not otherwise
specified, Order will be created in its ordered state as denoted by the default mark (the small
downward diagonal arrow that points towards the ordered state). The supplied state is the
final state of Order, as denoted by the double line rounded corner rectangle. When entering
this final state, Order can be consumed (i.e., destroyed or deleted).

Like process durations, state durations can also be limited on both sides. For example, the
ordered state of Order in Figure 42 has a minimal time limit of 2 seconds and a maximal time
limit of 30 seconds, implying that between 2 to 30 seconds must pass from the moment Order

enters its ordered state until it exists this state.

107

Another similarity of states to processes is that like processes, object states can also be in-
zoomed to expose sub-states. In Figure 42, for example, in its paid state, Order can be at two
sub-states: advance paid, which is the default of a paid Order, or completely paid. The in-
zoomed processes of Order Handling show that Advance Paying first changes Order from
ordered to advance paid, then Balance Paying changes Order from advance paid to completely

paid, and finally Supplying changes Order from completely paid to supplied.

Order can be ordered, which is the default, paid, or
supplied.
Ordered is initial and lasts 2 seconds to 30
seconds.
Paid is initial.
Paid zooms into advance paid, which is the

default, and completely paid.

\ Order Advanced paid is initial.

advance
ordered paid paid comp etely supplied
25, 308] =

 — N 4

Advance
Paying

Completely paid is final.

Supplied is final.
Order Handling zooms into Advance Paying,
Balance Paying, and Supplying.
Order Harding Advance Paying changes Order from
ordered to advance paid.
Balance Paying changes Order from
advance paid to completely paid.
Supplying changes Order from

completely paid to supplied.

Figure 42. An OPM model of initial, default, final, and timed states

11.3.2 State Metamodel

As noted, a State (or a value) describes a situation at which an Object can be (or a value it can
assume). Therefore, a State cannot stand alone, but is rather “owned” by the (stateful) object.
At any given point in time, an Object can be at exactly one of the States it owns, or in
transition between two states. Like a Process, a State is a Timed Element, and as such it
exhibits Minimal Time Constraint and Maximal Time Constraint, i.c., the minimal and maximal
bounds for a continuous stay of the owning Object in that State. As a Timed Element, State

also exhibits Duration Distribution Function for simulation purposes.

108

The OPD labeled sD2.2 (Figure 43) specifies that a State has three additional Boolean
attributes: Initial, Final, and Default. Initial determines whether the object can be initially (i.e.,
upon its creation) at this state. Final determines whether the object can be consumed
(destroyed) when it is at that state. Default determines whether this state is the default state
(or value) of the owning object, i.e., the state into which the object enters when there is more
than one initial state. The aggregation loop attached to State indicates that it may recursively

consist of lower-level States, which are nested sub-states.

Timed
Element

ng\a\.huulean
Rinal:boolean
Default:boolean

State is a Timed Element.

State exhibits Initial, Final, and Default.
Initial is of type Boolean and is false by default.
Final is of type Boolean and is false by default.
Default is of type Boolean and is false by default.

State consists of optional States.

Figure 43. SD2.2, in which State of OPM Ontology is unfolded

11.4 Links

Links are the "glue" that holds entities (processes and objects with their states) together and
enables the construction of system modules of ever growing complexity. OPM links are
classified into two types: structural links and procedural links, where the latter are specialized
into event links.

As SD2.3 (Figure 44) shows, a Link exhibits two link ends: Source End and Destination
End. Both are specializations of Link End, which is characterized by Participation Constraint

(also known as multiplicity). Participation Constraint defines the Minimal Cardinality (with 1

109

as its default value) and the Maximal Cardinality (also 1 by default). These specify the
minimal and maximal number of instances that can be connected by the link at the
corresponding (source or destination) Link End. In addition a Link exhibits the Homogeneity
attribute, which has two states: homogeneous and non-homogeneous. A Link is
homogeneous if both its Link Ends, i.c., its Source End and Destination End, are linked to
Things whose Perseverance value are the same. In other words, a homogeneous Link
connects either two Objects or two Processes, while a non-homogeneous Link connects an
Entity to a Process. Structural Links, which denote static, non-temporal relations between the
linked Entities, are usually homogeneous Links. Procedural Links, which model the behavior
of the system along time and represent flows of data, material, energy, or control between the
linked entities, are non-homogeneous Links.
The Essence, Affiliation, and Scope values of a link, inherited from Element, are

determined by the following three rules, which are formulated in more detail in Appendix D.

Link Essence: A physical Link can connect only two physical Elements.

Link Affiliation: An environmental Link can connect only two environmental Elements.

Link Scope: The Scope value of a Link is the widest of the Scope values of the two
connected Elements, where public, protected, and private, are the widest, intermediate, and

most narrow Scope values, respectively.

110

SD2_3 Link

Link End

Structural Link A

Link End

Source
End

Participation
Constraint

Destination
n

Minimal
ardinality

Homogeneity Maximal

A :] :gartlinality

Event Link
— o
End

. is linked 1o a
Desgmtmn Process

Link End exhibits Participation Constraint.
Participation Constraint exhibits Minimal Cardinality and Maximal Cardinality.
Minimal Cardinality is 1 by default.
Maximal Cardinality is 1 by default.
Link End is linked to an Element.
Link exhibits Source End, Destination End, and Homogeneity.
Source End is a Link End.
Destination End is a Link End.
Homogeneity can be homogeneous or non-homogeneous.
Structural Link is a Link, the Homogeneity of which is homogeneous.
2 Link Ends of Structural Link are either linked to 2 Objects or 2 Processes.
Procedural Link is a Link, the Homogeneity of which is non-homogeneous.
Source End of Procedural Link is linked to an Entity.
Destination End of Procedural Link is linked to a Process.
Event Link is a Procedural Link.

Figure 44. SD2.3, in which Link of OPM Ontology is unfolded

11.4.1 Informal Structural Link Definitions

A structural link, which is one of the two types of links, denotes a static, time-independent

relation between two elements. It usually connects two objects or two processes. Structural

links further specialize into tagged structural links, which are general structural links, and

four fundamental structural links. A fagged structural link can be unidirectional, graphically

symbolized by —, or bi-directional, graphically symbolized by <—. It denotes a general,

static relation between two objects or two processes, which is labeled by a meaningful

forward tag (for the unidirectional link) or a pair of forward and backward tags (for the bi-

111

directional link). These tags are set by the system architect to convey a meaningful relation
between the two linked entities. In Figure 45, for example, Order and Customer are two
objects that are linked with a general structural link tagged “is placed by”. This link connects
an Order and its Customer. Similarly, Order and Cooperation are linked with a tagged

structural link that is also labeled “is placed by”.

Order exhibits Order Number, Order Date, and

Status, as well as Printing.

Supplied Order is an Order, the Status of which
is supplied.

Order 123 is an instance of Order, the Status of

Status can be paid or supplied.

Order consists of optional Order Lines.

Order Line exhibits Product and Quantity.

Order is placed by either Customer or

Cooperation.

which is paid.
Figure 45. An OPM model with various structural links

The four fundamental structural links are the most prevalent and useful relations and,
hence, are assigned various triangular symbols, which are graphically more appealing to the
eye than the tag text and save the need to type the nature of the relation each time it is used.
The fundamental structural links are:

I. Aggregation-Participation denotes the fact that a thing aggregates (i.e., consists of, or
comprises) one or more (lower-level) things, each of which is a part of the whole. It is
denoted by A whose tip is linked to the whole and whose base is linked to the parts. To
achieve the same semantics, we could use "consists of" and "is part of" as the forward and
backward tags of a tagged structural link, respectively, but, as noted, using the black
triangle symbol helps distinguish this relation from any other tagged structural relation
(and the other three fundamental structural relations). In Figure 45, Order consists of O or

more Order Lines (as the * denotes).

112

2.

Exhibition-Characterization denotes the fact that a link or a thing exhibits, or is
characterized by, another lower-level thing. The exhibition-characterization symbol is A .
The features (which can be attributes or operations) are connected to the base of the
triangle. In Figure 45, Order exhibits (is characterized by) the attributes Order Number,
Order Date, and Status and the operation Printing, while Order Line exhibits Product and
Quantity.

Generalization-Specialization (Gen-Spec) is a fundamental structural relation between
two entities: the specialized entities share common structural and procedural links with
the generalized entity. The symbol of the gen-spec relation is A whose tip is linked to the
generalizing entity and its base — to the specialized entities. In Figure 45, Supplied Order
defines a sub-class of Orders whose Status is supplied. Similar to an Order, a Supplied
Order has its Order Number, Order Date, Status, Order Lines, and owning Customer or
Cooperation, and it can execute the operation Printing.

Classification-Instantiation represents a fundamental structural relation between a class
of things and an instance of that class. This type of link is denoted by & . The tip of the
shape is linked to the class, while its base — to the instances. Order 123 in Figure 45 is an
instance of an Order whose Status is paid.

Structural links of the same type can be connected by “or” and “xor” relations to specify

alternative structures. An “or” relation is symbolized by a double line, dashed arc connecting

the relevant structural links, while a “xor” relation is denoted by a single line, dashed arc. In

Figure 45, for example, an Order is placed by ecither a Customer or Cooperation, but not by

both. If there were no arc in the specification, a specific Order would have an owning

Customer and an owning Cooperation.

113

11.4.2 Structural Link Metamodel

SD2.4 (Figure 46) unfolds OPM Structural Links. A Structural Link is characterized by
Orderability, which can be ordered (e.g., an array) or unordered (e.g., a set) by default. An
ordered Structural Link adds the reserved label {ordered} next to the Object classes whose
instances are required to be ordered. In Figure 41, for example, Object is characterized by
optional Indices, each of which is an ordered set of Objects.

SD2.4 also unfolds the two types of Structural Links: Tagged Structural Links and
Fundamental Structural Links. A Tagged Structural Link exhibits Forward Tag, whose default
value is the string “relates to”, and Directionality. A Bi Directional Tagged Structural Link,
which is a Tagged Structural Link whose Directionality is bi-directional, exhibits in addition
Backward Tag, whose default value is null, and the default value of its Forward Tag is “are
equivalent”.

Fundamental Structural Links are specialized into Aggregation-Participation Links,
Exhibition-Characterization Links, Generalization-Specialization Links, and Classification-
Instantiation Links.

As noted, Structural Links of the same type can be connected by “or” and “xor” relations.
This is specified by the self tagged structural links labeled “is or-connected to” and “is xor-

connected to”, respectively.

114

SD2.4

Structural Link

N\ Orderahility

unordered ordered

XOT- d to
Fundamental SL‘ELQC%&('LI S5
Structural Lind
Link K * is or-connected to
JAN A\

Participation Tagged Structural
Link Link

Forward Tag
Aggregation- E’“’" dto Bi-Directional

* is or- d to

Directionality

uni-
directional

— *is xor- d to
Exhibition- f)

Characterization

Linlk T s or- dto
. . directional
Generalization- [&5* ©
Specialization >
Linl ¥ is or dto

Forward Tag
Bagkward Tag

5

S XOr- dto

Cllassiﬁpat_ion—
nstantiation
Linlk 2

* is or- d to

Structural Link exhibits Orderability.

Orderability can be unordered, which is the default, or ordered.
Tagged Structural Link is a Structural Link.
Tagged Structural Link exhibits Forward Tag and Directionality.

Forward Tag is “relates to” by default.

Directionality can be uni-directional or bi-directional.
Tagged Structural Link is xor-connected to optional Tagged Structural Links.
Tagged Structural Link is or-connected to optional Tagged Structural Links.
Bi-Directional Tagged Structural Link is a Tagged Structural Link, the Directionality of which is bi-
directional.
Bi-Directional Tagged Structural Link exhibits Forward Tag and Backward Tag.

Forward Tag is “are equivalent” by default.

Backward Tag is null by default.
Fundamental Structural Link is a Structural Link.
Aggregation-Participation Link is a Fundamental Structural Link.
Aggregation-Participation Link is xor-connected to optional Aggregation-Participation Links.
Aggregation-Participation Link is or-connected to optional Aggregation-Participation Links.
Exhibition-Characterization Link is a Fundamental Structural Link.
Exhibition-Characterization Link is xor-connected to optional Exhibition-Characterization Links.
Exhibition-Characterization Link is or-connected to optional Exhibition-Characterization Links.
Generalization-Specialization Link is a Fundamental Structural Link.
Generalization-Specialization Link is xor-connected to optional Generalization-Specialization Links.
Generalization-Specialization Link is or-connected to optional Generalization-Specialization Links.
Classification-Initialization Link is a Fundamental Structural Link.
Classification-Initialization Link is xor-connected to optional Classification-Initialization Links.
Classification-Initialization Link is or-connected to optional Classification-Initialization Links.

Figure 46. SD2.4 in which Structural Link of OPM Ontology is unfolded

SD2.4.1 (Figure 47), which unfolds the Fundamental Structural Links, specifies constraints

on the Elements that can be connected by this type of links. Being Structural Links,

115

Fundamental Structural Links connects two Objects or two Processes. There are two
exceptions to this simple rule specified in SD2.4.1:

1. An Exhibition-Characterization Link connects a Thing or a Link (as its Source End) and
an Entity (as its Destination End). For example, the communication link between
remote computers, which is modeled as a Tagged Structural Link, can be characterized
by the object Transfer Rate and/or the process Encrypting. A Paid Order is
characterized by a Status attribute whose value (state) is paid.

2. A Generalization-Specialization Link can connect two States of different Objects to
represent state inheritance. In this type of link, which is called State Generalization-
Specialization Link, the inherited state has at least the same structural and behavioral

links as the inheriting state.

Fund tal
‘é‘lﬁt.ac'lllﬁ-‘;a SD2.4.1
1Nk

Aggregation-

Generalization- —— Participation

Specialization |7 Link
Link

Exhibition-
Characterization
Link

Source
End

Destination s hnked o
End

State Generalization-
Specialization Link

f Source
linksd 1&
‘E'_ End I
Destination

nel

Thing

Classification-
Instantiation
Link

I

Aggregation-Participation Link is a Fundamental Structural Link.
Exhibition-Characterization Link is a Fundamental Structural Link.

Source End of Exhibition-Characterization Link is linked to either Link or Thing.
Destination End of Exhibition-Characterization Link is linked to Entity.
Generalization-Specialization Link is a Fundamental Structural Link.

State Generalization-Specialization Link is a Generalization-Specialization Link.
Source End of State Generalization-Specialization Link is linked to State.
Destination End of State Generalization-Specialization Link is linked to State.
Classification-Instantiation Link is a Fundamental Structural Link.

Figure 47. SD2.4.1, in which Fundamental Structural Link of OPM Ontology is unfolded

Table 1 summarizes the possible structural relations between OPM elements in a tabular

way.

116

Table 1. Possible structural relations between OPM elements. S and D denote the link

source and destination, respectively. + denotes a legal link.

Tagged Structural Link / Exhibition-Characterization Link
Aggregation-Participation Link
S Object Process | State Link S Object Process State Link
D D
Object + - - - Object + + - +
Process - + - - Process + + - +
State - - - - State + + - +
Link - - - - Link - - - -
Generalization-Specialization Link Classification-Instantiation Link
S Object Process | State Link \S Object Process State Link
D D
Object + - - - Object + - - -
Process - + - - Process - + - -
State - - + - State - - - -
Link - - - - Link - - - -

11.4.3 Informal Procedural Link Definitions

A procedural link represents a dynamic relation between a process and a thing. It has one of
the following meanings: (1) the thing enables the process, (2) the process transforms the
thing, or (3) the thing triggers the process. Accordingly, procedural links are divided into
enabling links, transformation links, and event links. An enabling link, called an instrument
link, is a procedural link that connects a process with an enabler of that process. The enabler
is a thing that must be present in order for that process to occur, but it is not transformed as a
result of the process occurrence. The instrument link can originate from an object, a process,
or a state, denoting that the object existence, the process existence, or the object in the
specific state is the enabler, respectively. Graphically, an instrument link is symbolized by
—O, while textually it is represented by the reserved word “requires”. In Figure 48, for
example, Product Catalog, which is a systemic object in this model, is required for the
Ordering process. Nevertheless, the occurrence of Ordering does not affect Product Catalog in
any way. Therefore, Product Catalog is an instrument of the process Ordering. However, for

another process, such as Catalog Updating, Product Catalog would be an affectee, an object

117

affected by Catalog Updating. Hence, being an instrument can be though of as a “role” of an

object class with respect to a particular process class.

Product

Request Product

Inventory

Ordering requires Product Catalog.

Ordering affects Product Inventory.
QCrdering

Ordering consumes Product Request.

Receiot Product Ordering yields Receipt.
eceip

Catalog

Figure 48. An OPM model with various procedural links

A transformation link denotes that a thing is transformed by the occurrence of a specific
process. Transformation is a generalization of consumption, result, and effect. A consumption
link is a transformation link that connects an entity to a process which consumes it. A
consumption link is denoted by —® from the consumed entity to the process, while the
reserved word “consumes” represents it in OPL. In Figure 48, for example, Product Request
is consumed by the process Ordering. In other words, Product Request had existed before an
occurrence of Ordering, disappeared (was destroyed) during this execution, and does not exist
after Ordering is finished. A consumption link originating from a state of an object means that
the process consumes that object only when the object is in that specific state.

A result link is a transformation link that denotes a creation of a thing or an object at a
specific state. It is symbolized in an OPD by — T from the process to the resultant entity,
while the reserved word “yields” denotes it in OPL. In Figure 48, Ordering creates a Receipt:
the Receipt had not existed before the beginning of Ordering, it was created during this
execution, and it exists after Ordering is finished.

An effect link connects a process with a thing that is affected, i.e., undergoes a state (or
value) change, during that process. The thing had existed before the process occurred and it

keeps existing after the process was finished, but at least one of its states or attribute values

118

changed. The effect link is denoted in an OPD by <t where the white-headed arrow
pointing towards the affected thing and the black-headed arrow — towards the process. This
reduces a potential ambiguity when an effect link connects two processes. OPL uses the
reserved word “affects” to represent effect links. In Figure 48, for example, Ordering affects
Product Inventory, which is a systemic object that represents the quantity of a product. This
object had existed before an occurrence of Ordering, and it exists thereafter, but its value
before the process occurrence is different from the value afterwards. Assuming that Ordering
reduces Product Inventory by 1, Figure 49 is a refinement of this OPM model in which
Product Inventory is state expressed to expose two states: value and value-1. The effect link is
also refined through its split into an input link from value to Ordering, and an output link
from Ordering to value-1. Overall, the meaning of this phrase is that Ordering changes the
state of Product Inventory from value to value-1. Input and output links can be though of as
specializations of consumption and result links respectively: the process “consumes” the
input state and “yields” the output state. However, the object as a whole is neither consumed

nor generated — it merely changes its state (or its value).

Product Product Inventory Product Catalog is environmental.
Ordering requires 2 Product Catalogs.

Ordering changes Product Inventory from

QOrderin
value to value-1.
2 Ordering consumes Product Request.

Error Product
Message | , Catalog '

Receipt Ordering yields either Receipt or Error

Message.

Figure 49. A refined OPM model of effect links as consumption and result links
Like structural links, procedural links can have multiplicity constraints, they can be
connected by “or” and “xor” relations, and they can exhibit attributes, such as a set of
conditions governing or guarding the link. For example, in Figure 49, Ordering requires 2

Product Catalogs, while consuming one (the default, when no multiplicity constraint is

119

indicated) Product Request and affecting one Product Inventory. Ordering yields either one
Receipt or one Error Message.

A procedural link may have one or more path labels. A path label is a character string label
on a procedural link that removes the ambiguity arising from multiple procedural links
outgoing from the same entity. When procedural links that originate from an entity are
labeled, the one that must be followed is the one whose label is identical with the label of the
procedural link that arrives at the entity. The path labels in Figure 50, for example, specify
two possible scenarios of Order Handling: Symbolized by the path label paying, this process
occurs when Order is at its ordered state, and it changes the state of Order to paid.
Symbolized by the path label supplying, the process occurs when Order is at its paid state,
and it changes the state of Order to supplied. A path label can be put also on an enabling link,
indicating that the thing attached to the link bearing the label is required for the process. For
example, the path label supplying along the instrument link from Warehouse to Order
Handling indicates that Warehouse is required when the state of Order changes from paid to

supplied, but not when it changes from ordered to paid.

Order Order can be ordered, paid, or supplied.

[DI'E|EI'EE|] [paid] [SLI|J|J|iEE|] ordered IS Inltlal'

Following path paying, Order Handling

changes Order from ordered to paid.

Gufddns

Following path supplying, Order Handling

supplyin, .
Warehouse 0 requires Warehouse.

Handling

Following path supplying, Order Handling

changes Order from paid to supplied.

Figure 50. An OPM model with path labels on procedural links

11.4.4 Procedural Link Metamodel
Any Procedural Link has a Process as its Destination End, while its Source End is connected
to an Entity. As shown in SD2.5 (Figure 51), a Procedural Link exhibits three attributes: Link

Type, Conditionality, and optional Path Labels. The Link Type of a Procedural Link

120

distinguishes primarily between enabling and transforming Procedural Links. Transforming
Procedural Links are further divided into affecting, consuming, and resulting Procedural

Links.

SD2.5

Procedural Link

linkad to Sour .
Enti = Source is or-connected to is d to is d to is d to
ntity End N
(V.| A T\ A
Instrument Consumption Result Effect
js linked to inati i ink Link i
Process Destination || ink Link
End M « \4\ . w M
is xor- s xor- * is xor- *is xor-
. . connected to connected to connected to, connected to
Conditionality
conditional unconditional
(‘] Link Type l_‘ 1
= [enal:ling J S 4 . " "
Path Label

Procedural Link exhibits Link Type, Conditionality, and optional Path Labels.
Link Type can be enabling or transforming.
Transforming zooms into affecting, consuming, or resulting.
Conditionality can be conditional or unconditional.
Source End of Procedural Link is linked to Entity.
Destination End of Procedural Link is linked to Process.
Instrument Link is a Procedural Link, the Link Type of which is enabling.
Instrument Link is xor-connected to optional Instrument Links.
Instrument Link is or-connected to optional Instrument Links.
Consumption Link is a Procedural Link, the Link Type of which is consuming.
Consumption Link is xor-connected to optional Consumption Links.
Consumption Link is or-connected to optional Consumption Links.
Result Link is a Procedural Link, the Link Type of which is resulting.
Result Link is xor-connected to optional Result Links.
Result Link is or-connected to optional Result Links.
Effect Link is a Procedural Link, the Link Type of which is affecting.
Effect Link is xor-connected to optional Effect Links.

Effect Link is or-connected to optional Effect Links.

Figure 51. SD2.5, in which Procedural Link of OPM Ontology is unfolded
A conditional Procedural Link, i.c., a Procedural Link whose Conditionality is conditional,
enables the Process execution only if the condition it symbolizes holds, else the Process is
skipped and the next process in turn is examined for possible execution. With the exception
of Result Link, each type of procedural link can be a conditional Procedural Link or

unconditional Procedural Link. A Result Link cannot be a conditional Procedural Link because

121

the Entity which the Process generated upon its completion cannot be a condition for the
Process that generated it. For simplicity, this assertion is defined in Appendix E by the OCL
constraint (1).

The difference between an enabling link and a conditional enabling link is demonstrated in
Figure 52. The Process in Figure 52(a) waits until the Object is at the state. In Figure 52(b),
on the other hand, the Process is executed only if the Object is at the state. Otherwise, the
control is passed to the next process that should be executed. The OPD symbol of a
conditional Procedural Link is similar to its non-conditional counterpart, except that it has the
letter “’c” inside or next to the link symbol (see Appendix A). In OPL, an occurrence sentence

is added for a conditional Procedural Link, as demonstrated in Figure 52(b).

. Object
(a) Instrument link

Semantics: Process waits until Object

Process requires state Object.
is at State.

(b) Conditional Instrument link Object

Semantics: Process executes only if

Object is at State, otherwise it is skipped Process occurs if Object is state.

and control moves to the next process.

Figure 52. An OPM model of an instrument link (a) and a conditional instrument link (b)
Like a Structural Link, a Procedural Link can be connected by “xor” relations to other
Procedural Links of the same type, as shown by the self tagged structural links labeled “is

xor-connected to” and “is or-connected to” in SD2.4.

11.4.5 Informal Event Link Definitions
An event is a significant happening in the system that takes place during a particular moment

and triggers some process in the system. An event is represented in OPM by an event link,

122

which is a procedural link that connects a source entity with a destination process. The
semantics of this type of links is that the source entity attempts to trigger the destination
process. The process does not start unless the event link is enabled, i.e., the event occurs and
allthe process pre-conditions, represented by the incoming procedural links, are satisfied.
There are five types of event links in OPM: agent, state change, general event, invocation,
and timeout. These are defined and exemplified next.
Agent Link
An agent is an intelligent object, a human or an organization consisting of humans, that
controls a process by supplying input. An agent link is an event link which connects an agent
with the process it triggers. For example, the process Ordering in Figure 53 starts only when
its agent, the physical and environmental (external) User, enables its occurrence. The OPD
symbol of an agent link is —@® from the agent to the triggered process. In the OPL

paragraph, this link is represented by the reserve word “handles”.

User is environmental and physical.

"""" L
. \ ;
i ——e/| Ord e—b‘ Order .
|]] i User handles Ordering.

Ordering affects Order.

Figure 53. An OPM model of an agent link
State Change Event Link
An object state can cause two different types of events: a state entrance event and a state exit
event. A state entrance event occurs when the object enters the particular state, while a state
exit event occurs when the object exits that state. A state change event is a generalization of a
state entrance event and a state exit event. A state change event link connects an object state
with the process it triggers when entering or exiting the state. After the destination process
occurs, the source entity of a state change event can either remain unchanged or be consumed
or affected. A state entrance event link in which the source entity remain unchanged is

symbolized by an enabling state entrance event link, +® . The symbol ¥ on the other

123

hand, is a consumption state entrance event link, which denotes the fact that the event source
entity is consumed or affected. Similarly, a state exit event link can be an enabling link,
symbolized by —+® , or a consumption link, symbolized by —* _ If at some level of the
OPM model there is no specification if the state change event link represents state entrance or
state exit event, it will be simply symbolized by —® or —®* from the state to the
triggered process.

In OPL, a triggering sentence is added to the OPL sentence representing the procedural
link. Figure 54 specifies an OPM model of a Supplying process, which is triggered when the
Order object enters its paid state. Two OPL sentences describe this link: a triggering sentence,
which expresses the event aspect of the link, and a change sentence, which represents the

procedural nature of this link.

Order
Order can be paid or supplied.
Order triggers Supplying when it enters paid.
w Supplying changes Order from paid to supplied.

Figure 54. An OPM model of a state entrance event link

For a state exit event link, the second sentence in Figure 54 would be “Order triggers
Supplying when it exits paid,” while for a state change event link that sentence would be
“Order triggers Supplying when it is paid.”
General Event Link
A general event can be an external stimulus, a change in an object state or value, etc. The
source of a general event link is a thing (object or process). Figure 55, for example,
specifying that Reporting is triggered any time Order changes its state. This single link could
be replaced by two state entrance event links from each one of the states of Order, but the
notation in Figure 55 is graphically more compact and conceptually more intuitive. Order

itself, which triggers the Reporting process, does not change during Reporting, as denoted by

124

the circle in the symbol —® . A general event link can also be of type consumption,
symbolized by — = or effect, symbolized by < denoting respectively that the
source thing (object or process) is consumed or affected by the triggered process.

If the source entity of this link is an object with states, then the corresponding OPL
sentence is “Order triggers Reporting when its state changes.” Otherwise, the OPL sentence is

simply “Order triggers Reporting.”

Order Order can be paid or supplied.
Order triggers Reporting when it state
Q
changes.
v Reporting requires Order.

Log
Record

Reporting yields Log Record.

Figure 55. An OPM model of a general event link

Invocation Link

An invocation link is an event link between an invoking process and an invoked one. As
noted, the vertical axis in an OPD denotes the time line within an in-zoomed process. The
invocation link enables overriding this timeline default which is needed for example in cases
such as loops or when the involved processes do not appear in the same context. An
invocation link can trigger the invoked process when the invoking process starts, represented
by _'Zl>, when it ends, denoted by ~ €=, when it starts or ends, represented by "2,_>, or
at any time during its execution, represented by ~ ZI=. Figure 56 specifies that Reporting,
which uses Order as an instrument to create a Log Record, is triggered any time Supplying

terminates.

125

Order

Supplied

e

&
y>| Reporting

g
Record

Order can be paid or supplied.

Order triggers Supplying when it enters paid.
Supplying changes Order from paid to
supplied.

Supplying triggers Reporting when it ends.
Reporting requires Order.

Reporting yields Log Record.

Figure 56.

Timeout Event Link

A timeout event link connects a timed element, which can be a process, a state, or an event
link, with a process which is triggered when the element violates its time constraints. When
the element violates its minimal time constraint, the minimal timeout event link, denoted by
"_D, is followed. When the element violates its maximal time constraint, the maximal
timeout event link, denoted by —H | is followed. The ++H1 symbol represents a timeout
event link which is followed whenever the minimal or maximal time constraints are violated,

while =] represents an unspecified timeout violation event. In all cases, the box head of

An OPM model of an invocation link

the link points towards the triggered process.

Order

supplied

Error
Handling

Report

[

Supplying
[0, 5m]

Order can be paid or supplied.

Order triggers Supplying when it enters paid.
Supplying lasts between 0 to 5 minutes.
Supplying changes Order from paid to
supplied.

Supplying triggers Error Handling when it
lasts more than 5 minutes.

Error Handling requires Order.

Error Handling yields Report.

Figure 57.

An OPM model of a timeout event link

126

The Supplying process in Figure 57, for example, is specified to last between 0 to 5
minutes. If it lasts more than 5 minutes, it triggers the Error Handling process, reporting the
existing error.

The minimal and maximal time constraints of an event link define the minimal and
maximal reaction timeout constraints: if the triggered process does not start within the
interval [minimal time constraint, maximal time constraint] after a stimulus occurred, a
timeout event occurs. In Figure 58, for example, Reporting should be triggered within 2
seconds to 5 minutes after a change in the Order state. If Reporting is not triggered within 5
minutes from the Order state change, Error Handling is triggered, creating a Report (using the

Order information).

Order triggers Reporting when its state

@ Reporting

changes, with a reaction time of 2 seconds to 5

minutes. This link triggers Error Handling when

Error

Handling Log

Record its reaction time lasts more than 5 minutes.

Reporting requires Order.

Reporting yields Log Record.

Error Handling requires Order.

Error Handling yields Report.

Figure 58. An OPM model of a reaction timeout event

11.4.6 Event Link Metamodel

As noted, an Event Link, which is unfolded in SD2.6 (Figure 59), is a Timed Element, and as
such, it inherits Minimal Time Constraint, Maximal Time Constraint, and Duration Distribution
Function as its attributes. The Duration Distribution Function of an Event can be used for
system simulation to define the distribution of the time that passes from the event occurrence

to the start of the corresponding triggered process.

127

SD2.6

Timed
Element

Event Link is tedto is ted to .
o 0 :
* * @
Timeout 3
Event Link 2
- - minimum or
(rnimom) roximan) () fropeaies)
is or-connected to is xor-connected to Source
End
* *
Invocation Link
|| piocess| [piocess process started -

Source s nedioa

is or-connected to is xor-connected to End Process

s *

s linkad to 3

Source
End

General
Event Link

is or-connected to s xor-connected to

k3 *
State Change Event Link

- entered e

Source s linkad 1o 3

End

is or-connected to

is linked 1o an

Source
End

is xor-connected to

Event Link is a Timed Element.

Timeout Event Link is an Event Link.

Timeout Event Link can be minimum, maximum, minimum or maximum, or unspecified.
Source End of Timeout Event Link is linked to a Timed Element.

Timeout Event Link is xor-connected to optional Timeout Event Links.

Timeout Event Link is or-connected to optional Timeout Event Links.

Invocation Link is an Event Link.

Invocation Link can be process started, process ended, process started or ended, or unspecified.
Source End of Invocation Link is linked to a Process.

Invocation Link is xor-connected to optional Invocation Links.

Invocation Link is or-connected to optional Invocation Links.

General Event Link is an Event Link.

Source End of General Event Link is linked to a Thing.

General Event Link is xor-connected to optional General Event Links.

General Event Link is or-connected to optional General Event Links.

State Change Event Link is an Event Link.

State Change Event Link can be entered, exited, entered or exited, or unspecified.
Source End of State Change Event Link is linked to a State.

State Change Event Link is xor-connected to optional State Event Links.

State Change Event Link is or-connected to optional State Event Links.

Agent Link is an Event Link.

Source End of Agent Link is linked to an Object.

Agent Link is xor-connected to optional Agent Links.

Agent Link is or-connected to optional Agent Links.

Figure 59. SD2.6, in which Event Link of OPM Ontology is unfolded
SD2.5.1 also specifies the five types of Event Links:

1. Agent Link.

2. State Change Event Link, which can be entered State Change Event Link, exited State

Change Event Link, entered or exited State Change Event Link, or unspecified State

Change Event Link;

128

3. General Event Link;

4. Invocation Link, which can be process started Invocation Link, process ended Invocation
Link, process started or ended Invocation Link, or unspecified Invocation Link; and

5. Timeout Event Link, which can be minimum Timeout Event Link, maximum Timeout
Event Link, minimum or maximum Timeout Event Link, or unspecified Timeout Event
Link.

An Event Link can be any Procedural Link, except for the Result Link, since the Entity of a
Result Link is created during the Process and, hence, it cannot be the source that triggers the
process. An Event Link does not represent a Condition either, but an attempt to trigger a
process which succeeds if and only if the conditions, represented by the links that are coming
into the process, hold. These constraints are also defined in OCL by constraint (2) in

Appendix E.

129

12. Metamodel of OPM Behavior

12.1 Complexity Management

Complexity management aims at balancing the tradeoff between two conflicting
requirements: completeness and clarity. Completeness requires that the system details be
stipulated to the fullest extent possible, while the need for clarity imposes an upper limit on
the level of complexity and does not allow for an OPD that is too cluttered or overloaded
with entities and links among them. The seamless, recursive, and selective OPM scaling, i.e.,
refinement-abstraction, enables presenting the system at various detail levels without losing

the “big picture” and the comprehension of the system as a whole.

12.1.1 Informal Refinement and Abstraction Mechanism Definitions

OPM features three built-in refinement-abstraction mechanisms, which are in-zooming and
out-zooming, unfolding and folding, and state-expressing and state-suppressing.

In-Zooming and Out-Zooming

In-zooming and out-zooming are a pair of refinement and abstraction mechanisms,
respectively, which can be applied to all the three entity types: objects, processes, and states.
In-Zooming, i.e., zooming into an entity, decreases the distance of viewing it, such that lower-
level elements enclosed within the entity become visible. Conversely, out-zooming, i.e.,
zooming out of a refined entity increases the distance of viewing it, such that all the lower-
level elements that are enclosed within it become invisible.

Table 11 demonstrates zooming into a process, a state, and an object in both OPD and
OPL. In Table 11(a), the Ordering process of Table 11(b) is in-zoomed to expose its two sub-
processes: Supplying and Paying. This in-zoomed view also specifies that the Order state is
changed during the first phase of Ordering, called Supplying, while Receipt is created during

the second phase of Ordering, which is Paying. In Table 11(c), the state paid of Order in Table

130

11(d) is in-zoomed to expose its two sub-states: advance paid and completely paid. Finally,
the in-zoomed OPD in Table 11(e) exposes the resource and computational components of
the physical Computer object shown in Table 11(f). These components include the objects
Order, Product Catalog, and Receipt, and the process Ordering.

An OPL paragraph that is equivalent to an in-zoomed OPD starts with an in-zooming
sentence, as demonstrated at the bottom of Table 11. These sentences are for the cases when
the in-zooming operation creates a new diagram. If the in-zooming operation is carried out in
the same diagram, the diagram names do not appear in the OPL sentences. For example,
“Ordering zooms into Supplying and Paying.”

Table 11. Examples of the three entity types in their in-zoomed and out-zoomed versions.
(a) The process Ordering in-zoomed (b) Ordering out-zoomed (c) The state paid in-zoomed

(d) paid out-zoomed (e) The object Computer in-zoomed (f) Computer out-zoomed.

Process State Object
(a) SD1 - Ordering in-zoomed (c) SD1 - paid in-zoomed (e) SD1 - Computer in-zoomed
Order Order
rdor Ordering — — -umeled ,-um:hed
—_ Ord ‘ ordered | paid l paid paid %“W"Ed
=
! £
S = .
=) ! Product ! o}
E | Catalog | . S
2
(b) SD (d) SD (f) SD
| [z
ordered raer omputer
z (o) G) Goemee)
N
:
=] o]
s b N ‘
®
. . . Computerfrom SD zooms in
. . . Paid from SD zooms in SD1 into) .
Ordering from SD zooms in SD1 into . . SD1 into Order, Receipt, and
o advance paid and completely paid.
=¥ | Supplying and Paying. R Product Catalog, as well as
= Advance paid is initial. .
Ordering.

131

Unfolding and Folding

Unfolding and folding are a pair of refinement and abstraction mechanisms, respectively,
which can be applied to things — objects or processes. Unfolding reveals a set of lower-level
entities that are hierarchically below a relatively higher-level thing. The hierarchy is with
respect to one or more structural links. The result of unfolding is a graph the root of which is
the thing being unfolded. Linked to the root are the things that are exposed as a result of the
unfolding. Conversely, folding is applied to the tree from which the set of unfolded entities is
removed, leaving just the root.

Table 12. Examples of the two thing types in their unfolded and folded versions. (a) The
object Order unfolded. (b) Order folded. (c) The process Ordering unfolded.

(d) Ordering folded.
Object Process
(a) SD1 - Order unfolded (c) SD1 - Ordering unfolded
Customer
Ordering
G Order Line %
=
:
= Last
=3 NOrdgr
o umber
=
(b) SD (d) SD
5
= Order
=
Order from SD unfolds in SD1 to consist of Ordering from SD unfolds in SD1 to consist of Paying
% optional Order Line, to exhibit Date and and Supplying and to exhibit Last Order Number.
™ | Number, and to be owned by Customer.

The object Order of Table 12(b) is unfolded in Table 12(a) three times. The first is
aggregation unfolding, which exposes the parts of Order, one or more Order Lines. The
second unfolding is exhibition unfolding, which exposes the features (attributes only in this

case) of Order, Date and Number. The third unfolding of Order is fagged unfolding, which

132

lists the things of Order connected to it via a tagged structural link, Customer. Order Line, in
turn, is unfolded to show its Product and Quantity attributes.

Processes can be unfolded just like objects. In Table 12(c), for example, the process
Ordering from Table 12(d) is unfolded to expose its parts, Paying and Supplying, and its
feature (in this case an attribute which is an internal variable), Last Order Number.

Table 12 also specifies the OPL unfolding sentences for the cases where the unfolding
operation creates a new diagram.

State Expressing and State Suppressing

State expressing 1s a refinement mechanism applied to objects which reveals a set of states
inside an object. State Suppressing is the abstraction mechanism which conceals a set of
states inside an object. Table 13(a) expresses the three states of Order: ordered, paid, and
supplied, while Table 13(b) suppresses them. The equivalent OPL sentence is “Order can be
ordered, paid, and supplied.”

Table 13. Examples of state expressing and state suppressing. (a) The object Order is state

expressed. (b) Order is state suppressed.

State Expressing State Suppressing OPL

(a) (b) Order can beordered , paid, or

supplied.

Order
Order

) e

Ordered is initial.

Paid is initial.

12.1.2 Refinement and Abstraction Mechanism Metamodel

In SD3 (Figure 60) System from SD is tag unfolded to expose the fact that it is specified by
one or more OPM Components. Each OPM Component is a stand-alone model of a system that
can be reused as a subsystem in another, more complex system. An OPM Component is
graphically represented by an OPD-set or, equivalently, by an OPL Script. When a system is

composed of more than one OPM Component, each component is denoted as being distinct

133

both graphically and textually. Graphically, each component is enclosed within the
component symbol, Ea (which is the same as the UML package symbol). In the textual
counterpart, the prefix “The component” or “the component” precedes the Component Name.
For example, if a Web portal system includes an Auction component, the OPL sentence will
read “Web Portal consists of the component Auction.” Like any complex object, a component

can be in-zoomed, and this is expressed in a component in-zooming sentence, such as, “The

component Auction of SD zooms in SD1 into Bidder, Start Price, and Caller, as well as Bidding
and Winning.”

Each OPM Component is composed of at least one View, which is an OPD (the graphic
expression) or an OPL Paragraph (the textual expression), respectively. An OPD is
characterized by an OPD ID (e.g., SD, SD1.3, etc.), while an OPL Paragraph has a
corresponding Paragraph ID, which is the OPD ID to which the letter P (for Paragraph) is
appended (e.g., SDP, SD1.3P, etc.).

A View in an OPM Component consists of Element Instances, each of which is an
appearance of an Element. An Element Instance can be visible or invisible, which determines
whether the Element Instance appears (is visible) in the OPD along with the equivalent OPL
Sentences in which it participates. Like the Element hierarchy, an Element Instance
specializes into an Entity Instance, which in turn specializes into Thing Instance that further
specializes into Object Instance. An Entity Instance, a Thing Instance, and an Object Instance
are appearances of an Entity, a Thing, and an Object, respectively.

An Entity Instance exhibits Scaling, which is an operation that changes the level of detail
at which the system, or parts of it, is specified. Scaling, which is unfolded in SD3.1 (Figure
61), has three attributes: Purpose, Mode, and Diagram. Purpose, which can be elaboration or
simplification, indicates whether the specification is refined or abstracted, respectively.

Refining is elaboration Scaling, i.c., Scaling the Purpose of which is elaboration. Refining

134

means exposing more details of the system by showing more entities and how they
interconnect. Abstracting, the inverse of Refining, which means hiding details, is

simplification Scaling, i.¢., Scaling the Purpose of which is simplification.

SD3

Is specified by

OPL
Seript

i an appearance of an Element Instance
Elernent +
m
OPL

& Paragraph

Component
ame

/A\ A

Paragraph
Thing {5 an appaarance of 3
Instance

Object s an appearance o a0
Instance

OPD-set consists of at least one OPD.
OPD is a View.
OPD exhibits OPD ID.
OPL Script consists of at least one OPL Paragraph.
OPL Paragraph is a View.
OPL Paragraph exhibits Paragraph ID.
OPL Paragraph and OPD are equivalent.
OPD-Set and OPL Paragraph are equivalent.
System is specifiedby at least one OPM Component.
OPM Component exhibits Component Name.
OPM Component consists of at least one View.
View consists of at least one Element Instance.
Element Instance can be visible or invisible.
Element Instance is an appearance of an Element.
Entity Instance is an Element Instance.
Entity Instance exhibits Scaling.
Entity Instance is an appearance of an Entity.
Entity Instance zooms into optional Element Instances.
Thing Instance is an Entity Instance.
Thing Instance is an appearance of a Thing.
Thing Instance unfolds into optional Element Instances.
Object Instance is an Thing Instance.
Object Instance is an appearance of an Object.
OPM Component is graphically represented by an OPD-set.
OPM Component is textually represented by an OPL Script.

Figure 60. SD3, in which System is unfolded
The Scaling Mode attribute, which can be visibility, hierarchy, or manifestation, expresses

the graphic way by which the Scaling is done. Visibility Mode Scaling means showing or

135

hiding the inner content of an Entity (Object, Process, or State). Hierarchy Mode Scaling
means showing or hiding the hierarchical tree structure of a Thing, which becomes the root of
that tree. Manifestation Mode Scaling expresses (shows) or suppresses (hides) the State

contents of an Object.

I =3

are inverse operations
Reﬂmng Abstracting

SD3.1

Entity

J

4 A Inzce

l Purpose Sre mverss operatols Thing
— Out-Zooming Instance
alaboratlon simplification
.

ame mvers)

opera

:ng

A

Unfalding

Fo\dlng et
f jec
Instance

q Diagram A State ‘are inyarge oparaifas
A Exprassing J=— |
L

Mode

visibility hierarchy manifestation

ate
Suppressing

°

Scaling exhibits Purpose, Mode, and Diagram.
Purpose can be elaboration or simplification.
Model can be visibility, hierarchy, or manifestation.
Diagram can be new, which is the default, or same
Refining is Scaling, the Purpose of which is elaboration.
Abstracting is Scaling, the Purpose of which is simplification.
Abstracting and Refining are inverse operations.
Entity Instance exhibits In-Zooming and Out-Zooming.
In-Zooming is Refining, the Mode of which is visibility.
Out-Zooming is Abstracting, the Mode of which is visibility.
In-Zooming and Out-Zooming are inverse operations.
Thing Instance is an Entity Instance.
Thing Instance exhibits Unfolding and Folding.
Unfolding is Refining, the Mode of which is hierarchy.
Folding is Abstracting, the Mode of which is hierarchy.
Unfolding and Folding are inverse operations.
Object Instance is a Thing Instance.
Object Instance exhibits State Expressing and State Suppressing.
State Expressing is Refining, the Mode of which is manifestation.
State Suppressing is Abstracting, the Mode of which is manifestation.
State Expressing and State Suppressing are inverse operations.

Figure 61. SD3.1, in which Scaling is unfolded
Refining whose Mode is visibility is called In-Zooming, while Abstracting whose Mode is

visibility is called Out-Zooming. Hierarchy Mode Scaling is called Unfolding when its Purpose

136

is elaboration and Folding when its Purpose is simplification. Similarly, Manifestation Mode
Scaling is called State Expressing when its Purpose is elaboration and State Suppressing
when its Purpose is simplification.

As noted, In-zooming and Out-zooming are operations of an Entity (Process, State, and
Object), while Unfolding and Folding are operations of a Thing (Object and Process). State
Expressing and State Suppressing can be applied only to Objects.

The third attribute of Scaling is Diagram. It relates to the target OPD in which the Scaling
(Refining or Abstracting) operation is done. The Diagram attribute has two values: new
(which is the default) and same. New Diagram Scaling generates a new OPD, in which the
entity of interest is scaled (refined or abstracted), while same Diagram Scaling uses the
exiting OPD to scale the entity of interest. A newly created diagram is automatically given a
name, which consists of an identifier and a description. The identifier of the top-level (level
zero) OPD is SD, for System Diagram. The identifier of any OPD generated by refining an
entity in SD is SDi, where 1 is 1,2, etc. The identifier of any OPD generated by refining an
entity in SDi is SDi.j, where j is 1,2, and so on.

SD3.2 (Figure 62) unfolds Entity Instance, showing its scaling mechanisms, In-Zooming
and Out-Zooming. As noted, In-Zooming is a refining mechanism which exposes the inner
details of an Entity Instance within its frame, while Out-Zooming is its inverse abstracting
mechanism. In-Zooming into an Entity makes the in-zoomed Element Instances inside the
Entity visible. Conversely, Out-Zooming of an Entity makes the visible (in-zoomed) Element
Instances inside the Entity invisible. This functionality is also defined by the OCL constraint
(3) in Appendix E. Moreover, this constraint and SD3.2 also specify that the in-zoomed
Element Instances of a State Instance can be only State Instances. In other words, only states

can be nested within a state.

137

SD3.2 _— Element Instance
L™
Entity
Instance

State
Instance

Out-Zooming

Element Instance can be visible or invisible.

Entity Instance is an Element Instance.

Entity Instance exhibits In-Zooming and Out-Zooming.
In-Zooming changes Element Instance from invisible to visible.
Out-Zooming changes Element Instance from visible to invisible.
In-Zooming and Out-Zooming are inverses.

Entity Instance zooms into optional Element Instances.

State Instance is an Entity Instance.

State Instance is an appearance of a State.

State Instance zooms into optional State Instances.

Figure 62. SD3.2, in which Entity Instance is unfolded

" Element Instance
fows ™
ur
P
-7 A A
Thing
Instance /

Folding

Element Instance can be visible or invisible.

Thing Instance is an Element Instance.

Thing Instance exhibits Unfolding and Folding.
Unfolding changes Element Instance from invisible to visible.
Folding changes Visibility of Element Instance from visible to invisible.
Unfolding and Folding are inverses.

Thing Instance unfolds into optional Element Instances.

Figure 63. SD3.3, in which Thing Instance is unfolded
SD3.3 (Figure 63) unfolds Thing Instance which exhibits an additional scaling mechanism,
Unfolding and Folding. In Unfolding, structural relations are used for refining and detailing the

structural parts of a Thing, while Folding is the inverse abstracting mechanism of Unfolding.

138

The functionality of the folding and unfolding mechanisms is textually stated by the OCL
constraint (4) in Appendix E.

SD3.4 (Figure 64) unfolds Object Instance, showing its State Instances. These State
Instances can be expressed or suppressed by the State Expressing and State Suppressing
operations of an Object Instance. State Expressing changes the State Instances of the current
object to visible (i.e., the object states are shown or expressed). Conversely, State
Suppressing changes the State Instances of the current object to invisibile (i.e., the object
state instances are hidden or suppressed). The OCL constraint (5) in Appendix E enforces the
change (from visible to invisible or vice versa) on all the State Instances of the current Object

Instance.

Object
SD34 Instémce

2 an apgearance of a State Instance
State
¥

State
Expressing { &,
s

State
Suppressing

State Instance can be visible or invisible.

State Instance is an appearance of a State.

State Instance specifies the status of an Object Instance.

Object Instance exhibits State Expressing and State Suppressing.
State Expressing changes State Instance from invisible to visible.
State Suppressing changes State Instance from visible to invisible.
State Expressing and State Suppressing are inverses.

Object Instance is a appearance of an Object.

Object Instance owns optional State Instances.

Figure 64. SD3.4, in which Object Instance is unfolded
Sometimes, especially when the number of states is large, it is desirable to show only a
subset of the states in an object in a particular OPD, especially those that are input to or

output of processes shown in that OPD. To this end, OPM also allows selective State

139

Expressing and selective State Suppressing, in which only a selected subset of states is

expressed or suppressed, respectively.

12.1.3 Informal Consistency Rule Definitions

While abstracting (folding, out-zooming, or state-suppressing) an Entity, all the procedural
links connecting an Entity outside the abstracted Entity with an Entity inside the abstracted
Entity migrate to the circumference of the abstracted Entity, because all the internal entities
disappear. However, OPM mandates that two entities are not linked by more than one
procedural link. Hence, if more than one link type results in from abstracting, only one of
them must be selected as the representative of all the resulting links. To maintain consistence,
the selected link is the one that is most abstract of all the possible link candidates.

Table 14 determines the abstraction order of procedural links by defining for each pair of
"competing" procedural links a third procedural link (which may be one of the two) that has
to be selected while abstracting an Entity. In Figure 65(a), for example, Order is implicitly
connected to Ordering through Date with an enabling instrument link and through Quantity of
Order Line via an effect link. This implies that Ordering changes Quantity of an Order Line
and uses Date of Order without changing it. Since effect can be viewed as a combination of
use and change, an effect link is more abstract than an instrument link, as denoted in Table
14. Hence, when folding Order, Order and Ordering are linked by an effect link. In Figure
65(b), a result link connects Creating of Ordering to Order, an effect link links Order to
Updating of Ordering, and an instrument link connects Order to Printing of Ordering. Since
creation can be viewed as an effect in which the existence of the created thing is changed
from non-exist to exist and consumption can be viewed as an effect in which the existence of
the consumed thing is changed from exist to non-exist, an effect link is more abstract than

both result and consumption links.

140

Table 14. Abstraction order of procedural links

+© |+ 2 +—
—0 — < —0 —> <— <> —@ —@ | |—© —» | < | Z>

+HO | 2 +H

—© | Z> | —1

—0© —0© — < —0 —> <— <> —e —© —p —® —p < | —®© —®
—> —e — | | | B |

<> Y <—» —p <—» —p < <—» <—»

> | o | —O© | ¥ | —O | > | <> | —0O | —©

—> —e — | B | | B |

<— —e <— <— <— <— <— <— <—

> | —@ | < | B | < | B | <> | <> | <>

e
R e e e e e e

R B I i [
e
—p

~ [- |-
HEEEEEE NN
N

S
AERNRRRENRRRERE

141

2>
2>

Order

State Suppressing

Order

O

Updating
-

Out-Zooming

Quantity

Folding
(a) (b) (c)

Figure 65. Example for scaling consistency rules. (a) Folding of the object Order. (b) Out-

zooming of the process Ordering. (c) State suppressing of the object Order.
Hence, when Ordering is out-zoomed, Ordering and Order are linked via an effect link. In
Figure 65(c), Order is connected to Ordering through its ordered state with a consumption
(input) link and through its supplied state via a result (output) link. When state-suppressing
Order, Order and Ordering are linked by an effect link, since an effect link is the abstraction
of result and consumption links, which means that “Ordering changes Order from ordered to

supplied.”

12.1.4 Metamodel of the Abstraction Procedural Link Consistency Rule

The abstraction procedural link consistency rule is stated as follows:

While abstracting an entity E that is linked with more than one procedural link to another
entity E', the selected procedural link between E and E' is the most abstract link among the
links that had existed between E' and the refineables of E. If this link cannot connect the
relevant entities according to the metamodel constraints, no link will be shown at the more

abstract level.

142

SD3.5 OPM Component
Elernent Instance
A
P
I |
"
Entity Procedural Link | 3 anasssaanceela | procedural
Instance Instance Link

Consistency
Checking

]

Abstraction
Order Tahle

Consistent :
hoolean

Cntology

Consistent is of type Boolean.
OPM Component exhibits Consistency Checking.
Consistency Checking requires optional Entity Instances, optional Procedural Link
Instances, Abstraction Order Table, and Ontology.
Consistency Checking yields Consistent.
OPM Component consists of at least one View.
View consists of at least one Element Entity.
Entity Instance is an Element Instance.
Entity Instance exhibits Abstracting.
Abstracting triggers Consistency Checking when it ends.
Entity Instance is refined into optional Element Instances.
Procedural Link Instance is an Element instance.
Procedural Link Instance is an appearance of a Procedural Link.

Figure 66. SD3.5, in which the consistency rule is specified

SD3.5 (Figure 66) defines the inputs and outputs required for the Consistency Checking
process, which is triggered whenever an Abstracting operation finishes executing.
Consistency Checking requires the Abstraction Order Table (defined in Table 14), OPM
Ontology, Entity Instances, and Procedural Link Instances. It defines whether the OPM
Component is Consistent or not. Consistency Checking functionality, defined by the OCL
constraints (6) and (7) in Appendix E, verifies that the Procedural Link Instance that directly
connects two Entity Instances is actually the possible most abstract link that can connect

between the two Entities according to the OPM Ontology and the Abstraction Order Table.

143

12.2 Metamodel of an OPM-based Development Process

As noted, a system development process is part of any methodology and, hence, should be
part of its metamodel. The system development model, presented in this section, follows
generic concepts of systems evolution and lifecycle, namely requirement specification,
analysis and design, implementation, usage and maintenance. As such, it is not specific to
OPM-based system development, neither to Web application development. The elaborate
backtracking options of this model, which are built-in at all levels, make it flexible enough to
represent a variety of information system development approaches, ranging form the classical

waterfall model through incremental development to prototyping.

12.2.1 Main Development Stages

Zooming into System Developing of SD (Figure 34), SD4 (Figure 67) shows the common
sequential stages of system developing processes: Requirement Specifying, Analyzing &
Designing, Implementing, and Using & Maintaining. All of these processes use the same OPM
Ontology, a fact that helps narrow the gaps between the different stages of the development
process. Figure 67 shows that the Client and the System Architect, who, along with the
Implementer, specialize User, handle the Requirement Specifying sub-process. Requirement
Specifying takes OPM Ontology as input and creates a new System, which, at this point,
consists only of a Requirement Document. The termination of Requirement Specifying starts

Analyzing & Designing, the next sub-process of System Developing.

144

pa—

Deliverable

System
Developing

.
Requirement
Specifymg
P Analyzing & fy
Designing

ffffff

i,

ffffff

System

Architect §

......

Requirement
Daocument

 —
Analysis&\
Design <]
~—

Document

Usinpi@ e shaeiiai i . e s .
Maintaining — Implementer
4

User is environmental and physical.
Client, which is environmental and physical, is a User.
Client handles Requirement Specifying and Using & Maintaining.
System Architect, which is environmental and physical, is a User.
System Architect handles Requirement Specifying and Analyzing & Designing.
Implementer, which is environmental and physical, is a User.
Implementer handles Implementing and Using & Maintaining.
System consists of Requirement Document, Analysis & Design Document, and Implementation.
Requirement Document is a Deliverable.
Analysis & Design Document is a Deliverable.
Implementation is a Deliverable.
System Developing zooms into Requirement Specifying, Analyzing & Designing, Implementing, and Using
& Maintaining.
System Developing requires Ontology and optional Systems.
Requirement Specifying yields Requirement Document.
Requirement Specifying invokes System Developing.
Analyzing & Designing requires Notation and Requirement Document.
Analyzing & Designing yields Analysis & Design Document.
Analyzing & Designing invokes System Developing.
Implementing requires Requirement Document and Analysis & Design Document.
Implementing yields Implementation.
Implementing invokes System Developing.
Using & Maintaining requires Requirement Document and Analysis & Design Document.
Using & Maintaining affects Implementation.

Using & Maintaining invokes System Developing.

Figure 67. SD4, in which System Developing is in-zoomed
The agent of the Analyzing & Designing stage is the System Architect, who uses the

Requirement Document and OPM Notation to create a new part of the system, the Analysis &

145

Design Document. When the Analyzing & Designing process terminates, the Implementer
(programmer, DBA, etc.) starts the Implementing phase, which uses the Requirement
Document and the Analysis & Design Document in order to create the Implementation. Finally,
the Implementer changes the system Implementation during the Using & Maintaining stage,
while the Client uses the System.

Each System Developing sub-process can invoke restarting of the entire development
process, which potentially enables the introduction of changes to the requirements, analysis,
design, and implementation of the System. These invocations give rise to an iterative
development process, in which an attempt to carry out a sub-process reveals faults in the

deliverable of a previous sub-process, mandating a corrective action.

12.2.2 The Requirement Specifying stage

In SD4.1 (Figure 68), Requirement Specifying is in-zoomed, showing its four sub-processes.
First, the System Architect and the Client define the problem to be solved by the system (or
project). This Problem Defining step creates the Problem Definition part of the current system
Requirement Document. Next, through the Requirement Reusing sub-process, the System
Architect may reuse requirements that fit the problem at hand and are adapted from any
existing System (developed by the organization). Reuse helps achieve high quality systems
and reduce their development and debugging time. Hence, when developing large systems,
such as some Web applications or real-time systems, it is important to try first to reuse
existing artifacts adapted from previous generations, analogous systems, or commercial off-
the-shelf (COTS) products that fits the current system development project. Existing, well-
phrased requirements are often not trivial to obtain, so existing relevant requirements should
be treated as a potential resource no less than code. Indeed, as SD4.1 shows, reusable artifacts
include not only components (which traditionally have been the primary target for reuse), but

also requirements.

146

SD4.1

System

*I

Requirement
Document

——————

Requirement
Specifying

O ‘
Requirement
. Reusing
!'"
& Requirement
dding O

Is Backtracking Required?

£l

......

——————
Systemn §
Architect §

.....

? Frahlem
Definition

Requirement

Ontology

Development
Process
Backtracking

" System
Developing

System consists of Requirement Document.
Requirement Document consists of Problem Definition and Requirements.
Client, which is environmental and physical, handles Problem Defining and Requirement Adding.
System Architect, which is environmental and physical, handles Problem Defining, Requirement Reusing,
and Requirement Adding.
Requirement Specifying zooms into Problem Defining, Requirement Reusing, Requirement Adding, and
Development Process Backtracking, as well as Is Backtracking Required?.
Is Backtracking Required? is of type Boolean.
Problem Defining yields Problem Definition.
Requirement Reusing requires optional Systems.
Requirement Reusing yields optional Requirements.
Requirement Adding requires Problem Definition and Ontology.
Requirement Adding yields Is Backtracking Required? and optional Requirements.
Development Process Backtracking occurs if Is Backtracking Required? is true.

Development Process Backtracking invokes System Developing.

Figure 68. SD4.1, in which Requirement Specifying 1s in-zoomed

After optional reuse of requirements from existing systems (or projects), the System
Architect and the Client, working as a team, add new Requirements or update existing ones.
This step uses OPM Ontology in order to make the Requirement Document amenable to be
processed by other potential OPM tools, and in particular to an OPL compiler. Since the
System Architect and the Client use OPM Ontology in defining the new requirements, the
resulting Requirement Document is indeed expressed, at least partially, in OPL in addition to
explanations in free natural English. Such structured OPM-oriented specification enables

147

automatic translation of the Requirement Document to an OPM analysis and design skeleton
(i.e., a skeleton of an OPD-set and its corresponding OPL script). Naturally, at this stage the
use of free natural language beside OPM seems mandatory to document motivation,
alternatives, considerations, etc.

Finally, the Requirement Adding process results in the Boolean object “Is Backtracking
Required?”, which determines whether System Developing should be restarted. If so,
Development Process Backtracking invokes the entire System Developing. Otherwise,

Requirement Specifying terminates, enabling the Analyzing & Designing process to begin.

12.2.3 The Analyzing and Designing stage

During the Analyzing & Designing stage, shown in SD4.2 (Figure 69), a skeleton of an OPL
Script is created from the Requirement Document for the current system. As noted, in order to
make this stage as effective and as automatic as possible, the Requirement Document should
be written using OPM, such that the resulting OPL script can be compiled. The System
Architect can then optionally reuse analysis and design artifacts from previous systems
(projects), creating a basis for the current system analysis and design. Finally, in an iterative
process of Analysis & Design Improving (which is in-zoomed in SD4.2.1, Figure 70), the
System Architect can engage in OPL Updating, OPD Updating, System Animating, General
Information Updating, or Analysis & Design Terminating.

Any change a user makes to one of the modalities representing the model triggers an
automatic response of the development environment software to reflect the change in the
complementary modality. Thus, as SD4.2.1 shows, OPD Updating (by the System Architect)
affects the OPD-set and immediately invokes OPL Generating, which changes OPL Script
according to the new OPD-set. Conversely, OPL Updating (also activated by the System
Architect) affects the OPL Script, which invokes OPD Generating, reflecting the OPL changes

in the OPD-set.

148

SD4.2

System -
Requirement
* Analyzing & Document
Designing

Analysis8

Degign nalysis & Design
Document Skeleton o=
Generating 1 System §
Architect

. Analysis&
General ; .
2Merd Design MNotation
Information Reusing

OPD-sst Analysis8
Design
Impraving
(A Cntology
- Is Backtracking Requirad?
OPL Script

Element
Dictionary
Developrnent

IOCESS

System
Backtracking y

Developing

System Architect, which is environmental and physical, handles Analysis & Design Reusing and Analysis &
Design Improving.
System consists of Analysis & Design Document.

Analysis& Design Document consists of General Information, OPD-set, OPL Script, and Element

Dictionary.

OPD-set and OPL Script are equivalent.
Analyzing & Designing zooms into Analysis & Design Skeleton Generating, Analysis & Design Reusing,
Analysis & Design Improving, and Development Process Backtracking, as well as Is Backtracking
Required?.
Analyzing & Designing requires Ontology, Notation, and Requirement Document.

Is Backtracking Required? is of type Boolean.

Analysis & Design Skeleton Generating yields OPD-set and OPL Script.

Analysis & Design Reusing requires optional Systems.

Analysis & Design Reusing affects OPD-set and OPL Script.

Analysis & Design Improving affects Analysis & Design Document.

Analysis & Design Improving yields Is Backtracking Required?.

Development Process Backtracking occurs if Is Backtracking Required? is true.

Development Process Backtracking invokes System Developing.

Figure 69. SD4.2, in which Analyzing & Designing is in-zoomed
Since OPM enables modeling system dynamics and control structures, such as events,
conditions, branching, and loops, System Animating simulates an OPD-set, enabling System
Architects to dynamically examine the system at any stage of its development. Presenting live
animated demonstrations of system behavior reduces the number of design errors percolated
to the implementation phase. Both static and dynamic testing help in detecting discrepancies,

inconsistencies, and deviations from the intended goal of the system.

149

——————

//I‘\SDW

Analysisé,
Design
Improving

Cntology

Requirement
Document

] Ana_ll_ysis_ & Design
Information errninating

Updating

Analysis&
Design
Document

14

Is Backtracking Required?

General
Information

Generating

Generating

System Architect, which is environmental and physical, handles OPL Updating, OPD Updating, System
Animating, General Information Updating, and Analysis & Design Terminating.
Analysis & Design Document consists of General Information, OPD-set, and OPL Script.
OPD-set and OPL Script are equivalent.
Analysis & Design Document exhibits OPD Generating and OPL Generating.
OPD Generating requires OPL Script.
OPD Generating affects OPD-set.
OPL Generating requires OPD-set.
OPL Generating affects OPL Script.
Is Backtracking Required? is of type Boolean.
Analysis & Design Improving zooms into OPL Updating, OPD Updating, System Animating, General
Information Updating, and Analysis & Design Terminating.
Analysis & Design Improving requires Ontology, Notation, and Requirement Document.
OPL Updating affects OPL Script.
OPL Updating invokes OPD Generating and Analysis & Design Improving.
OPD Updating affects OPD-set.
OPD Updating invokes OPL Generating and Analysis & Design Improving.
System Animating affects OPD-set.
System Animating invokes Analysis & Design Improving.
General Information Updating affects General Information.
General Information Updating invokes Analysis & Design Improving.

Analysis & Design Terminating yields Is Backtracking Required?.

Figure 70. SD4.2.1, in which Analysis & Design Improving is in-zoomed
As part of the dynamic testing, the simulation enables designers to track each of the system
scenarios before writing a single line of code. Any detected mistake or omission is corrected
at the model level, saving costly time and effort required if the error were only treated at the

implementation level. Avoiding and eliminating design errors as early as possible in the

150

system development process and keeping the documentation up-to-date contribute also to
shortening the system's delivery time ("time-to-market").
Upon termination of the Analysis & Design Improving stage, if needed, the entire System

Developing process can restart or the Implementing stage begins.

12.2.4 The Implementing stage

The Implementing stage, in-zoomed in SD4.3 (Figure 71), begins by defining the
Implementation Profile, which includes the target Language (e.g., Java, C++, or SQL) and a
default Directory for the artifacts. Then, the Implementation Skeleton Generating process uses
the OPL Script of the current system and inner Generation Rules in order to create a skeleton
of the Implementation. A Generation Rule saves pairs of OPL sentence types (templates) and
their associated code templates in various target Languages. Chapter 14 details about the
automatic OPM implementation generator.

The initial skeleton of the Implementation, which includes both the structural and behavioral
aspects of the system, is then modified by the Implementer during the Implementation
Reusing and Implementation Improving steps. In the Testing & Debugging stage, the resulting
Implementation is checked against the Requirement Document in order to verify that it meets
the system requirements defined jointly by the Client and the System Architect. If any
discrepancy or error is detected, the System Developing process is restarted, else the system is
finally delivered, assimilated and used. These sub-processes are embedded in the Using &
Maintaining process at the bottom of SD4 (Figure 67). While Using & Maintaining takes place,
the Client collects new requirements that are eventually used when the next generation of the
system is initiated. A built-in mechanism for recording new requirements in OPM format
while using the system would greatly facilitate the evolution of the next system generation

[23].

151

Implementing

Farametel SD43
Datarmining
System
*
Implementation
Profile
- Generation
T Language ule
: il . 'I gHag - Analysisd
! Implementer ¥ Design —
i Nt e Implementation Document
Skeletan
Generating
Irmplementation OPL Script
eusing
Implementation Implementation |
Improving
Testing &
Debugging -
Requirement
Document
Is Backtracking Required?
tiue false
b
&
Developrment
Cntology F‘l'ocless
Backtracking o
g System
Developing

Implementer, which is environmental and physical, handles Parameter Determining, Implementation
Reusing, Implementation Improving, and Testing & Debugging.
System consists of Requirement Document and Analysis & Design Document.

Analysis & Design Document consists of OPL Script.
Implementing requires Ontology.
Implementing zooms into Parameter Determining, Implementation Skeleton Generating, Implementation
Reusing, Implementation Improving, Testing & Debugging, and Development Process Backtracking, as
well as Implementation Profile, Generation Rule, and Is Backtracking Required?.

Implementation Profile exhibits Language and Directory.

Is Backtracking Required? Is of type Boolean.

Parameter Determining yields Implementation Profile.

Implementation Skeleton Generating requires OPL Script, Generation Rules, and Implementation

Profile.

Implementation Skeleton Generating yields Implementation.

Implementation Reusing requires optional Systems.

Implementation Reusing affects Implementation.

Implementation Improving affects Implementation.

Testing & Debugging requires Requirement Document.

Testing & Debugging affects Implementation.

Testing & Debugging yields Is Backtracking Required?.

Development Process Backtracking occurs if Is Backtracking Required? is true.

Development Process Backtracking invokes System Developing.

Figure 71. SD4.3, in with Implementing is in-zoomed

152

Part 5. Summary and Implementation Issues

13. Summary and Contribution
Existing hypermedia authoring techniques and system development methods are not up to the
task of complete and accurate modeling of all the complex structural and dynamic aspects of
Web applications. Moreover, the aspects that are supported by these techniques are usually
spread across various views, which make the comprehension and integrity of the system as a
whole difficult. To meet the challenges posed by the Web, OPM/Web augments OPM to
enable specification of Web applications in a single, coherent view without adding to OPM
vocabulary new concepts, but rather enabling additional ways of using the existing elements.
This increases the expressiveness of OPM, such that OPM models remain validalso in
OPM/Web.
OPM/Web improves the accuracy and expressiveness of existing Web application
modeling languages and methods in the following ways.
e (OPM/Web combines the physical, static, behavioral, and functional views of a
system within a single framework, enabling coherent, clear, and precise modeling
of code mobility concepts, design paradigms, and dynamic architectures. Mental
integration of the structure and behavior of Web applications in order to
comprehend them in their entirety can be achieved with current methods only with
great difficulty due to the multiplicity of views that need to be consulted. The
segregation of a UML model, for example, into multiple views, which span across
different diagram types, was found as a source of difficulty in capturing and
understanding the system as a whole [78]. Indeed, comparing the complexity metric
values of UML with other object-oriented techniques, Siao and Cao [91] found that
each diagram in UML is not distinctly more complex than techniques in other

object-oriented methods, but as a whole, UML is 2-11 times more complex than

153

other object-oriented methods. Moreover, the single view of OPM/Web enables
specifying mutual effects between the various aspects of Web applications that
cannot be done in the standard UML. For example, an elementary operation of
transferring a computational component from one physical location to another and
executing it there, which can be modeled by OPM/Web in a straightforward
manner, is difficult to model with UML.

OPM/Web applies a variety of scaling mechanisms for seamlessly and flexibly
changing the level of detail of the system being designed. Complexity is inherent in
real-life systems, so a set of tools for controlling and managing this complexity
should be an integral part of a system development methodology. Complexity
management entails a tradeoff between two conflicting requirements: completeness
and clarity. OPM introduces three refinement-abstraction mechanisms, which are
extended and formalized in this work.

OPM/Web enables modeling stand-alone processes, which are at the heart of Web
applications and are best expressed without the need to break them apart and
distribute the parts as operations (or methods) of the governing objects, as the
object-oriented paradigm and its UML design standard require. Modeling the
system behavior in UML is spread across up to five different views: use case
diagrams, in which the system functionality is defined; class diagrams, in which the
operations are specified as being owned by objects; interaction diagrams, in which
the messages that pass among the different objects is specified; Statecharts, which
represent the change in object states over time; and activity diagrams, which specify
the performance and flow of the system actions or sub-activities. Each of these
diagrams has its own set of symbols, syntax, and semantics, and the human modeler

must mentally traverse back and forth among these views. In spite of this model

154

multiplicity, none of the models capture the whole functionality of a process as a
pattern along with its effects on different objects it involves. Indeed, as the
experiment presented in this work has shown, OPM/Web is better than UML in
capturing and understanding the behavior of Web applications.

OPM/Web provides for a technology-independent method (known in the MDA
nomenclature as Platform Independent Model, or PIM), in which process triggers,
pre-conditions, and post-conditions are specified generically. Once the application
is modeled, a solid and detailed skeleton of the technology-dependent
implementation (known in MDA as Platform Specific Model, or PSM) can be
automatically generated and simulated. This skeleton includes not only the structure
of the application, but also its behavior, enabling design verification and leaving to
the implementer only the coding at the bottom level. In contrast, UML requires that
a set of stereotypes (denoted by different graphical symbols), tagged values, and
constraints be defined for each domain of discourse. Such extension mechanisms
undermine UML standardization efforts, since each researcher or company working
in a particular domain can develop a different set of extensions. Lack of a universal
set of such extension entities inhibits the efforts to develop reusable components.
As noted, OPM/Web makes it a point not to enlarge the OPM vocabulary, but rather
to enable new modes of using and combining existing elements. Indeed, a
significant number of OPM/Web extensions have been incorporated into the core
OPM, enabling system architects to use a single, relatively simple development
methodology that is suitable for modeling systems in a variety of domains.
OPM/Web advocates maintaining reusable components at a high level of
abstraction and refining them in specific contexts. The OPM combination of object-

and process-oriented paradigms enables modeling partially specified structures and

155

behaviors and adapting them to specific target components in a clean and clear way.
The ability to weave objects and processes in the same OPM/Web model
significantly improves upon existing Component-Based Development (CBD)
approaches and methods, which primarily refer to black box reuse of structures.

e OPM/Web has an elaborate underlying ontology and a bi-modal notation, which are
expressed in a reflective way using Object-Process Diagrams (OPDs) and
corresponding Object-Process Language (OPL) paragraphs. Although object-
oriented methods have reached the conclusion that a system model should also
describe its behavioral aspects (e.g., UML interaction diagrams), for the most part,
metamodels of these methods depict their structural parts. Being an object-process
approach, OPM enables reflective metamodeling of a complete methodology,
including its ontology, language (notation), and development process. The
reflective OPM/Web metamodel provides a definition of OPM/Web elements,
relations, and consistency constraints. The bimodal, dual representation of OPM
increases the processing capability of humans according to the cognitive theory [60]
and engages the power of "both sides of the brain" — the visual interpreter and the
lingual one.

Table 15 maps OPM/Web features to the requirements that a complete Web

application modeling method must satisfy. These requirements were discussed and listed

in the introduction.

156

Table 15. Mapping of OPM/Web concepts to the requirements of a Web application

modeling method

Requirement

OPM/Web Concepts

Complex dynamic and
distributed architecture

Physical and informatical things
In-zooming mechanism
Link characterization

Catering to an unlimited
number of heterogeneously
skilled users

Refinement-abstraction scaling mechanisms
Agent link characterization
Component reuse

Security and privacy
support

Link characterization by pre-defined processes
Authorization by agent links

Up-to-date, heterogeneous
information sources

Customized multiplicity of features and parts
Partially specified structures and behaviors

Dynamic behavior
modeling

Link characterization
Identical path name

e Migration processes of complete code (process

classes) and executable code (process instances)

The evaluation of OPM/Web in comparison to a Web application extension of UML
[18], presented in this work, has shown that OPM/Web is easier to understand and apply for
untrained users. The comparison included comprehension and modeling (constructing)
questions on two representative Web applications. Two major factors contributed to the better
results obtained by OPM users in the comprehension questions concerning the system
dynamics and distribution. One is the single OPM diagram type, which supports the various
structural and dynamic aspects throughout the system lifecycle. The other is the ability of
OPM to model stand-alone processes, which specify the system’s behavior in its entirety.
Another experiment which was conducted on 20 advanced students who studied UML and
OPM for a year showed similar results. In that experiment, the students had rehearsal tutorials
about the core UML and OPM. None of them had studied the extensions of the two modeling
languages to the Web application domain. The experiment includes two models and nine

comprehension questions. The two models were a webSales system, which handles sales

157

through the internet, in Conallen’s UML and the GLAP system (see chapter 5.5.1) in
OPM/Web. The comprehension questions which refer to system dynamics and distribution
were better answered using OPM/Web models. The students noted that the single view and
the technology-independent model in OPM/Web helped them understand the system purpose,

functionality, and architecture.

14. Implementation Issues

Formal visual analysis and design methods have been evolving at a high pace in part due to
their claim to be implementation-independent. Developers using these methods communicate
with each other on the basis of a common ontology rather than on a specific programming
language or technology. Moreover, complex systems often involve various kinds of
programming languages. For example, objects in a Web application can be implemented as
HTML documents, while processes of the same application can be written in Java. Formal
development methods help system architects design systems conceptually and then generate
different portions of their models in the most appropriate programming languages.

The translation of a system design to an implementation is increasingly done by automatic
code generators. The benefits of using such tools include higher productivity and quality of
the developed systems; enabling mechanical and repetitive operations to be done quickly,
reliably and uniformly; relieving designers from mundane tasks so they can focus on essence;
and enforcing the generation of legible code by human programmers. This tendency to
automate code generation is in line with the widespread observation that the most complex
task in the implementation phase is generating the design and implementation model at the
semantic level and not in the detailed code writing.

Existing code generators define rules for translating visual constructs to corresponding
code blocks in the target programming languages. These rules are strict and reflect the insight

and the style of the code generator implementers. Changing the translation rules or the visual

158

constructs usually requires rewriting the code generator. The eXtendible Markup Language
(XML) [71], which has become popular as the prime language for the Internet, provides a
universal means for communicating between methods in general and for translating models
among various programming languages in particular. OPM’s code generator uses XML as an
infrastructure for translating OPL sentences to various programming languages.

Figure 72 describes the architecture and functionality of the generic OPM code generator
in which the transformation rules are external to the code generator and hence can be

modified and adapted to different writing styles and implementation frameworks.

Templates & e A
Tran%lgtinns Super | : OPCAT

OPCAT TIP
Handling

OPL-*ML
Generating

Templates & System
Translations OPL-XNML
XML File Script

Implementation
enerating

Implementation

A

DB Schema Code User
Interface

Figure 72. The architecture and functionality of the generic OPM code generator
OPCAT TIP (Templates for Implementation Generation) Handling is a component with
which Super Users can communicate to insert and update conversion rules into the Templates

& Translations DB. Figure 73 is a snapshot of the OPL tab of the main OPCAT TIP screen. In

159

this tab the OPL templates are handled. For example, the exhibition sentence, shown in this
figure, has three constituents: ObjectName, which is mandatory, ExhibitedObject, which is a
template that can appear 0 or more times, and Operation, which is a string that can appear 0
or more times. The XML schema which is automatically generated for this template and

appears in the XML tab is:

<xs:element name="0ObjectExhibitionSentence">
<xs:complexType>
<xs:sequence>
<xs:element name = "ObjectName" type="xs:string"/>
<xs:element ref="ExhibitedObject" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name = "Operation" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

</xs:element>

I OPCAT TIP - [OPL TEMPLATES AND TRANSLATIONS]] -1
| Ele Edt Insert Records window Help - 5[‘
. OPCAT - TIP Templates and Translations
Grplates for Implementation Programming
Search by template name
 — Template NO. 3 Importance I <
Search by kemplate no. - Template Name IﬂhiEElEKhihitiDHEEﬂtEﬂEE Complete sentence [+
h' Template |Ob]E\:tName [ExhibitedDbject] [Cperation]
Search by Sentences. "R 2t OPL |XML | TRANSLATIONS
ChangingSentence -
Ennditinnszr\tatnca Elements:
onsumingSentence - .
Enabingsentence Place Word,/Ph Cavdialty Covdnity
ObjectAgnregationParagranh ace Word/Phrase Type i i
ObjectAgaregationSentance 3 0 [=] [ssistring & | . [
ObjectBiDirectionalRelationSentence
ObjectEnvironmentalPhysicalsentence 1 |Exhih\ted0h]ect k| |Tamplate ;||] | 1000
ObijectExhibitionParagraph
ObjctExhibi tence 2 [operation =] [xsistring i | [1000
ObjectInheritanceSentence
ObjectstateParagraph * I =] =l I
ObjectStateSentence
ObjectUniDirectionalRelationSentence LI bl Bl) =
Templates Trse
------- 3 DbjectE xhibitionSertence
Attributes:
Name Type Use Default Fiked
2T | I—
nts
Add | Delete | Save |Check
Eieeth Record: 14| «] 3 b o0 ek of 44

Figure 73. OPCAT TIP screen snapshot — the OPL tab

160

An example of an OPL sentence of this type is “A exhibits B and C, as well as Ping.” The

XML presentation of this sentence is:

<ObjectExhibitionSentence>
<ObjectName> A </ObjectName>
<ExhibitedObject'*> <ObjectName> B </ObjectName> </ExhibitedObject>
<ExhibitedObject> <ObjectName> C </ObjectName> </ExhibitedObject>
<Operation> Ping </Operation>

</ObjectExhibitionSentence>

Figure 74 is a snapshot of the translations part of the OPCAT TIP screen. In this tab the
subject template is translated into various programming languages, for example, HTML and
Java, using pre-defined functions, listed in Table 16. Figure 75 presents the ‘“operation
details” screen, in which the functions (with the given parameters) are called when some

conditions are satisfied.

2 OPCAT TIP - [OPL TEMPLATES AND TRANSLATIONS] -] 1‘
|EE File Edt Insett Records Window Help =18 5”

OPCAT - TIP Templates and Translations
Templates for Implementation Programming
Search by template name
= Template NO. 3 Importance [0 =
Seatch by template no. < Template Name FhiE(tEKhihiliﬂnﬁentEn(E Complete sentence
ﬁ' Template | ‘ObjectMame [ExhibitedObject] [Cperation]
Search by Sentences, “R_IN puT OPL (XML TRANSLATIONS
ChangingSentence ii
CondtionSentence -
ConsumingSentence Supported Translations:
EnablingSentence lhlml— -
ObjectAggregationParagraph

ObjectAggregationSentence M| fava

ObjectBiDirectionalRelationsentence
ObjectEnvirormertalPhysicalsentence
h

wl%|
ObjectStateParagraph
ObjectStateSentence

ObjectUniDirectionalRelationSentence =

Translation Operations: java
Templates Tres

3 ObjectE shibitonSentence Place Condition Action =
P 0 [templatsContainsExhibitedObject) (=] [ranslateall, ExhibitedChbject)
1 [remplateContainstOperation) ImsertAtLucal\un(”BEFORE_ENDING_T

|G, Methadsection,)

RS ETEA Y

Redefine Conditions and Actions

Refresh T
M‘ Recard: 14| « [[3 b v [p#] of a4

Figure 74. OPCAT TIP screen snapshot — the Translations tab

' ExhibitedObject is a template which contains a multiplicity constraint and ObjectName. The multiplicity is 1

by default and, hence, this sub-element does not appear here.

161

[OPCAT TIP - [OPL TEMPLATES
|E8 Fle Edt Insert Records Window Help

JSLIE
JSEIE|

OPCAT - TIP

Templates far Tmplemerntation Prograrmiming

Templates and Translations

Search by template name

Search bf template no. ;Q'

Search by Sentences. "R it

ChangingSentence
CondtionSentence

Consumingsentence

Template ND. 3

Template Name [BbjectExhibitionsentence

Importance [0 =

Complete sentence [

Template | ObjectName [ExhibitedObject] [Operation]

E5 Edit Operation

|

ObjectaggregationParagraph [emplateContains] = |
Objectagareg: ence
template [Operation kA |
a Action:
ObjectstateSentence nserthtLocat =
ObjectunDrectionalRelationsentence v insertAttocation =1
path [= i‘
Templates Tree. file [|
3 ObjecEshbitanenenee T ENDINE Tae - B
Translation:
[<Method name="§30per stionds >
public void $$0perationg$ (Preview
<MethodParamSection name = "§$Operationg}” = . N
<JMethodParamSection > TCHR T G i
<MethodBodySection name = "§$Operationg$"> Objectiame
<fMethodBodySection> ExhibitedObject
I Operation
<iMethod>

[=
_Refesiee | Record: 4] 4 |[3 b [oi]re] of 44
Figure 75. OPCAT TIP screen snapshot — operation details

OPCAT TIP generates a Templates and Translations XML File, which includes an XML
schema for each OPL template (see Appendix B) and its translations (conditions + actions) to
the various supported programming languages.

OPL-XML Generating in Figure 72 uses OPCAT DB in order to generate a System OPL-XML
Script. This script is the basis for OPL paragraphs of OPM specifications on one hand and an
input for the Implementation Generating process on the other hand. Implementation
Generating gets the Templates and Translations XML File from OPCAT TIP Handling and the
System OPL-XML Script from OPL-XML Generating. It yields the system Implementation,
which is composed of DB Schema, Code, and User Interface. Implementation Generating finds
matches between the XML file representing a specific system and the XML schema in the
Templates and Translations XML File. When such a match is found, the implementation
generator acts according to the translation rules. After creating the implementation files,
another pass is required to transform these files, which are in XML format, to regular
implementation files in the target languages. This is done by changing the tags to comments

or omitting them.

162

Table 16. Supported functions in OPCAT TIP translations
Type Function Signature Function Description
none() Always true
templateContains (template t) The current OPL template contains t as its sub-
g element
gﬁ translationContains (path p, file f, tagName tn, | The translation file f at path p contains <tn
Eﬂ attributeName an, attributeValue av) an="av”...>
«E" equals (element e, value v) The value of the sub-element or sub-attribute e
§ of the current OPL template equals to v
Complex condition A combination of several atomic conditions
using and, or, and not connectors
createDirectory (path p) Creates a directory in path p
createFile (path p, file f, translation t) Creates a file named f at path p with the initial
content of t
translate4all (path p, file f, template t) Translates all the sub-elements of type t of the
> current OPL template into file f at location p
g'. replaceContent (path p, file f, tagName tn, Replaces the content of <tn an="av”...> in file f
En attributeName an, attributeValue av, at path p with the content of t
é translation t)
g. insertAtLocation (path p, file f, location 1, Inserts the content of't at the location I in

tagName tn, attributeName an, attributeValue

av, translation t)

respect to <tn an="av”’...> in file f at path p. 1
can be one of BEFORE STARTING TAG,
BEFORE_ENDING TAG,

AFTER _STARTING_TAG,
AFTER_ENDING TAG.

This generic and flexible implementation generator supplies a complete environment for

generating Web application models to various target languages, including HTML, Java, PHP,

and WSDL [98].

163

Appendix A. OPM/Web Concepts and Symbols

Table 17. Entities — Things and States

Entity Type Entity Symbol
Systemic, informatical object]
Environmental, informatical object r—1
Object
Systemic, physical object |:'
Environmental, physical object 1= _'I
Systemic, informatical process O
Environmental, informatical process 'SR
Process
Systemic, physical process ([
Environmental, physical process NS
Regular state (]
Initial state
State
Final state =]
Default state o
Package —

Table 18. Structural Relations, their OPD symbols, and OPL sentences

Structural Relation Name OPD Symbol

OPL Sentence

Aggregation-Participation +

A consists of B.

Exhibition-Characterization

o —fE—

A exhibits B.

e

Generalization-Specialization

Bis an A.

Classification-Instantiation

Bis an instance of A.

A relates to B.

Tagged Structural Link
A and B are equivalent.
XOR relation N E.g., Arelates to either Bor C.
OR relation _ E.g., Arelates to Bor C.

164

Table 19. Procedural Links, their OPD symbols, and OPL sentences
Type Link Name Semantics OPD Symbol OPL Sentence
gj The process requires the
c () entity, but does not ,° .
% S Instrument o P requires A.
2 5 change it during
oQ
execution.
The process consumes B
Consumption) @ P consumes A.
the entity.
-~
=
=
| S - o
= — The process generates AT .
2 2 Result , P yields A.
» 5 (creates) the entity.
5
gQ
The process changes
Effect . a o P affects A.
(affects) the thing.
The process occurs if
. the entity exists (in P occurs if A exists.
nstrument
some state). The process ‘*o P requires A.
requires the entity.
S The process occurs if
c a) the entity exists (in P occurs if A exists.
% = Consumption ™ - .
o some state). The process “——)@
“ g) p P consumes A.
=2 consumes the entity.
The process occurs if .
the thing exists. The ° o P occurs if A exists.
Effect
process changes P affects A.
(affects) the thing.
g . _ E.g., P affects either A
aQ XOR relation N
= or B.
=R
~
e,
2. -
g OR relation _ E.g., P affects A or B.
w

165

Table 20.

Event links, their semantics and symbols

Event Type Semantics OPD Symbol OPL Sentence
Agent The' process 15 trggered by —@ A handles P.
the intelligent object.
O . .
The process is triggered Enter: > A triggers P when it
S Ch when the object enters or Exit: —© , H enters/exists/enters or
tate Change | it the state. The object Both: ++© , +HB exists st.
may be changed. Unspec.: —© —p= | St A triggers P.
The process is triggered If the object has states:
i A triggers P when it
General yvhen the object or process © —P» , N g9
is changed or cause external <3—p changes.
Event
stimuli. The object may be Otherwise:
consumed or changed. A triggers P.
Start: 2> P invokes P1 when it
The process is triggered End. 2> starts/ends/starts or
Invocation when the source process Ze ends.
starts or ends. Both:
Unspec.: < P invokes P1.
| A triggers P when st
. Min: 99 .
The process is triggered lasts less than Time/
Minimal or when the object violates its Max: — more than Time/less
Maximal minimal or maximal time Both: ¥+ than Time or more
State Timeout | constraints for staying at the than Time.
state. Unspec.. —L ;imeout of st A triggers
Min: +11 P1 triggers P when it
Minimal or The process is triggered Max: —H] lasts less than Time/
i i i more than Time/less
Maximal whgn the process violates its Both: | f
Process minimal or maximal than Time or more
Timeout execution time constraints. than Time.
Unspec.. — 1] Timeout of P1 triggers P.
Min: +—11 This link triggers P
’ . when its reaction time
The process is triggered Max: lasts less than Time/
Reaction when the event link violates Both: L] more than Time/less
Timeout its minimal or maximal than Time or more
triggering time constraints. than Time.
This link timeout triggers
Unspec.: —U P 99
XOR relation —— E.g., A triggers either P
or Q when it changes.
OR relation DN E.g., A triggers P or Q
when it changes.
Comments:

1. Unspec. stands for “unspecified”.

2. The OPL sentences in this table are for the event aspect of the link. For each event link, an additional OPL

sentence, which represents its procedural aspect, should be added.

166

Appendix B. The XML Schema of the Object-Process Language (OPL)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="AffectingClause">
<xs:complexType>
<xs:sequence>
<xs:element name="ObjectName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="AffectingSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="AffectingClause" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="AggregatedObject">
<xs:complexType>
<xs:sequence>
<xs:element name="MinimalCardinality" type="xs:integer"/>
<xs:element name="MaximalCardinality" type="xs:integer"/>
<xs:element name="0ObjectName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ChangingClause">
<xs:complexType>
<xs:sequence>
<xs:element name="0ObjectName" type="xs:string"/>
<xs:element name="SourceValueName" type="xs:string"/>
<xs:element name="DestinationValueName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ChangingSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="ChangingClause" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ConditionClause">
<xs:complexType>
<xs:sequence>
<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="ValueName" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ConditionSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="PathName" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="ConditionClause" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ConsumingClause">
<xs:complexType>
<xs:sequence>
<xs:element name="ConsumedObjectName" type="xs:string"/>
<xs:element name="ValueName" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

167

</xs:element>
<xs:element name="ConsumingSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="ConsumingClause" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="DestinationWithCardinality">
<xs:complexType>
<xs:sequence>
<xs:element name="MinimalCardinality" type="xs:integer"/>
<xs:element name="MaximalCardinality" type="xs:integer"/>
<xs:element name="DestinationName" type="xs:string"/>
</xs:sequence>
<xs:attribute name="sourceName" type="xs:string" use="required"/>
<xs:attribute name="relationName" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="EnablingClause">
<xs:complexType>
<xs:sequence>
<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="StateName" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="EnablingSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="EnablingClause" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ExhibitedObject">
<xs:complexType>
<xs:sequence>
<xs:element name="MinimalCardinality" type="xs:integer"/>
<xs:element name="MaximalCardinality" type="xs:integer"/>
<xs:element name="AttributeName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="MaxTimeValue">
<xs:complexType>
<xs:sequence>
<xs:element name="Years" type="xs:integer" minOccurs="0"/>
<xs:element name="Months" type="xs:integer" minOccurs="0"/>
<xs:element name="Weeks" type="xs:integer" minOccurs="0"/>
<xs:element name="Days" type="xs:integer" minOccurs="0"/>
<xs:element name="Hours" type="xs:integer" minOccurs="0"/>
<xs:element name="Minutes" type="xs:integer" minOccurs="0"/>
<xs:element name="Seconds" type="xs:integer" minOccurs="0"/>
<xs:element name="MilliSeconds" type="xs:integer" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="MinTimeValue">
<xs:complexType>
<xs:sequence>
<xs:element name="Years" type="xs:integer" minOccurs="0"/>
<xs:element name="Months" type="xs:integer" minOccurs="0"/>
<xs:element name="Weeks" type="xs:integer" minOccurs="0"/>
<xs:element name="Days" type="xs:integer" minOccurs="0"/>
<xs:element name="Hours" type="xs:integer" minOccurs="0"/>
<xs:element name="Minutes" type="xs:integer" minOccurs="0"/>
<xs:element name="Seconds" type="xs:integer" minOccurs="0"/>
<xs:element name="MilliSeconds" type="xs:integer" minOccurs="0"/>

168

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="0ObjectAggregationParagraph">
<xs:complexType>
<xs:sequence>
<xs:element ref="ObjectAggregationSentence"/>
<xs:element ref="ThingSentenceSet" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="0ObjectAggregationSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="0ObjectName" type="xs:string"/>
<xs:element ref="AggregatedObject" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="0ObjectBiDirectionalRelationSentence">
<xs:complexType>
<xs:sequence>
<xs:element ref="SourceWithCardinality"/>
<xs:element ref="DestinationWithCardinality"/>
<xs:element name="RelationName" type="xs:sting "/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="0bjectEnvironmentalPhysicalSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="environmental" type="xs:Boolean"/>
<xs:element name="physical" type="xs:Boolean"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="0bjectExhibitionParagraph">
<xs:complexType>
<xs:sequence>
<xs:element ref="ObjectExhibitionSentence"/>
<xs:element ref="ThingSentenceSet" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="0ObjectExhibitionSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="0ObjectName" type="xs:string"/>
<xs:element ref="ExhibitedObject" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="Operation" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="0bjectInheritanceSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="InheritanceFatherName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="0ObjectStateParagraph">
<xs:complexType>
<xs:sequence>
<xs:element ref="ObjectStateSentence"/>
<xs:element ref="StateClause" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

169

<xs:element name="0ObjectStateSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="0ObjectName" type="xs:string"/>
<xs:element name="DefaultState" type="xs:string" minOccurs="0"/>
<xs:element name="StateName" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="0bjectUniDirectionalRelationSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ObjectName" type="xs:string"/>
<xs:element name="RelationName" type="xs:string"/>
<xs:element ref="DestinationWithCardinality"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="OPLscript">
<xs:complexType>
<xs:sequence>
<xs:element ref="ThingSentenceSet" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="systemName" type="xs:string" use="required"/>
<xs:attribute name="targetDirectory" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="ProcessAggregationParagraph">
<xs:complexType>
<xs:sequence>
<xs:element ref="ProcessAggregationSentence"/>
<xs:element ref="ThingSentenceSet" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ProcessAggregationSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="AggregatedProcess" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ProcessBiDirectionalRelationSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="DestinationProcessName" type="xs:string"/>
<xs:element name="RelationName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ProcessEnvironmentalPhysicalSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="environmental" type="xs:Boolean"/>
<xs:element name="physical" type="xs:Boolean"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ProcessExhibitionParagraph">
<xs:complexType>
<xs:sequence>
<xs:element ref="ProcessExhibitionSentence"/>
<xs:element ref="ThingSentenceSet" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ProcessExhibitionSentence">

170

<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="OperationName" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="ExhibitedObject" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ProcessInheritanceSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="InheritanceFatherName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ProcessIinZoomingParagraph">
<xs:complexType>
<xs:sequence>
<xs:element ref="ProcessInZoomingSentence"/>
<xs:element ref="ThingSentenceSet" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ProcessInZoomingSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="InZoomedProcessName" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="InZoomedObjectName" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ProcessUniDirectionalRelationSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element name="RelationName" type="xs:string"/>
<xs:element name="DestinationProcessName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ResultingClause">
<xs:complexType>
<xs:sequence>
<xs:element name="ResultantObjectName" type="xs:string"/>
<xs:element name="ValueName" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ResultingSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="ProcessName" type="xs:string"/>
<xs:element ref="ResultingClause" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="SourceWithCardinality">
<xs:complexType>
<xs:sequence>
<xs:element name="MinimalCardinality" type="xs:integer"/>
<xs:element name="MaximalCardinality" type="xs:integer"/>
<xs:element name="SourceName" type="xs:string"/>
</xs:sequence>
<xs:attribute name="destinationName" type="xs:string" use="required"/>
<xs:attribute name="relationName" type="xs:string" use="required"/>
</xs:complexType>

171

</xs:element>
<xs:element name="StateClause">
<xs:complexType>
<xs:sequence>
<xs:element name="StateName" type="xs:string"/>
<xs:element name="Initial" type="xs:Boolean" minOccurs="0"/>
<xs:element name="Final" type="xs:Boolean" minOccurs="0"/>
<xs:element ref="MinTimeValue" minOccurs="0"/>
<xs:element ref="MaxTimeValue" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ThingSentenceSet">
<xs:complexType>
<xs:choice>
<xs:sequence>
<xs:element ref="ObjectEnvironmentalPhysicalSentence" minOccurs="0"/>
<xs:element ref="ObjectInheritanceSentence" minOccurs="0"/>
<xs:element ref="ObjectStateParagraph" minOccurs="0"/>
<xs:element ref="ObjectExhibitionParagraph” minOccurs="0"/>
<xs:element ref="ObjectAggregationParagraph" minOccurs="0"/>
<xs:element ref="ObjectUniDirectionalRelationSentence" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element ref="ObjectBiDirectionalRelationSentence" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:sequence>
<xs:element ref="TypeDeclarationSentence"/>
</xs:sequence>
<xs:sequence>
<xs:element ref="ProcessEnvironmentalPhysicalSentence" minOccurs="0"/>
<xs:element ref="ProcessInheritanceSentence" minOccurs="0"/>
<xs:element ref="ProcessExhibitionParagraph" minOccurs="0"/>
<xs:element ref="ProcessAggregationParagraph" minOccurs="0"/>
<xs:element ref="ProcessUniDirectionalRelationSentence" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element ref="ProcessBiDirectionalRelationSentence" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element ref="ConditionSentence" minOccurs="0"/>
<xs:element ref="EnablingSentence" minOccurs="0"/>
<xs:element ref="AffectingSentence" minOccurs="0"/>
<xs:element ref="ChangingSentence" minOccurs="0"/>
<xs:element ref="ConsumingSentence" minOccurs="0"/>
<xs:element ref="ResultingSentence" minOccurs="0"/>
<xs:element ref="ProcessInZoomingParagraph" minOccurs="0"/>
</xs:sequence>
</xs:choice>
<xs:attribute name="subjectThingName" type="xs:string" use="required"/>
<xs:attribute name="subjectExhibitionFatherName" type="xs:string" use="required"/>
<xs:attribute name="subjectAggregationFatherName" type="xs:string" use="required"/>
<xs:attribute name="systemName" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="TypeDeclarationSentence">
<xs:complexType>
<xs:sequence>
<xs:element name="0ObjectName" tpe ="xs:string"/>
<xs:element name="ObjectType" type="xs:string"/>
<xs:element name="InitialValue" type="xs:string" minOccurs="0"/>
<xs:element name="0ObjectScope" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

172

Appendix C. The OPM/Web vs. Conallen’s UML experiment Forms

The Project Management System — Models and Questions

Figure 76.

@

file for payment system

(from Use Case View)

vie

<<server page>>
Debiting Details

&id : char{10]

&sproductPrice : float

Product

&id : char[10]

& price : float

&;deliveryDate : Date
& description : char{100]

<<internet>>

Client

diagram

<<server page>>
customer customer details
" id : char{10]
&id : char[10] views %name : char{40]
%namfla.. C:a'{;g] &email : char[20]
email : char{20] &;creditNo : char[20]
&creditNo : char{20]
%checkEmail() : Boolean
s %checkCreditNo() : Boolean

n

Project
&code : char{10]
&startDate : Date
& tentativeEndDate : Date
& actualEndDate : Date

views

<<server page>>
Project Update

&status : char
&;projectType : char[10]
&remark : char{50]
&agreedPrice : float

%®calcCompletionPercentage() : float

views
n

Assignment
&id : char{10]

relates to

Figure 77.

& startDate : Date
& description : char[100]

173

&id : char[10]

& orderDate : Date
l%requestedEndDate : Date
&;projectType : char[10]
&remark : char{50]

& maxPrice : float

&stasks : array of Assignment
& products : array of Product

%alidateDates() : Boolean

<<sernver page>>
Project Details

&projectCode : char[10]
& project Status : char
&;startDate : Date
&;actualEndDate : Date
&agreedPrice : float
&stasks : array of
&;products : array of

$\alidateDates() : Boolean
%createProducts()

Conallen’s UML specification of the project management system — Deployment

customer detail screen

(from Use Case View)

—C

project handling screen

(from Use Case View)

orderDate <
requestedEndDate

—0

project details screen

(from Use Case View)

Conallen’s UML specification of the project management system — Class diagram

/ Project Status

jectCreated

Payment Status
. rojectCreated
not paid

FirstDayOfMonth / pay=0.1*agreedPrice

advance
paid

true(caIcCompIetionPercentage()=100) in (completely paid) FirstDayOfMonth / pay=agreedPrice

letel id

Figure 78. Conallen’s UML specification of the project management system — Statechart of

true(calc CompletionPercentage() =50)[not in (not paid)]

50%
completed

e —

project and payment status

A A

payment system employee

O 0O O KO

fie for payment system customer detail screen project handling screen project details screen

[
O O O O

debiting details project update project details

-
O O @

product

Customer project

Figure 79. Conallen’s UML specification of the project management system — Site map

diagram

174

X -O

. I) otail : customer : customer : Project : Project : Assi 1t : Product
: employee :customer detail screen details : proje ¢t handling screen Update

rustomer detailsin’derﬁng

|

Jroject detailsinserting

create()

rest=checkEmail()

res2=checkCreditNo()

[P=—

esl=tue and res2=

[

rue] create()

s0)

[res=true] create() ‘

[*i=1..n] create()

createProducts() T ‘
=1.. t
L ‘ [n] create() ‘ /I-H

product detai

create()
res=validateDate|

f
F\nserting
|

Figure 80. Conallen’s UML specification of the project management system — Sequence

diagram of Project Order Handling

: Emplayee |
s e
m communicate
. Client
Cliant Request
Request
seng
Interface 7
i ¥ Internet ~f Database
o Transferring & Handling
e g
Client ~—
Result Client File For
Result Payment System
Client serer

communicate

Encrypted
Trans¥erring

File For
Payment System

Payment System

Figure 81. OPM/Web specification of the project management system — Top level diagram

175

Customer

/A

A

D : fodes “ID[:* 0]
char
char[10] charl1d]
1D :
char[10] Description :
ame char[100]
charf40] Tentative Start Date :
End Date : date Delivery Date :
date date

il
char[20] Actual Description
ate float
CreditNo : -

char[20] Project Status
Goomt) (coomten | [Fezeed))

: Payment Status

char{50] (= [e] []
Agre?‘d Fl’rice :
oa i :
PR

Figure 82. OPM/Web specification of the project management system — DB unfolded

:Employee :
Client . p—
Request
| Customner Update
Request
é Customer Details Project Details
Insstting Project Ordering iewing
Customer Details :
Customer
Project Order
1 equest
Operation Result
Zé Viewing
- - Interf:
Project Details : ?—Taidﬁﬁe
Project

| | Project View Client
RJequest Result W
5

Project Details :
Project

Figure 83. OPM/Web specification of the project management system — Interface Handling

in-zoomed

176

Client
Request
AN
I]

Customer Updats Project Crder
Request equest

I

Project View
equest

@

¢

Project View
andling

Client
Result
=
Customer Update Project Details
Status Page Page

roject

Payment Status

not advance SmpTetely
I O W I i

Figure 84. OPM/Web specification of the project management system — Database Handling

in-zoomed

Project Order
Bguest

Request Essence

a4 add aad
project assignment product
7 s T

Project Details
Page

Project Assignment Product
Adding Adding Adding
Project Order
Customer andling
Project Product
ol
/A Assignment

m
Payment Status
Project Status

) (o) ([Em)

Figure 85. OPM/Web specification of the project management system — Project Order

Handling in-zoomed

177

Answer all the following questions about the project management system model.

1.

2.

What are the classes which form the application's database?
Does the structure of the system support the following query: "who is the customer that

ordered a specific product?" Explain.

. What is the trigger of project order handling? From which diagram did you conclude it?

. Is it possible that only the advance (10%) of a project of which 50% had been completed

was paid? Explain.

. What database classes are affected by project order handling? How? (i.e., are they created,

destroyed, or changed?)

. What is the navigation order in the application? How did you conclude it?
. What is the internal architecture (nodes and links) of the system?

. What are the system activities from the moment the employee connects to the site and till

he/she gets the project details? From which diagrams did you conclude it?

. Add to the model a possibility to view a report of all the projects which 50% of their

assignments were completed, but the projects have not supplied yet. The report will be

viewed as a result of a manager request after he/she inserts a date range for the report.

Figure 86. Questions related to the project management system

178

The Book Ordering System — Models and Questions

<<encrypted>>

<<internet>>

publisher
system

)

customer details screen

(from Use Case View)

-O

book choosing screen

(from Use Case View)

Figure 87. Conallen’s UML specification of the book ordering system — Deployment diagram
<<server page>>
customer customer updating
— &id : char{10]
&id : char[10] views & name : char[40]
Roname : char[40] &email : char[20]
&semail : char{20] & assword : char{10]
&password : char[10] P :
$checkEmail()
file from publisher system ®checkPassword()
(from Use Case View)
<<sener page>> <<sener page>>
book inventory updating cart book choosing
&ISBN : char[10] &;code : char[10] & userld : char{10]
&title : char{50] B startTime : Time views &;password : Date
&;publishYear : int &totalPrice : float &3ISBN : char{10]
&price : float &status : {active, close} &;cartCode : char{10]
& quantity : int
& AuthorFirstName : char{10] %alidatelnputs()
& AuthorLastName : char{30] cart line
uantity : int
%updateBook() &a y
/
updates dates iews
n n n
author book <<server page>>
&firstName : char[10] arote &ISBN : char[10] book searching

& lastName : char[30] &title : char[50]
n &spublishYear : int
&price : float

& quantityinStock : int

views

=]

% getDetails() : char[40]

&;criterion : {title, publish, author}
&ssearchString : char [50]
&searchResult : array of book

$getDetails() : char{100]

$\alidatesearchString()

Figure 88.

179

O

book searching screen

(from Use Case View)

Conallen’s UML specification of the book ordering system — Class diagram

CartCreated

BookAdded(Quantity) / SetQuantityInStock(Quantity)
Active

CartClosed|Price=Sum(BookPrice*Quantity)

Figure 89. Conallen’s UML specification of the book ordering system — Statechart of cart

status

A A

user publisher system

O O HO

customer details screen book choosmg screen book searching screen file from publisher system

|
O O

customer updating book choosmg book searchlng book inventory updating
customer book author

Figure 90. Conallen’s UML specification of the book ordering system — Site map diagram

180

;); }—Q : customer . customer . book : book : author

updating |: book searching | searching

. _user

_: customer details screen

inserting

L: ustomer details

create ‘

res1 -checkEmJ'

es 2= checkPastord

res1=true and res2=true] create()

search a book

[*i=1..n] getDetalls

L create()

res3=validatesechhString()
res3=true] [*i=1..n] getDetails() ‘

Figure 91. Conallen’s UML specification of the book ordering system — Sequence diagram of

book searching

m communicate:

Client
Request

Interface
Handling

7 Database

Encrypted
Handling

Transferring

L ™
Client
Result Client
Result

Client

Figure 92. OPM/Web specification of the book ordering system — Top level diagram

181

DB

] m I m] m] m
e
Customer : Cart Book = r— Author
1 n e 10 m
A . m| Cart Line
0. a6 A_ B First Name:
char[10] Z‘é char{10] char[1 0]
Sta?irgéme : Title : Last Name :
Name : : 1 chars0] charf30]
Quantity
char{40] — intoger
TOtEfl\loquce ' Publish Year :
] | integer
Emalil :
charf20] St e
activa close float
—
et Quantity In
L1 Stock:
integer

Figure 93. OPM/Web specification of the book ordering system — DB unfolded

Client - -
Request

[Customer Details
Update Request

é Customer Details Book Book
Inserting Choosing Searching
Customer Details :
Customer

Book Choosing
= Request

Operation Result
é Viewing
A

Book Details : || Cart Datails Interface
Book Cart Handlin

Book Searching 3
i Client
4 Result Y4
==

/N Criterion

Search String :
char[50]

Figure 94. OPM/Web specification of the book ordering system — Interface Handling in-

zoomed

182

Client
Request

I]
Book Searching ‘ l File Fram

I
“ Customer Details

Update Request

/_ Database
Handling

Book Searching
Handling
e

Book Choosing

Request Request Publisher System

Book Inventory
3 Handling

Client
Result

=k
\ Y |

Customer Update Cart Details Search Book
Status Page Page Result Page

- m
Cart g:;a'ls : Book Details :
Book

OPM/Web specification of the book ordering system — Database Handling in-

Book Choosing

Customer Details
Handling

Update Handling

Figure 95.
zoomed
Request
Request Essence
() (&= (=)
i Y
Cart
Closing
h
Grock."
integer
Quantity :
integer Status
active ﬁ-clo;e
Total Price :
oat
Figure 96. OPM/Web specification of the book ordering system — Book Choosing Handling

in-zoomed

183

Answer all the following questions about the book ordering system model.

1.

2.

Which types of pages can the user view? What is the information presented at each page?
Does the structure of the system support the following query: “who are the customers that

ordered a specific book?”” Explain.

. What is the trigger of customer details update handling? From which diagram did you

conclude it?

. What are the inputs and outputs of book searching? What are the database classes used in

this process?

. What database classes are affected by customer details update handling? How? (i.e., are

they created, destroyed, or changed?)

. What is the navigation order in the application? How did you conclude it?
. What is the internal architecture (nodes and links) of the system?

. What are the states of cart from the moment it is created till it is closed? What are the

activities in each state and how does the system transform between the states? From which

diagrams did you conclude it?

. Add to the model a possibility to print a report of all the active carts. The report will be

automatically printed at the beginning of each week.

Figure 97. Questions related to the book ordering system

184

Appendix D. Definitions of Link Essence, Affiliation, and Scope

There are three rules in OPM for determining the essence, affiliation, and scope values of a

link. The first rule, the Link Essence rule shown in Figure 98, states that a physical Link

connects two physical Elements. The second rule, the Link Affiliation rule specified by the

OPM model in Figure 99, states that an environmental Link connects two environmental

Elements. The third and last rule, the Link Scope rule depicted in Figure 100, requires that

the Scope value of a Link is the widest of the Scope values of the two connected Elements,

where public, protected, and private, are the widest, intermediate and most narrow Scope

values, respectively.

Element

Physical
Element
Essence %

Physical
[Link

Source
End

Destination
End

Element exhibits Essence.
Essence can be informatical, which is
the default, or physical.
Physical Element is an Element, the Essence of
which is physical.
Link exhibits Essence.
Essence can be informatical, which is
the default, or physical.
Physical Link is a Link, the Essence of which is
physical.
Physical Link exhibits
Destination End.
Source End is
Element.
Destination End is linked to Physical
Element.

Source End and

linked to Physical

Figure 98. An OPM specification of the Link Essence rule

Environmental
Link

Destination
End

Element exhibits Affiliation.
Affiliation can be systemic, which is the
default, or environmental.
Environmental Element is an Element, the
Affiliation of which is environmental.
Link exhibits Affiliation.
Affiliation can be systemic, which is the
default, or environmental.
Environmental Link is a Link, the Affiliation of
which is environmental.
Environmental Link exhibits Source End and
Destination End.

Source End is linked to
Environmental Element.
Destination End is linked to

Environmental Element.

Figure 99.

An OPM specification of the Link Affiliation rule

185

& linked to A

Source
Element

Destination
lemen

I

“f Link Scope y—
gA, Declaring

Scope NV
privats protsctad punlicH

Source Element is an Element.
Source Element exhibits Scope.
Scope can be public by default, protected, or private.
Destination Element is an Element.
Destination Element exhibits Scope.
Scope can be public by default, protected, or private.
Link exhibits Source End, Destination End, and Scope, as well as Link Scope Declaring.
Source End is linked to Source Element.
Destination End is linked to Destination Element.
Scope can be public by default, protected, or private.
Following path a, Link Scope Declaring occurs if Scope of Source Element is private and
Scope of Destination Element is private.
Following path a, Link Scope Declaring yields private Scope of Link.
Following path b, Link Scope Declaring occurs if Scope of Source Element is private and
Scope of Destination Element is protected.
Following path b, Link Scope Declaring yields protected Scope of Link.
Following path ¢, Link Scope Declaring occurs if Scope of Source Element is private and
Scope of Destination Element is public.
Following path ¢, Link Scope Declaring yields public Scope of Link.
Following path d, Link Scope Declaring occurs if Scope of Source Element is protected
and Scope of Destination Element is private.
Following path d, Link Scope Declaring yields protected Scope of Link.
Following path e, Link Scope Declaring occurs if Scope of Source Element is protected
and Scope of Destination Element is protected.
Following path e, Link Scope Declaring yields protected Scope of Link.
Following path f, Link Scope Declaring occurs if Scope of Source Element is protected
and Scope of Destination Element is public.
Following path f, Link Scope Declaring yields public Scope of Link.
Following path g, Link Scope Declaring occurs if Scope of Source Element is public and
Scope of Destination Element is private.
Following path g, Link Scope Declaring yields public Scope of Link.
Following path h, Link Scope Declaring occurs if Scope of Source Element is public and
Scope of Destination Element is protected.
Following path h, Link Scope Declaring yields public Scope of Link.
Following path i, Link Scope Declaring occurs if Scope of Source Element is public and
Scope of Destination Element is public.
Following path i, Link Scope Declaring yields public Scope of Link.

Figure 100. An OPM specification of the Link Scope

186

OCL Alternative Rule Formulation

OCL can be used as an alternative to OPM for defining the static invariants expressed
before. These constraints demonstrate the declarative nature of OCL vs. the procedural nature
of OPM. While OCL defines invariants which should be preserved in the model in any point
of time, OPM defines a lower level processes which check the consistency rule and update

the models accordingly.

a. A physical link connects two physical elements.
Li nk
(sel f.essence = #physical)
inmplies (self.source_End. essence = #physical and
sel f. destinati on_End. essence = #physical)

b. An environmental link connects two environmental elements.

Link

(self.affiliation = #environmental)

implies (self.source End.affiliation = #environmental and
self.destination End.affiliation = #environmental)

c. The scope value of a link is the widest of the scope values of the two
connected elements.
Li nk
if (self.source_End. scope = #public or
sel f. destinati on_End. scope = #public) then
sel f.scope = #public
else if (self.source_End.scope = #private and
sel f. destinati on_End. scope = #private) then
sel f.scope = #private
el se
sel f. scope = #protected
endi f
endi f

if (self.scope = #public) then
(sel f.source_End. scope = #public or
sel f. destinati on_End. scope = #public)
else if (self.scope = #protected) then
(sel f.source_End. scope <> #public and
sel f. destinati on_End. scope <> #public and
(sel f.source_End. scope = #protected or
sel f. destinati on_End. scope =

#prot ected))
el se
(sel f.source_End. scope = #private and
sel f. destinati on_End. scope = #private)
endi f

endi f

187

Appendix E. OPM Metamodel Constraints in OCL

(1) A result link cannot represent a condition that enables a process execution.

Procedural Link

self.type = #resulting inplies self.condition = #no
(2) An event link cannot be a result link neither represent a condition.

Event Link
sel f.type <> #resulting

sel f.condition = #no
(3) In-Zooming of an entity instance makes its in-zoomed element instances visible, while out-
zooming makes them un-visible.

Entity Instance

(sel f.ocllsTypeO (state_Instance)) inplies

sel f.zooms_into -> forAll (ei | ei.ocllsTypeO(state_Instance)
Entity Instance :: |In-Zooning()

post: result = self.zoonms_into -> forAll (ei | ei = #visible)
Entity Instance :: Qut-Zooning()

post: result = self.zoons_into -> forAll (ei | ei = #invisible)

(4) Unfolding of a thing instance makes its unfolded element instances visible, while folding makes

them un-visible.

Thing I nstance :: Unfolding()

post: result = self.unfolds_into -> forAll (ei | ei = #visible)
Thi ng_I nstance :: Fol di ng()
post: result = self.unfolds_into -> forAll (ei | ei = #invisible)

(5) State expressing of an object instance makes its state instances visible, while state suppressing
makes them un-visible.

Object Instance :: State Expressing()

#vi si bl e)

post: result = self.owns -> forAll (s | s

Cbject :: State Suppressing()

post: result = self.owns -> forAll (s | s = #invisible)

(6) Two entities can be connected via a single type of procedural link within an OPM view.
Vi ew
/1 Defining useful functions

Entityl nstanceSet|InCurrentViewe)=

188

self.entity_Instance->sel ect (i s_an_appear ance_of _an=e)

Connect i ngProcedur al Li nkl nst ances(ei 1, ei2)=

sel f.procedural _Link_I nstance-> sel ect ((source_End=ei 1 A

desti nati on_End=ei 2) v(source_End=ei 2 A destination_End= eil))

/1 The constraint

self.entity_lnstance.is_an_appearance_of _an -> forAll (el, e2|

Connect i ngProcedur al Li nkl nst ances(Entityl nstanceSet | nCurrent Vi ew(el),
Entityl nstanceSetInCurrentViewe2)) -> forAll (plil, pli2 | plil.

i s_an_appearance_of _a.type = pli2. is_an_appearance_of a.type))

(7) The direct link between two entities is the most abstract link between their refineables. If this link
cannot connect the relevant entities according to the metamodel constraints, no link will be shown

in the more abstract level.

OPM Conponent : : Consi st ency Checki ng(): Bool ean

/1 Defining a useful function

Si ngl eConsi st encyChecking(eil, ei2, pli)= ((pli.source_End=eil A
pli.destination_End=ei2) inplies

(sel f.Procedural _Link_Instance-> select(source_End € eil.zoons_into v
eil.unfolds_into U eil.ows A

destination_End e ei 2. zoons_i ntouwei 2. unfol ds_i ntouei 2. owns) ->forAll (pli2 |

pli.isMreAbstract Then*(pli2))))
/1 The constraint
self.OPM View -> forAll (eil, ei2: entity_lInstance, pli: Procedural _|nstance |

Si ngl eConsi st encyChecki ng(ei 1, ei2, pli))

12 sMor eAbst r act Then is a function derived from Table 14.

189

Appendix F. OPCAT - Object-Process CASE Tool"

OPCAT (Object-Process CASE Tool) is an integrated system development software
environment that supports system development using OPM. Being an OPM-based CASE
tool, OPCAT enjoys the advantages of supporting most of the system development lifecycle
tasks, starting from requirement analysis, through system design and implementation, to
system testing, simulation, and validation. Since OPM enables modeling system dynamics
and control structures, such as events, conditions, branching, and loops, the generated
implementation can definitely be more advanced than a mere standard skeleton code.
Moreover, OPM's ability to capture the system's structure and behavior in a single view also
enhances OPCAT simulation capabilities and makes it most suitable for interactive testing
and validation.

Case Tool Utilization

CASE tools have been developed with the objective of assisting developers in producing high
quality software systems and products. To this end, CASE tools are designed to relieve the
system architects and developers from mundane software engineering activities, leaving them
more time to focus on the non-trivial, insight- and creativity-demanding tasks. Over the years,
several studies have surveyed the way organizations use CASE tools. Lending and Chervany
[55] found out that “it was difficult to find companies using CASE tools.” Even in the
companies that did use CASE tools, the extent of their deployment was very small. The
CASE tool features that these companies employed were divided into two groups: analysis

functionality (e.g., testing for consistency between a process model and a data model), and

" A version of this appendix was published in the International Conference of Enterprise Information Systems

(ICEIS’2003) [25].

190

transformation functionality (e.g., generating executable code in several languages). The
overall result for using features from both functionalities was low.

McMurtrey et. al. [61] surveyed the use of CASE technology inquiring professionals from
different company types (insurance, manufacturing, consulting firms, etc.). They focused on
the most popular features that CASE tools possessed and the gap between them and the
developer needs. The features most often cited as being needed and used were the ability to
represent a design in terms of data models and process or flow models. This reflects the fact
that representing the model's structure and behavior aspects is the most useful aspect of
current CASE tools.

In order to overcome some of the CASE tools flexibility drawbacks, a new type of CASE
tools, called meta-CASE tools, or Computer Aided Method Engineering (CAME) tools, was
introduced. These tools feature flexible metamodeling facilities that users can reconfigure to
support whatever metamodel they wish to deploy. Examples of such tools are MetaEdit+ [94]
and AToM® [54]. However, these tools are not widely used, since employing them is not a
trivial task.

Method engineering and CASE tool designers have paid little, if any, attention to the
human cognition theory. For example, the cognitive theory has shown that the human
information processing system involves separate channels for processing visual and verbal
material, and that the processing capability of each channel is quite limited [60]. The existing
CASE tools address only the visual channel, neglecting the verbal one.

OPCAT Overview
OPCAT' has been developed as an academic project. It is designed to support the entire

system development lifecycle through OPM. The two main benefits of OPCAT over existing

4 OPCAT can be download for free from http://www.objectprocess.org/

191

object-oriented CASE tools are its bimodal graphic-textual single view representation and its
simulation capability. The bimodal representation of OPCAT increases OPM accessibility to
heterogeneously skilled users engaged in the system development process. The intuitive,
bimodal model representation enables development teams consisting of system architects and
domain experts to jointly engage in the development process on an ongoing basis. Such
collaboration, which is not feasible with other CASE tools, is highly desirable, because it
enables requirements to be put to test while modeling. Improving the system documentation
quality is yet another benefit of OPCAT's bimodal representation, since the textual
representation provides the system documentation.

OPCAT's simulation capability enables “running” a system model, testing its functionality
against the requirement specifications, and debugging them at the model level, prior to the
beginning of the implementation phase. OPCAT capabilities are demonstrated through a case
study of a travel management system. The system manages company employee professional
travels, including travel request, approval, finance and expense reporting.

The Bimodal Graphic-Text Representation

Catering to the modality principle of cognitive theory, OPCAT enables modeling systems
graphically via an OPD-set and textually using OPL, a subset of English. OPCAT
automatically translates an OPD-set into its equivalent OPL paragraph and vice versa. This
way, users who are not familiar with the graphic notation of OPM can validate their
specifications by inspecting the OPL sentences, which are automatically generated on the fly
in response to the user's graphic input. Another cognitive principle — the limited channel
capacity — is addressed in OPM through the abstraction/refinement mechanisms. These
provide for creating diagrams and corresponding OPL paragraphs that are limited in size,
thereby avoiding information overload and enabling comfortable human processing. The

relatively small set of OPD symbols and corresponding OPL sentence types increases the

192

accessibility of OPM to both system architects and domain experts. The automatic translation
into an OPL script also improves the documentation quality of the developed system. The
automatic implementation generation, currently under development, will ensure that the
specification designed by the system architects and endorsed by the domain experts is indeed
reflected without any translational gap in the actual system.

¥ Opcat II - Travel Management i ;Iglﬁl

Systern Edit View OPM Notation Scaling Comment Generation Format Extension Tools Window Help

O =wa) & {8 8o~ % FHaalkl
: ESD B o i

DE

Travel Managing,
=

Travel Document .
Employee, which is environmental and physical, handles Travel
Managing.

Clock, which is environmental and physical, triggers Travel
Managing.

Travel Managing yields Report and Travel Document Set.

QPL Generatar
Dol AlAlAA-<= 2P LPEPXY

Figure 101. The OPCAT GUI showing the top-level specification of the travel

management system

Figure 101, which is a snapshot of an OPCAT 2 screen, shows the bimodal OPD-OPL
representation for the travel management system. The graphic window in the upper part of
the screen shows the top-level OPD, while the lower part of the screen is the text window,
which contains the equivalent OPL paragraph. Interpreting the OPD or the OPL paragraph,
the model specifies that the Travel Managing process is handled by the Employee, which is an
environmental (dashed) and physical (shadowed) object, linked to Travel Managing via an
agent link. The corresponding OPL sentence that expresses this is: "Employee, which is
environmental and physical, handles Travel Managing." Travel Managing is also triggered by the

physical and environmental Clock, which generates external timing events. Report and Travel

193

Document Set (which, as the shadow denotes, is physical) are the artifacts resulting as objects
from the execution of Travel Managing.

OPCAT 2 performs extensive syntax checking, starting from the validation of simple
constraints, such as checking that two objects are not linked via a procedural link, continuing
with complex constrains, such as disallowing a loop within a generalization-specialization

hierarchy in an OPD, and ending with inter-OPD consistency checking operations.

@ Opcat 11 - Travel Management B [=1)E |
Systern Edit View OPM Notation Scaling Comment Generation Format Extension Tools Window Help

Ele=ln] @ GE g - %

4
il] 501 - Travel Managing inzoomed 7275

System EditVie: n Scaling Comment Generation Format Window Help

EEEE

Dol AlAAAe AAAMARS AN

Figure 102. (a) The new OPD, created in response to the user's in-zooming operation on the
Travel Managing process. (b) The OPD after the user has filled in details within the in-

zoomed Travel Managing process.
To specify the details of the behavior of Travel Managing, the developer can use the in-
zooming refinement mechanism. Applying this refinement on Travel Managing in Figure 101
yields a new OPD shown in Figure 102(a), titled "Travel Managing in-zoomed." The in-

zoomed Travel Managing process appears enlarged in the center of the newly generated

194

diagram. All the entities connected to Travel Managing in the top level specification are also
connected to it in the new OPD with the same link types.

The developer can now specify the sub-processes of Travel Managing and any pertinent
interim objects within its elliptical frame, as shown in Figure 102(b). This refinement
specifies that through the Option Determining sub-process, the Employee first chooses between
the Option states: travel, department, passenger, and exit. This selection is a condition to the
occurrence of the appropriate process, which can be one of Travel Requesting, Department
Handling, Passenger Handling, or nothing.

Simulation and Dynamic System Testing

Being. both object- and process-oriented, OPM enables designing the structural and
behavioral aspects of a system in the same model. The fact that these two central system
aspects are represented in the same diagram type, OPD, which is the only OPM graphic view,
enables OPCAT to visually simulate the behavior of the system being developed. This is an
important capability, as it enables system architects to dynamically examine the system at any
stage of its development and verify with the domain experts that it addresses the client
requirements and expectations. Presenting live animated demonstrations of system behavior,
instead of static, printed models, enhances the communication between system architects and
clients. This dynamic testing capability enhances the static testing option through examining
the OPD set and comparing it to the corresponding OPL script.

Both static and dynamic testing can be carried out on an ongoing basis at any point in time
along the system analysis and design processes to detect discrepancies, inconsistencies, and
deviations from the intended goal of the system. As part of the dynamic testing, the
simulation enables designers to track each of the system scenarios (also known in UML
terminology as use cases) before writing a single line of code that implements the modeled

behavior. Any detected mistakes or omissions are corrected or added at the model level,

195

saving costly time and efforts that would be needed to do so at the implementation level.
Avoiding and eliminating design errors as early as possible in the system development
process and keeping the documentation up-to-date contribute to shortening the system's
delivery time ("time-to-market").

Although some UML supporting CASE tools provide simulation tools, the lack of a single
clean formalism for expressing processes in UML and the fact that the dynamic views are
separate from the static ones, makes such simulations much less comprehensible, as they can
only run on a subset of the nine UML diagram types (sequence diagrams, state machines, or
collaboration diagrams), overwhelming the limited human cognitive channels and making it
extremely difficult to grasp the behavior of the system in its entirety.

OPCAT simulation is performed graphically on the model itself. It is affected by following
parameters: process duration, step duration, and reaction time, where each of them can be
specified as a fixed number of time units or as some probability distribution function with the
pertinent parameters. Such non-deterministic duration definitions enable the simulation of
real-life situations as in discrete event simulation systems.

After determining these parameters, the designer may manually activate entities, in
particular enabling objects (agents and/or instruments) that are connected to system processes
via external event links. By default, all the objects that are not created by processes in the
model are defined as active, but the user can override this default. For example, simulating
the travel management system behavior, in the initial situation only Employee and Clock are
active (grayed). These objects existed before the Travel Managing process started. Travel
Managing itself is not active, because no (internal or external) event has triggered it yet. The
user can then start, stop, pause, and continue the simulation. The user can also set up
breakpoints within the system model, run the simulation forward or backward any specified

number of steps, or track it step by step. At each point in time during the simulation, all the

196

active OPDs, i.e., all the diagrams that contain active processes, are tiled and shown
simultaneously to the user on the same screen.

The simulation algorithm determines the next step according to process activation rules
derived from the OPM semantics. The guidelines of these rules are as follows. A process
becomes active when its containing process is active and its turn activation time is due
according to the time progression along the vertical time axis in the OPD (from top to
bottom). A process becomes active when an event link connected to it is active. A process is
executed if its pre-condition set holds. After executing a process, its post-condition set holds.

Continuing with the simulation of the travel management system, in order to invoke the
Travel Managing process, the user has to activate the agent link from Employee to Travel
Managing, simulating the employee action in the real system. As a result of this activation,
Travel Managing and two of its internal objects, Department and Passenger, which already exist
and are not generated by the system, become active. Note that Option does not become active
yet, since it is created by the system in this scenario. When the in-zoomed Travel Managing
process becomes active, it makes its first sub-process, Option Determining, active too for an
interval of time determined by the process duration parameter. When Option Determining
terminates, Option becomes active and Option Determining reverts to be non-active, as shown in
Figure 103. Since Option has no initial or default states, the simulation must wait for the user
to determine (select) the state of Option. The user simulates the Employee choice in the real
system by manually activating one of Option states. This way, designers can selectively
simulate use cases within the modeled system. Assuming that the designer activated travel, the
simulation can continue to the next step, which is to activate the Travel Requesting process.
The simulation algorithm now examines the pre-conditions of this process: Option needs to be

in its travel state. Since this pre-condition set holds, Travel Requesting executes, creating Travel

197

Request, Travel Document Set, and Report. Since this is the last sub-process of the Travel Managing

super-process, Travel Managing terminates, ending the simulation as depicted in Figure 104.

% Opcat 11 - Travel ment - (ol x|
System Edit Vie otation Scaling Comment t Generation Format Extension Tools Window Help

EIEEENENEEEISI Bk

1 59 501 - Trave Managing inzoomea

Y
v
Travel Request

<

Do AbALSR AL AAANN
Figure 103. The situation of the travel management system after the Option Determining Sub-

process of Travel Managing has terminated and option was generated

Generation Format Extension Tools Window Help

el o

Travel Managing

Y
Travel Request

Oo Aanab-
Figure 104. The final situation of the travel management system after running the simulation

If Travel Managing is triggered again, the number (multiplicity) of Travel Document Set and
Report would increase, denoting that the same class has several instances created during
consecutive executions of Travel Managing.

Summary and Work in progress

OPCAT, an OPM-supporting CASE tool, is an integrated software and system development
environment that exhibits a number of unique features. OPCAT implements two important
cognitive theory principles, the modality principle and the limited channel capacity principle.

To implement the modal principle, OPCAT provides a dual, graphic and textual model

198

representation. The human limited channel capacity is addressed by implementing the various

abstraction/refinement mechanisms OPM offers.

Designed to support OPM, OPCAT uses the universal OPM ontology, specified in Part 4,
to provide the basic elements — objects, processes, states, and structural and procedural links
— required to model a wide range of system types, including structure-oriented, process-
oriented, and reactive systems. These elements are the building block required to provide the
enhanced expressiveness developers seek. Hence, OPCAT addresses the expressiveness
needs that cause the arising of the meta-CASE tools.

Another major benefit of OPCAT, which is made possible due to OPM's coherent single
model representation, is its advanced simulation capabilities. Simulation helps visualize the
operation of the system at any level of detail, providing an additional tool for early error
detection and correction.

OPCAT has been studied and used in an undergraduate system analysis course for the past
two years. Students' responses to OPCAT are enthusiastic. They indicate its reliability, user
friendliness, ease of use, accessibility to untrained users, and inspiring simulation
capabilities.

OPCAT is currently undergoing major expansion. The following work in progress is
underway.

e Analysis and design document generation: OPCAT document generator facilitates selective
generation of general information, OPDs, OPL paragraphs, and element dictionary. The
documents are produced in an HTML format according to user-defined templates that
provide flexibility of the resulting artifacts.

e Implementation generation: The implementation generator is designed to support
conversion rules to various target programming languages and databases. Using OPL

grammar, system developers will have to define once the translation rules from each OPL

199

template to a specific language, and the implementation generator will automatically
generate the system from its OPL script. Since OPM describes also the behavioral aspects
of systems, the generated implementation will not be just a skeleton code.

¢ OPM-to-UML conversion: Since UML is the standard modeling method within the
software engineering community, a conversion utility from OPM to UML is being
developed. OPCAT generates uses case, class, sequence, Statecharts, activity, and
deployment diagrams from the single OPM model using XML Metadata Interchange (XMI)
[73] standard. The inverse UML-to-OPM translation direction is also planned to be
incorporated as part of OPCAT. This bi-directional conversion is an important utility, as it
enables system developers to enjoy the integrity and user friendliness of OPM and OPCAT
while not having to worry about not sticking with the industry standard; transformation to
(and soon also from) UML is always available.

e Future features, aimed at further enhancing the usability of OPCAT, include support of
automatic layout, a requirement management module, automatic test case generation,
configuration management, intelligent knowledge base querying, weaving and merging
mechanisms for integrating several OPM models to a single system, and a multi-user

version, which enables collaboration of project teams.

200

References

1

10

11

12

Allen, R., R. Douence and D. Garlan, Specifying and Analyzing Dynamic Software
Architectures, In Fundamental Approaches to Software Engineering, volume 1382 of
Lecture Notes in Computer Science, E. Astesiano, Ed., Springer-Verlag, Lisbon,
Portugal, 1998, pp. 21-37.

AOSD, The Aspect-Oriented Software Development site, http://aosd.net/

Aspect] Web Site. http://www.eclipse.org/aspectj/

Back, R.J.R. and Kurki-Suonio, R. Decentralization of Process Nets with Centralized
Control. Distributed Computers, 3, 1989, pp. 73-87.

Barber, K.S., Graser, T.J. and Jernigan, S. R. Increasing Opportunities for Reuse
through Tool and Methodology Support for Enterprise-wide Requirements Reuse and
Evolution. Proc. of the 1* International Conference on Enterprise Information Systems,
1999, pp. 383-390.

Baumeister, H., N. Koch and L. Mandel, Towards a UML Extension for Hypermedia
Design, In Proceedings of the 2" International Conference on the Unified Modeling
Language- Beyond the Standard (UML’99), volume 1723 of Lecture Notes in
Computer Science, R. France and B. Rumpe, Eds., Springer-Verlag, Fort Collins, CO,
1999, pp. 614-629.

Becker, U. D’AL — A design-based aspect language for distribution control. Proc. of the
European Conference on Object-Oriented Programming (ECOOP), 1998.

http://trese.cs.utwente.nl/aop-ecoop98/papers/Becker.pdf

Bloomer, J. Power Programming with RPC. O’Reilly and Associates, 1992.

Booch, G. Object-Oriented Analysis and Design with Application.
Benjamin/Cummings Publishing Company, Inc., 1994.

Bosch, J. Superimposition: A Component Adaptation Technique. Information and
Software Technology, 41 (5), 1999, pp. 257-273.

Bouge, L. and Francez, N. A Compositional Approach to Superimposition. Proc. of
ACM POPLS88 Symposium, 1998, pp. 240-249.

Carzaniga, A., G.P. Picco, and G. Vigna. Designing Distributed Applications with
Mobile Code Paradigms. Proceedings of the 1997 International Conference on Software

Engineering, pp. 22-32, 1997.

201

13

14

15

16

17

18

19

20

21

22

23

24

Ceri, S., P. Fraternali and A. Bongio, Web Modeling Language (WebML): a modeling
language for designing Web sites, In Proceedings of the 9" World Wide Web
Conference (WWW9), Computer Networks, Amsterdam, the Netherlands, 2000, pp.
137-157.

Chakravarthy, S. and D. Mishra, SNOOP: An expressive Event Specification Language
for Active Databases, Data and Knowledge Engineering journal 14, 1, 1994, 1-26.
Clarke, S. Extending standard UML with model composition semantics. Science of
Computer Programming, Elsevier Science, 44 (1), 2002, pp. 71-100.
http://www.cs.tcd.ie/people/Siobhan.Clarke/papers/SoCP2001.pdf

Clarke, S. and Walker, R.J. Composition Patterns: An Approach to Designing Reusable
Aspects. Proceedings of the International Conference on Software Engineering, 2001,
pp. 5-14.

Clark, T., Evans, A., and Kent, S. Engineering Modeling Languages: a Precise Meta-
Modeling Approach. http://www.cs.york.ac.uk/puml/mmf/langeng.ps

Conallen, J., Building Web Applications with UML, First Edition, Addison-Wesley,
Reading, MA, 1999.

Constantinides, C. A., Bader, A., and Elrad, T. An Aspect-Oriented Design Framework
for Concurrent Systems. Proc. of the European Conference on Object-Oriented
Programming (ECOOP), 1999, pp. 340-352.

Czarnecki, K., Eisenecker, U. W. and Steyaert, P. Beyond Object: Generative
Programming. Proc. of the Aspect-Oriented Programming Workshop at ECOOP’97,
1997, pp. 1-8.

Dale, J. and D. DeRoure. A Mobile Agent Architecture to Support Distributed
Resource Information Management. Proceedings of the International Workshop on the
Virtual Multicomputer, 1997.

http://www.mmrg.ecs.soton.ac.uk/publications/archive/dale1997b/vim97.pdf

Dominguez, E., Rubio, A.L., Zapata, M.A. Meta-modelling of Dynamic Aspects: The
Noesis Approach. International Workshop on Model Engineering, ECOOP’2000, pp.
28-35, 2000.

Dori, D., Object-Process Methodology - A Holistic Systems Paradigm, Springer
Verlag, Heidelberg, NY, 2002.

Dori, D. Why Significant UML Change Is Unlikely. Communications of the ACM, 45
(11), 2002, pp. 82-85.

202

25

26

27

28

29

30

31

32

33

34

35

36

37

D. Dori, I. Reinhartz-Berger, A. Sturm, OPCAT - A Bimodal CASE Tool for Object-
Process Based System Development. Proceedings of IEEE/ACM 5" International
Conference on Enterprise Information Systems (ICEIS 2003), pp. 286-291, 2003.

D. Dori, 1. Reinhartz-Berger, An OPM-Based Metamodel of System Development
Process, accepted to the International Conference on Conceptual Modeling ER’2003.
D’Souza, D. and Wills, A.C. Objects, Frameworks and Components with UML — The
Catalysis Approach. Addison-Wesley, 1998.

Eckstein, S., Ahlbrecht, P. and Neumann, K. Increasing Reusability in Information
Systems Development by Applying Generic Methods. Proc. of the 13™ International
Conference CAISE’01, LNCS 2068, 2001, pp. 251-266.

Firstenberg, Y., Katz, S. and Shmueli O. An Object-Oriented Program Accelerator
Using Impersonation, Technion Computer Science Department Technical Report, CS-
2002-06, 2002.

Flatt, M., S. Krishnamurthi, and M. Felleisen. Classes and Mixins. Proceedings of
ACM Symposium on Principles of Programming Languages, 1998, pp. 171-184

Foo, S., P. C. Leong, S. C. Hul, and S. Liu, Security Considerations in the Delivery of
Web-Based Applications: a case study, Information Management and Computer
Security 7, 1, 1999, 40-49.

Frakes, W. and Terry, C. Software Reuse: Metrics and Models. ACM Computing
Surveys, 28 (2), 1996, pp. 415-435.

Franklin, S. and A. Graesser. Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents. Proceedings of the 3" International Workshop on Agent Theories,
Architectures, and Languages, Budapest, Hungary, Springer-Verlag, pp. 21-36, 1996.
Franklin, M. and S. Zdonik. Data In Your Face: Push Technology in Perspective.
Proceedings of the ACM SIGMOD international conference on Management of Data,
pp. 516-519, 1998, http://www.cs.berkeley.edu/~franklin/Papers/datainface.pdf

Fraternali, P., Tools and Approaches for Developing Data-Intensive Web Applications:
A Survey, ACM Computing Surveys 31, 3, 1999, 227-263.

Fugetta, A., G. Picco, and G. Vigna. Understanding Code Mobility. IEEE Transactions
on Software Engineering, 24, 5, 1998, pp. 342-361.

Gamma, E., Helm, R., Johnson, R. Vlissides, J.O. Design Patterns: Abstraction and
Reuse of Object-Oriented Design. Proc. of the European Conference on Object-

Oriented Programming (ECOOP), LNCS 707, 1993, pp. 406-431.

203

38

39

40

41

42

43

44

45

46

47

48

49

Garzotto, F. and L. Mainetti, HDM2: Extending the E-R approach to hypermedia
application design, In Proceeding of the 12™ International Conference on Entity
Relationship Approach (ER’93), R. Elmasri, V. Kouramajian, and B. Thalheim, Eds.,
Dallas, TX, 1993, pp. 178-189.

Garzotto, F., P. Paolini, and D. Schwabe, HDM — A Model Based Approach to
Hypertext Application Design, ACM Transactions on Information Systems 11, 1, 1993,
1-26.

Graham, I., Henderson-Sellers, B., and Younessi, H. The OPEN Process Specification.
Addison-Wesley Inc., 1997.

Gray, R., D. Kotz, G. Cybenko, and D. Rus. Mobile Agent: Motivations and State-of-
the-art Systems. In Bradshaw J. M. (Ed.), Handbook of Agent Technology, AAAI/MIT
Press, 2000. ftp:/ftp.cs.dartmouth.edu/TR/TR2000-365.ps.Z.

Grundy, J. Multi-Perspective Specification, Design and Implementation of Software
Components using Aspects. International Journal of Software Engineering and
Knowledge Engineering, 10 (6), 2000, pp. 713-734.

Halpin, T. and Bloesch, A. A Comparison of UML and ORM for Data Modeling.
Proceedings of the third International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design (EMMSAD’98), 1998.

Harel, D., Statecharts: a Visual Formalism for Complex Systems, Science of Computer
Programming, 8, 1987, 231-274.

Henderson-Sellers, B., OML: proposals to enhance UML, The Unified Modeling
Language (UML’98): Beyond the Notation, volume 1618 of Lecture Notes in
Computer Science, J. Bezivin and P.A. Muller, Eds., Springer-Verlag, Mulhouse,
France, 1998, pp. 349-364.

Henderson-Sellers, B. and Bulthuis, A. Object-Oriented Metamethods, Springer Inc.,
1998.

Hillegersberg, J.V., Kumar, K. and Welke, R.J. Using Metamodeling to Analyze the Fit
of Object-Oriented Methods to Languages. Proceedings of the thirty first Hawaii
International Conference on System Sciences (HICSS'98), 1998.

Isakowitz, T., E. A. Stohr, and P. Balasubramanian, RMM: A Methodology for
Structured Hypermedia Design, Communication of the ACM 38, 8, 1995, 34-44.

Katz, S., A Superimposition Control Construct for Distributed Systems, ACM
Transactions on Programming Languages and Systems 15, 2, 1993, 337-356.

204

50

51

52

53

54

55

56

57

58

59

Kersten, M. and G. C. Murphy, Atlas: A Case Study in Building a Web-Based Learning
Environment using Aspect-Oriented Programming, In Proceedings of the Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA’99), ACM
SIG-PLAN Notices, Denver, CO, 1999, pp. 340-352.

Kim, Y.G. and March, S.T. Comparing Data Modeling Formalisms for Representing
and Validating Information Requirements. Communications of the ACM, 38 (6), 1995,
pp. 103-115.

Klein, C., A. Rausch, M. Shiling, and Z. Wen. Extension of the Unified Modeling
Language for Mobile Agents. On Siau, K. and Halpin, T. (Eds.), The Unified Modeling
Language: Systems Analysis, Design and Development Issues, Idea Group Publishing
Book, pp- 116-128, 2001.
http://www4.in.tum.de/~rausch/publications/2001/MobileUML.pdf

Lange, D., An Object-Oriented Design Approach for Developing Hypermedia
Information Systems, Journal of Organizational Computing, 6, 3, 1996, 269-293.

Lara, J. and Vangheluwe, H., 2002. Using AToM? as a Meta-CASE Tool. Proc. of the
4th Int. Conference On Enterprise Information Systems (ICEIS’2002),.

Lending , D. and Chervany N.L., 1998. The Use of CASE Tools. Proc. of the
Conference on Computer Personnel Research, pp. 49-58.

Lester, N. G., Wilkie, F. G. and Bustard, D. W. Applying UML Extensions to Facilitate
Software Reuse. The Unified Modeling Language (UML'98) - Beyond the Notation.
LNCS 1618, 1998, pp. 393-405.

Lin, M. and B. Henderson-Sellers, Adapting the OPEN methodology for Web
development, In Proceedings of the 6™ Annual Conference of BCS Information
Systems Methodology Specialist Group: Methodologies for Developing and Managing
Emerging Technology Based Information Systems, A.T. Wood-Harper, N. Jayaratna
and J.R.G. Woods, Eds., Springer-Verlag, Salford, UK, 1999, pp. 117-129.

Lowe, D. and B. Henderson-Sellers, Characteristics of Web Development Process, In
Electronic Proceeding of the International Conference Advances in Infrastructure for
Electronic Business, Science, and Education (SSGRR’2001), 2001,
http://www.ssgrr.it/en/ssgrr2001/papers/David%20Lowe.pdf

Mapelsden, D., Hosking, J., and Grundy, J. Design Patterns Modelling and Instantiation
using DPML. 40" International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS), 2002.
http://www.jrpit.flinders.edu.au/confpapers/CRPITV 10Mapelsden.pdf

205

60
61

62

63

64

65

66
67

68

69

70

71

72

73

Mayer, R.E. Multimedia Learning. Cambridge University Press, New York, 2001.
McMurtrey, M. E., Teng, J.T.C., Grover, V., and Kher, H. V., 2000. Current utilization
of CASE technology: lessons from the field. Industrial Management & Data Systems,
100 (1), pp. 22-30.

Mens, T., Lucas, C. and Steyaert, P. Giving Precise Semantics to Reuse and Evolution
in UML. Proc. PSMT'98 Workshop on Precise Semantics for Modeling Techniques,
1998.

Mezini, M. and Lieberherr, K. Adaptive Plug-and-Play Components for Evolutionary
Software Development. Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 1998, pp. 97-116.

Mili, H., Mili, F. and Mili, A. Reusing Software: Issues and Research Directions. IEEE
transactions on Software Engineering, 21 (5), 1995, pp. 528-562.

Muscutariu, F. and M.P. Gervais. On the Modeling of Mobile Agent-Based Systems.
http://www-scr.lip6.fr/homepages/Marie-Pierre.GervaissMATA2001 .pdf

Nielsen, J. Hypertext and Hypermedia: the Internet and Beyond. Academic Press, 1995.
Nielsen, J., User Interface Directions for the Web, Communications of the ACM, 42, 1,
1999, 65-72.

Object Management Group (OMG). UML 1.4 - UML Semantics. OMG document
formal/01-09-73, http://cgi.omg.org/docs/formal/01-09-73.pdf

Object Management Group. The common object request broker: Architecture and
specification. Technical Report Version 2.0, 1995,
http://www.infosys.tuwien.ac.at/Research/Corba/OMG/cover.htm

Object Management Group (OMG). Meta Object Facility (MOF) Specification. OMG
document formal/02-04-03, http://cgi.omg.org/docs/formal/02-04-03.pdf

Object Management Group (OMG). Extensible Markup Language (XML),
http://www.w3.org/ XML/

Object Management Group (OMG). Software Process Engineering Metamodel
(SPEM), version 1.0, OMG document formal/02-11-14,
http://www.omg.org/technology/documents/formal/spem.htm

Object Management Group (OMG). XML Metadata Interchange (XMI), version 1.2.

http://www.omg.org/cei-bin/doc?formal/2002-01-01

206

74

75
76

77

78

79

80

81

82

83

84

85

86

Odell, J., H.V.D. Parunak, and B. Bauer. Extending UML for Agents. In Wagner, G.,
Lesperance, Y., and Yu, Er. (Eds.), proceedings of the Agent-Oriented Information
Systems Workshop at the 17th National conference on Artificial Intelligence, Austin,
TX, pp. 3-17, 2000.

OPEN, The OPEN Web site, http:// www.open.org.au/

Otero, M.C. and Dolado, J.J. An Initial Experimental Assessment of the Dynamic
Modeling in UML. Empirical Software Engineering, 7, 2002, 99. 27-47.

Peleg, M. and D. Dori, Extending the Object-Process Methodology to Handle Real-
Time Systems, Journal of Object-Oriented Programming, 11, 8, 1999, 53-58.

Peleg, M. and D. Dori, The Model Multiplicity Problem: Experimenting with Real-
Time Specification Methods, IEEE Transaction on Software Engineering, 26, 8, 2000,
742-759,

http://iew3.technion.ac.il:8080/Home/Users/dori/Model Multiplicity Paper.pdf

Perrault, D., A Study of Business Rules Concept for Web Application, Master Thesis,

Faculty of Engineering, Politecnico di Milano, Milano, Italy, 1998.

Rational Software. Rational Unified Process for Systems Engineering — RUP SE1.1. A

Rational Software White Paper, TP 165A, 5/02, 2001,
http://www.rational.com/media/whitepapers/TP165.pdf

Reinhartz-Berger, 1., Dori, D. , and Katz, S. Developing Web Applications with
OPM/Web. workshop on Data Integration over the Web (DIWeb'01), CAiSE, 2001, pp.
47-61.

Reinhartz-Berger, 1., Dori, D., and Katz, S. OPM/Web - Object-Process Methodology
for Developing Web Applications. Annals on Software Engineering (ASE) - Special
Issue on OO Web-based Software Engineering, 13, pp. 141-161, 2002.
Reinhartz-Berger, 1., Dori, D. , and Katz, S. Modeling Code Mobility Paradigms in
OPM/Web. The Isracli Workshop on Programming Languages & Development

Environments, IBM, 2002. http://www.haifa.il.ibm.com/info/ple/papers/code.pdf

Reinhartz-Berger, 1., Dori, D., and Katz, S. Open Reuse of Component Designs in
OPM/Web. 26" annual international Computer Software and Applications Conference
(COMPSAC'02), pp. 19-26, 2002.

Renaud, P. E. Introduction to Client/Server Systems: A Practical Guide for Systems
Professionals. Wiley & Sons, 1993.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W. Object-Oriented
Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ, 1991.

207

87

88

&9

90

91

92

93

94

95
96

97

98

Siau, K. and Q. Cao, Unified Modeling Language (UML) — A Complexity Analysis,
Journal of Database Management 12, 1, 2001, 26-34.

Schwabe, D. and G. Rossi, Developing Hypermedia Applications using OOHDM, In
Electronic Proceedings of the 1* Workshop on Hypermedia Development Processes,
Methods and Models (Hypertext'98), ACM, Pittsburg, KS, 1998,
http://heavenly.nj.nec.com/266278.html

Schwabe, D., G. Rossi, and S. Barbosa, Systematic Hypermedia Application Design
with OOHDM, In Proceedings of the 7" ACM conference on Hypertext, ACM,
Washington DC, WA, 1996, pp. 116 — 128.

Shoval, P. and Shiran, S. Entity-Relationship and Object-Oriented Data Modeling — an
Experimental Comparison of Design Quality. Data & Knowledge Engineering, 21,
1997, pp. 297-315.

Siau, K. and Cao, Q. Unified Modeling Language (UML) — A Complexity Analysis.
Journal of Database Management 12 (1), 2001, pp. 26-34.

Stamos, J. and G. Gifford. Remote Evaluation. ACM Transactions on Programming
Languages and Systems, 12, 4, pp. 537-565, 1990.

Suzuke, J. and Y. Yamamoto, Extending UML with Aspects: Aspect Support in the
Design Phase, In Proceedings of the 31 Aspect-Oriented Programming (AOP)
Workshop at the Europe Conference on Object-Oriented Programming (ECOOP’99),
volume 1628 of Lecture Notes in Computer Science, R. Guerraoui, Ed., Springer-
Verlag, Lisbon, Portugal, 1999, pp. 299-300.

Talvanen, J. P., 2002. Domain-Specific Modelling: Get your Products out 10 Times
Faster. Real-Time & Embedded Computing Conference,

http://www.metacase.com/papers/Domain-specific_modelling 10X faster than UML.pdf

Van Gigch, J. P. System Design Modeling and Metamodeling. Plenum press, 1991.
Verheijen, G.M.A. and Van Bekkum, J. NIAM: An Information Analysis Method. In
Olle et al. 1986, pp. 289-318.

Vilain, P., D. Schwabe and C. S. de Souza, A diagrammatic Tool for Representing User
Interaction in UML, In Proceedings of the 3™ International Conference on the Unified
Modeling Language- Advancing the Standard (UML’2000), volume 1939 of Lecture
Notes in Computer Science, A. Evans, S. Kent and B. Selic, Eds., Springer-Verlag,
York, UK, 2000, pp. 133-147.

W3C Consortium. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl

208

99 Warmer, J.B. and A. G. Kleppe, The Object Constraint Language: Precise Modeling
with UML, First Edition, Addison-Wesley, Reading, MA, 1998.
100 What is metamodelling, and what is a metamodel good for?

http://www.metamodel.com/

209

