An OPM-Based Metamodel of System Development
Process

Dov Dori and Iris Reinhartz-Berger

Technion, Isragl Institute of Technology
Technion City, Haifa 32000, Israel
Emails: { dori @ie, ieiris@tx} .technion.ac.il

Abstract. A modeling and development methodology is a combination of a
language for expressing the universal or domain ontology and an approach for
developing systems using that language. A common way for building,
comparing, and evaluating methodologies is metamodeling, i.e., the process of
modeling the methodology. Most of the methodology metamodels pertain only
to the language part of the methodologies, leaving out the description of the
system development processes or describing them informally. A major reason
for this is that the methods used for metamodeling are structural- or object-
oriented, and, hence, are less expressive in modeling the procedural aspects of a
methodology. In this paper we apply Object-Process Methodology (OPM) to
specify a generic OPM-based system development process. This metamodel is
made possible due to OPM's view of objects and processes as being on equal
footing rather than viewing object classes as superiors to and owners of
processes. This way, OPM enables specifying both the structural (ontological
constructs) and behavioral (system development) aspects of a methodology in a
single, unified view.

1 Introduction

A system modeling and development methodology ideally supports the entire system
lifecycle, from initiation (conceiving, initiating, and requirement elicitation) through
development (analysis, design, and implementation) to deployment (assimilation,
usage, and maintenance) [5]. To enable this diversified set of activities, the
methodology should be based on sound ontology, which can be either universal or
domain-specific; a language for expressing the ontology; and a well-defined system
development process. Developers who follow this process use the language to
produce the artifacts that are pertinent for each phase of the system’s lifecycle. It
should therefore come as no surprise that any system modeling and devel opment
methodology worthy of its name is itself a highly complex system, and as such, it
ought to be carefully analyzed and model ed.

The concept of metadata is quite widespread. In the context of the Internet, for
example, metadata is machine understandable information for the Web.
Metamodeling, the process of modeling a methodology, extends the notion of
metadata and produces metamodels, i.e., models of methodologies. Metamodels have

2 Dov Dori and Iris Reinhartz-Ber ger

become important means for building, comparing, and evaluating methodologies and
their supporting CASE tools. Hence, it has been the focal point in several efforts to
coalesce object-oriented methods and, at the same time, put them on a more rigorous
footing [3, 9, 11, 13]. Some of the created metamodels use the methodology being
modeled as a tool for describing itself. We refer to this type of metamodeling as
reflective metamodeling and to the methodology as a reflective methodology. A
reflective methodology is especially powerful since it is self-contained and does not
require auxiliary means or external toolsto model itself.

Most of the existing (both reflective and non-reflective) metamodels focus on
describing the syntax and semantics of the methodology constructs, leaving out of the
metamodel all the procedural and behavioral aspects [4]. These aspects relate to
processes that are either part of the language capabilities (such as refinement-
abstraction processes) or processes that belong to the development of a system using
the methodology. The reason for the lack of procedural modeling is that the
techniques used for metamodeling (such as ERD and UML) are structural- or object-
oriented. Object-Process Methodology (OPM) overcomes this limitation by
supporting the specification of the structural and behavioral aspects of the modeled
methodology in a single framework, enabling mutual effects between them.

In this paper, we apply OPM to define a comprehensive lifecycle-supporting
system development process. This process follows generic concepts of systems
evolution and lifecycle, namely requirement specification, analysis and design,
implementation, usage and maintenance, and, as such, it is not specific to OPM-based
system development. Nevertheless, applying it in an OPM framework has great
benefits as explained latter. In Section 2 we review existing metamodels and criticize
their ability to model system development processes. In Section 3 we introduce the
foundations of OPM, while the metamodel of an OPM-based development process is
presented in Section 4. Finally, in Section 5, we summarize the main benefits of our
metamodeling approach and discuss future research directions.

2 Literature Review: Metamodels and Metamodeling

2.1 Metamodel and M etamodeling Definitions

System analysis and design activities can be divided into three types with increasing
abstraction levels: real world, model, and metamodel [9, 19]. The real world is what
system analysts perceive as reality or what system architects wish to create as reality.
A model is an abstraction of this perceived or contemplated reality that enables its
expression using some approach, language, or methodology. A metamodel is a model
of amodel, or more accurately, amodel of the modeling methodology [22].

Analogous to modeling, metamodeling is the process that creates metamodels. The
level of abstraction at which metamodeling is carried out is higher than the level at
which modeling is normally done for the purpose of generating a model of a system
[9]. Metamodeling is worth pursuing because of the following reasons:

An OPM-Based Metamodel of System Development Process 3

= With the advent of the Internet, and particularly the Intranet, data integration has
become a major concern. Metamodels are the foundation for data integration in
software (and even hardware) development. One such magjor effort is the Resource
Description Framework (RDF) [20] which provides a lightweight ontology system
to support the exchange of knowledge on the Web.
= Metamodels help abstracting low level integration and interoperability details and
facilitate partitioning problems into orthogonal sub-problems. Hence,
metamodels can serve as devices for method development (also referred to as
method engineering) [1, 2], language modeling, and conceptual definition of
repositories and CASE tools[17].

= Defining a methodology is an interactive process, in which a core is defined and
then extended to include al the needed concepts. Metamodeling enables checking
and verifying the completeness and expressiveness of a methodology through
understanding the deep semantics of the methodology as well as relationships

among concepts in different languages or methods [10].

The growth of object-oriented methods during the last decade of the 20™ century
introduced a special type of metamodeling, which we call reflective metamodeling.
Reflective metamodeling models a methodology by the means and tools that the
methodology itself provides. While metamodeling is a formal definition technique of
methodologies, reflective metamodeling can serve as a common way to examine and
demonstrate the methodology’ s expressive power.

2.2 Leading M etamodels of Analysis and Design M ethods

Metamodels of visual software engineering methods are commonly expressed in ER
or class diagrams. These notations model primarily the structural and static aspects of
methodologies. ER-based metamodels are also limited in describing constraints,
hierarchical structures (i.e.,, complex objects), explosion, and polymorphism [4]
required for specifying complete methodologies or languages.

UML, which is the standard object-oriented modeling language, has several
metamodel propositions. The reflective UML metamodel in [13], for example,
includes class diagrams, OCL (Object Constraint Language) [21] sentences, and
natural language explanations for describing the main elementsin UML and the static
relations among them. The Meta Object Facility (MOF) [11], which is an OMG
standard, extensible four layer metadata architecture, is aso applied to metamodel
UML. MOF layers are: information (i.e., real world concepts, labeled M0O), model
(M1), metamodd (M2), and meta-metamodel (M3). The meta-metamodel layer
describes the structure and semantics of meta-metadata, i.e., it is an “abstract
language” for defining different kinds of metadata (e.g., meta-classes and meta-
attributes). The Meta Modeling Facility (MMF) [3] provides a modular and extensible
method for defining and using UML. It comprises a static, object-oriented language
(MML), used to write language definitions; a tool (MMT) used to interpret those
definitions; and a method (MMM), which provides guidelines and patterns encoded as
packages that can be specialized to particular language definitions.

These metamodels of UML are incomplete in more than one way. First, UML is
only a language, not a methodology, so only the language elements are metamodel ed,

4 Dov Dori and IrisReinhartz-Berger

but not any object-oriented (or other) development process [13]. Second, the
consistency and integrity constraints that UML models should follow are not included
and formulated in these metamodels. Several “software process models’ have been
associated with UML to create complete UML-based methods. One such familiar
development process is the Rational Unified Process (RUP) [16]. RUP is a
configurable software development process pattern that presents the relations between
the process lifecycle aspects (inception, elaboration, construction, and transition) and
the process disciplines and activities (business modeling, requirements, etc.). While
RUP supplies a general framework of development processes, it does not have a
precise underlying metamodel.

The Software Process Engineering Metamodel (SPEM) [12] uses UML to describe
a concrete software development process or a family of related software development
processes. It uses MOF four-layered architecture, where the performing process (the
real-world production process) is at level MO and the definition of the corresponding
process (e.g., RUP) isat level M1.

The Object-oriented Process, Environment, and Notation (OPEN) [8, 14] is a
methodology that offers a notation, called OPEN Modeling Language (OML) [7], as
well as a set of principles for modeling all aspects of software development across the
entire system lifecycle. The development process is described by a contract-driven
lifecycle model, which is complemented by a set of techniques and a formal
representation using OML. The lifecycle process, including its techniques, tasks, and
tools, is described in terms of classes and their structural relations.

The above metamodels, as well as other metamodels that use structural- or object-
oriented methodologies, emphasize the objects and their relations within the
metamodel, while the procedural aspects are suppressed and revealed only through
operations of objects and the messages passed among them [4]. While real-world
processes require interaction and state diagrams to describe system dynamics and
function, metamodels of methodologies use only packages, classes, and associations.
The main reasons for this limited usage of UML include the complexity of its
vocabulary [18] and its model multiplicity and integration problems [15]. Object-
Process Methodology overcomes this shortcoming by recognizing processes as
entities beside, rather than underneath, objects.

3 Object-Process M ethodology (OPM)

Object-Process Methodology (OPM) [5] is an integrated modeling approach to the
study and development of systems in general and information systems in particular.
Enabling the existence of processes as stand-alone entities provides for the ability to
model a system in a single unified framework, showing in the same diagram type its
structure and behavior. These two major aspects co-exist in the same OPM model
without highlighting one at the cost of suppressing the other. Hence, OPM provides a
solid basis for modeling complex systems, in which structure and behavior are highly
intertwined and hard to separate. Involving the modeling process with the ontology
elements, system devel opment methodol ogies are a prime example of such systems.

An OPM-Based Metamodel of System Development Process 5

The elements of the OPM ontology are entities (things and states) and links. A
thing is a generalization of an object and a process — the two basic building blocks of
any system expressed in OPM. At any point in time, each object is at some state,
while object states are changed through occurrences of processes. Respectively, links
can be structural or procedural. Structural links express static relations between pairs
of things, where aggregation, generalization, characterization, and instantiation are the
four fundamental structural relations. Procedural links connect entities to describe the
behavior of a system, i.e., how processes transform and use other entities.

Two semantically equivalent modalities, one graphic and the other textual, jointly
express the same OPM model. A set of inter-related Object-Process Diagrams (OPDs)
congtitute the graphical, visual OPM formalism. Each OPM element is denoted in an
OPD by a symbol, and rules are defined for specifying correct and consistent ways by
which entities are linked. The Object-Process Language (OPL), defined by a
grammar, is the textual counterpart modality of the graphical OPD-set. OPL is a dual-
purpose language, oriented towards humans as well as machines. Catering to human
needs, OPL serves domain experts and system architects engaged in analyzing and
designing a system. Designed also for machines, OPL provides a firm basis for
automatically generating the designed application. Every OPD construct is expressed
by a semantically equivalent OPL sentence or part of a sentence and vice versa.

OPM manages system complexity through three refinement/abstraction
mechanisms. Unfolding/folding, which is used for refining/abstracting the structural
hierarchy of a thing; In-zooming/out-zooming, which exposes/hides the inner details
of athing within its frame; and state expressing/suppressing, which exposeshides the
states of an object. Using these mechanisms, OPM enables specifying a system to any
desired level of detail without losing legibility and comprehension of the resulting
specification.

Being both object- and process-oriented, OPM enables explicit modeling of the
procedural and dynamic aspects of the development process part of a system analysis
and design methodology. In the rest of the paper, we present a graphical OPM model
of a generic system development process, which includes requirement specifying,
analyzing and designing, implementing, and using and maintaining. The legend of
thismodel is provided in [5] and in Appendix A.

4 An OPM-Based System Development Model

The System Diagram, which is labeled SD and shown in Figure 1, is the top-level
specification of the OPM metamodel. It specifies Ontology, Notation, and the
System Developing process as the maor OPM features (characterizations).
Ontology includes the basic elements in OPM, their attributes, and the relations
among them. For example, objects, processes, states, and aggregations are all OPM
elements. The Notation represents the Ontology graphically (by OPDs) or textually
(by OPL sentences). For example, a process is represented graphically in an OPD by
an ellipse, while an object is symbolized by arectangle.

The System Developing process, also shown in SD, is handled by the User, who
is the physical and external (environmental) object that controls (is the agent of) the

6 Dov Dori and Iris Reinhartz-Ber ger

process. This process also requires Ontology and Notation as instruments (inputs) in
order to create a System.

OPM
SD - OPM exhibits Ontology and Notation, as
A\ | well as System Developing.
Notation represents Ontology.

il System Developing requires
_____ Notation and Ontology.

System Developing yields

System.
User is environmental and physical.
User handles System Developing.

System
Developing

Figurel. Thetop level specification of the OPM metamodel

The OPL paragraph, which is eguivalent to SD, is aso shown in Figure 1. Since
OPL is a subset of English, users who are not familiar with the graphic notation of
OPM can validate their specifications by inspecting the OPL sentences. These
sentences are automatically generated on the fly in response to the user's draws of
OPDs [6]. Due to space limitations and the equivalence of OPM graphical and textual
notations, we use only the OPD notation in the rest of the paper.

Zooming into System Developing, SD1 (Figure 2) shows the common sequential®
stages of system developing processes. Requirement Specifying, Analyzing &
Designing, Implementing, and Using & Maintaining. All of these processes use the
same OPM Ontology, a fact that helps narrowing the gaps between the different
stages of the development process. SD1 shows that the Client and the System
Architect, who, aong with the Implementer, specialize User, handle the
Requirement Specifying sub-process. Requirement Specifying takes OPM
Ontology as an input and creates a new System, which, at this point, consists only of
a Requirement Document. The termination of Requirement Specifying starts
Analyzing & Designing, the next sub-process of System Developing.

The agent of the Analyzing & Designing stage is the System Architect, who uses
the Requirement Document and OPM Notation to create a new part of the system,
the Analysis & Design Document. When the Analyzing & Designing process
terminates, the Implementer (programmer, DBA, etc.) starts the Implementing phase,
which uses the Requirement Document and the Analysis & Design Document in
order to create the Implementation. Finaly, the Implementer changes the system
Implementation during the Using & Maintaining stage, while the Client uses the
System.

1 The time line in an OPD flows from the top of the diagram downwards, so the vertica axis
within an in-zoomed process defines the execution order. The sub-processes of a sequentia
process are depicted in the in-zoomed frame of the process stacked on top of each other with
the earlier process on top of a later one. Analogously, subprocesses of a parallel process
appear in the OPD side by side, at the same height.

An OPM-Based Metamodel of System Development Process 7

As the invocation links in SD1 denote, each System Developing Sub-process can
invoke restarting of the entire development process, which potentially enables the
introduction of changes to the requirements, analysis, design, and implementation of
the System. These invocations give rise to an iterative development process, in which
an attempt to carry out a sub-process reveals faults in the deliverable of a previous
subprocess, mandating a corrective action.

SD1
Deliverable
System .
e Developing
Requiremnent
- Specwf}rmg
F analyzing & f'
Designing
4 .‘
o AN

A Implementing '

Using® \g 4 ©====="=5 .
Maintaining — Implementer —
‘4

——————

System |
Architect

Requirement &1
| Document

N
>A
[

Analysisd
Design
| Document

Figure 2. Zooming into System Developing

4.1 The Requirement Specifying Stage

In SD1.1 (Figure 3), Requirement Specifying is zoomed into, showing its four
subprocesses. First, the System Architect and the Client define the problem to be
solved by the system (or project). This Problem Defining step creates the Problem
Definition part of the current system Requirement Document. Next, through the
Requirement Reusing sub-process, the System Architect may reuse requirements
that fit the problem at hand and are adapted from any existing System (developed by
the organization). Reuse helps achieve high quality systems and reduce their
development and debugging time. Hence, when developing large systems, such as
Web applications or real-time systems, it is important to try first to reuse existing
artifacts adapted from previous generations, analogous systems, or commercia off-
the-shelf (COTS) products that fit the current system development project. Existing,
well-phrased requirements are often not trivial to obtain, so existing relevant
requirements should be treated as a potential resource no less than code. Indeed, as
the OPD shows, reusable artifacts include not only components (which traditionally
have been the primary target for reuse), but also requirements.

After optional reuse of requirements from existing systems (or projects), the
System Architect and the Client, working as a team, add new Requirements or
update existing ones. This step uses OPM Ontology in order to make the

8 Dov Dori and Iris Reinhartz-Berger

Requirement Document amenable to be processed by other potential OPM tools, and
in particular to an OPL compiler. The bi-modal property of OPM, and especially the
use of OPL, a subset of natural language, enables the Client to be actively involved in
the critical Requirement Specifying stage. Moreover, since the System Architect
and the Client use OPM Ontology in defining the new requirements, the resulting
Requirement Document is indeed expressed, at least partially, in OPL in addition to
explanations in free natural English. Such structured OPM-oriented specification
enables automatic trandlation of the Requirement Document to an OPM analysis and
design skeleton (i.e., a skeleton of an OPD-set and its corresponding OPL script).
Naturally, at this stage the use of free natural language beside OPM seems mandatory
to document motivation, alternatives, considerations, etc.

Finaly, the Requirement Adding process results in the Boolean object “Is
Backtracking Required?”, which determines whether System Developing should be
restarted. If so, Development Process Backtracking invokes the entire System
Developing. Otherwise, Requirement Specifying terminates, enabling the
Analyzing & Designing process to begin.

Requirernent
Document

System

Requirement
Specifying

pea—

System
Architect &

5 N\ achiect |
Requirement
. Reusing
‘.
Requirement
dding O

Is Backtracking Required?

Lo)

Ontology

Development
Process
Backtrackin

System
- Developing

Figure 3. Zooming into Requirement Specifying

4.2 The Analyzing and Designing Stage

During the Analyzing & Designing stage, shown in SD1.2 (Figure 4), a skeleton of an
OPL Script is created from the Requirement Document for the current system. As
noted, in order to make this stage as effective and as automatic as possible, the
Requirement Document should be written using OPM, such that the resulting OPL
script can be compiled. The System Architect can then optionally reuse analysis and
design artifacts from previous systems (projects), creating a basis for the current

An OPM-Based Metamodel of System Development Process 9

system analysis and design. Finally, in an iterative process of Analysis & Design
Improving (which is in-zoomed in SD1.2.1, Figure 5), the System Architect can
engage in OPL Updating, OPD Updating, System Animating, General Information
Updating, or Analysis & Design Terminating.

SD1.2 roo==a
v System i
vArchitect |

......

Analyzing &
Designing

Requirement

Analysisé. Daocument

Design
Document

Analysisé.
Design
Reusing

Analysisé
Design
|mprovin

Ontology

|s Backtracking Required?

true false

Development
Frocess
Bacltracking

OPL Script

Elerment
Dictionary

System
Developing

Figure 4. Zooming into Analyzing & Designing

Any change a user makes to one of the modalities representing the model
triggers an automatic response of the development environment software to reflect the
change in the complementary modality. Thus, as SD1.2.1 shows, OPD Updating (by
the System Architect) affects the OPD-set and immediately invokes OPL
Generating, which changes OPL Script according to the new OPD-set. Conversely,
OPL Updating (also by the System Architect) affects the OPL Script, which invokes
OPD Generating, reflecting the OPL changes in the OPD-set.

Since OPM enables modeling system dynamics and control structures, such as
events, conditions, branching, and loops, System Animating Simulates an OPD-set,
enabling System Architects to dynamically examine the system at any stage of its
development. Presenting live animated demonstrations of system behavior reduces the
number of design errors percolated to the implementation phase. Both static and
dynamic testing help in detecting discrepancies, inconsistencies, and deviations from
the intended goal of the system. As part of the dynamic testing, the simulation enables
designers to track each of the system scenarios before writing a single line of code.
Any detected mistake or omission is corrected at the model level, saving costly time
and efforts required within the implementation level. Avoiding and eliminating design
errors as early as possible in the system development process and keeping the
documentation up-to-date contribute to shortening the system's delivery time ("time-
to-market™).

10 Dov Dori and Iris Reinhartz-Ber ger

Upon termination of the Analysis & Design Improving stage, if needed, the entire
System Developing process can restart or the Implementing stage begins.

SD1.2.1

COntology

FPa e
¢ System ¢

5 vArchitect ¢
Motation = &- ")

Analysisé
Design
Improving

General
Information
Updating

Ana_lrysws & Design
erminating

Analysis
Design
Document

3
Is Backtracking Required?
" true fakse

General
Infarmation

I/
OPD-set
7

S s,

OPD
Generating

Figure 5. Zooming into Analysis & Design Improving

OPL
Generating

4.3 The Implementing Stage

The Implementing stage, in-zoomed in SD1.3 (Figure 6), begins by defining the
Implementation Profile, which includes the target Language (e.g., Java, C++, or
SQL) and a default Directory for the artifacts. Then, the Implementation Skeleton
Generating process uses the OPL Script of the current system and inner Generation
Rules in order to create a skeleton of the Implementation. The Generation Rules
save pairs of OPL sentence types (templates) and their associated code templates in
various target Languages.

The initial skeleton of the Implementation, which includes both the structural and
behavioral aspects of the system, is then modified by the Implementer during the
Implementation Reusing and Implementation Improving steps. In the Testing &
Debugging stage, the resulting Implementation is checked against the Requirement
Document in order to verify that it meets the system requirements defined jointly by
the Client and the System Architect. If any discrepancy or error is detected, the
System Developing process is restarted, else the system is finally delivered,
assimilated and used. These sub-processes are embedded in the Using & Maintaining
process at the bottom of SD1 (Figure 2). While Using & Maintaining takes place, the
Client collects new requirements that are eventually used when the next generation of
the system is initiated. A built-in mechanism for recording new requirements in OPM
format while using the system would greatly facilitate the evolution of the next
system generation [5].

An OPM-Based Metamodel of System Development Process 11

SD1.3
FoTT T t Implementing
volmplementer ¥
e ' Parameter System
Determinin
Implementation
/A Profile A
Language
Analysisd
= B Design —
Directory mplementation Document
Skeleton
Generating
Generation
e Implementation
éeusmg OPL Script
Implementation Implementation |
Impraving
Is Backtracking Required? Testingd:
true false Debugging Regquirement
Document
)
Development
Process System
Cntolagy Baclktracking Developing

Figure 6. Zooming into Implementing

5 Summary and Future Work

We have presented a complete and detailed model of a system for developing systems
as part of the OPM reflective metamodel. This system development model follows
generic concepts of systems evolution and lifecycle, and as such, it is not specific to
OPM-based system development. Nevertheless, applying this process in an OPM
framework has great benefits. it narrows the gap between the various development
steps and enables semi-automated generations. The elaborate backtracking options of
this model, which are built-in at all levels, make it flexible enough to represent a
variety of information system development approaches, ranging form the classical
waterfall model through incremental development to prototyping.

Although object-oriented system development methods have been augmented to
include models that enable specification of the system's behavioral aspects (e.g., UML
sequence, collaboration, and Statechart diagrams), forma metamodels of these
methods relate only to their language aspects. More specifically, the widely accepted
object-oriented approach, which combines UML as the language part with RUP asthe
system development part, provides a formal metamodel only of the static aspects.
Conversely, since OPM inherently combines the system's structural and behavioral
aspects in a unifying, balanced framework, it can reflectively metamodel both the
language and the development process parts of any methodology. This ability to
model equally well structural and procedural system aspects is indicative of OPM's
expressive power, which is a direct result of its balanced ontology. Recognizing

12 Dov Dori and Iris Reinhartz-Ber ger

objects and processes as prime ontological constructs of equal status provides for
faithful modeling of systems, regardless of their domain, while OPM's abstraction-
refinement capabilities enable systems complexity management.

The system development process specified in this work is designed to accompany
the development of any system that involves a combination of complex structure and
behavior. The model of this development process provides a theoretical foundation
for improving the current version of OPCAT [6], Object Process CASE Tool, that
supports OPM-based systems development. System Animating, OPD Updating, and
OPL Updating are already implemented as OPCAT services, while Implementation
Skeleton Generating is in progress. We also plan to implement and incorporate all
the other System Developing sub-processes into OPCAT in order to make it a fully
Integrated System Engineering Environment (I SEE).

References

1 Brinkkemper, S, Lyytinen. K., and Welke, R. Method Engineering: Principles
of Method Construction and Tool Support, Kluwer Academic Publishers, 1996.

2 Brinkkemper, S., Saeki, M., and Harmsen. F. A Method Engineering Language
for the Description of Systems Development Methods. 13" Conference on
Advanced Information Systems Engineering (CaiSE’'2001), Lecture Notes in
Computer Science 2068, pp. 473-476, 2001.

3 Clark, T., Evans, A., and Kent, S. Engineering Modeling Languages. a Precise
Meta-Modeling Approach. http://www.cs.york.ac.uk/puml/mmf/langeng.ps

4 Dominguez, E., Rubio, A.L., Zapata, M.A. Meta-modelling of Dynamic
Aspects: The Noesis Approach. International Workshop on Model Engineering,
ECOOP’ 2000, pp. 28-35, 2000.

5 Dori, D. Object-Process Methodology - A Holistic Systems Paradigm, Springer
Verlag, Berlin, Heidelberg, New Y ork, 2002.

6 Dori, D. Reinhartz-Berger, . and Sturm A. OPCAT — A Bimodal Case Tool for
Object-Process Based System Development. 5" International Conference on
Enterprise Information Systems (ICEIS 2003), pp. 286-291, 2003.

Software download site: http://www.objectprocess.org

7 Firesmith, D., Henderson-Sellers, B., and Graham, |. The OPEN Modeling
Language (OML) — Reference Manual. Cambridge University Press, SIGS
books, 1998.

8 Graham, I., Henderson-Sellers, B., and Younessi, H. The OPEN Process

Specification. Addison-Wesley Inc., 1997.

9 Henderson-Sellers, B. and Bulthuis, A. Object-Oriented Metamethods, Springer
Inc., 1998.

10 Hillegersberg, J.V., Kumar, K. and Welke, R.J. Using Metamodeling to Analyze
the Fit of Object-Oriented Methods to Languages. Proceedings of the 31%
Hawaii International Conference on System Sciences (HICSS98), pp. 323-332,
1998.

11 Object Management Group (OMG). Meta Object Facility (MOF) Specification.
OMG document formal/02-04-03, http://cgi.omg.org/docs/formal/02-04-03.pdf

An OPM-Based Metamodel of System Development Process 13

12

13

14

15

16

17

18

19

20

21

22

Object Management Group (OMG). Software Process Engineering Metamodel

(SPEM), version 1.0, OoMG document formal/02-11-14,

http://www.omg.org/technol ogy/documents/formal/spem.htm

Object Management Group (OMG). UML 14 - UML Semantics. OMG

document formal/01-09-73, http://cgi.omg.org/docs/formal/01-09-73.pdf

OPEN web site, http://www.open.org.au/

Peleg, M. and Dori, D. The Model Multiplicity Problem: Experimenting with

Real-Time Specification Methods. |IEEE Transaction on Software Engineering,

26 (8), pp. 742-759, 2000.

Rational Software. Rational Unified Process for Systems Engineering — RUP

SE1.1. A Ratonal Software White Paper, TP 165A, 5/02, 2001,

http://www.rational .com/media/whitepapers/TP165. pdf

Talvanen, J. P. Domain Specific Modelling: Get your Products out 10 Times
Faster. Read-Time & Embedded Computing Conference, 2002,
http://www.metacase.com/papers/Domain-specific modelling_10X_faster than UML.pdf
Siau, K. and Cao, Q. Unified Modeling Language (UML) — A Complexity

Analysis. Journal of Database Management 12 (1), pp. 26-34, 2001.

Van Gigch, J. P. System Design Modeling and Metamodeling. Plenum press,

1991.

W3C Consortium. Resource Description Framework (RDF).

http://www.w3.org/RDF/

Warmer, J. and Kleppe, A. The Object Constraint Language — Precise Modeling

with UML. Addison-Wesley, 1999.

What is metamodelling, and what is a metamode good for?

http://www.metamodel.com/

14 Dov Dori and Iris Reinhartz-Ber ger

Appendix A: Main OPM Concepts, their Symbols, and their Meaning

Concept Name Symbol Concept M eaning

Informatical object] A piece of information

Environmental, physical _ An object which consists of matter and/or energy

object I——] and is external to the system

Process class O A pattern of transformation that objects undergo

State () A dituation at which an object can exist for a
period of time

Characterization A fundamenta structural relation representing

A that an element exhibits a thing (object/process)

Aggregation A fundamentd structural relation representing

A that athing (object/process) consists of one or
more things

Genera structural link A bidirectional or unidirectional association

e
< between things that holds for a period of time
Condition link A link denoting a condition required for a
O— .
process execution

Agent link — A link denoting that a human agent (actor) is
required for triggering a process execution

Instrument link o— A link denoting that a process uses an entity
without changing it. If the entity is not available,
the process waits for its availability.

Effect link A link denoting that a process changes an entity.
The black arrowhead points towards the process
that affects the entity.

Consumption link ¢ A link denoting that a process consumes an
(input) entity

Result link <— | Alink denoting that a process creates an (output)
entity

Invocation link qj A link denoting that a-process triggers (invokes)
another process when it ends

15

