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Abstract. Modeling languages have been evolving at a high pace, encouraging 
the use of automatic code generators for transforming models to programs. 
Automatic code generators should enable mechanical and repetitive coding op-
erations to be performed quickly, reliably and uniformly, yielding higher pro-
ductivity and quality of the developed systems. One way to evaluate modeling 
languages is to examine their code generation capabilities. In this paper, we 
compare the code generated from Rhapsody by ILogix to the code generated 
from OPCAT, an Object-Process Methodology (OPM) CASE tool. We found 
that UML consistency problems and its distributed representation of system be-
havior are reflected in the code, yielding partial code that is mostly structure-
oriented. OPM models, which capture the static and dynamic aspects of a sys-
tem in a single view, enable the generation of potentially complete application 
logic rather than just skeleton code. We also explain the unique architecture and 
functionality of OPM-GCG—the generic code generator of OPCAT. 

1   Introduction 

Software engineering at large is ideally expected to cover all the phases of system 
development processes. The growth of formal visual design languages and methods 
has put the system analysis and design stages in the focus of leading software devel-
opment processes. Using these languages, developers communicate with each other on 
the basis of a common ontology rather than via a specific programming language or 
technology. The Unified Modeling Language (UML) [�10], for example, supports 
object-oriented concepts, such as classes, methods, and inheritance relations. The 
implementation of these concepts in different programming languages might vary. 
Moreover, various parts of the same system can be translated into different target 
languages.  

Automatic code generators are valuable in maintaining consistency and eliminating 
the gap between design models and their implementations. Automatic code generation 
increases the productivity and quality of the developed systems, enables mechanical 
and repetitive operations to be done quickly, reliably and uniformly, relieves designers 



from mundane tasks so they can focus on essence, and enforces programmers to write 
structured, legible code. The move towards automating code generation is also in line 
with the industrial experience that the most complex task in creating a new system is 
modeling it at the semantic level and not in writing its detailed code. 

Developing code generators is not a trivial task. First, a good code generator should 
narrow the gap between the design models and their implementation. This gap exists 
due to differences in the abstraction level and in the perspectives adopted in the design 
and implementation stages [�1]. Second, a code generator should be flexible and appli-
cable to various programming languages. Most of the existing code generators define 
rules for translating visual constructs to corresponding code blocks in a specific pro-
gramming language. These language-specific rules are usually strict and reflect the 
insight and the style of the code generator implementers. Changing the translation 
rules in these tools requires massive rewriting of their code generators.  

In this paper, we compare the code generated from Rhapsody by ILogix [�7], a lead-
ing UML CASE tool which generates UML static views, as well as some dynamic 
views, to the code generated by OPCAT [�3] from Object-Process Methodology 
(OPM) [�2] models. While UML supports multiple views of the same system, OPM is 
a holistic approach that enables modeling the system structural, behavioral, functional, 
and architectural aspects in a single coherent framework. This single view approach of 
OPM at least potentially increases the consistency and integrity of the code generated 
for OPM models. Furthermore, since OPM enables balanced modeling of system 
structure and behavior, the implementations generated from OPM models are closer to 
complete applications than just a skeleton of the system structure. 

The structure of the rest of the paper is as follows. Section 2 elaborates on existing 
code generators and their shortcomings. Section 3 briefly summarizes OPM and com-
pares it to UML using a simple inventory ordering system. Section 4 presents OPM-
GCG architecture and demonstrates its behavior on the ordering system, while Section 
5 compares the completeness and simplicity of the Java code generated for the order-
ing system from OPCAT to that generated from Rhapsody. Finally, Section 6 summa-
rizes the main benefits and limitations of OPM in comparison to UML from a code 
generation perspective. 

2 Code Generators: Related Work 

Code generators in the software engineering domain, which read repository data 
(mostly of UML models) and output source code in target programming languages, 
have become major components of CASE tools. Early UML code generators trans-
lated only the system structure, i.e., class diagrams, to object-oriented programming 
languages. These tools produced only limited skeleton code and ignored system be-
havior. Harel and Gery [�5] utilized UML class and state diagrams to generate both 
system structure and behavior. In order to apply this approach, state machines need to 
be adopted as models of object behavior even if the objects perform simple, insignifi-
cant behaviors [�4]. 



Chow et al. [�1] proposed a two-step approach to generate Java code from UML 
class, component, Statechart, sequence, and activity diagrams: first the static structure 
of the system is generated and, then, system behavior is added. Although this approach 
handles the important views of UML, it assumes consistency of the UML model input 
and is specific to code generation in Java. As discussed in [�16], maintaining consis-
tency among UML views is not a trivial task. 

Based on the subject-oriented approach, Harrison et al. [�6] proposed a method for 
generating high-level skeletal Java code from UML models. The generated code im-
poses constraints on the acceptable designs and represents a certain redundancy in the 
generated implementation due to its strong static type checking requirements. 

Commercial CASE tools usually hide the logical translation rules from the users. 
Using Component Object Model (COM) [�15], Rational Rose [�13] offers code genera-
tors as plug-ins, enabling new destination languages to be added dynamically. While 
these generators handle packages, classes, interfaces, imports, inheritance relations, 
fields, methods, and modifiers, they do not handle behaviors. Rhapsody by ILogix [�7] 
generates partial system behavior. Dividing the UML views into constructive and non-
constructive, Rhapsody defines translation rules only for the constructive UML views. 
Class and Statechart diagrams are considered constructive, while interaction diagrams 
are only partially constructive, as Rhapsody uses them to define objects, operations, 
and messages. However, the bodies of the operations must be modeled in Statecharts 
or hand-coded in a browser. Use case and activity diagrams are non-constructive; they 
only help analyze and document the system.  

The Extensible Markup Language (XML) [�9] has been adopted also as a universal 
language for communicating between methods and translating models across various 
programming languages. Park and Kim [�11] propose an XML rule-based code genera-
tor for UML. They first define an API for extracting necessary design model data from 
various UML repository formats. Code generation is then applied on the extracted 
model data using a rule descriptor and a corresponding rule interpreter. As noted by 
its authors, this work concerns only class diagrams and should be extended to the 
other UML views. In addition to the consistency problem of UML views that this tool 
should overcome, using XML as the input language may be abhorrent and non-
friendly to some users [�14]. 

Some of the mentioned shortcomings of code generators are inherited from using 
UML as their modeling language. These include the consistency problem, the incom-
petence of the generated behavioral code, and the requirement to support code genera-
tion from different views. Using OPM as the underlying methodology for the code 
generator enables a unified, balanced representation of the system structure and be-
havior in a single view. Moreover, the three built-in abstraction-refinement mecha-
nisms of OPM, which are described in the next section, guarantee that all the parts of 
an OPM system model are always consistent. Hence, the code generated from OPM 
models is more likely to be closer to the code of a complete, consistent application. 



3 Object-Process Methodology (OPM) 

Object-Process Methodology (OPM) [�2] is a holistic approach to the study and 
development of systems. It integrates the object-oriented and process-oriented 
paradigms into a single frame of reference. The elements of the OPM ontology are 
entities (things and states) and links. A thing is a generalization of an object and a 
process – the two basic building blocks of any system expressed in OPM. Objects are 
(physical or informatical) things that exist, while processes are things that transform 
objects. At any specific point in time, an object can be exactly in one state, and object 
states are changed through occurrences of processes. Analogically, links can be 
structural or procedural. Structural links express static relations between pairs of 
entities, while procedural links connect entities (objects, processes, and states) to 
describe the behavior of a system. 

3.1 The Bi-Modal Representation of OPM  

Two semantically equivalent modalities, one graphic and the other textual, jointly 
express the same OPM model. A set of inter-related Object-Process Diagrams (OPDs) 
constitute the graphical, visual OPM formalism. Each OPM element is denoted in an 
OPD by a symbol, and the OPD syntax specifies correct and consistent ways by which 
entities can be linked. The Object-Process Language (OPL) is the textual counterpart 
modality of the graphical OPD-set. OPL is a dual-purpose language, oriented towards 
humans as well as machines. Catering to human needs, OPL is designed as a con-
strained subset of English, which serves domain experts and system architects. De-
signed also for machine interpretation, OPL has an XML-based notation that provides 
a solid basis for automatically generating the designed application. This dual represen-
tation of OPM also increases the processing capability of humans according to 
Mayer's cognitive theory [�8]. 

3.2 OPM Refinement and Abstraction Mechanisms 

Complexity management aims at balancing the tradeoff between two conflicting re-
quirements: completeness and clarity. Completeness requires that the system details be 
stipulated to the fullest extent possible, while the need for clarity imposes an upper 
limit on the level of complexity and does not allow for an OPD (and a corresponding 
OPL paragraph) that is too cluttered or overloaded with entities and links among them. 
OPM defines three refinement-abstraction mechanisms that enable presenting the 
system at various detail levels without losing the comprehension of the system as a 
whole. These three mechanisms are: (1) unfolding/folding, which is used for refin-
ing/abstracting the structural hierarchy of a thing and is applied by default to objects; 
(2) in-zooming/out-zooming, which exposes/hides the inner details of a thing within its 
enclosing frame and is applied primarily to processes; and (3) state express-
ing/suppressing, which exposes/hides the states of an object. Using flexible combina-
tions of these mechanisms, the achieved OPM models are consistent. 



3.3 Modeling the Inventory Ordering System with OPM and UML 

To demonstrate the differences between OPM and UML, we present an OPM model 
and a UML model of an elementary inventory ordering system (Figures 1 and 3, re-
spectively). The system handles orders of a single product type. For simplicity, each 
order reserves one product and the initial quantity of the product is 5.  

As �Figure 1(a) shows, the main process, Product Handling, is activated by the 
User. Upon activation, Product Handling affects Product and Customer and yields 
Order and either Receipt or No Product Message. Zooming into Product Handling, 
�Figure 1(b) reveals its four sub-processes, which are executed in their vertical position 
order. First, Product Ordering affects Customer and yields Order in its initial or-
dered state. Then, Inventory Checking checks if the Product Quantity is 0. If so 
(Inventory Empty is true), Product Requesting creates No Product Message. Oth-
erwise, Order Paying And Supplying is activated. As shown in �Figure 1(c), Order 
Paying And Supplying first changes Order status from ordered to paid creating the 
Receipt object (Order Paying), and then decrements Product Quantity by 1 and 
changes Order status from paid to its final state, supplied (Order Supplying). 

 
 
 

 

 
Figure 1. An OPM model of the inventory ordering system. (a) The top 

level System Diagram (SD). (b) SD1 in which Product Handling is in-
zoomed. (c) SD1.1 in which Order Paying And Supplying is in-zoomed 

(b) (a) 

(c) 



�Figure 2 is the semantically equivalent OPL script of the ordering system. This 
script is understandable to humans who are not familiar with visual design languages 
in general and OPM in particular. It also serves as documentation for the developed 
system and its XML representation is used as an input to OPM-GCG. 
Order can be ordered, paid, or supplied. 
            Ordered is initial. 
            Supplied is final. 
Order is owned by Customer. 
Order relates to Product. 
Product exhibits Quantity. 
            Quantity is of type integer. 
User is environmental and physical. 
User handles Product Handling. 
Product Handling affects Customer and Product.
Product Handling yields Order. 
Product Handling yields either Receipt or No 
Product Message. 
Product Handling zooms into Product Order-
ing, Inventory Checking, Product Requesting, 
and Order Paying And Supplying, as well as 
Inventory Empty. 
     Inventory Empty is of type Boolean. 
     Inventory Empty is false by default.  
     Product Ordering affects Customer. 
     Product Ordering yields ordered Order. 
     Inventory Checking occurs if Quantity is 0. 
     Inventory Checking changes Inventory  
     Empty from false to true. 

     Product Requesting occurs if  
     Inventory Empty is true. 
     Product Requesting yields No Product                     
     Message. 
     Order Paying And Supplying occurs if  
     Inventory Empty is false. 
     Order Paying And Supplying affects  
     Product and Order. 
     Order Paying And Supplying yields Receipt. 
     Order Paying And Supplying zooms into  
     Order Paying and Order Supplying. 
          Order Paying changes Order from  
          ordered to paid. 
          Order Paying yields Receipt. 
          Order Supplying changes Order from  
          paid to supplied. 
          Following path a, Order Supplying  
          changes Quantity from 5 to 4. 
          Following path b, Order Supplying  
          changes Quantity from 4 to 3. 
          Following path c, Order Supplying  
          changes Quantity from 3 to 2. 
          Following path d, Order Supplying  
          changes Quantity from 2 to 1. 
          Following path e, Order Supplying  
          changes Quantity from 1 to 0. 

Figure 2. The OPL script of the inventory ordering system 
 
A UML model for the same system is presented in �Figure 3. �Figure 3(a) is a class 

diagram that represents the system structure. �Figure 3(b) and �Figure 3(c) are State-
charts representing the behavior of order status and product quantity1, respectively. 
Finally, �Figure 3(d) is a sequence diagram that represents a typical scenario of product 
ordering by a user. 

As these figures demonstrate, the object-oriented nature of UML requires breaking 
even this relatively small part of the system behavior into several pieces (methods) 
and then further decomposing them to sequences or Statecharts. In OPM, these behav-
ior patterns are represented by stand-alone processes, which greatly simplify the sys-
tem model and consequently the system implementation (as we argue next). 

4 OPM-GCG Architecture and Functionality 

As noted, OPM is supported by a CASE tool called Object-Process CASE Tool 
(OPCAT) [�3]. An important component of OPCAT is OPM-GCG, the generic code 

                                                           
1 Product quantity states are labeled q0 through q5 to enable Rhapsody to generate legal Java 

variable names for them. 



generator. OPM-GCG consists of two parts: OPCAT TIP (Template for Implementa-
tion Programming) and Implementation Generator.  
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+QuantityDecreasing():void
+getQuantity():int
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Figure 3. A UML model of the inventory ordering system. (a) The UML 

class diagram. (b) A Statechart diagram representing the behavior of an 
order. (c) A Statechart diagram representing the behavior of product 

quantity. (d) A Sequence diagram representing the behavior of ordering a 
product by a user 
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OPCAT TIP enables a user with special authorization to insert and update transla-
tion rules into a Templates & Translations DB. OPCAT TIP also automatically gener-
ates Templates & Translations XML Files, each of which contains XML-formatted 
OPL templates and their translations to a specific target programming language. These 
files serve as input for the Implementation Generator. 

After the system designer chooses a target programming language, the Implementa-
tion Generator uses the corresponding Templates & Translations XML File along with 
the System OPL-XML Script in order to create the system Implementation (User In-
terface, Code, DB Schema, etc.). The System OPL-XML Script stores the OPL script 
of a specific system, representing its OPM model in an XML format. This script is 
automatically generated in OPCAT, while the designer creates and improves an OPM 
model. 

4.1 OPCAT TIP  

The main screen of OPCAT TIP includes three tabs: OPL, XML, and Translations. In 
the OPL tab, the OPL templates are described as being composed of sub-elements and 
characterized by attributes. For example, an object exhibition sentence, which de-
scribes the features (attributes and operations) of an object, has three constituents: 
ObjectName, which holds the sentence subject (object) name and is mandatory, Exhib-
itedObject, which is a template that appears once for each attribute of the object2, and 
Operation, which is a string that appears once for each method of the object. The 
XML schema, which is automatically generated by OPCAT TIP for this template and 
appears in the XML tab, is: 

<xs:element name="ObjectExhibitionSentence"> 
  <xs:complexType> 
   <xs:sequence> 
       <xs:element name = "ObjectName" type="xs:string"/> 
       <xs:element ref="ExhibitedObject" minOccurs="0"   
  maxOccurs="unbounded"/> 
       <xs:element name = "Operation" type="xs:string"  
  minOccurs="0" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
</xs:element>  

In the Translations tab of OPCAT TIP, the selected OPL template is translated into 
programming or markup languages, such as Java or HTML. The translation is ex-
pressed by an ordered set of operations. Each operation may have a (possibly com-
plex) condition and an action. Following the standard Event-Condition-Action (ECA) 
paradigm, when an instance of the OPL template is found in the System OPL-XML 
Script and the condition is satisfied, the action is executed. An example of such an 
operation can be carrying out the action insertAtLocation(,,BEFORE_ENDING_TAG, 
MethodSection,,) for each Operation of the Object Exhibition Sentence, if the object 
has methods, i.e., if templateContains(Operation) returns true.  

                                                           
2 The constituents of ExhibitedObject are: Minimal Cardinality, Maximal Cardinality, and 
Object Name. 



OPCAT TIP enables inserting new OPL templates and translations, updating exist-
ing OPL templates and translations, copying translations, copying references of trans-
lations, and checking the completeness of the translation rules. These capabilities 
enables dynamically defining OPL templates and translation rules without requiring 
deep knowledge of XML, as OPCAT TIP automatically generates XML files of the 
OPL templates and translations database. 

4.2 Implementation Generator  

The inputs for the implementation generator are (1) the target programming language 
(as specified by the designer), (2) the XML file of the OPL templates and translations 
for a specific language, and (3) the System OPL-XML Script (an XML file containing 
the OPL script of a system). When the implementation generator finds a match be-
tween an OPL sentence in the System OPL-XML Script and an OPL template in the 
Templates & Translations XML File, it executes the required operations in their speci-
fied order transforming the System OPL-XML Script into several XML files, each 
containing an XML format of a programming language file. Hence, conditions for 
executing OPCAT TIP operations are usually Boolean functions which check the 
existence of an element or an attribute in the input or output XML files. For example, 
templateContains (template t) checks if the current OPL template contains t as its sub-
element, while translationContains (path p, file f, tagName tn, attributeName an, 
attributeValue av) checks if the translation file f at path p contains <tn an=”av”…>. 
The operation actions insert, update, or remove elements or attributes from the output 
XML files. For example, insertAtLocation (path p, file f, location l, tagName tn, at-
tributeName an, attributeValue av, translation t) inserts the content of t at the location 
l in respect to <tn an=”av”…> in file f at path p3. The supported functions enable 
several updates of different OPL sentences to the same code block, while reading the 
System OPL-XML Script only once by the implementation generator.  

After creating the output code files in XML format, the implementation generator 
enables three possible options for handling the XML tags in the output files: (1) the 
XML tags can be left in order to support markup languages, such as HTML, (2) the 
XML tags can be omitted to support regular programming languages (such as Java), 
and (3) the XML tags can become comments in the target programming language for 
debugging purposes. The implementation generator gets the user preference for han-
dling tags in the output XML files from OPCAT TIP through the corresponding Tem-
plates & Translations XML File. If the user chooses to change the tags into comments, 
he or she is asked to supply the symbol of a single line comment and the starting and 
ending symbols of a multiple line comment in the target programming language. 

                                                           
3 Location can be one of BEFORE_STARTING_TAG, BEFORE_ENDING_TAG, 

AFTER_STARTING_TAG, AFTER_ENDING_TAG. 



4.3 An Example for Generating Java Code with OPM-GCG 

Due to space limitation, �Figure 4 was chosen to demonstrate the Java code generated 
by OPM-GCG for a representative process, Product Handling. As this figure shows, 
the system implementer can supply in addition to the translation rules a library of files 
for the target programming language. These general, system-independent files are 
influenced by the OPM ontology. In Java, for example, this library consists of opmOb-
ject, opmProcess, opmState, opmStatus, opmEvent, and opmEventQueue which repre-
sent the core OPM elements.  

// File ProductHandling.java  
package OrderSystem; 
import opmTypes.*; 

 

public class ProductHandling extends opmProcess { 
Boolean theInventoryEmpty; 
public ProductHandling () { 

theInventoryEmpty=new Boolean(false);  
} 
public boolean preConditionHolds () { 

boolean check = true; 
if (check) { } 

            return check;  
} 
public void run (Customer theCustomer, Product theProduct,  
  Order theOrder, Receipt theReceipt) { 
 if (preConditionHolds ()) { 

   // Effect theCustomer 
   // Effect theProduct 
   theOrder = new Order(); 
   theReceipt = new Receipt(); 
   ProductOrdering  theProductOrdering =  
 new ProductOrdering(); 

        theProductOrdering.run(theCustomer, theOrder); 
   InventoryChecking  theInventoryChecking =  
 new InventoryChecking(); 

     theInventoryChecking.run(new Integer( 
  theProduct.gettheProductQuantity()), theInventoryEmpty); 
        OrderPayingAndSupplying   theOrderPayingAndSupplying = 
   new OrderPayingAndSupplying(); 
    theOrderPayingAndSupplying.run(theInventoryEmpty, theOrder,  
   theProduct, theReceipt);  
 }  
} 
public boolean gettheInventoryEmpty() { 
 return theInventoryEmpty.booleanValue();  
} 
public void settheInventoryEmpty(boolean newInventoryEmpty) { 

theInventoryEmpty= new Boolean (newInventoryEmpty); 
} 

} 

Figure 4. The OPM-GCG-generated code for Product Handling 

As can be seen, OPM-GCG generates not only the system structure, but also its be-
havior, including the body of the system processes (through the function run) and their 
preconditions (through the function preConditionHolds). This ability of OPM-GCG is 
inherited from OPM, which enables explicitly specifying the relations between system 



structure and behavior in the same view. These relations include process inputs, out-
puts, enablers, triggers, etc. 

5 Comparison of OPCAT- and Rhapsody-Generated Codes  

To evaluate the relative value of OPM-GCG-generated code, we compare the code 
generated from OPM-GCG to the code generated from Rhapsody by I-Logix for the 
same inventory ordering system4. We have selected Rhapsody as the UML code gen-
erator for our comparison since to the best of our knowledge it is the only commercial 
tool that generates at least partial code for the system behavior.  

Rhapsody uses a library of over 30 Java classes, only some of which can be 
mapped to UML concepts (e.g., RiJState and RiJEvent). Others, such as RiJInformer 
and RiJOXF, are non-intuitive and seem to be part of the particular Rhapsody imple-
mentation of the Java code generator. Evidently, understanding the generated code 
requires deep understanding not only of the various UML views, but also of Rhapsody 
and its internal libraries. A system implementer who wishes to update this code, as is 
usually required in the development process of a system, needs to engage in studying 
the specific Rhapsody environment before managing to execute simple code update 
operations. These operations are required, for example, for generating the system 
behavior as expressed in interaction diagrams, which, in Rhapsody’s terms, are only 
partially constructive. Under these conditions, implementers understandably quite 
often prefer to write code manually from scratch rather than putting an automatic code 
generator to work and editing the code it generated.  

Size-wise, the OPM-CGC code generated for the ordering system contains 265 
lines, compared with 739 lines for the corresponding Rhapsody code. In other words, 
the size of the Rhapsody-generated Java code was almost 3 times larger than the cor-
responding OPM-GCG-generated code for the same system. Having 3 times less code 
to study, inspect, and modify is certainly an advantage even before looking into other 
aspects such as clarity, generality, completeness, and environment-independence.  

6 Summary and Future Work 

The differences between OPM and UML are highly perceivable during the analysis 
and design stages. While UML is a multiple-view, object-oriented modeling language, 
OPM supports a single unifying structure-behavior view. These differences percolate 
also to the implementation stage through the different perspectives of the supporting 
code generators. As demonstrated in this paper for a simple inventory ordering sys-
tem, the Java code generated by OPM-GCG includes system behavior (processes, 
control flows, event triggers, etc.). Comparing this code to the code generated from 
Rhapsody by ILogix for an analogous UML model of the same system, the OPM-

                                                           
4 The complete codes generated from Rhapsody and OPM-GCG for the inventory ordering 

system, along with the UML and OPM models, can be found at 
http://mis.hevra.haifa.ac.il/~iris/research/CodeGenerationData.zip. 



GCG code appears to be simpler, more intuitive, easier to maintain and update, and 
more complete.  

While some of these differences are due to the specific code generation implemen-
tation of I-Logix, the crucial differences stem from the structure-oriented approach of 
UML, in which behavior is spread over six diagram types, a fact that inevitably in-
vokes the model multiplicity problem [�12]. In future research on OPM-GCG power 
and scalability, we plan to generate large code segments of applications that combine 
structure and behavior in complex, intertwined ways from their OPM models in order 
to check the comprehensive and completeness of OPM-GCG-generated code. We also 
plan to empirically evaluate the quality and complexity pf the code produced by 
OPM-GCG and leading UML code generators to the code which is written manually 
by programmers to the same systems. 
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