
Object-Process Methodology (OPM) vs. UML:
A Code Generation Perspective

Iris Reinhartz-Berger1 and Dov Dori2

1 University of Haifa
Carmel Mountain, Haifa 31905, Israel
iris@mis.hevra.haifa.ac.il

2 Technion, Israel Institute of Technology
Technion City, Haifa 32000, Israel
dori@ie.technion.ac.il

Abstract. Modeling languages have been evolving at a high pace, encouraging
the use of automatic code generators for transforming models to programs.
Automatic code generators should enable mechanical and repetitive coding op-
erations to be performed quickly, reliably and uniformly, yielding higher pro-
ductivity and quality of the developed systems. One way to evaluate modeling
languages is to examine their code generation capabilities. In this paper, we
compare the code generated from Rhapsody by I-Logix, a leading UML CASE
tool, to the code generated from OPCAT, an Object-Process Methodology
(OPM) CASE tool. We found that UML consistency problems and its distrib-
uted representation of system behavior are reflected in the code, yielding partial
code that is mostly structure-oriented. OPM models, on the other hand, capture
the static and dynamic aspects of a system in a single coherent view, enabling
the generation of potentially complete application logic rather than just skeleton
code. We explain and demonstrate the unique architecture and functionality of
OPM-GCG—the generic code generator of OPCAT, which can handle dynamic
repositories of translation rules from Object-Process Language, a constrained
subset of English, to various target programming languages.

1 Introduction

Software engineering at large is ideally expected to cover all the phases of system
development processes, including requirement elicitation, analysis, design, implemen-
tation, testing, and maintenance, as well as backtracking to earlier phases. The growth
of formal visual design languages and methods during the last two decades has put the
system analysis and design stages in the focus of leading software systems develop-
ment processes. Using these languages, developers communicate with each other on
the basis of a common ontology rather than via a specific programming language or
technology. The Unified Modeling Language (UML) [�12], for example, supports
object-oriented concepts, such as classes, methods, and inheritance relations. These
models can be translated to various (object-oriented or other) programming languages.
This way, UML enables developing systems following the object-oriented paradigm

and applying the resultant designs to different kinds of implementation frameworks.
Moreover, various parts of the same system can be translated into different target
languages. For example, objects of a web application can be implemented as HTML
documents, while processes of the same application can be written in Java or Java
Script.

For quite long, the IT community has been viewing the ability to translate design
models to source code as one of software engineering’s Holy Grails. Indeed, auto-
matic code generators are valuable in maintaining consistency and eliminating the gap
between design models and their implementations. Automatic code generation in-
creases the productivity and quality of the developed systems, enables mechanical and
repetitive operations to be done quickly, reliably and uniformly, relieves designers
from mundane tasks so they can focus on essence, and enforces programmers to write
structured, legible code. The move towards automating code generation is in line with
the industrial experience that the most complex task in creating a new system is mod-
eling it at the semantic level and not in writing its detailed code.

Developing code generators is not a trivial task. First, a good code generator should
narrow the gap between the design models and their implementation. This gap exists
due to differences in the abstraction level and in the perspectives adopted in the design
and implementation stages [�1]. Second, a code generator should be flexible and appli-
cable to various programming languages. Most of the existing code generators define
rules for translating visual constructs to corresponding code blocks in a specific pro-
gramming language. These language-specific rules are usually strict and reflect the
insight and the style of the code generator implementers. Changing the translation
rules or the visual constructs in these tools requires massive rewriting of their code
generators.

In this paper, we compare the code generated from Rhapsody by I-Logix [�8], a
leading UML CASE tool which generates UML static views, as well as some dynamic
views, to the code generated by OPCAT [�3] from Object-Process Methodology
(OPM) [�2] models. While UML supports multiple views of the same system, OPM is
a holistic approach that enables modeling the system structural, behavioral, functional,
and architectural aspects in a single coherent framework. This single view approach of
OPM at least potentially increases the consistency and integrity of the code generated
for OPM models, because these models are inherently coherent. Furthermore, since
OPM enables balanced modeling of system structure and behavior, the implementa-
tions generated from OPM models are closer to complete applications than just a
skeleton of the system structure (i.e., class declarations, inheritance, method declara-
tions, etc.). In addition to comparing Rhapsody and OPCAT in terms of their auto-
matically-generated code, we elaborate on the structure and functionality of OPM-
GCG, the generic code generator of OPCAT, which can handle dynamic repositories
of translation rules to various programming languages.

The structure of the rest of the paper is as follows. Section 2 elaborates on existing
code generators, their architectures, and shortcomings. Section 3 briefly summarizes
main features of OPM and compares it to UML using a simple inventory ordering
system. Section 4 presents OPM-GCG architecture and demonstrates its behavior on
the ordering system, while Section 5 compares the completeness and simplicity of the
Java code generated for the ordering system from OPCAT to that generated from

Rhapsody. Finally, Section 6 summarizes the main benefits and limitations of OPM in
comparison to UML from a code generation perspective.

2 Code Generators: Related Work

Code generators in the software engineering domain, which read repository data and
output source code in target programming languages, have become major components
of CASE tools. Since UML became a standard modeling language in 1997, most of
the code generators translate UML models to different programming languages, espe-
cially object-oriented ones. Early UML code generators translated only the system
structure, i.e., class diagrams, to object-oriented programming languages. These tools
produced only limited skeleton code and ignored system behavior. Harel and Gery [�6]
utilized UML class and state diagrams to generate both system structure and behavior.
In order to apply this approach, state machines need to be adopted as models of object
behavior even if the objects perform simple, insignificant behaviors [�4].

Chow et al. [�1] proposed a two-step approach to generate Java code from UML
class, component, Statechart, sequence, and activity diagrams: (1) generating the static
structure of the system from the class and component diagrams, and (2) generating
system behavior from the Statechart, sequence, and activity diagrams. Although this
approach handles the important views of UML, it assumes consistency of the UML
model input and is specific to code generation in Java (or other similar object-oriented
programming languages). As discussed in [�20], maintaining consistency among UML
views is not a trivial task.

Based on the subject-oriented approach, Harrison et al. [�7] proposed another
method for generating Java code from UML models. This method yields high-level
skeletal implementation that shields implementers from low-level representation
choices and details. The generated code imposes constraints on the acceptable designs
and represents a certain redundancy in the generated implementation due to its strong
static type checking requirements.

Commercial CASE tools usually hide the logical translation rules from the users.
Their code generators are often hard-coded and rarely reconfigurable. Using Compo-
nent Object Model (COM) [�18], Rational Rose [�15] offers code generators as plug-
ins, enabling new destination languages to be added dynamically. While these genera-
tors handle packages, classes, interfaces, imports, inheritance relations, fields, meth-
ods, and modifiers, they do not handle behaviors. Rhapsody by I-Logix [�8] does gen-
erate partial system behavior. Dividing the UML views into constructive and non-
constructive ones, Rhapsody defines translation rules only for the constructive UML
views [�9]. The class and Statechart diagrams are considered constructive, while inter-
action diagrams are only partially constructive, as Rhapsody uses them to define ob-
jects, operations, and messages. However, the bodies of the operations must be mod-
eled in Statecharts or hand-coded in a browser. Use case and activity diagrams are
non-constructive; they only help analyze and document the system.

The Extensible Markup Language (XML) [�11], which has emerged as the Internet's
lingua franca, has been adopted also as a universal language for communicating be-

tween methods and translating models across various programming languages. Park
and Kim [�13] propose an XML rule-based code generator for UML. They first define
an API for extracting necessary design model data from various UML repository for-
mats. Code generation is then applied on the extracted model data using a rule de-
scriptor and a corresponding rule interpreter. The rule descriptor is an XML document
that defines how to translate model data to source code. The rule interpreter reads a
mapping rule description, constructs a code generator object, and triggers code gen-
eration. As noted by its authors, this work concerns only class diagrams and should be
extended to the other UML views. In addition to the consistency problem of UML
views that this tool should overcome, using XML as the input language may be abhor-
rent and non-friendly to some users [�17].

Some of the shortcomings of the code generators reviewed in this section are inher-
ited from using UML as their modeling language. These include the consistency prob-
lem, the incompetence of the generated behavioral code, and the requirement to sup-
port code generation from different views. Using OPM as the underlying methodology
for the code generator enables a unified, balanced representation of the system struc-
ture and behavior in a single view. Moreover, the three built-in abstraction-refinement
mechanisms of OPM, which are described in the next section, guarantee that all the
parts of an OPM system model are always consistent. Hence, the code generated from
OPM models is more likely to be closer to the code of a complete, consistent applica-
tion.

3 Object-Process Methodology (OPM)

Object-Process Methodology (OPM) [�2] is a holistic approach to the study and devel-
opment of systems. It integrates the object-oriented and process-oriented paradigms
into a single frame of reference. Structure and behavior, the two major aspects that
each system exhibits, co-exist in the same OPM view.

The elements of the OPM ontology are entities (things and states) and links. A
thing is a generalization of an object and a process – the two basic building blocks of
any system expressed in OPM. Objects are (physical or informatical) things that exist,
while processes are things that transform objects. At any specific point in time, an
object can be exactly in one state, and object states are changed through occurrences
of processes. Links can be structural or procedural. Structural links express static
relations between pairs of entities. Aggregation, generalization, characterization, and
instantiation are the four fundamental structural relations, while general tagged struc-
tural links (similar to UML associations) enable expressing any type of persistent
relation. Procedural links connect entities (objects, processes, and states) to describe
the behavior of a system: (1) processes can transform (generate, consume, or change
the state of) objects; (2) objects can enable processes without being transformed by
them; and (3) objects can trigger events that invoke processes.

3.1 The Bi-Modal Representation of OPM

Two semantically equivalent modalities, one graphic and the other textual, jointly
express the same OPM model. A set of inter-related Object-Process Diagrams (OPDs)
constitute the graphical, visual OPM formalism. Each OPM element is denoted in an
OPD by a symbol, and the OPD syntax specifies correct and consistent ways by which
entities can be linked. The Object-Process Language (OPL) is the textual counterpart
modality of the graphical OPD-set. OPL is a dual-purpose language, oriented towards
humans as well as machines. Catering to human needs, OPL is designed as a con-
strained subset of English, which serves domain experts and system architects engaged
in analyzing and designing a system. Designed also for machine interpretation through
a well-defined set of production rules, OPL has an XML-based notation that provides
a solid basis for automatically generating the designed application. This dual represen-
tation of OPM increases the processing capability of humans according to Mayer's
cognitive theory [�10].

3.2 OPM Refinement and Abstraction Mechanisms

Complexity management aims at balancing the tradeoff between two conflicting re-
quirements: completeness and clarity. Completeness requires that the system details be
stipulated to the fullest extent possible, while the need for clarity imposes an upper
limit on the level of complexity and does not allow for an OPD (and a correspond-
ing OPL paragraph) that is too cluttered or overloaded with entities and links
among them. OPM defines three refinement-abstraction mechanisms that
enable presenting the system at various detail levels without losing the com-
prehension of the system as a whole. These three mechanisms are: (1) unfold-
ing/folding, which is used for refining/abstracting the structural hierarchy of a
thing and is applied by default to objects; (2) in-zooming/out-zooming, which
exposes/hides the inner details of a thing within its enclosing frame and is
applied primarily to processes; and (3) state expressing/suppressing, which
exposes/hides the states of an object. Using flexible combinations of these
mechanisms, the achieved OPM models are and remain consistent.

3.3 Modeling the Inventory Ordering System with OPM and UML

To demonstrate the differences between OPM and UML, we present an OPM model
and a UML model of an elementary inventory ordering system (Figures 1 and 3, re-
spectively). The system handles orders of a single product type. For simplicity, each
order reserves one product and the initial quantity of the product is 5.

As �Figure 1(a) shows, the main process of the system, Product Handling, is acti-
vated by the User. Upon activation, Product Handling affects Product and Cus-
tomer details and yields Order and either Receipt or No Product Message. Zooming
into Product Handling, �Figure 1(b) reveals its four sub-processes, which are executed

in an order determined by their vertical position. First, Product Ordering affects
Customer and yields Order in its initial ordered state. Then, Inventory Checking
checks if the Product Quantity is 0. If so (Inventory Empty is true), Product Re-
questing creates No Product Message. Otherwise, Order Paying And Supplying is
activated. As shown in �Figure 1(c), Order Paying And Supplying is done in two
steps. First, Order Paying changes Order status from ordered to paid, creating the
Receipt object. Then, Order Supplying decrements Product Quantity by 1 and
changes Order status from paid to its final state, supplied.

Figure 1. An OPM model of the inventory ordering system. (a) The top

level System Diagram (SD). (b) SD1 in which Product Handling is in-
zoomed. (c) SD1.1 in which Order Paying And Supplying is in-zoomed

�Figure 2 is the semantically equivalent OPL script of the ordering system. This
script is understandable to humans who are not familiar with visual design languages
in general and OPM in particular. It also serves as documentation for the developed
system and its XML representation is used as an input to OPM-GCG for code genera-
tion, as described in the sequel.

(b) (a)

(c)

Order can be ordered, paid, or supplied.
 Ordered is initial.
 Supplied is final.
Order is owned by Customer.
Order relates to Product.
Product exhibits Quantity.
 Quantity is of type integer.
User is environmental and physical.
User handles Product Handling.
Product Handling affects Customer and Product.
Product Handling yields Order.
Product Handling yields either Receipt or No
Product Message.
Product Handling zooms into Product Order-
ing, Inventory Checking, Product Requesting,
and Order Paying And Supplying, as well as
Inventory Empty.
 Inventory Empty is of type Boolean.
 Inventory Empty is false by default.
 Product Ordering affects Customer.
 Product Ordering yields ordered Order.
 Inventory Checking occurs if Quantity is 0.
 Inventory Checking changes Inventory
 Empty from false to true.

 Product Requesting occurs if
 Inventory Empty is true.
 Product Requesting yields No Product
 Message.
 Order Paying And Supplying occurs if
 Inventory Empty is false.
 Order Paying And Supplying affects
 Product and Order.
 Order Paying And Supplying yields Receipt.
 Order Paying And Supplying zooms into
 Order Paying and Order Supplying.
 Order Paying changes Order from
 ordered to paid.
 Order Paying yields Receipt.
 Order Supplying changes Order from
 paid to supplied.
 Following path a, Order Supplying
 changes Quantity from 5 to 4.
 Following path b, Order Supplying
 changes Quantity from 4 to 3.
 Following path c, Order Supplying
 changes Quantity from 3 to 2.
 Following path d, Order Supplying
 changes Quantity from 2 to 1.
 Following path e, Order Supplying
 changes Quantity from 1 to 0.

Figure 2. The OPL script of the inventory ordering system

A UML model for the same system is presented in �Figure 3. �Figure 3(a) is a class

diagram that represents the system structure. �Figure 3(b) and �Figure 3(c) are State-
charts representing the behavior of two object classes: order status and product quan-
tity1, respectively. Finally, �Figure 3(d) is a sequence diagram that represents a typical
scenario of product ordering by a user.

As these figures demonstrate, the object-oriented nature of UML requires breaking
even this relatively small part of the system behavior into several pieces (methods)
and then further decomposing them to sequences or Statecharts. In OPM, these behav-
ior patterns are represented by stand-alone processes, which greatly simplify the sys-
tem model.

1 Product quantity states are labeled q0 through q5 to enable Rhapsody to generate legal Java

variable names for them.

+Quantity : int

+QuantityDecreasing():void
+getQuantity():int

Product

+status : String

+OrderPayingAndSupplying():void
+OrderPaying():void
+OrderSupplying():void

Order

+ProductOrdering():void

System

Receipt

+updateDetails():

Customer

NoProductMessage

*

1

*

1

*

ordered

paid

OrderSupplying_

OrderPaying_

q2 q3

q5
q0

q1 q4

OrderSupplying_/QuantityDecreasing()
OrderSupplying_/QuantityDecreasing()

OrderSupplying_/QuantityDecreasing()

OrderSupplying_/QuantityDecreasing()

OrderSupplying_/QuantityDecreasing()

Quantity=q0

Quantity<>q0

getQuantity()

OrderSupplying()

Constructor

QuantityDecreasing()

OrderPaying()

Constructor

ProductOrdering()

Constructor

updateDetails()

OrderPayingAndSupplying()

Figure 3. A UML model of the inventory ordering system. (a) The UML

class diagram. (b) A Statechart diagram representing the behavior of an
order. (c) A Statechart diagram representing the behavior of product

quantity. (d) A Sequence diagram representing the behavior of ordering a
product by a user

supplied (c) (b)

(a)

(d)

OrderUser ReceiptProduct NoProductMessageSystem Customer

4 OPM-GCG Architecture and Functionality

As noted, OPM is supported by a CASE tool called Object-Process CASE Tool
(OPCAT) [�3]. An important component of OPCAT is OPM-GCG, the generic code
generator. �Figure 4 is the top level System Diagram (SD) of an OPM model of OPM-
GCG, which describes its architecture and functionality in OPM. OPM-GCG consists
of two parts: OPCAT TIP (Template for Implementation Programming) and Imple-
mentation Generator. OPCAT TIP exhibits the Templates & Translations DB and
the process OPCAT TIP Handling. A Super User, i.e., a user with special authoriza-
tion, inserts and updates translation rules into the Templates & Translations DB
through OPCAT TIP Handling. This process also generates Templates & Transla-
tions XML Files, each of which contains XML-formatted OPL templates and their
translations to a specific target programming language. These files serve as input for
the Implementation Generating process of the Implementation Generator.

After the System Designer chooses a target programming language, Implementa-
tion Generating uses the corresponding Templates & Translations XML File along
with the System OPL-XML Script in order to create the system Implementation
(User Interface, Code, and DB Schema). The System OPL-XML Script, which is
external to the OPM-GCG, stores the OPL script of a specific system, representing its
OPM model in an XML format. This script is automatically generated in OPCAT,
while the designer creates and improves an OPM model.

Figure 4. The top level SD of OPM-GCG

4.2 OPCAT TIP

The main screen of OPCAT TIP includes three tabs: OPL, XML, and Translations. In
the OPL tab, shown in �Figure 5, the OPL templates are described as being composed
of sub-elements and characterized by attributes. For example, an object exhibition
sentence, which describes the features (attributes and operations) of an object, has
three constituents: ObjectName, which holds the sentence subject (object) name and is
mandatory, ExhibitedObject, which is a template that appears once for each attribute
of the object2, and Operation, which is a string that appears once for each method of
the object. The XML schema, which is automatically generated by OPCAT TIP for
this template and appears in the XML tab, is:

<xs:element name="ObjectExhibitionSentence">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "ObjectName" type="xs:string"/>
 <xs:element ref="ExhibitedObject" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name = "Operation" type="xs:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

An example of an object exhibition sentence in the inventory ordering system is

“Product exhibits Quantity.”, i.e., a Product has an attribute named Quantity. The
XML presentation of this particular sentence is:

<ObjectExhibitionSentence>
 <ObjectName>Product</ObjectName>
 <ExhibitedObject>
 <ObjectName>Quantity</ObjectName>
 </ExhibitedObject>
</ObjectExhibitionSentence>

In the Translations tab of OPCAT TIP, the selected OPL template is translated into

programming or markup languages, such as Java or HTML. The translation is ex-
pressed by an ordered set of operations. Each operation may have a (possibly com-
plex) condition and an action. Following the standard Event-Condition-Action (ECA)
paradigm, when an instance of the OPL template is found in the System OPL-XML
Script and the condition is satisfied, the action is executed. An example of such an
operation can be carrying out the action insertAtLoca-
tion(,,BEFORE_ENDING_TAG,MethodSection,,) for each Operation of the Object
Exhibition Sentence, if the object has methods, i.e., if templateCon-
tains(Operation) returns true. The supported functions in OPM-GCG are ex-
plained in the next section.

2 The constituents of ExhibitedObject are: Minimal Cardinality, Maximal Cardinality, and
Object Name.

Figure 5. OPCAT TIP screen snapshot – the OPL tab

OPCAT TIP enables inserting new OPL templates and translations, updating exist-

ing OPL templates and translations, copying translations, copying references of trans-
lations, and checking the completeness of the translation rules. These capabilities
enables dynamically defining OPL templates and translation rules without requiring
deep knowledge of XML, as OPCAT TIP automatically generates XML files of the
OPL templates and translations database.

4.2 Implementation Generator

The inputs for the implementation generator are (1) the target programming language
(as specified by the designer), (2) the XML file of the OPL templates and translations
for a specific language, and (3) the System OPL-XML Script (an XML file containing
the OPL script of a system). When the implementation generator finds a match be-
tween an OPL sentence in the System OPL-XML Script and an OPL template in the
Templates & Translations XML File, it executes the required operations in their
specified order transforming the System OPL-XML Script into several XML files,
each containing an XML format of a programming language file. Hence, conditions
for executing OPCAT TIP operations are usually Boolean functions which check the
existence of an element or an attribute in the input or output XML files. The operation
actions insert, update, or remove elements or attributes from the output XML files.
This way, the System OPL-XML Script needs to be read only once by the implemen-
tation generator, enabling several updates of different OPL sentences to the same code

block. Table 1 summarizes the conditions and actions currently supported by the im-
plementation generator of OPM-GCG.

Table 1. Supported functions of OPM-GCG

Type Function Signature Function Description
none() Always true
templateContains (template
t)

The current OPL template contains t as its
sub-element

translationContains (path
p, file f, tagName tn,
attributeName an, attrib-
uteValue av)

The translation file f at path p contains <tn
an=”av”…>

equals (element e, value
v)

The value of the sub-element or sub-
attribute e of the current OPL template
equals v

C
ondition Functions

Complex condition A combination of several atomic condi-
tions using and, or, and not connectors

createDirectory (path p) Creates a directory in path p
createFile (path p, file
f, translation t)

Creates a file named f at path p with the
initial content of t

translate4all (path p,
file f, template t)

Translates all the sub-elements of type t of
the current OPL template into file f at path
p

replaceContent (path p,
file f, tagName tn, at-
tributeName an, attribute-
Value av, translation t)

Replaces the content of <tn an=”av”…> in
file f at path p with the content of t

A
ction Functions

insertAtLocation (path p,
file f, location l, tag-
Name tn, attributeName an,
attributeValue av, trans-
lation t)

Inserts the content of t at the location l in
respect to <tn an=”av”…> in file f at path
p. l can be one of
BEFORE_STARTING_TAG,
BEFORE_ENDING_TAG,
AFTER_STARTING_TAG,
AFTER_ENDING_TAG.

After creating the output code files in XML format, the implementation generator

enables three possible options for handling the XML tags in the output files: (1) The
XML tags can be left in order to support markup languages, such as HTML or WSDL
(Web Service Description Language) [�19], (2) The XML tags can be omitted to sup-
port regular programming languages (such as Java), and (3) The XML tags can be-
come comments in the target programming language for debugging purposes. The
implementation generator gets the Super User preference for handling tags in the
output XML files from OPCAT TIP through the corresponding Templates & Trans-
lations XML File. If the Super User chooses to change the tags into comments, he or
she is asked to supply the symbol of a single line comment and the starting and ending
symbols of a multiple line comment in the target programming language.

4.3 Generating Java code for the Inventory Ordering System with OPM-GCG

Due to space limitation, �Figure 6 and �Figure 7 were chosen to demonstrate the Java
code generated by OPM-GCG for a representative object (Order) and process (Prod-
uct Handling), respectively.

// File Order.java
package OrderSystem;
import opmTypes.*;

public class Order extends opmObject {

opmStatus theStatus;
Customer theisownedbyCustomer;
Product therelatestoProduct;

public Order () {

theStatus = new opmStatus();
 initializeStatus();
 }

 public void initializeStatus () {

theStatus.addState (
new opmState("ordered", true, false, true));

 theStatus.addState(
 new opmState("paid", true, false, false));
 theStatus.addState(

new opmState("supplied", false, true, false));
 theStatus.addState(
 new opmState("cancelled", false, true, false));
 }

 public Customer gettheisownedbyCustomer() {
 return theisownedbyCustomer;
 }

 public void settheisownedbyCustomer (
 Customer newisownedbyCustomer) {
 theisownedbyCustomer= newisownedbyCustomer;
 }

 public Product gettherelatestoProduct() {
 return therelatestoProduct;
 }

 public void settherelatestoProduct (Product
 newrelatestoProduct) {
 therelatestoProduct= newrelatestoProduct;
 }

}

Figure 6. The OPM-GCG-generated code for Order

As these figures show, the system implementer can supply in addition to the trans-
lation rules a library of files for the target programming language. These general,
system-independent files are influenced by the OPM approach. In Java, for example,
there are six library classes, opmObject, opmProcess, opmState, opmStatus, op-
mEvent, and opmEventQueue which represent the core OPM elements. OpmStatus, for
example, is a class that handles the different possible states of an object. It allows for

an object to be in exactly one state at any moment and controls the state entrance, state
exit, and state change events of the object.

As shown in the Product Handling code (�Figure 7), OPM-GCG generates not only
the system structure, but also its behavior, including the body of the system processes
(through the function run) and their preconditions (through the function preCondi-
tionHolds). This ability of OPM-GCG is inherited from OPM, which enables explic-
itly specifying the relations between system structure and behavior in the same model.
These relations include process inputs, outputs, enablers, triggers, etc.

// File ProductHandling.java
package OrderSystem;
import opmTypes.*;

public class ProductHandling extends opmProcess {

Boolean theInventoryEmpty;

public ProductHandling () {

theInventoryEmpty=new Boolean(false);
}
public boolean preConditionHolds () {

boolean check = true;
if (check) {

 }
 return check;
}
public void run (Customer theCustomer, Product
 theProduct, Order theOrder, Receipt theReceipt) {
 if (preConditionHolds ()) {

 // Effect theCustomer
 // Effect theProduct
 theOrder = new Order();
 theReceipt = new Receipt();
 ProductOrdering theProductOrdering =
 new ProductOrdering();

 theProductOrdering.run(theCustomer,
 theOrder);

 InventoryChecking theInventoryChecking =
 new InventoryChecking();

 theInventoryChecking.run(
 new Integer(
 theProduct.gettheProductQuantity()),
 theInventoryEmpty);
 OrderPayingAndSupplying
 theOrderPayingAndSupplying =
 new OrderPayingAndSupplying();
 theOrderPayingAndSupplying.run(
 theInventoryEmpty, theOrder,
 theProduct, theReceipt);

}
}
public boolean gettheInventoryEmpty() {
 return theInventoryEmpty.booleanValue();
}
public void settheInventoryEmpty(boolean
 newInventoryEmpty) {

theInventoryEmpty= new Boolean
(newInventoryEmpty);

}
}

Figure 7. The OPM-GCG-generated code for Product Handling

5 Comparison of OPCAT- and Rhapsody-Generated Codes for
the Inventory Ordering System

To evaluate the relative value of OPM-GCG-generated code, we compare the code
generated from OPM-GCG for the inventory ordering system (using the OPM model
in �Figure 2) to the code generated from Rhapsody by I-Logix using the UML model in
�Figure 33. We have selected Rhapsody as the UML code generator for our comparison
since to the best of our knowledge it is the only commercial tool that generates at least
partial code for the system behavior.

Rhapsody uses a library of over 30 Java classes, only some of which can be
mapped to UML concepts (e.g., RiJState and RiJEvent). Others, such as RiJIn-
former, RiJOXF, and RiJThread, are non-intuitive and seem to be part of the par-
ticular Rhapsody implementation of the Java code generator. For the inventory order-
ing system, Rhapsody generated nine classes: System, Customer, Order, Product,
Receipt, User, NoProductMessage, OrderPaying_, and OrderSupplying_. Evidently,
understanding the generated code requires deep understanding not only of the various
UML views, but also of Rhapsody and its internal libraries. A system implementer
who wishes to update this code, as is usually required in the development process of a
system, needs to engage in studying the specific Rhapsody environment before manag-
ing to execute simple code update operations. These operations are required, for ex-
ample, for generating the system behavior as expressed in interaction diagrams (e.g.,
in �Figure 3(d)), which, in Rhapsody’s terms, are only partially constructive. Under
these conditions, implementers understandably quite often prefer to write code manu-
ally from scratch rather than putting an automatic code generator to work and editing
the code it generated.

Size-wise, the OPM-CGC code generated for the ordering system contains 265
lines, compared with 739 lines for the corresponding Rhapsody code. In other words,
the size of the Rhapsody-generated Java code was almost 3 times larger than the cor-
responding OPM-GCG-generated code for the same system. Having 3 times less code
to study, inspect, and modify is certainly an advantage even before looking into other
aspects such as clarity, generality, completeness, and environment-independence.

6 Summary and Future Work

The differences between OPM and UML are highly perceivable during the analysis
and design stages. While UML is a multiple-view, object-oriented modeling language,
OPM supports a single unifying structure-behavior view. These differences percolate
also to the implementation stage through the different perspectives of the supporting
code generators. In this paper, we presented OPM-GCG, an OPM-supporting generic
code generator that translates OPM design models to various target programming

3 The complete codes generated from Rhapsody and OPM-GCG for the inventory ordering

system, along with the UML and OPM models, can be found at
http://mis.hevra.haifa.ac.il/~iris/research/CodeGenerationData.zip.

languages. The translation rules of OPM-GCG are defined offline through a user-
friendly tool and used by the implementation generator to create code files from the
system OPL-XML file. This file, which is automatically created by OPCAT, contains
the textual representation of the single, bimodal and multi-resolution OPM model in
an XML format.

As demonstrated in this paper for a simple inventory ordering system, the Java code
generated by OPM-GCG includes system behavior (processes, control flows, event
triggers, etc.). Comparing this code to the code generated from Rhapsody by I-Logix
for the analogous UML model of the same system, the OPM-GCG code appears to be
simpler, more intuitive, easier to maintain and update, and more complete, while being
almost three times as short as the code generated by Rhapsody.

While some of these differences are due to the specific code generation implemen-
tation of I-Logix, the crucial differences stem from the structure-oriented approach of
UML, in which behavior is spread over six diagram types, a fact that inevitably in-
vokes the model multiplicity problem [�14]. OPM, on the other hand, enforces the
development of consistent models through its three built-in refinement/abstraction
mechanisms. These mechanisms define sets of rules that are checked whenever the
abstraction level of an OPM model changes. The consistency of OPM models is com-
pletely and faithfully reflected in the resulting code, eliminating the infamous analysis-
design-code gap that is responsible for many software project failures.

The main shortcoming of OPM-GCG is that it uses a modeling language
(methodology) that is not (yet) standard. Although three independent empiri-
cal experiments that compared OPM to other languages (OMT [�14], UML
[�16], and Arena [�5]) have shown that OPM is better in modeling the dynamic
and functional aspects of systems, sticking to standards is important and de-
sirable in software engineering as in any other domain. To be compatible with
the UML standard, OPCAT generates UML models from OPM models. We
plan to also be able to convert a UML multi-view model to an OPM model.
These capabilities enable the system designer to stay current with the stan-
dard, while using the most suitable approach for the system development task
at hand.

We have just finished an empirical evaluation that examined the quality
and completeness of the code produced by (1) OPM-GCG (2) Rhapsody and
(3) extreme programming, and we are processing the results. In this experi-
ment, the subjects were required to develop an automatic test checking sys-
tem. In other future research on OPM-GCG power and scalability, we plan to
generate large code segments of applications that combine structure and be-
havior in complex, intertwined ways from their OPM models in order to
check the comprehensive and completeness of OPM-GCG-generated code.

References

1. K.O. Chow, W. Jia, V. Chan, and J. Cao. “Model-Based Generation of Java Code”, In-
ternational Conference on Parallel and Distributed Processing Techniques and Applica-
tions(PDPTA'2000), 2000. http://www.dvo.ru/bbc/pdpta/vol5/p522.pdf

2. D. Dori. Object-Process Methodology - A Holistic Systems Paradigm. Springer Verlag,
New York, 2002.

3. D. Dori, I. Reinhartz-Berger, and A. Sturm. “OPCAT - A Bimodal CASE Tool for Ob-
ject-Process Based System Development”, Proceedings IEEE/ACM 5th International
Conference on Enterprise Information Systems (ICEIS 2003), 2003, pp. 286-291. Soft-
ware download site: http://www.objectprocess.org/

4. B.P. Doudlass. Real-Time UML. Addison-Wesley, 1998.
5. D. Gilat. "A Framework for Simulation of Discrete Events Systems based on the Object-

Process Methodology". PhD Thesis, Technion – Israel Institute of Technology, 2003.
6. D. Harel and E. Gery. “Executable Object modeling with Statecharts”, IEEE Computer,

30 (7), 1997, pp. 31-42.
7. W. Harrison, C. Barton, and M. Raghavachari. “Mapping UML Designs to Java”, Pro-

ceedings of the conference on Object-oriented programming, systems, languages, and
applications(OOPSAL’00), 2000, pp. 178-187.

8. ILogix, Rhapsody overview, http://www.ilogix.com/products/rhapsody/index.cfm
9. ILogix, Rhapsody in C – Code Generation Guide,

http://safariexamples.informit.com/0201699567/Rhapsody/Doc/Books/codegenc.pdf
10. R.E. Mayer. Multimedia Learning. Cambridge University Press, 2001.
11. Object Management Group (OMG). Extensible Markup Language (XML),

http://www.w3.org/XML/, 2002.
12. Object Management Group (OMG). UML 1.4 - UML Semantics. OMG document for-

mal/01-09-73, 2001, http://cgi.omg.org/docs/formal/01-09-73.pdf
13. D.H. Park and S. D. Kim. "XML Rule Based Source Code Generator for UML CASE

Tool". 8th Asia Pacific Software Engineering Conference (APSEC'01), 2001, pp. 53-60.
14. M. Peleg and D. Dori. “The Model Multiplicity Problem: Experimenting with Real-Time

Specification Methods”, IEEE Transaction on Software Engineering, 26 (8), 2000, pp.
742-759.

15. Rational Cooperation, Rational Rose, http://www.rational.com/products/rose/index.jsp
16. Reinhartz-Berger and D. Dori. "OPM vs. UML – Experimenting Comprehension and

Construction of Web Application Models". Accepted to Emprical Software Engineering
journal, 2004.

17. S. Sarkar and C. Cleaveland. “Code Generation Using XML Based Document Transfor-
mation”. Published on The Server Side – Your J2EE Community.

18. D. Stearns. “The Basics of Programming Model Design”, Microsoft Coorperation, 1998,
http://msdn.microsoft.com/library/default.asp?url=/ library/en-us/dncomg/html/ msdn_basicpmd.asp

19. W3C Consortium. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl

20. Workshop on Consistency Problems in UML-based Software Development, 5th
International Conference on the Unified Modeling Language - the Language and
its applications (UML’2002), 2002. http://www.ipd.bth.se/uml2002/RR-2002-06.pdf

