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Abstract 

Web applications exhibit dynamic behavior through such features as animation, rapidly changing 

presentations, and interactive forms. The growing complexity of Web applications requires a 

rigorous modeling approach that would be capable of clearly and explicitly addressing code 

mobility issues. While mobile agent systems and programming languages support the 

implementation of code mobility with features such as applets or mobile agents, existing system 

analysis and design methods lack the facilities to model code mobility at a satisfactory level. 

OPM/Web is an extension of Object-Process Methodology (OPM) for modeling distributed 

systems and Web applications that enables intuitive modeling of code mobility concepts in a 

single framework. In this paper, we propose generic OPM/Web models for common code 

mobility design paradigms, including Remote Evaluation, Code-on-Demand, PUSH, and Mobile 

Agents. An OPM/Web model of a mobile application that handles requests for Quality of Service 

over the Internet exemplifies the use and advantages of modeling such systems in OPM/Web. 

Keywords: mobile code, code migration, code mobility design paradigms, Web application 

modeling, Object-Process Methodology. 

1. Introduction 

Although Web applications seem to exhibit a relatively simple distributed architecture, their 

underlying architecture is dynamic and complex. The complexity arises from the requirements of 
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Web applications to respond to an unlimited number of heterogeneously skilled users, address 

security and privacy concerns, access heterogeneous, up-to-date information sources, and exhibit 

dynamic behavior. The growing complexity of Web applications requires a rigorous modeling 

approach. Such approach should be capable, among other things, of addressing code mobility 

issues to enable dynamic reconfiguration of the binding between software components and their 

physical locations. Code mobility is the capability of software systems to dynamically 

reconfigure the binding between the software components of an application and their physical 

locations (nodes) within a computer network (Fugetta et. al., 1998). Mobile Code is a piece of 

code that exhibits the mobility property, i.e., code that can be transmitted across a network and 

executed on another node. Code migration is the function which controls how code mobility is 

achieved (Dale and DeRoure, 1997). Although most applications do not require mobile code, 

adding this capability to applications supports disconnected operations and can enhance system 

flexibility, reduce bandwidth consumption and total completion time, and improve fault tolerance 

(Fugetta et. al., 1998). 

The code migration process involves determining the operation targets, transferring the code, 

and integrating it into the target system. In static system architectures, the targets can be 

determined at compilation time. If the system architecture is dynamic, the operation targets 

should be computed immediately prior to transferring the code. Following the target 

determination, the code can be transferred by applying one of the design paradigms for code 

mobility, which extend the traditional client-server paradigm from data to code. Once transferred, 

the code can be integrated with the local target system by activating an instance of it, connecting 

it to existing data or code, or continuing its transfer over the network to yet another target. 
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Modeling the code migration process also includes defining process triggers, preconditions and 

postconditions, and handling security issues and possible transfer errors.  

Current techniques for modeling code mobility and migration require determining the operation 

targets separately from the transferring stage (e.g., by class services) and do not specify how the 

code is to migrate. In the object-oriented approach, the description of code migration is scattered. 

For example, in UML (Object Management Group, 1999), which is the standard object-oriented 

modeling language, code migration specifications are decomposed into at least five views: use 

case, class, interaction, state, and deployment diagrams. This decomposition is hard to integrate 

to a whole, consistent system and is also complicate to maintain (Mezini and Lieberherr, 1998).  

OPM/Web, which is the extension of Object-Process Methodology (OPM) to distributed 

systems and Web applications, constitutes a complete approach to modeling the structure and 

behavior of a system within a single view by considering objects and processes as two equally 

important classes of entities. The purpose of this paper is to show how OPM/Web can clearly 

model all the important aspects of code migration. In Section �2, we review the literature 

concerning the main concepts and design paradigms of code mobility, and discuss the 

shortcomings of existing modeling techniques in specifying code migration. In Section �3, we 

connect and map OPM/Web concepts to the terminology of mobility, while in Section �4 the main 

code mobility design paradigms are modeled in OPM/Web. Section �5 explains and demonstrates 

how to use these models in a complete mobile application, which handles requests for Quality of 

Service. Section �6 summarizes and discusses OPM/Web advantages and shortcomings in 

modeling code migration. 
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2. Modeling Code Mobility: Literature Review 

Applications that involve code mobility are defined in terms of components, interactions, and 

sites (Carzaniga et. al., 1997). Components are the building blocks of system architecture. They are 

further divided into resource components, which are objects (architectural elements representing 

data, or physical devices), and computational components, which are programs that embody 

flows of control. A resource component is represented in object-oriented terms as an object with 

attributes and operations (services) that contain knowledge about how to execute a particular 

task, while a computational component, which contains code, may also be characterized by 

private data, an execution state, and bindings to other (resource or computational) components. 

Interactions are events that involve two or more components communicating with each other. 

Sites are nodes or execution environments – they host components and provide support for the 

execution of computational components. 

2.1 The Client-Server Paradigm and Related Approaches 

The Client-Server (CS) paradigm (Renaud, 1993) is the traditional design approach for 

distributed communication among sites, in which messages are transferred from one site to 

another, but actual code is not. In a typical client-server interaction, site SB, which acts as the 

interaction server, offers a set of services. It also hosts the resources and the knowledge needed 

for executing these services. Site SA, which is the operation client, requests the execution of some 

service offered by SB by sending it a message. As a response, SB performs the requested service 

and delivers the result back to SA in a subsequent interaction. If the server does not have all the 

data and knowledge required, it can act as a client in another client-server interaction. 

The CS paradigm has been criticized as being too low-level, requiring developers to determine 

network addresses and synchronization points. CS interaction is also too specific, since the client 
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must “know” the exact services that the server can provide (Dale and DeRoure, 1997). The Remote 

Procedure Call (RPC) (Bloomer, 1992) tries to overcome these shortcomings by permitting the 

client to request a service to be executed on a server in the same way a local function call is 

made; The location of the server, the initiation of the service, and the transportation of the results 

are handled transparently to the client. The object-oriented approach attempts to make the CS 

paradigm more accessible and uniform by adopting reuse, inheritance, and encapsulation 

principles. OMG’s Common Object Request Broker Architecture (CORBA) (Object Management 

Group, 1995) is a CS technology that is based on  the object-oriented approach. 

2.2 Design Paradigms for Code Mobility 

Design paradigms for code mobility extend the CS paradigm by transporting computational 

components across a network. Four common design paradigms for code mobility are Remote 

Evaluation (REV), Code-on-Demand (COD), PUSH, and Mobile Agents (MA). These paradigms 

differ in their preconditions, postconditions, and triggers. 

In the Remote Evaluation (REV) paradigm (Stamos and Gifford, 1990), a computational 

component, C, located at SA, has the knowledge (represented by code) necessary to perform a 

service, but it lacks the required resource components, which are located at a remote site S

Therefore, C is transferred from SA to SB and is executed there. The results of this execution are 

delivered back to SA in an additional interaction.  

In the Code-on-Demand (COD) paradigm (Carzaniga et. al., 1997), site SA can access the 

resource components needed for a service, but it does not have the knowledge required to process 

them. Therefore, SA requests the service execution knowledge, i.e., the computation component 

C, from its hosting site, SB. SB delivers the knowledge to SA, which subsequently processes C at 
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site SA on the resource components residing there. Contrary to REV, in COD the code is executed 

at the client. 

In the PUSH paradigm (Franklin and Zdonik, 1998), site SB sends a (computational or resource

component to site SA in advance of any specific request. This push-based operation is often 

preceded by a profiling operation, in which SA specifies a profile that reflects its users’ interests. 

The profile is sent to site SB, saved there, and used by SB to decide which components SA should 

receive and when to send them. The advantage of this paradigm over COD is that the users do not 

have to know when to pull new components and where to pull them from. Rather, the system 

automatically sends necessary new components when they become available, and they are often 

used later by the receiving node.  

In the Mobile Agent (MA) paradigm (Gray et. al., 2000), site SB owns the service execution 

knowledge, C, but some of the required resource components are located at site SA. Hence, C 

migrates to SA and completes the service using the resource components available there. The 

migration is usually initiated by the agent (C), but it might be requested by SA or SB. Contrary to 

the REV, COD, and PUSH paradigms, which focus on the transfer of just code between sites, the 

mobile agent migrates to the remote site as a whole computational component, along with its 

state, the code it needs, and some of the resource components required to perform the task.  

Discussing these design paradigms for code mobility, Carzaniga et al. (Carzaniga et. al., 1997

claim that none of them is absolutely better than the others and suggest choosing the most 

appropriate paradigm for a system under development on a case-by-case basis according to the 

application type and needs. 
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2.3 Modeling Code Mobility and Migration 

Code mobility is supported by such programming environments as Java, Telescript (White, 1996

and D’Agents (Gray et. al., 2001). However, current modeling techniques that are used in the

analysis and design phases of Web applications do not address code mobility concepts at a 

satisfactory level.   

Web applications can be classified as hybrids between hypermedia and information systems 

(Fraternali, 1999). Most commonly, such systems are modeled using hypermedia authoring 

techniques or visual software engineering methods, especially object-oriented ones. Hypermedia 

authoring techniques, including Hypertext Design Model (HDM) (Garzotto et. al., 1993

Relationship Management Methodology (RMM) (Isakowitz et. al., 1995), Object-Oriented 

Hypertext Design Model (OOHDM) (Schwabe and Rossi, 1998), and WebML (Ceri et. al., 2000)

model the content and navigational aspects of an application, but not its functionality, physical 

architecture, or security requirements. Therefore, they do not explicitly address code-related 

issues, such as code migration. 

Object-oriented development languages, notably UML (Object Management Group, 1999), enable 

modeling of the application functionality through class services and message passing among 

objects. Concepts involving code mobility, such as Java applets, are modeled in separate views 

using pre-declared UML stereotypes. Conallen’s extension of UML for Web applications 

(Conallen, 1999), for example, is based on a set of 18 domain-specific stereotypes, which are 

commonly used with Web applications. These stereotypes include such implementation

dependent concepts as RMI, IIOP, and Java Script, along with a set of well-formedness rules for 

using them. In general, UML does not handle the code migration process as a whole pattern, 

including its preconditions (e.g., the existence of a request in the client site and source code at the 
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server site), postconditions (e.g., the existence of executable code at the client site), and triggers 

(e.g., a change in a server component). To overcome these shortcomings, UML has been 

extended by various research teams, including the mobile agent extension (Klein et. al., 2001

Agent UML (AUML) (Odell et. al., 2000), and MASIF-DESIGN (Muscutariu and Gervais, 2001

Even though the proliferation of such extensions undermine and weaken UML standardization 

efforts, they still do not separate the execution knowledge (services) from the resource 

components (classes). It should come as no surprise that such separation is not possible, since 

doing so would work against the encapsulation of operations within object classes, which is a 

major principle in the object-oriented approach.  

Behavior-oriented techniques, including Aspect-Oriented Design (AOSD site, 2003) and 

superimposition (Katz, 1993), model parts of the system functionality separately from the 

application structure. They enable static binding of processes to sites, but do not support the 

modeling of dynamic configurations and the actual migration process.  

Object-Process Methodology (OPM) (Dori, 2002) combines ideas from the object-oriented 

development methods and behavior-oriented techniques in order to specify the system structure 

and dynamics within a single framework. OPM enables the existence of processes as stand-alone 

entities. This way, structure and behavior, the two major aspects that each system exhibits, co

exist in the same OPM model without highlighting one at the cost of suppressing the other. By 

integrating structure and behavior, OPM provides a solid basis for modeling complex systems, in 

which these two most prominent system aspects are highly intertwined and hard to separate. 

Mobile applications are prime examples of such systems. Since OPM lacks the ability to specify 

the code migration process and dynamic reconfiguration at run time, it has been extended by 

OPM/Web, as discussed in the next section. 
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3. OPM/Web and Mobile Components 

OPM/Web extends Object-Process Methodology to distributed systems and especially to Web 

applications, enabling the modeling of such systems within a single view. As in OPM, the 

OPM/Web universe of discourse is specified in terms of “things”: object classes and process 

classes. An object class (abbreviated as an object) is a set of object instances which exist, or at 

least have the potential of stable, unconditional physical or logical existence. A process class 

(abbreviated as a process) is a pattern of transformation of one or more object classes. A 

program, an operation, a procedure, and an algorithm are examples of process classes. An actual 

execution of a process (such as the carrying out of an executable version of a program or an 

algorithm) is a process instance. The relations between things (objects and processes) are 

modeled by structural links (e.g., generalization and aggregation) and procedural links (which 

specify transformations, enablers, and triggers). Contrary to object-oriented methods, an OPM 

process can stand alone and involve several object classes.  

OPM enables managing the complexity of a model applying three refining/abstracting 

mechanisms: unfolding/folding, in which the thing being refined is shown as the root of a 

structural graph; in-zooming/out-zooming, in which the thing being refined is blown up to enclose 

its constituents; and state expression/suppression, which allows showing or hiding the possible 

states of an object. Using flexible combinations of these three scaling mechanisms, OPM enables 

specifying a system to any desired level of detail without losing legibility and comprehension of 

the resulting specification. 

Two semantically equivalent modalities, one graphic and the other textual, jointly express the 

same OPM model. A set of inter-related Object-Process Diagrams (OPDs) constitute the 

graphical, visual OPM formalism. Each OPM element is denoted in an OPD by a symbol, and the 
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OPD syntax specifies correct and consistent ways in which entities can be linked. The Object

Process Language (OPL), defined by a grammar, is the textual counterpart of the graphical OPD

set. OPL is a dual-purpose language, oriented towards humans as well as machines. Catering to 

human needs, OPL is designed as a constrained subset of English, which serves domain experts 

and system architects engaged in analyzing and designing a system. Every OPD construct is 

expressed by a semantically equivalent OPL sentence or phrase. While the OPD set and the OPL 

script are equivalent in their semantic content, they are complementary from a human cognition 

viewpoint. Designed also for machine interpretation through a well-defined set of production 

rules, OPL provides a solid basis for automatically generating the designed application. An

integrated software engineering environment, called OPCAT (Object-Process CASE Tool) (Dori 

et. al., 2003), automatically translates from one modality to the other in either direction. 

OPM/Web enhances the ability of OPM to model distributed systems in general and Web 

applications in particular in two ways. The first extension is the ability to reuse component 

designs in an open manner through bindings among model components, thereby improving 

model scalability (Reinhartz-Berger et. al., 2002). The second extension is the support for code 

mobility and migration specifications. In this paper we focus on defining and modeling code 

mobility concepts and design paradigms using OPM/Web.  

3.1 Mapping Mobility Terms onto OPM/Web Concepts 

The terms used in the various design paradigms for code mobility are mapped to OPM/Web 

concepts as follows.  

� A resource component is an informatical or physical object. An informatical object is a piece 

of information, such as the data required for a process execution. A physical object is tangible 

in the broad sense, for example a device.  
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� A computational component is a process. It can own private data (objects) and include sub

processes. The migration process can transfer the computational component source code (i.e., 

a process class), which can be compiled at the target site and run there any number of times, 

or an executable version of the code (i.e., a process instance), which can run at the target site 

only a specified number of times. 

� A site, which is analogous to a node in the UML implementation model, is a physical object 

in OPM/Web. This physical object can be in-zoomed to expose its resource and 

computational components. 

� An interaction has both structural and dynamic aspects. The structural aspect of an interaction 

specifies how two sites can communicate with each other, irrespective of a specific point in 

time. This aspect is modeled in OPM/Web by a (unidirectional or bi-directional) structural 

link between the communicating sites, which, as noted, are physical objects. The dynamic 

aspect of an interaction is the ability to transfer data (objects) or code (processes) between 

two sites and is specified in OPM/Web by an event-driven process. Since interaction 

conceptually characterizes the communication between the sites, the interaction process is 

associated in the model to the structural link that connects the two interacting sites. The 

implementation of this interaction may still be carried out as two inter-related processes, one 

at each interacting site. 

A summary of the main OPM/Web symbols and their meanings is provided in Appendix A. 

The basic code transferring operations are represented by the generic OPDs in �Figure 1. The 

computational Component on the left of �Figure 1(a) and �Figure 1(b), which is a process class, 

denoted by an ellipse, is the (unchangeable) input for the Component Transferring process, as the 

instrument link between them indicates. In �Figure 1(a) the Component Transferring process 



 12

transfers Component’s source code, while in �Figure 1(b) Component Transferring transfers a 

process instance, i.e., only an executable version of Component. Following the UML notation of 

classes and objects, a process instance is denoted in OPM by an ellipse within which the process 

class name is written as :ProcessClassName, where the identifier of the instance can optionally 

precede the colon.  

The semantics of the arrow with the white (blank) arrowhead from Component Transferring

the right appearance of Component is a result link1, which means that Component Transferring

creates (a copy of) the process class Component, as in �Figure 1(a), or an instance of it, as in 

�Figure 1(b). The identical path labels2 on the instrument and result links and the identical 

component names indicate that Component Transferring transfers Component as is rather than 

computing it from an input.  

 

Figure 1. A generic OPM/Web model of a Component Transferring process.  

(a) Component Transferring transfers Component's code, leaving the original Component intact.  

(b) Component Transferring transfers an instance of Component, leaving the original Component 

intact.  

                                                

1 In the original OPM, processes are not connected, and, hence, there is no difficulty to determine which is the 

processing entity. To remove the ambiguity arising from connecting two processes in OPM/Web via consumption or 

result links, a consumption link is denoted as a black-headed arrow from the consumed entity to the process, while 

the semantics of a white-headed arrow from a process to an entity remains a result link. 

2 A path label in OPM is a label on a procedural link that removes the ambiguity arising from multiple 

incoming/outgoing procedural links. Here we use identical path labels on the incoming link to and outgoing link 

from the Component Transferring process to denote the transfer flow. 

(b) (a) 

��
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3.2 Modeling the Client-Server Paradigm using OPM/Web 

Based on the mapping of code mobility terms onto OPM/Web concepts, an OPM/Web model of 

the traditional client-server paradigm, presented in �Figure 2, consists of two equivalent 

modalities: graphical – the OPD in �Figure 2(a), and textual – the OPL paragraph in �Figure 2(b). 

The objective of this unique dual representation is to enhance the readability of the model by 

humans: engineering-oriented readers, who are familiar with OPM and its diagrammatic notation, 

can relate to the OPD, while domain experts, or those who are new to the OPM graphic notatio

can refer to the OPL paragraph and learn the correspondence between each OPL sentence or 

phrase and its OPD construct counterpart. The OPL paragraphs also improve system 

documentation. 

Examining �Figure 2, one can see that Requesting Site (the client) and Processing Site (the 

server) are both physical objects (as denoted by shadowed rectangles). The computational 

component, Requested Processing, resides in the Processing Site, which also hosts the resource 

components required for that computation, Required Data and (later on) Requested Result. The 

two sites are connected via a bi-directional structural link, tagged communicate, which exhibits 

(i.e., is characterized by) the CS Interacting process. A change in (an instance of) Activation 

Request at the Requesting Site initiates the CS Interacting process, as the event link (the circle

headed arrow with the letter 'e' inside it) between the two things shows. Following the request 

transferring path, the first subprocess of the CS Interacting process, which is Result Requesting

transfers a copy of Activation Request to the Processing Site. As soon as this copy is placed at the 

Processing Site, it activates the Requested Processing, as the consumption event link (the black

headed arrow with the letter 'e' next to it) denotes. This Requested Processing potentially affects 

the Required Data object and yields (produces) the Requested Result object.  
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� 

      Requesting Site physical. 

       Requesting Site zooms into Activation Request and Requested Result. 

       Activation Request triggers CS Interacting. 
  Processing Site is physical.  

      Processing Site zooms into Activation Request, Required Data and Requested Result,  

      as well as Requested Processing. 

   Activation Request triggers Requested Processing when its state changes. 
   Requested Processing consumes Activation Request of Processing Site. 

   Requested Processing affects Required Data. 

   Requested Processing yields Requested Result of Processing Site. 

  Many Requesting Sites and many Processing Sites communicate, and this relation  

  exhibits CS Interacting. 

   CS Interacting zooms into Result Requesting and Result Retrieving. 

   Following path request transferring, Result Requesting consumes Activation  

   Request of Requesting Site. 

   Following path request transferring, Result Requesting yields Activation  

                   Request of Processing Site. 

   Following path result transferring, Result Retrieving consumes Requested Result  

                   of Processing Site. 

   Following path result transferring, Result Retrieving yields Requested Result of  

                   Requesting Site. 

Figure 2. An OPM/Web model of the Client-Server (CS) paradigm:  

(a) The OPD (b) The corresponding OPL paragraph 

(b) 
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The creation of Requested Result enables the second stage of the interaction, executed by 

Result Retrieving. Following the result transferring path, this process moves the local copy of the 

generated Requested Result from the Processing Site to the Requesting Site. 

� Table 1 summarizes the structure of Requesting Site and Processing Site before and after an 

activation of a CS Interacting process. The dynamic aspect of the CS Interacting process can be 

vividly simulated using OPM Case Tool (OPCAT), as explained in Appendix B. 

 Table 1. The resource and computational components in Requesting Site (the client) and Processing Site (the 

server) before and after an activation of CS Interacting 

Design Paradigm 

(Process Name) 
Time Requesting Site Processing Site 

Before  Activation Request 
Requested Processing (code) 

Required Data Client Server 

(CS Interacting) 
After  Requested Result 

Requested Processing (code) 

Required Data 
 

4. OPM/Web Models of Code Mobility Design Paradigms 

OPM/Web enables precise modeling of the REV, COD, PUSH, and MA paradigms, which were 

explained informally in Section �2.2. In this section, we present generic OPM/Web models for 

these design paradigms. In all of these models, Requesting Site is the transaction client, and as 

such, it obtains a copy of the Requested Result and keeps it at the end of the process. Activation 

Request is the trigger for the code transferring process. The Resource Site is the transaction 

server, i.e., it hosts the Requested Processing (as in COD, PUSH, and MA) or the Required Data 

(as in REV). The COD, PUSH, and MA models describe transferring a one-time executable 

version of code (i.e., a process instance) from the Resource Site to the Requesting Site, and 

executing it in the remote site. The REV model specifies a process that transfers an executable 

version of code from Requesting Site to Resource Site and executes it there. Replacing the 
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process instance with a process class supports transfer of source code that can later be 

instantiated, i.e., compiled and executed. The various code mobility models can become generic 

components in specifications of mobile applications, as explained and demonstrated in Section 

 Table 2. The resource and computational components in Requesting Site (the “client”) and Resource 

Site (the “server”) before and after an activation of the transfer processes in each one of the four code 

mobility design paradigms.   

Code Mobility 

Design Paradigm 

(Process Name) 

Time Requesting Site Resource Site 

Before  
Activation Request 

Requested Processing code 
Required Data Remote 

Evaluation 

(REV Interacting) After  Requested Processing code 
Required Data 

Requested Processing instance 

Before  
Activation Request 

Required Data 
Requested Processing code 

Code-on-Demand 

(COD Interacting) 
After  

Required Data 

Requested Processing 

instance 

Requested Processing code 

 

Before  Required Data 

Requested Processing code 

Profile 

Activation Request 
PUSH 

(PUSH 

Interacting) After  
Required Data 

Requested Processing 

instance 

Requested Processing code 

Profile 

Before  Required Data 

Requested Processing instance 

(+ Execution Status + Private 

Data) Mobile Agent 

(MA Interacting) 
After  

Required Data 

Requested Processing 

instance (+ Execution Status + 

Private Data) 

If clones: 

Requested Processing instance 

(+ Execution Status + Private 

Data) 

� Table 2 summarizes the components that reside at the Requesting Site and the Resource Site

before and after the transfer of a process instance in each of the four mobile code design 
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paradigms. Note that the table reflects the situation before Requested Processing took place, so 

Requested Result does not yet exist. After this transfer, the executable code may be activated, 

creating Requested Result. 

4.1 Remote Evaluation  

The OPD in �Figure 3 is an OPM/Web model of the Remote Evaluation (REV) paradigm. Code 

Sending transfers an instance of Requested Processing from the Requesting Site to the Resource 

Site, while Code Activating invokes (triggers the execution of) this instance in the Resource Site

Finally, Requested Processing transfers the Requested Result from the Resource Site to the 

Requesting Site. 

  

Figure 3. A�generic OPD of the REV paradigm 

 

The following OPL paragraph describes the same REV model textually.  

�����
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Requesting Site is physical. 

Requesting Site zooms into Activation Request and Requested Result, as well as Requested 

Processing. 

  Activation Request triggers REV Interacting. 

Resource Site is physical.  

Resource Site zooms into Required Data and Requested Result, as well as Requested 

Processing instance.  

  Requested Processing instance affects Required Data. 

  Requested Processing instance yields Requested Result of Resource Site.  

Many Requesting Sites and many Resource Sites communicate, and this relation exhibits REV 

Interacting. 

REV Interacting consumes Activation Request. 

REV Interacting zooms into Code Sending, Code Activating and Result Retrieving. 

Following path code transferring, Code Sending requires Requested Processing of 

Requesting Site. 

Following path code transferring, Code Sending yields Requested Processing 

instance of Resource Site. 

Code Activating invokes Requested Processing instance of Resource Site. 

Following path result transferring, Result Retrieving consumes Requested Result 

of Resource Site. 

Following path result transferring, Result Retrieving yields Requested Result of 

Requesting Site. 

4.2 Code-on-Demand  

The OPD in �Figure 4 is a generic model of the Code-on-Demand (COD) paradigm. It clearly 

shows that processing (i.e., the activation of a Requested Processing instance) in the COD model 

occurs at the Requesting Site, whereas in the REV model, shown in �Figure 3, the processing takes 

place in the Resource Site. The fact that Requested Processing is not initially at the Requesting 

Site is denoted in �Figure 4 by the result link (the white arrowhead) whose destination is the 

Requested Processing instance at the Requesting Site, indicating that the Requested Processing

instance was created there only after the first stage of COD Interacting, Code Retrieving, occurred. 

As described in Appendix B, OPCAT enables simulation of the behavior of this system, showing 

more vividly the sequence of occurrences. When the animated simulation is run, the Requested 

Processing instance appears only in the postcondition set of Code Retrieving. 
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Figure 4. A generic OPD of the COD paradigm 

 

The OPL paragraph below is the textual counterpart of the OPD in Figure 4 of the COD 

paradigm.  

Requesting Site is physical. 

Requesting Site zooms into Activation Request, Required Data, and Requested Result, as well as Requested 

Processing instance.  

  Activation Request triggers COD Interacting. 

  Requested Processing instance affects Required Data.  

  Requested Processing instance yields Requested Result. 

Resource Site is physical. 

Resource Site zooms into Requested Processing.  

Many Requesting Sites and many Resource Sites communicate, and this relation exhibits COD Interacting. 

 COD Interacting consumes Activation Request. 

 COD Interacting zooms into Code Retrieving and Code Activating.         

  Following path code transferring, Code Retrieving requires Requested Processing of Resource Site. 

     Following path code transferring, Code Retrieving yields Requested Processing instance of  

  Requesting Site. ��������             

  Code Activating invokes Requested Processing instance of Requesting Site. 

 

4.3 PUSH 

�Figure 5 is a generic model of the PUSH paradigm. The following OPL sentences describe the 

model. 

�����
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Requesting Site is physical. 

Requesting Site zooms into Required Data and Requested Result, as well as Requested Processing instance. 

  Requested Processing instance affects Required Data.  

  Requested Processing instance yields Requested Result. 

Resource Site is physical. 

Resource Site zooms into Activation Request and Profile, as well as Requested Processing.  

  Many Activation Requests relates to many Profiles.  

  Activation Request triggers PUSH Interacting. 

Many Requesting Sites and many Resource Sites communicate, and this relation exhibits PUSH Interacting. 

  PUSH Interacting occurs if Profile of Resource Site is requesting site. 

  PUSH Interacting consumes Activation Request. 

  PUSH Interacting zooms into Code Retrieving and Code Activating.           

               Following path code transferring, Code Retrieving requires Requested Processing of Resource  

       Site.  

       Following path code transferring, Code Retrieving yields Requested Processing instance of  

                  Requesting Site.                         

       Code Activating invokes Requested Processing instance of Requesting Site. 

 

Figure 5. A generic OPD of the PUSH paradigm 
 

The condition link from requesting site Profile to PUSH Interacting specifies that when triggered 

(by Activation Request), Requested Processing is transferred only to sites that were registered in 

the Profile. The Activation Request and the Profile are not transferred to the Requesting Site, but 

only enable the transfer of Requested Processing from the Resource Site to the relevant 

�����
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Requesting Sites. As noted, the creation of the Activation Request and the Profile at the Resource 

Site is done in a separate process whose execution precedes the execution of PUSH Interacting. 

4.4 Mobile Agents  

Various definitions of an agent (Franklin and Graesser, 1996) agree that all software agents are 

computer programs, but not all programs are agents. Each agent definition indicates some 

properties that differentiate an agent from a “conventional” program. Various definitions expect 

an agent to be reactive, autonomous, goal-oriented, temporally continuous, communicative, 

learning, mobile, and flexible. Agents of the same class or of different classes can communicate 

with each other using objects. These definitions of an agent as a computer program with 

additional characteristics call for modeling an OPM/Web agent as a process instance, which 

belongs to a process class. These process instances (agents) initiate their own migration at 

specific points of their execution.  

 

Figure 6. A generic OPD of the MA paradigm  

�����

 

�����
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Requesting Site is physical. 

Requesting Site zooms into Required Data and Requested Result, as well as Requested Processing instance. 

  Requested Processing instance exhibits Execution Status and Private Data. 

    Execution Status can be transfer or local. 

  Requested Processing instance affects Required Data.  

  Requested Processing instance yields Requested Result.  

Resource Site is physical. 

Resource Site zooms into Requested Processing instance.  

  Requested Processing instance exhibits Execution Status and Private Data. 

     Execution Status can be transfer or local. 

      Execution Status triggers MA Interacting when it enters transfer. 

Many Requesting Sites and many Resource Sites communicate, and this relation exhibits MA Interacting

 MA Interacting zooms into Agent Migrating and Agent Activating.    

   Following path code transferring, Agent Migrating requires Requested Processing instance of  

   Resource Site. 

             Following path code transferring, Agent Migrating yields Requested Processing instance of  

              Requesting Site.   

    Agent Activating changes Execution Status of Requested Processing instance of Requesting Site  

   from transfer to local.    

   Agent Activating invokes Requested Processing instance of Requesting Site. 

 

�Figure 6 and the corresponding OPL paragraph describe a mobile agent model for the case in 

which the agent is cloned from the Resource Site to the Requesting Site. The agent, which is 

characterized by Private Data and an Execution Status, initiates (triggers) its own transfer when 

its Executing Status enters the transfer state. After completing the agent transfer, its Execution 

Status returns to the local state. 

The instrument link from the agent (the Requested Processing instance at the Resource Site) to 

Agent Migrating (within MA Interacting) in �Figure 6 denotes that this migration clones (i.e., makes 

a copy of) the Resource Site‘s agent at the Requesting Site. Alternatively, MA Interacting might 

move the agent, in which case a consumption link from Requested Processing of Resource Site

to Agent Migrating replaces the instrument link, implying that the agent at the Resource Site

disappears. 
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5. Reusing OPM/Web Code Mobility Models: The QoS System Example 

In this section we demonstrate the expressive power of OPM/Web as a means to explicitly model 

what pieces of code are migrated along with their sources and destinations, and the effects of the 

migration on the effectiveness of the application. Transferring a (resource or computational) 

component between sites involves determining the source and target sites, integrating the 

transferred component within the target sites, addressing network security issues, and handling 

errors that may occur in the process. These aspects can be incorporated in the single, bimodal 

graphic-textual OPM/Web model, in which one or more of the code migration models, presented 

in the previous section, are reused. To demonstrate our approach, we present an OPM/Web model 

of a Quality of Service (QoS) system, a mobile application that is based on (Klein et. al., 2001)

This system has been chosen in order to be able to demonstrate most of the code mobility 

concepts and design paradigms explained in this paper and their integration into a complete 

application. In this QoS system, software components from multiple parties collaborate 

provide a particular service to end users. The service users access service provider hosts via a 

Web interface. They select the specific value-added services for their applications. A service 

provider communicates with several routers to achieve the QoS goals. The service users can 

control their requests remotely at any time. 

As the System Diagram (SD), i.e., the top-level diagram, in �Figure 7 shows, our QoS system 

consists of three types of sites: Client, ISP (Internet Service Provider) Agency, and Router 

Agency, each of which may have multiple instances. Each site type is modeled as a physical 

object that inherits from Site, a network node.  

At this level of abstraction, the Client is shown to include only the QoS Interface Handling

process, with which the Service User interacts. The Service User is an actor using the system and 
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is therefore modeled as an external (dashed) and physical (shadowed) object. Not knowing which 

routers provide the requested service, the Service User interacts via the QoS Interface Handling

process, which the Client site hosts. This interaction is indicated in �Figure 7 by the agent link 

(which ends with a black circle) from Service User to QoS Interface Handling. Each Client

connected to ISP Agencies, and each ISP Agency is connected to several sites of type Router 

Agency. 

 

Figure 7. The top level System Diagram of the QoS System  

If we were to model this system with UML, we would need three different types of UML 

diagrams: deployment diagrams to describe the system physical architecture, use case diagrams 

to describe the user-system interactions, and sequence diagrams to describe scenarios of the 

communication processes. However, even these three diagram types combined do not describe 

the details of the interaction processes, as do the next two OPDs in �Figure 8 and �Figure 9. 

Refining the interaction between Client and the ISP Agency, �Figure 8 shows that their 

communication structural relation exhibits two operations: CS Interacting and COD Interacting

The details of the models of the Client-Server (CS) and Code-on-Demand (COD) paradigms have 

been presented earlier. COD Interacting, for example, is the same as the process modeled in 

�Figure 4, where ISP Agency is the server (Resource Site), Parameter Check Request is the 
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Activation Request, and Parameter Checking is Requested Processing. Therefore, CS Interacting

and COD Interacting are not in-zoomed further here. 

   

Figure 8. Detailing the Client – ISP Agency interaction 
 

When weaving these models into a complete application, the combined model can be 

enhanced to handle security issues and possible transfer errors. Since the security and privacy 

algorithms are often pre-defined computational components, they can be modeled as OPM/Web 

processes, from which the transfer processes can inherit both the functionality and the interface. 

This open reuse mode of OPM/Web, which is beyond the scope of this paper, is described in 

Reinhartz-Berger, Dori and Katz (2002). The different kinds of transfer errors, such as 

communication failures, unknown addresses, and timeout exceptions, can be traced using OPM 

event links. These links model a variety of events, including process timeout, process 

termination, state change, state entrance, state timeout, and external events. These types of events 

trigger stand-alone processes, which handle the exceptions or errors as explained by Peleg and 

Dori (1999). 

In addition to showing the details of the interaction between the Client and the ISP Agency

components, �Figure 8 also zooms into the Client and the ISP Agency components, exposing a 

�����
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more refined view of their internal objects and processes. QoS Interface Handling, which is the 

computational component of the Client, handles requests that the Service User submits. When 

activated by the Service User, QoS Interface Handling creates the objects QoS Parameter Set and 

Parameter Check Request. Upon its creation, Parameter Check Request activates COD Interacting

The occurrence of COD Interacting transfers an instance (one-time executable version) of 

Parameter Checking from the ISP Agency to the Client, enabling its local execution at the Client

site. This Parameter Checking execution changes the state of QoS Parameter Set from created

either checked or wrong, indicating whether the QoS Parameter Set supplied by the Service User

is correct or wrong. Through the QoS Interface Handling process, the Service User can continue 

affecting QoS Parameter Set, in order to request services (via the update path) or to cancel them 

(via the cancel path). These requests are transferred to the ISP Agency by the CS Interacting

process, which does not need to wait for a response from the ISP Agency. 

Unlike UML and its extension mechanisms, OPM/Web specifies the communication processes 

generically, regardless of their implementation technology. For example, the COD Interacting

process specifies a common design paradigm for code mobility without limiting it to specific 

implementation language constructs (such as Java applets). As this example shows, OPM/Web 

also supports modeling the events which trigger the communication processes, as well as the 

conditions that enable their activations.  

�Figure 9 shows a refinement of the interaction between the ISP Agency and the Router Agency

Since not all the Router Agencies provide all the services, the QoS Choice Handling uses a 

Service Provider Catalog as an instrument for creating a Service Control Message and the Service 

Address object, which defines a router agency address for the required service. If the Service 

Control Message requests a new service (which is the case when its state is create), then the REV 
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Interacting process is activated, transferring an executable version of QoS Agent Processing

the Router Agency according to the Service Address. If the Service Control Message is created in 

its update or cancel states, it is transferred as is to the Router Agency by the CS Interactin

process, enabling the continuous running of QoS Agent Processing in the Router Agency, where 

it can use the Service Control Message and any required Local Data.  

  

Figure 9. Detailing the ISP Agency – Router Agency interaction 

Other OPM/Web code mobility models could be plugged and linked into our QoS application 

for specific purposes. For example, if we want QoS Agent Processing to be able to move or clone 

itself among various Router Agencies according to the Mobile Agent (MA) paradigm, explained 

in Section �4.4, we can add a structural relation between Router Agency and itself and specify that 

this relation exhibits the MA Interacting process as its operation.  

6. Summary and Future Work 

Existing Web and distributed system development methods are not up to the task of complete and 

accurate modeling of code mobility and migration. While some of them can specify static 

bindings of software components to their physical locations, the specification of dynamic system 

reconfiguration and code migration is not satisfactorily supported by any of the existing 

�����
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approaches. Mentally integrating the structure and behavior aspects of these systems in order to 

comprehend them in their entirety can be achieved with current methods only with great 

difficulties due to the multiplicity of models that need to be consulted.  

Using a small set of concepts and symbols, OPM/Web combines the physical, static, 

behavioral, and functional views of a system within a single framework. OPM/Web augments 

OPM to enable modeling code mobility concepts and design paradigms by specifying processes 

as residents of some node (site) and moving or cloning them to other nodes, where they can be 

activated or transferred further. This approach provides for a technology-independent model, 

where triggers, preconditions, and postconditions for the migration process are specified 

generically. Once the mobile application is modeled, a solid skeleton of the technology

dependent implementation can be automatically generated and simulated by the Object-Process 

CASE Tool (OPCAT). This skeleton includes not only the structure of the application, but also 

its behavior, enabling design verification and leaving to the implementer only the coding at the 

bottom level.  

The single OPM view with its combined graphic-textual modalities and abstraction-refinement 

mechanisms benefits from consistency, relative simplicity, and ease of learning. The structure 

and behavior of the different components are explicitly modeled in the same view, making them 

understandable and communicable. In order to model distributed applications in UML, a set of 

stereotypes (denoted by different graphical symbols), tagged values, and constraints must be 

defined. Such extension mechanisms undermine UML standardization efforts, since each 

researcher or company working in the domain of distributed systems is free to develop a different 

set of extensions. Lack of a universal set of such extension entities inhibits the efforts to develop 

reusable components. The segregation of a UML model into multiple views, which span across 
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different diagram types, is yet another source of difficulty in capturing and understanding the 

system as a whole (Peleg and Dori, 2000). Indeed, comparing the complexity metric values of 

UML with other object-oriented techniques, Siao and Cao (2001) found that each diagram in 

UML is not distinctly more complex than techniques in other object-oriented methods, but as a 

whole, UML is 2-11 times more complex than other object-oriented methods.  

In a separate work (Reinhartz-Berger and Dori, 2003), we have established the level of 

comprehension of a given OPM/Web model and the quality of the models constructed using it by 

comparing OPM/Web experimentally to an extension of UML to Web applications (Conallen, 

1999). Third year undergraduate information systems engineering students had to respond to 

comprehension and construction questions about two representative Web application models. The 

questions related to the system's structure, dynamics, and distribution aspects. We found that 

OPM/Web is significantly better in modeling the dynamics of Web applications, while in 

specifying their structure and distribution aspects, there were no significant differences. In both 

case studies, the quality of the resulting OPM/Web models was superior. The main errors in the 

UML modeling questions occurred when students were required to integrate the different views 

into a whole, consistent model. The modeling questions required adding a single functionality 

that affected several UML diagram types. All these changes were expected to leave the UML 

model integral and consistent. This task is difficult for trained UML modelers, let alone untrained 

students.  

On the other hand, as our experiment indicated to some extent, UML's use of multiple views 

may help system architects focus on a specific aspect of a system, and answer questions about it 

when the needed information is fully contained in a single diagram type, such as a class or an 

interaction diagram. These types of questions may be more difficult to answer by examining an 
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OPM/Web model, since the information might reside in several OPDs at different levels of detail. 

To benefit from this potential advantage of UML and to stay current with the prevailing standard, 

we have augmented OPCAT with the ability to automatically generate a set of UML views from 

the single OPM/Web model. Since UML does not have a single mechanism to express stand

alone processes, the resulting UML views may not necessarily be unique or completely 

equivalent to the OPM/Web model. Nevertheless, when we complete developing an UML to 

OPM/Web generator, the system architect will be able to use the most suitable approach for each 

design portion by using OPM/Web, UML, or a combination of these two approaches. In parallel

we are working on developing the ability to generate the application (code and database schema) 

from the system's OPL script. 
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Appendix A: Main OPM/Web Concepts, their symbols, and their meaning 

Concept Name Symbol Concept Meaning 

Informatical object  A piece of information 

Physical object  An object which consists of matter and/or energy 

Process class  A pattern of transformation that objects undergo 

Process instance  An executable version of code 

Initial/Regular/Final state  An initial/regular/final situation at which an object can exist for a 

period of time 

Characterization  A fundamental structural relation representing that an element 

exhibits a thing (object/process) 

Aggregation 

 

 A fundamental structural relation representing that a thing 

(object/process) consists of one or more things 

General structural link  A bidirectional or unidirectional association between things that 

holds for a period of time, possibly with a tag denoting the 

association semantics 

Enabling event link  A link denoting an event (such as data change or an external 

event) which triggers (tries to activate) a process. Even if 

activated, the process does not change the triggering entity. 

Consumption event link 

 

 A link denoting an event which triggers (tries to activate) a 

process. If activated, the process consumes the triggering entity. 

Condition link  A link denoting a condition required for a process execution, 

which is checked when the process is triggered. If the condition 

does not hold, the next process (if any) tries to execute. 

Agent link  A link denoting that a human agent (actor) is required for 

triggering a process execution 

Instrument link  A link denoting that a process uses an entity without changing it. 

If the entity is not available (possibly in a specific state), the 

process waits for its availability.  

Effect link  A link denoting that a process changes an entity. The black 

arrowhead points towards the process that affects the entity. 

Consumption link  A link denoting that a process consumes an (input) entity. The 

black arrowhead points towards the process that consumes the 

entity. 

Result link  A link denoting that a process creates an (output) entity. The 

white arrowhead points towards the created entity. 

Invocation link  A link denoting that a process triggers (invokes) another process 

when it ends 

XOR connection  A connection between procedural links denoting that exactly one 

of the process incoming/outgoing links is applicable (active) in a 

single execution of the process 
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Appendix B: Simulating Mobile Specifications with OPCAT 

Using Object-Process CASE Tool (OPCAT)3 (Dori et. al., 2003), with which the OPM models in 

this paper were generated, a system design model can also be simulated. In the CS paradigm, for 

example, the simulation starts by making the precondition set of the CS Interacting process true. 

This is done by enabling (through highlighting) all the components (objects and processes) which 

are not created by processes in the given model, i.e., the objects Activation Request (of 

Requesting Site) and Required Data and the process Requested Processing, as shown in �Figure 

10(a). While executing CS Interacting, the Activation Request at the Processing Site becomes 

highlighted, then the Requested Result at the Processing Site, and finally the Requested Result

the Requesting Site. After the transfer process has been completed, its postcondition set becomes 

true, i.e., Requesting Site’s Requested Result, Processing Site’s Required Data, and Requested 

Processing are highlighted, as shown in �Figure 10(b). Using this simulation capability of

OPCAT, design errors that were not detected in the static model can be spotted and corrected 

before starting the implementation. 

  

Figure 10. OPCAT 2 simulation snapshots before (a) and after (b) executing CS Interacting.  

Existing things in a snapshot appear in grey. 

 

                                                

3 OPCAT 2 can be freely downloaded from http://www.objectprocess.org/  

(a) (b) 


