
Object-Process Methodology (OPM) vs. UML:
A Code Generation Perspective

Iris Reinhartz-Berger1 and Dov Dori2

1 University of Haifa
Carmel Mountain, Haifa 31905, Israel
iris@mis.hevra.haifa.ac.il

2 Technion, Israel Institute of Technology
Technion City, Haifa 32000, Israel
dori@ie.technion.ac.il

Abstract. Modeling languages have been evolving at a high pace, encouraging
the use of automatic code generators for transforming models to programs.
Automatic code generators should enable mechanical and repetitive coding op-
erations to be performed quickly, reliably and uniformly, yielding higher pro-
ductivity and quality of the developed systems. One way to evaluate modeling
languages is to examine their code generation capabilities. In this paper, we
compare the code generated from Rhapsody by ILogix to the code generated
from OPCAT, an Object-Process Methodology (OPM) CASE tool. We found
that UML consistency problems and its distributed representation of system be-
havior are reflected in the code, yielding partial code that is mostly structure-
oriented. OPM models, which capture the static and dynamic aspects of a sys-
tem in a single view, enable the generation of potentially complete application
logic rather than just skeleton code. We also explain the unique architecture and
functionality of OPM-GCG—the generic code generator of OPCAT.

1 Introduction

Software engineering at large is ideally expected to cover all the phases of system
development processes. The growth of formal visual design languages and methods
has put the system analysis and design stages in the focus of leading software devel-
opment processes. Using these languages, developers communicate with each other on
the basis of a common ontology rather than via a specific programming language or
technology. The Unified Modeling Language (UML) [�10], for example, supports
object-oriented concepts, such as classes, methods, and inheritance relations. The
implementation of these concepts in different programming languages might vary.
Moreover, various parts of the same system can be translated into different target
languages.

Automatic code generators are valuable in maintaining consistency and eliminating
the gap between design models and their implementations. Automatic code generation
increases the productivity and quality of the developed systems, enables mechanical
and repetitive operations to be done quickly, reliably and uniformly, relieves designers

from mundane tasks so they can focus on essence, and enforces programmers to write
structured, legible code. The move towards automating code generation is also in line
with the industrial experience that the most complex task in creating a new system is
modeling it at the semantic level and not in writing its detailed code.

Developing code generators is not a trivial task. First, a good code generator should
narrow the gap between the design models and their implementation. This gap exists
due to differences in the abstraction level and in the perspectives adopted in the design
and implementation stages [�1]. Second, a code generator should be flexible and appli-
cable to various programming languages. Most of the existing code generators define
rules for translating visual constructs to corresponding code blocks in a specific pro-
gramming language. These language-specific rules are usually strict and reflect the
insight and the style of the code generator implementers. Changing the translation
rules in these tools requires massive rewriting of their code generators.

In this paper, we compare the code generated from Rhapsody by ILogix [�7], a lead-
ing UML CASE tool which generates UML static views, as well as some dynamic
views, to the code generated by OPCAT [�3] from Object-Process Methodology
(OPM) [�2] models. While UML supports multiple views of the same system, OPM is
a holistic approach that enables modeling the system structural, behavioral, functional,
and architectural aspects in a single coherent framework. This single view approach of
OPM at least potentially increases the consistency and integrity of the code generated
for OPM models. Furthermore, since OPM enables balanced modeling of system
structure and behavior, the implementations generated from OPM models are closer to
complete applications than just a skeleton of the system structure.

The structure of the rest of the paper is as follows. Section 2 elaborates on existing
code generators and their shortcomings. Section 3 briefly summarizes OPM and com-
pares it to UML using a simple inventory ordering system. Section 4 presents OPM-
GCG architecture and demonstrates its behavior on the ordering system, while Section
5 compares the completeness and simplicity of the Java code generated for the order-
ing system from OPCAT to that generated from Rhapsody. Finally, Section 6 summa-
rizes the main benefits and limitations of OPM in comparison to UML from a code
generation perspective.

2 Code Generators: Related Work

Code generators in the software engineering domain, which read repository data
(mostly of UML models) and output source code in target programming languages,
have become major components of CASE tools. Early UML code generators trans-
lated only the system structure, i.e., class diagrams, to object-oriented programming
languages. These tools produced only limited skeleton code and ignored system be-
havior. Harel and Gery [�5] utilized UML class and state diagrams to generate both
system structure and behavior. In order to apply this approach, state machines need to
be adopted as models of object behavior even if the objects perform simple, insignifi-
cant behaviors [�4].

Chow et al. [�1] proposed a two-step approach to generate Java code from UML
class, component, Statechart, sequence, and activity diagrams: first the static structure
of the system is generated and, then, system behavior is added. Although this approach
handles the important views of UML, it assumes consistency of the UML model input
and is specific to code generation in Java. As discussed in [�16], maintaining consis-
tency among UML views is not a trivial task.

Based on the subject-oriented approach, Harrison et al. [�6] proposed a method for
generating high-level skeletal Java code from UML models. The generated code im-
poses constraints on the acceptable designs and represents a certain redundancy in the
generated implementation due to its strong static type checking requirements.

Commercial CASE tools usually hide the logical translation rules from the users.
Using Component Object Model (COM) [�15], Rational Rose [�13] offers code genera-
tors as plug-ins, enabling new destination languages to be added dynamically. While
these generators handle packages, classes, interfaces, imports, inheritance relations,
fields, methods, and modifiers, they do not handle behaviors. Rhapsody by ILogix [�7]
generates partial system behavior. Dividing the UML views into constructive and non-
constructive, Rhapsody defines translation rules only for the constructive UML views.
Class and Statechart diagrams are considered constructive, while interaction diagrams
are only partially constructive, as Rhapsody uses them to define objects, operations,
and messages. However, the bodies of the operations must be modeled in Statecharts
or hand-coded in a browser. Use case and activity diagrams are non-constructive; they
only help analyze and document the system.

The Extensible Markup Language (XML) [�9] has been adopted also as a universal
language for communicating between methods and translating models across various
programming languages. Park and Kim [�11] propose an XML rule-based code genera-
tor for UML. They first define an API for extracting necessary design model data from
various UML repository formats. Code generation is then applied on the extracted
model data using a rule descriptor and a corresponding rule interpreter. As noted by
its authors, this work concerns only class diagrams and should be extended to the
other UML views. In addition to the consistency problem of UML views that this tool
should overcome, using XML as the input language may be abhorrent and non-
friendly to some users [�14].

Some of the mentioned shortcomings of code generators are inherited from using
UML as their modeling language. These include the consistency problem, the incom-
petence of the generated behavioral code, and the requirement to support code genera-
tion from different views. Using OPM as the underlying methodology for the code
generator enables a unified, balanced representation of the system structure and be-
havior in a single view. Moreover, the three built-in abstraction-refinement mecha-
nisms of OPM, which are described in the next section, guarantee that all the parts of
an OPM system model are always consistent. Hence, the code generated from OPM
models is more likely to be closer to the code of a complete, consistent application.

3 Object-Process Methodology (OPM)

Object-Process Methodology (OPM) [�2] is a holistic approach to the study and
development of systems. It integrates the object-oriented and process-oriented
paradigms into a single frame of reference. The elements of the OPM ontology are
entities (things and states) and links. A thing is a generalization of an object and a
process – the two basic building blocks of any system expressed in OPM. Objects are
(physical or informatical) things that exist, while processes are things that transform
objects. At any specific point in time, an object can be exactly in one state, and object
states are changed through occurrences of processes. Analogically, links can be
structural or procedural. Structural links express static relations between pairs of
entities, while procedural links connect entities (objects, processes, and states) to
describe the behavior of a system.

3.1 The Bi-Modal Representation of OPM

Two semantically equivalent modalities, one graphic and the other textual, jointly
express the same OPM model. A set of inter-related Object-Process Diagrams (OPDs)
constitute the graphical, visual OPM formalism. Each OPM element is denoted in an
OPD by a symbol, and the OPD syntax specifies correct and consistent ways by which
entities can be linked. The Object-Process Language (OPL) is the textual counterpart
modality of the graphical OPD-set. OPL is a dual-purpose language, oriented towards
humans as well as machines. Catering to human needs, OPL is designed as a con-
strained subset of English, which serves domain experts and system architects. De-
signed also for machine interpretation, OPL has an XML-based notation that provides
a solid basis for automatically generating the designed application. This dual represen-
tation of OPM also increases the processing capability of humans according to
Mayer's cognitive theory [�8].

3.2 OPM Refinement and Abstraction Mechanisms

Complexity management aims at balancing the tradeoff between two conflicting re-
quirements: completeness and clarity. Completeness requires that the system details be
stipulated to the fullest extent possible, while the need for clarity imposes an upper
limit on the level of complexity and does not allow for an OPD (and a corresponding
OPL paragraph) that is too cluttered or overloaded with entities and links among them.
OPM defines three refinement-abstraction mechanisms that enable presenting the
system at various detail levels without losing the comprehension of the system as a
whole. These three mechanisms are: (1) unfolding/folding, which is used for refin-
ing/abstracting the structural hierarchy of a thing and is applied by default to objects;
(2) in-zooming/out-zooming, which exposes/hides the inner details of a thing within its
enclosing frame and is applied primarily to processes; and (3) state express-
ing/suppressing, which exposes/hides the states of an object. Using flexible combina-
tions of these mechanisms, the achieved OPM models are consistent.

3.3 Modeling the Inventory Ordering System with OPM and UML

To demonstrate the differences between OPM and UML, we present an OPM model
and a UML model of an elementary inventory ordering system (Figures 1 and 3, re-
spectively). The system handles orders of a single product type. For simplicity, each
order reserves one product and the initial quantity of the product is 5.

As �Figure 1(a) shows, the main process, Product Handling, is activated by the
User. Upon activation, Product Handling affects Product and Customer and yields
Order and either Receipt or No Product Message. Zooming into Product Handling,
�Figure 1(b) reveals its four sub-processes, which are executed in their vertical position
order. First, Product Ordering affects Customer and yields Order in its initial or-
dered state. Then, Inventory Checking checks if the Product Quantity is 0. If so
(Inventory Empty is true), Product Requesting creates No Product Message. Oth-
erwise, Order Paying And Supplying is activated. As shown in �Figure 1(c), Order
Paying And Supplying first changes Order status from ordered to paid creating the
Receipt object (Order Paying), and then decrements Product Quantity by 1 and
changes Order status from paid to its final state, supplied (Order Supplying).

Figure 1. An OPM model of the inventory ordering system. (a) The top

level System Diagram (SD). (b) SD1 in which Product Handling is in-
zoomed. (c) SD1.1 in which Order Paying And Supplying is in-zoomed

(b) (a)

(c)

�Figure 2 is the semantically equivalent OPL script of the ordering system. This
script is understandable to humans who are not familiar with visual design languages
in general and OPM in particular. It also serves as documentation for the developed
system and its XML representation is used as an input to OPM-GCG.
Order can be ordered, paid, or supplied.
 Ordered is initial.
 Supplied is final.
Order is owned by Customer.
Order relates to Product.
Product exhibits Quantity.
 Quantity is of type integer.
User is environmental and physical.
User handles Product Handling.
Product Handling affects Customer and Product.
Product Handling yields Order.
Product Handling yields either Receipt or No
Product Message.
Product Handling zooms into Product Order-
ing, Inventory Checking, Product Requesting,
and Order Paying And Supplying, as well as
Inventory Empty.
 Inventory Empty is of type Boolean.
 Inventory Empty is false by default.
 Product Ordering affects Customer.
 Product Ordering yields ordered Order.
 Inventory Checking occurs if Quantity is 0.
 Inventory Checking changes Inventory
 Empty from false to true.

 Product Requesting occurs if
 Inventory Empty is true.
 Product Requesting yields No Product
 Message.
 Order Paying And Supplying occurs if
 Inventory Empty is false.
 Order Paying And Supplying affects
 Product and Order.
 Order Paying And Supplying yields Receipt.
 Order Paying And Supplying zooms into
 Order Paying and Order Supplying.
 Order Paying changes Order from
 ordered to paid.
 Order Paying yields Receipt.
 Order Supplying changes Order from
 paid to supplied.
 Following path a, Order Supplying
 changes Quantity from 5 to 4.
 Following path b, Order Supplying
 changes Quantity from 4 to 3.
 Following path c, Order Supplying
 changes Quantity from 3 to 2.
 Following path d, Order Supplying
 changes Quantity from 2 to 1.
 Following path e, Order Supplying
 changes Quantity from 1 to 0.

Figure 2. The OPL script of the inventory ordering system

A UML model for the same system is presented in �Figure 3. �Figure 3(a) is a class

diagram that represents the system structure. �Figure 3(b) and �Figure 3(c) are State-
charts representing the behavior of order status and product quantity1, respectively.
Finally, �Figure 3(d) is a sequence diagram that represents a typical scenario of product
ordering by a user.

As these figures demonstrate, the object-oriented nature of UML requires breaking
even this relatively small part of the system behavior into several pieces (methods)
and then further decomposing them to sequences or Statecharts. In OPM, these behav-
ior patterns are represented by stand-alone processes, which greatly simplify the sys-
tem model and consequently the system implementation (as we argue next).

4 OPM-GCG Architecture and Functionality

As noted, OPM is supported by a CASE tool called Object-Process CASE Tool
(OPCAT) [�3]. An important component of OPCAT is OPM-GCG, the generic code

1 Product quantity states are labeled q0 through q5 to enable Rhapsody to generate legal Java

variable names for them.

generator. OPM-GCG consists of two parts: OPCAT TIP (Template for Implementa-
tion Programming) and Implementation Generator.

+Quantity : int

+QuantityDecreasing():void
+getQuantity():int

Product

+status : String

+OrderPayingAndSupplying():void
+OrderPaying():void
+OrderSupplying():void

Order

+ProductOrdering():void

System

Receipt

+updateDetails():

Customer

NoProductMessage

*

1

*

1

*

ordered

paid

OrderSupplying_

OrderPaying_

 q2 q3

q5
q0

q1 q4

OrderSupplying_/QuantityDecreasing()
OrderSupplying_/QuantityDecreasing()

OrderSupplying_/QuantityDecreasing()

OrderSupplying_/QuantityDecreasing()

OrderSupplying_/QuantityDecreasing()

Quantity=q0

Quantity<>q0

getQuantity()

OrderSupplying()

Constructor

QuantityDecreasing()

OrderPaying()

Constructor

ProductOrdering()

Constructor

updateDetails()

OrderPayingAndSupplying()

Figure 3. A UML model of the inventory ordering system. (a) The UML

class diagram. (b) A Statechart diagram representing the behavior of an
order. (c) A Statechart diagram representing the behavior of product

quantity. (d) A Sequence diagram representing the behavior of ordering a
product by a user

supplied
(c) (b)

(a)

(d)

OrderUser ReceiptProduct NoProductMessageSystem Customer

OPCAT TIP enables a user with special authorization to insert and update transla-
tion rules into a Templates & Translations DB. OPCAT TIP also automatically gener-
ates Templates & Translations XML Files, each of which contains XML-formatted
OPL templates and their translations to a specific target programming language. These
files serve as input for the Implementation Generator.

After the system designer chooses a target programming language, the Implementa-
tion Generator uses the corresponding Templates & Translations XML File along with
the System OPL-XML Script in order to create the system Implementation (User In-
terface, Code, DB Schema, etc.). The System OPL-XML Script stores the OPL script
of a specific system, representing its OPM model in an XML format. This script is
automatically generated in OPCAT, while the designer creates and improves an OPM
model.

4.1 OPCAT TIP

The main screen of OPCAT TIP includes three tabs: OPL, XML, and Translations. In
the OPL tab, the OPL templates are described as being composed of sub-elements and
characterized by attributes. For example, an object exhibition sentence, which de-
scribes the features (attributes and operations) of an object, has three constituents:
ObjectName, which holds the sentence subject (object) name and is mandatory, Exhib-
itedObject, which is a template that appears once for each attribute of the object2, and
Operation, which is a string that appears once for each method of the object. The
XML schema, which is automatically generated by OPCAT TIP for this template and
appears in the XML tab, is:

<xs:element name="ObjectExhibitionSentence">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "ObjectName" type="xs:string"/>
 <xs:element ref="ExhibitedObject" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name = "Operation" type="xs:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

In the Translations tab of OPCAT TIP, the selected OPL template is translated into
programming or markup languages, such as Java or HTML. The translation is ex-
pressed by an ordered set of operations. Each operation may have a (possibly com-
plex) condition and an action. Following the standard Event-Condition-Action (ECA)
paradigm, when an instance of the OPL template is found in the System OPL-XML
Script and the condition is satisfied, the action is executed. An example of such an
operation can be carrying out the action insertAtLocation(,,BEFORE_ENDING_TAG,
MethodSection,,) for each Operation of the Object Exhibition Sentence, if the object
has methods, i.e., if templateContains(Operation) returns true.

2 The constituents of ExhibitedObject are: Minimal Cardinality, Maximal Cardinality, and
Object Name.

OPCAT TIP enables inserting new OPL templates and translations, updating exist-
ing OPL templates and translations, copying translations, copying references of trans-
lations, and checking the completeness of the translation rules. These capabilities
enables dynamically defining OPL templates and translation rules without requiring
deep knowledge of XML, as OPCAT TIP automatically generates XML files of the
OPL templates and translations database.

4.2 Implementation Generator

The inputs for the implementation generator are (1) the target programming language
(as specified by the designer), (2) the XML file of the OPL templates and translations
for a specific language, and (3) the System OPL-XML Script (an XML file containing
the OPL script of a system). When the implementation generator finds a match be-
tween an OPL sentence in the System OPL-XML Script and an OPL template in the
Templates & Translations XML File, it executes the required operations in their speci-
fied order transforming the System OPL-XML Script into several XML files, each
containing an XML format of a programming language file. Hence, conditions for
executing OPCAT TIP operations are usually Boolean functions which check the
existence of an element or an attribute in the input or output XML files. For example,
templateContains (template t) checks if the current OPL template contains t as its sub-
element, while translationContains (path p, file f, tagName tn, attributeName an,
attributeValue av) checks if the translation file f at path p contains <tn an=”av”…>.
The operation actions insert, update, or remove elements or attributes from the output
XML files. For example, insertAtLocation (path p, file f, location l, tagName tn, at-
tributeName an, attributeValue av, translation t) inserts the content of t at the location
l in respect to <tn an=”av”…> in file f at path p3. The supported functions enable
several updates of different OPL sentences to the same code block, while reading the
System OPL-XML Script only once by the implementation generator.

After creating the output code files in XML format, the implementation generator
enables three possible options for handling the XML tags in the output files: (1) the
XML tags can be left in order to support markup languages, such as HTML, (2) the
XML tags can be omitted to support regular programming languages (such as Java),
and (3) the XML tags can become comments in the target programming language for
debugging purposes. The implementation generator gets the user preference for han-
dling tags in the output XML files from OPCAT TIP through the corresponding Tem-
plates & Translations XML File. If the user chooses to change the tags into comments,
he or she is asked to supply the symbol of a single line comment and the starting and
ending symbols of a multiple line comment in the target programming language.

3 Location can be one of BEFORE_STARTING_TAG, BEFORE_ENDING_TAG,

AFTER_STARTING_TAG, AFTER_ENDING_TAG.

4.3 An Example for Generating Java Code with OPM-GCG

Due to space limitation, �Figure 4 was chosen to demonstrate the Java code generated
by OPM-GCG for a representative process, Product Handling. As this figure shows,
the system implementer can supply in addition to the translation rules a library of files
for the target programming language. These general, system-independent files are
influenced by the OPM ontology. In Java, for example, this library consists of opmOb-
ject, opmProcess, opmState, opmStatus, opmEvent, and opmEventQueue which repre-
sent the core OPM elements.

// File ProductHandling.java
package OrderSystem;
import opmTypes.*;

public class ProductHandling extends opmProcess {
Boolean theInventoryEmpty;
public ProductHandling () {

theInventoryEmpty=new Boolean(false);
}
public boolean preConditionHolds () {

boolean check = true;
if (check) { }

 return check;
}
public void run (Customer theCustomer, Product theProduct,
 Order theOrder, Receipt theReceipt) {
 if (preConditionHolds ()) {

 // Effect theCustomer
 // Effect theProduct
 theOrder = new Order();
 theReceipt = new Receipt();
 ProductOrdering theProductOrdering =
 new ProductOrdering();

 theProductOrdering.run(theCustomer, theOrder);
 InventoryChecking theInventoryChecking =
 new InventoryChecking();

 theInventoryChecking.run(new Integer(
 theProduct.gettheProductQuantity()), theInventoryEmpty);
 OrderPayingAndSupplying theOrderPayingAndSupplying =
 new OrderPayingAndSupplying();
 theOrderPayingAndSupplying.run(theInventoryEmpty, theOrder,
 theProduct, theReceipt);
 }
}
public boolean gettheInventoryEmpty() {
 return theInventoryEmpty.booleanValue();
}
public void settheInventoryEmpty(boolean newInventoryEmpty) {

theInventoryEmpty= new Boolean (newInventoryEmpty);
}

}

Figure 4. The OPM-GCG-generated code for Product Handling

As can be seen, OPM-GCG generates not only the system structure, but also its be-
havior, including the body of the system processes (through the function run) and their
preconditions (through the function preConditionHolds). This ability of OPM-GCG is
inherited from OPM, which enables explicitly specifying the relations between system

structure and behavior in the same view. These relations include process inputs, out-
puts, enablers, triggers, etc.

5 Comparison of OPCAT- and Rhapsody-Generated Codes

To evaluate the relative value of OPM-GCG-generated code, we compare the code
generated from OPM-GCG to the code generated from Rhapsody by I-Logix for the
same inventory ordering system4. We have selected Rhapsody as the UML code gen-
erator for our comparison since to the best of our knowledge it is the only commercial
tool that generates at least partial code for the system behavior.

Rhapsody uses a library of over 30 Java classes, only some of which can be
mapped to UML concepts (e.g., RiJState and RiJEvent). Others, such as RiJInformer
and RiJOXF, are non-intuitive and seem to be part of the particular Rhapsody imple-
mentation of the Java code generator. Evidently, understanding the generated code
requires deep understanding not only of the various UML views, but also of Rhapsody
and its internal libraries. A system implementer who wishes to update this code, as is
usually required in the development process of a system, needs to engage in studying
the specific Rhapsody environment before managing to execute simple code update
operations. These operations are required, for example, for generating the system
behavior as expressed in interaction diagrams, which, in Rhapsody’s terms, are only
partially constructive. Under these conditions, implementers understandably quite
often prefer to write code manually from scratch rather than putting an automatic code
generator to work and editing the code it generated.

Size-wise, the OPM-CGC code generated for the ordering system contains 265
lines, compared with 739 lines for the corresponding Rhapsody code. In other words,
the size of the Rhapsody-generated Java code was almost 3 times larger than the cor-
responding OPM-GCG-generated code for the same system. Having 3 times less code
to study, inspect, and modify is certainly an advantage even before looking into other
aspects such as clarity, generality, completeness, and environment-independence.

6 Summary and Future Work

The differences between OPM and UML are highly perceivable during the analysis
and design stages. While UML is a multiple-view, object-oriented modeling language,
OPM supports a single unifying structure-behavior view. These differences percolate
also to the implementation stage through the different perspectives of the supporting
code generators. As demonstrated in this paper for a simple inventory ordering sys-
tem, the Java code generated by OPM-GCG includes system behavior (processes,
control flows, event triggers, etc.). Comparing this code to the code generated from
Rhapsody by ILogix for an analogous UML model of the same system, the OPM-

4 The complete codes generated from Rhapsody and OPM-GCG for the inventory ordering

system, along with the UML and OPM models, can be found at
http://mis.hevra.haifa.ac.il/~iris/research/CodeGenerationData.zip.

GCG code appears to be simpler, more intuitive, easier to maintain and update, and
more complete.

While some of these differences are due to the specific code generation implemen-
tation of I-Logix, the crucial differences stem from the structure-oriented approach of
UML, in which behavior is spread over six diagram types, a fact that inevitably in-
vokes the model multiplicity problem [�12]. In future research on OPM-GCG power
and scalability, we plan to generate large code segments of applications that combine
structure and behavior in complex, intertwined ways from their OPM models in order
to check the comprehensive and completeness of OPM-GCG-generated code. We also
plan to empirically evaluate the quality and complexity pf the code produced by
OPM-GCG and leading UML code generators to the code which is written manually
by programmers to the same systems.

References

1 Chow, K.O., Jia, W., Chan, V., Cao, J.: Model-Based Generation of Java Code. Int. Conf.
on Parallel and Distributed Processing Techniques and Applications, 2000.

2 Dori, D.: Object-Process Methodology - A Holistic Systems Paradigm. Springer Verlag,
New York, 2002.

3 Dori, D., Reinhartz-Berger, I., Sturm, A.: OPCAT - A Bimodal CASE Tool for Object-
Process Based System Development. Int. Conf, on Enterprise Information Systems, 2003,
pp. 286-291. Software download site: http://www.objectprocess.org/

4 Doudlass, B.P.: Real-Time UML. Addison-Wesley, 1998.
5 Harel, D., Gery, E.: Executable Object modeling with Statecharts. IEEE Computer, 30 (7),

1997, pp. 31-42.
6 Harrison, W., Barton, C., Raghavachari, M.: Mapping UML Designs to Java. Conf. on

Object-oriented programming, systems, languages, and applications, 2000, pp. 178-187.
7 ILogix: Rhapsody in C – Code Generation Guide,

http://safariexamples.informit.com/0201699567/Rhapsody/Doc/Books/codegenc.pdf
8 Mayer, R.E.: Multimedia Learning. Cambridge University Press, 2001.
9 Object Management Group (OMG): Extensible Markup Language (XML),

http://www.w3.org/XML/, 2002.
10 Object Management Group (OMG): UML 1.4 - UML Semantics. OMG document for-

mal/01-09-73, 2001, http://cgi.omg.org/docs/formal/01-09-73.pdf
11 Park, D.H., Kim, S. D.: XML Rule Based Source Code Generator for UML CASE Tool.

8th Asia Pacific Software Engineering Conference, 2001, pp. 53-60.
12 Peleg, M., Dori, D.: The Model Multiplicity Problem: Experimenting with Real-Time

Specification Methods. IEEE Tran. on Software Engineering, 26 (8), 2000, pp. 742-759.
13 Rational Cooperation: Rational Rose, http://www.rational.com/products/rose/index.jsp
14 Sarkar, S., Cleaveland, C.: Code Generation Using XML Based Document Transforma-

tion. Published on The Server Side – Your J2EE Community.
15 Stearns, D.: The Basics of Programming Model Design. Microsoft Coorperation, 1998.
16 Workshop on Consistency Problems in UML-based Software Development, 5th Int. Conf.

on the Unified Modeling Language - the Language and its applications, 2002.

