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Abstract

Web applications exhibit dynamic behavior through such features as animation, rapidly chang
presentations, and interactive forms. The growing complexity of Web applications require:
rigorous modeling approach that would be capable of clearly and explicitly addressing cc
mobility issues. While mobile agent systems and programming languages support

implementation of code mobility with features such as applets or mobile agents, existing syst
analysis and design methods lack the facilities to model code mobility at a satisfactory lev
OPM/Web is an extension of Object-Process Methodology (OPM) for modeling distribu
systems and Web applications that enables intuitive modeling of code mobility concepts i1
single framework. In this paper, we propose generic OPM/Web models for common c¢
mobility design paradigms, including Remote Evaluation, Code-on-Demand, PUSH, and Mot
Agents. An OPM/Web model of a mobile application that handles requests for Quality of Serv
over the Internet exemplifies the use and advantages of modeling such systems in OPM/Web.

Keywords: mobile code, code migration, code mobility design paradigms, Web application

modeling, Object-Process Methodology.

1. Introduction

Although Web applications seem to exhibit a relatively simple distributed architecture, th

underlying architecture is dynamic and complex. The complexity arises from the requirements



Web applications to respond to an unlimited number of heterogeneously skilled users, addr
security and privacy concerns, access heterogeneous, up-to-date information sources, and exhi
dynamic behavior. The growing complexity of Web applications requires a rigorous model
approach. Such approach should be capable, among other things, of addressing code mobil
issues to enable dynamic reconfiguration of the binding between software components and th
physical locations. Code mobility is the capability of software systems to dynamics
reconfigure the binding between the software components of an application and their physi
locations (nodes) within a computer network (Fugetta et. al., 1998). Mobile Code is a piece
code that exhibits the mobility property, i.e., code that can be transmitted across a network ¢
executed on another node. Code migration is the function which controls how code mobility
achieved (Dale and DeRoure, 1997). Although most applications do not require mobile co
adding this capability to applications supports disconnected operations and can enhance syst
flexibility, reduce bandwidth consumption and total completion time, and improve fault tolerai
(Fugetta et. al., 1998).

The code migration process involves determining the operation targets, transferring the co
and integrating it into the target system. In static system architectures, the targets can
determined at compilation time. If the system architecture is dynamic, the operation targ
should be computed immediately prior to transferring the code. Following the tar
determination, the code can be transferred by applying one of the design paradigms for cc
mobility, which extend the traditional client-server paradigm from data to code. Once transferr
the code can be integrated with the local target system by activating an instance of it, connect

it to existing data or code, or continuing its transfer over the network to yet another targ



Modeling the code migration process also includes defining process triggers, preconditions &
postconditions, and handling security issues and possible transfer errors.

Current techniques for modeling code mobility and migration require determining the operat
targets separately from the transferring stage (e.g., by class services) and do not specify how
code is to migrate. In the object-oriented approach, the description of code migration is scatter
For example, in UML (Object Management Group, 1999), which is the standard object-orien
modeling language, code migration specifications are decomposed into at least five views: 1
case, class, interaction, state, and deployment diagrams. This decomposition is hard to integr
to a whole, consistent system and is also complicate to maintain (Mezini and Lieberherr, 1998).

OPM/Web, which is the extension of Object-Process Methodology (OPM) to distribu
systems and Web applications, constitutes a complete approach to modeling the structure ¢
behavior of a system within a single view by considering objects and processes as two equa
important classes of entities. The purpose of this paper is to show how OPM/Web can clea
model all the important aspects of code migration. In Section 2, we review the literat
concerning the main concepts and design paradigms of code mobility, and discuss
shortcomings of existing modeling techniques in specifying code migration. In Section 3,
connect and map OPM/Web concepts to the terminology of mobility, while in Section 4 the m
code mobility design paradigms are modeled in OPM/Web. Section 5 explains and demonstra
how to use these models in a complete mobile application, which handles requests for Quality
Service. Section 6 summarizes and discusses OPM/Web advantages and shortcomings

modeling code migration.



2. Modeling Code Mobility: Literature Review

Applications that involve code mobility are defined in terms of components, interactions, &
sites (Carzaniga et. al., 1997). Components are the building blocks of system architecture. They
further divided into resource components, which are objects (architectural elements represent
data, or physical devices), and computational components, which are programs that embc
flows of control. A resource component is represented in object-oriented terms as an object w
attributes and operations (services) that contain knowledge about how to execute a particu
task, while a computational component, which contains code, may also be characterized
private data, an execution state, and bindings to other (resource or computational) componet
Interactions are events that involve two or more components communicating with each otk
Sites are nodes or execution environments — they host components and provide support for

execution of computational components.

2.1 The Client-Server Paradigm and Related Approaches

The Client-Server (CS) paradigm (Renaud, 1993) is the traditional design approach
distributed communication among sites, in which messages are transferred from one site
another, but actual code is not. In a typical client-server interaction, site Sg, which acts as
interaction server, offers a set of services. It also hosts the resources and the knowledge neec
for executing these services. Site Sa, which is the operation client, requests the execution of so
service offered by Sg by sending it a message. As a response, Sg performs the requested serv
and delivers the result back to Sa in a subsequent interaction. If the server does not have all
data and knowledge required, it can act as a client in another client-server interaction.

The CS paradigm has been criticized as being too low-level, requiring developers to determ

network addresses and synchronization points. CS interaction is also too specific, since the cli
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must “know” the exact services that the server can provide (Dale and DeRoure, 1997). The Rem
Procedure Call (RPC) (Bloomer, 1992) tries to overcome these shortcomings by permitting

client to request a service to be executed on a server in the same way a local function call
made; The location of the server, the initiation of the service, and the transportation of the rest
are handled transparently to the client. The object-oriented approach attempts to make the

paradigm more accessible and uniform by adopting reuse, inheritance, and encapsulat
principles. OMG’s Common Object Request Broker Architecture (CORBA) (Object Managem

Group, 1995) is a CS technology that is based on the object-oriented approach.

2.2 Design Paradigms for Code Mobility

Design paradigms for code mobility extend the CS paradigm by transporting computatio
components across a network. Four common design paradigms for code mobility are Rem
Evaluation (REV), Code-on-Demand (COD), PUSH, and Mobile Agents (MA). These paradig
differ in their preconditions, postconditions, and triggers.

In the Remote Evaluation (REV) paradigm (Stamos and Gifford, 1990), a computatio
component, C, located at S, has the knowledge (represented by code) necessary to perforn
service, but it lacks the required resource components, which are located at a remote site .
Therefore, C is transferred from S, to Sg and is executed there. The results of this execution
delivered back to S, in an additional interaction.

In the Code-on-Demand (COD) paradigm (Carzaniga et. al., 1997), site So can access
resource components needed for a service, but it does not have the knowledge required to proc
them. Therefore, S requests the service execution knowledge, i.e., the computation compon

C, from its hosting site, Sg. Sp delivers the knowledge to S, which subsequently processes C



site Sa on the resource components residing there. Contrary to REV, in COD the code is execu
at the client.

In the PUSH paradigm (Franklin and Zdonik, 1998), site Sg sends a (computational or resour
component to site S, in advance of any specific request. This push-based operation is of
preceded by a profiling operation, in which Su specifies a profile that reflects its users’ intere:
The profile is sent to site Sg, saved there, and used by Sg to decide which components S, sho
receive and when to send them. The advantage of this paradigm over COD is that the users do
have to know when to pull new components and where to pull them from. Rather, the syst
automatically sends necessary new components when they become available, and they are of
used later by the receiving node.

In the Mobile Agent (MA) paradigm (Gray et. al., 2000), site Sg owns the service execut
knowledge, C, but some of the required resource components are located at site So. Hence,
migrates to S, and completes the service using the resource components available there. 1
migration is usually initiated by the agent (C), but it might be requested by S, or Sg. Contrary
the REV, COD, and PUSH paradigms, which focus on the transfer of just code between sites,
mobile agent migrates to the remote site as a whole computational component, along with
state, the code it needs, and some of the resource components required to perform the task.

Discussing these design paradigms for code mobility, Carzaniga et al. (Carzaniga et. al., 19
claim that none of them is absolutely better than the others and suggest choosing the m
appropriate paradigm for a system under development on a case-by-case basis according to

application type and needs.



2.3 Modeling Code Mobility and Migration

Code mobility is supported by such programming environments as Java, Telescript (White, 195
and D’Agents (Gray et. al., 2001). However, current modeling techniques that are used in
analysis and design phases of Web applications do not address code mobility concepts a
satisfactory level.

Web applications can be classified as hybrids between hypermedia and information syste
(Fraternali, 1999). Most commonly, such systems are modeled using hypermedia author
techniques or visual software engineering methods, especially object-oriented ones. Hyperme
authoring techniques, including Hypertext Design Model (HDM) (Garzotto et. al., 19S
Relationship Management Methodology (RMM) (Isakowitz et. al., 1995), Object-Orien
Hypertext Design Model (OOHDM) (Schwabe and Rossi, 1998), and WebML (Ceri et. al., 20(
model the content and navigational aspects of an application, but not its functionality, physi
architecture, or security requirements. Therefore, they do not explicitly address code-rela
issues, such as code migration.

Object-oriented development languages, notably UML (Object Management Group, 1999), ena
modeling of the application functionality through class services and message passing amc
objects. Concepts involving code mobility, such as Java applets, are modeled in separate vie
using pre-declared UML stereotypes. Conallen’s extension of UML for Web applicatic
(Conallen, 1999), for example, is based on a set of 18 domain-specific stereotypes, which
commonly used with Web applications. These stereotypes include such implementatic
dependent concepts as RMI, IIOP, and Java Script, along with a set of well-formedness rules
using them. In general, UML does not handle the code migration process as a whole patte

including its preconditions (e.g., the existence of a request in the client site and source code at



server site), postconditions (e.g., the existence of executable code at the client site), and trigg
(e.g., a change in a server component). To overcome these shortcomings, UML has b
extended by various research teams, including the mobile agent extension (Klein et. al., 20(
Agent UML (AUML) (Odell et. al., 2000), and MASIF-DESIGN (Muscutariu and Gervais, 20(
Even though the proliferation of such extensions undermine and weaken UML standardizat
efforts, they still do not separate the execution knowledge (services) from the resou
components (classes). It should come as no surprise that such separation is not possible, sii
doing so would work against the encapsulation of operations within object classes, which i
major principle in the object-oriented approach.

Behavior-oriented techniques, including Aspect-Oriented Design (AOSD site, 2003) ¢
superimposition (Katz, 1993), model parts of the system functionality separately from
application structure. They enable static binding of processes to sites, but do not support
modeling of dynamic configurations and the actual migration process.

Object-Process Methodology (OPM) (Dori, 2002) combines ideas from the object-orien
development methods and behavior-oriented techniques in order to specify the system struct
and dynamics within a single framework. OPM enables the existence of processes as stand-alc
entities. This way, structure and behavior, the two major aspects that each system exhibits,
exist in the same OPM model without highlighting one at the cost of suppressing the other.
integrating structure and behavior, OPM provides a solid basis for modeling complex systems,
which these two most prominent system aspects are highly intertwined and hard to separ:
Mobile applications are prime examples of such systems. Since OPM lacks the ability to spec
the code migration process and dynamic reconfiguration at run time, it has been extended

OPM/Web, as discussed in the next section.



3. OPM/Web and Mobile Components

OPM/Web extends Object-Process Methodology to distributed systems and especially to W
applications, enabling the modeling of such systems within a single view. As in OPM,
OPM/Web universe of discourse is specified in terms of “things”: object classes and proc
classes. An object class (abbreviated as an object) is a set of object instances which exist, o1
least have the potential of stable, unconditional physical or logical existence. A process cl
(abbreviated as a process) is a pattern of transformation of one or more object classes.
program, an operation, a procedure, and an algorithm are examples of process classes. An act
execution of a process (such as the carrying out of an executable version of a program or
algorithm) is a process instance. The relations between things (objects and processes)
modeled by structural links (e.g., generalization and aggregation) and procedural links (wh
specify transformations, enablers, and triggers). Contrary to object-oriented methods, an Ol
process can stand alone and involve several object classes.

OPM enables managing the complexity of a model applying three refining/abstract
mechanisms: unfolding/folding, in which the thing being refined is shown as the root o
structural graph; in-zooming/out-zooming, in which the thing being refined is blown up to encls
its constituents; and state expression/suppression, which allows showing or hiding the possi
states of an object. Using flexible combinations of these three scaling mechanisms, OPM enab
specifying a system to any desired level of detail without losing legibility and comprehension
the resulting specification.

Two semantically equivalent modalities, one graphic and the other textual, jointly express
same OPM model. A set of inter-related Object-Process Diagrams (OPDs) constitute

graphical, visual OPM formalism. Each OPM element is denoted in an OPD by a symbol, and



OPD syntax specifies correct and consistent ways in which entities can be linked. The Obje
Process Language (OPL), defined by a grammar, is the textual counterpart of the graphical OF
set. OPL is a dual-purpose language, oriented towards humans as well as machines. Catering
human needs, OPL is designed as a constrained subset of English, which serves domain expe
and system architects engaged in analyzing and designing a system. Every OPD construct
expressed by a semantically equivalent OPL sentence or phrase. While the OPD set and the O
script are equivalent in their semantic content, they are complementary from a human cognit
viewpoint. Designed also for machine interpretation through a well-defined set of product
rules, OPL provides a solid basis for automatically generating the designed application.
integrated software engineering environment, called OPCAT (Object-Process CASE Tool) (D
et. al., 2003), automatically translates from one modality to the other in either direction.
OPM/Web enhances the ability of OPM to model distributed systems in general and W
applications in particular in two ways. The first extension is the ability to reuse compon
designs in an open manner through bindings among model components, thereby improv:
model scalability (Reinhartz-Berger et. al., 2002). The second extension is the support for cc
mobility and migration specifications. In this paper we focus on defining and modeling cc

mobility concepts and design paradigms using OPM/Web.

3.1 Mapping Mobility Terms onto OPM/Web Concepts
The terms used in the various design paradigms for code mobility are mapped to OPM/W
concepts as follows.
e A resource component is an informatical or physical object. An informatical object is a pi
of information, such as the data required for a process execution. A physical object is tangi

in the broad sense, for example a device.
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A computational component is a process. It can own private data (objects) and include s
processes. The migration process can transfer the computational component source code (i
a process class), which can be compiled at the target site and run there any number of tirr
or an executable version of the code (i.e., a process instance), which can run at the target
only a specified number of times.

A site, which is analogous to a node in the UML implementation model, is a physical obj
in OPM/Web. This physical object can be in-zoomed to expose its resource :
computational components.

An interaction has both structural and dynamic aspects. The structural aspect of an interact
specifies how two sites can communicate with each other, irrespective of a specific poin
time. This aspect is modeled in OPM/Web by a (unidirectional or bi-directional) structt
link between the communicating sites, which, as noted, are physical objects. The dynai
aspect of an interaction is the ability to transfer data (objects) or code (processes) betw:
two sites and is specified in OPM/Web by an event-driven process. Since interact
conceptually characterizes the communication between the sites, the interaction process
associated in the model to the structural link that connects the two interacting sites. ]
implementation of this interaction may still be carried out as two inter-related processes,
at each interacting site.

A summary of the main OPM/Web symbols and their meanings is provided in Appendix

The basic code transferring operations are represented by the generic OPDs in Figure 1. ]

computational Component on the left of Figure 1(a) and Figure 1(b), which is a process cle

denoted by an ellipse, is the (unchangeable) input for the Component Transferring process, as

instrument link between them indicates. In Figure 1(a) the Component Transferring proc
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transfers Component’s source code, while in Figure 1(b) Component Transferring transfer:
process instance, i.e., only an executable version of Component. Following the UML notation
classes and objects, a process instance is denoted in OPM by an ellipse within which the proc
class name is written as :ProcessClassName, where the identifier of the instance can optiona
precede the colon.

The semantics of the arrow with the white (blank) arrowhead from Component Transferring
the right appearance of Component is a result link', which means that Component Transferr
creates (a copy of) the process class Component, as in Figure 1(a), or an instance of it, as
Figure 1(b). The identical path labels® on the instrument and result links and the identi
component names indicate that Component Transferring transfers Component as is rather tt

computing it from an input.
patn patn patn Component path .
(Gam)—=2(m) o
(a) (b)

Figure 1. A generic OPM/Web model of a Component Transferring process.
(a) Component Transferring transfers Component's code, leaving the original Component intact.
(b) Component Transferring transfers an instance of Component, leaving the original Component

intact.

"In the original OPM, processes are not connected, and, hence, there is no difficulty to determine which is
processing entity. To remove the ambiguity arising from connecting two processes in OPM/Web via consumptior
result links, a consumption link is denoted as a black-headed arrow from the consumed entity to the process, w!
the semantics of a white-headed arrow from a process to an entity remains a result link.

> A path label in OPM is a label on a procedural link that removes the ambiguity arising from mult
incoming/outgoing procedural links. Here we use identical path labels on the incoming link to and outgoing ]

from the Component Transferring process to denote the transfer flow.
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3.2 Modeling the Client-Server Paradigm using OPM/Web

Based on the mapping of code mobility terms onto OPM/Web concepts, an OPM/Web model
the traditional client-server paradigm, presented in Figure 2, consists of two equival
modalities: graphical — the OPD in Figure 2(a), and textual — the OPL paragraph in Figure 2(
The objective of this unique dual representation is to enhance the readability of the model
humans: engineering-oriented readers, who are familiar with OPM and its diagrammatic notati
can relate to the OPD, while domain experts, or those who are new to the OPM graphic notati
can refer to the OPL paragraph and learn the correspondence between each OPL sentence
phrase and its OPD construct counterpart. The OPL paragraphs also improve syst
documentation.

Examining Figure 2, one can see that Requesting Site (the client) and Processing Site (
server) are both physical objects (as denoted by shadowed rectangles). The computatio
component, Requested Processing, resides in the Processing Site, which also hosts the resou
components required for that computation, Required Data and (later on) Requested Result. ]
two sites are connected via a bi-directional structural link, tagged communicate, which exhit
(i.e., is characterized by) the CS Interacting process. A change in (an instance of) Activati
Request at the Requesting Site initiates the CS Interacting process, as the event link (the circ
headed arrow with the letter 'e' inside it) between the two things shows. Following the requ
transferring path, the first subprocess of the CS Interacting process, which is Result Requestil
transfers a copy of Activation Request to the Processing Site. As soon as this copy is placed at
Processing Site, it activates the Requested Processing, as the consumption event link (the blas
headed arrow with the letter 'e' next to it) denotes. This Requested Processing potentially affe

the Required Data object and yields (produces) the Requested Result object.
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m communicate m
Activation
Request % | Activation
G%“’-*a Request
'w,,,z 1
Requested
Processing Result
Regquesting
Required Data Relgggjltted Bl Result ull ransferfing Requested
Retrieving —3 Result
Processing Site Requesting Site

(b) Requesting Site physical.
Requesting Site zooms into Activation Request and Requested Result.
Activation Request triggers CS Interacting.

Processing Site is physical.

Processing Site zooms into Activation Request, Required Data and Requested Result,

as well as Requested Processing.

Activation Request triggers Requested Processing when its state changes.

Requested Processing consumes Activation Request of Processing Site.
Requested Processing affects Required Data.
Requested Processing yields Requested Result of Processing Site.

Many Requesting Sites and many Processing Sites communicate, and this relation

exhibits CS Interacting.
CS Interacting zooms into Result Requesting and Result Retrieving.

Following path request transferring, Result Requesting consumes Activation

Request of Requesting Site.

Following path request transferring, Result Requesting yields Activation

Request of Processing Site.

Following path result transferring, Result Retrieving consumes Requested Result

of Processing Site.

Following path result transferring, Result Retrieving yields Requested Result of

Requesting Site.

Figure 2. An OPM/Web model of the Client-Server (CS) paradigm:
(a) The OPD (b) The corresponding OPL paragraph
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The creation of Requested Result enables the second stage of the interaction, executed
Result Retrieving. Following the result transferring path, this process moves the local copy of
generated Requested Result from the Processing Site to the Requesting Site.

Table 1 summarizes the structure of Requesting Site and Processing Site before and after
activation of a CS Interacting process. The dynamic aspect of the CS Interacting process can

vividly simulated using OPM Case Tool (OPCAT), as explained in Appendix B.

Table 1. The resource and computational components in Requesting Site (the client) and Processing Site (the

server) before and after an activation of CS Interacting

Design Paradigm
Time Requesting Site Processing Site
(Process Name)

L Requested Processing (code)
Before Activation Request

Client Server Required Data

(CS Interacting) Requested Processing (code
After Requested Result q 9( )

Required Data

4. OPM/Web Models of Code Mobility Design Paradigms

OPM/Web enables precise modeling of the REV, COD, PUSH, and MA paradigms, which w
explained informally in Section 2.2. In this section, we present generic OPM/Web models
these design paradigms. In all of these models, Requesting Site is the transaction client, and
such, it obtains a copy of the Requested Result and keeps it at the end of the process. Activati
Request is the trigger for the code transferring process. The Resource Site is the transact
server, i.e., it hosts the Requested Processing (as in COD, PUSH, and MA) or the Required D
(as in REV). The COD, PUSH, and MA models describe transferring a one-time executa
version of code (i.e., a process instance) from the Resource Site to the Requesting Site, ¢
executing it in the remote site. The REV model specifies a process that transfers an executa

version of code from Requesting Site to Resource Site and executes it there. Replacing
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process instance with a process class supports transfer of source code that can later

instantiated, i.e., compiled and executed. The various code mobility models can become gene

components in specifications of mobile applications, as explained and demonstrated in Section

Table 2.

The resource and computational components in Requesting Site (the “client””) and Resource

Site (the “server”) before and after an activation of the transfer processes in each one of the four code

mobility design paradigms.

Code Mobility
Design Paradigm Time Requesting Site Resource Site
(Process Name)
Activation Request
Remote Before q ] Required Data
. Requested Processing code
Evaluation
. Required Data
(REV Interacting) After | Requested Processing code L
Requested Processing instance
Activation Request .
Before Required Dat Requested Processing code
Code-on-Demand equired Data
Required Data
(COD Interacting) . Requested Processing code
After | Requested Processing
instance
Requested Processing code
PUSH Before | Required Data Profile
Activation Request
(PUSH
Required Data R ted P . d
i equested Processing code
Interacting) After | Requested Processing q. g
) Profile
instance
Requested Processing instance
Before | Required Data (+ Execution Status + Private
Mobile Agent Data)
Required Data If clones:
(MA Interacting) . L
Aft Requested Processing Requested Processing instance
er

instance (+ Execution Status +
Private Data)

(+ Execution Status + Private
Data)

Table 2 summarizes the components that reside at the Requesting Site and the Resource €

before and after the transfer of a process instance in each of the four mobile code des
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paradigms. Note that the table reflects the situation before Requested Processing took place,
Requested Result does not yet exist. After this transfer, the executable code may be activat

creating Requested Result.

4.1 Remote Evaluation

The OPD in Figure 3 is an OPM/Web model of the Remote Evaluation (REV) paradigm. Cc
Sending transfers an instance of Requested Processing from the Requesting Site to the Resou!
Site, while Code Activating invokes (triggers the execution of) this instance in the Resource S
Finally, Requested Processing transfers the Requested Result from the Resource Site to

Requesting Site.

m communicate

Activation

/ Request

*Requested ¥
Processing

ra"‘Sfanhg
- Requested
Required
[?ata Processing
Requested result transferriyg
redult transternng
Result 1 Requested
Result

Resource Site Requesting Site

Figure 3. A generic OPD of the REV paradigm

The following OPL paragraph describes the same REV model textually.
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Requesting Site is physical.
Requesting Site zooms into Activation Request and Requested Result, as well as Requested
Processing.
Activation Request triggers REV Interacting.
Resource Site is physical.
Resource Site zooms into Required Data and Requested Result, as well as Requested
Processing instance.
Requested Processing instance affects Required Data.
Requested Processing instance yields Requested Result of Resource Site.
Many Requesting Sites and many Resource Sites communicate, and this relation exhibits REV
Interacting.
REV Interacting consumes Activation Request.
REV Interacting zooms into Code Sending, Code Activating and Result Retrieving.
Following path code transferring, Code Sending requires Requested Processing of
Requesting Site.
Following path code transferring, Code Sending yields Requested Processing
instance of Resource Site.
Code Activating invokes Requested Processing instance of Resource Site.
Following path result transferring, Result Retrieving consumes Requested Result
of Resource Site.
Following path result transferring, Result Retrieving yields Requested Result of

Requesting Site.

4.2 Code-on-Demand

The OPD in Figure 4 is a generic model of the Code-on-Demand (COD) paradigm. It clea

shows that processing (i.e., the activation of a Requested Processing instance) in the COD mo

occurs at the Requesting Site, whereas in the REV model, shown in Figure 3, the processing tal

place in the Resource Site. The fact that Requested Processing is not initially at the Request

Site is denoted in Figure 4 by the result link (the white arrowhead) whose destination is

Requested Processing instance at the Requesting Site, indicating that the Requested Processi

instance was created there only after the first stage of COD Interacting, Code Retrieving, occurr

As described in Appendix B, OPCAT enables simulation of the behavior of this system, show:

more vividly the sequence of occurrences. When the animated simulation is run, the Reques

Processing instance appears only in the postcondition set of Code Retrieving.
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m coOmmMuIcane m

Activation
Request

Reguested
Processing

Code

Requested
Result

Required
Data

Activating

Resource Site COD Interacting Requesting Site

Figure 4. A generic OPD of the COD paradigm

The OPL paragraph below is the textual counterpart of the OPD in Figure 4 of the C(

paradigm.

Requesting Site is physical.
Requesting Site zooms into Activation Request, Required Data, and Requested Result, as well as Requested
Processing instance.
Activation Request triggers COD Interacting.
Requested Processing instance affects Required Data.
Requested Processing instance yields Requested Result.
Resource Site is physical.
Resource Site zooms into Requested Processing.
Many Requesting Sites and many Resource Sites communicate, and this relation exhibits COD Interacting.
COD Interacting consumes Activation Request.
COD Interacting zooms into Code Retrieving and Code Activating.
Following path code transferring, Code Retrieving requires Requested Processing of Resource Site.
Following path code transferring, Code Retrieving yields Requested Processing instance of
Requesting Site.
Code Activating invokes Requested Processing instance of Requesting Site.

4.3 PUSH

Figure 5 is a generic model of the PUSH paradigm. The following OPL sentences describe

model.
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Requesting Site is physical.
Requesting Site zooms into Required Data and Requested Result, as well as Requested Processing instance.
Requested Processing instance affects Required Data.
Requested Processing instance yields Requested Result.
Resource Site is physical.
Resource Site zooms into Activation Request and Profile, as well as Requested Processing.
Many Activation Requests relates to many Profiles.
Activation Request triggers PUSH Interacting.
Many Requesting Sites and many Resource Sites communicate, and this relation exhibits PUSH Interacting.
PUSH Interacting occurs if Profile of Resource Site is requesting site.
PUSH Interacting consumes Activation Request.
PUSH Interacting zooms into Code Retrieving and Code Activating.
Following path code transferring, Code Retrieving requires Requested Processing of Resource
Site.
Following path code transferring, Code Retrieving yields Requested Processing instance of
Requesting Site.
Code Activating invokes Requested Processing instance of Requesting Site.

communicate m
Activation
Request 7\
e ¥ : Requested
o Processing
m
Profile 5 Code
requesting € Retrieving
site ‘m_\‘g
Bg\":

Required Reguested
Code
Activating Data Result

PUSH Interacting

Requested
Processing

Requesting Site

Resource Site

Figure 5. A generic OPD of the PUSH paradigm

The condition link from requesting site Profile to PUSH Interacting specifies that when trigge:
(by Activation Request), Requested Processing is transferred only to sites that were registered
the Profile. The Activation Request and the Profile are not transferred to the Requesting Site, |

only enable the transfer of Requested Processing from the Resource Site to the relev

20



Requesting Sites. As noted, the creation of the Activation Request and the Profile at the Resou

Site is done in a separate process whose execution precedes the execution of PUSH Interacting.

4.4 Mobile Agents

Various definitions of an agent (Franklin and Graesser, 1996) agree that all software agents
computer programs, but not all programs are agents. Each agent definition indicates so
properties that differentiate an agent from a “conventional” program. Various definitions exp
an agent to be reactive, autonomous, goal-oriented, temporally continuous, communicati
learning, mobile, and flexible. Agents of the same class or of different classes can communic
with each other using objects. These definitions of an agent as a computer program w
additional characteristics call for modeling an OPM/Web agent as a process instance, wh
belongs to a process class. These process instances (agents) initiate their own migration

specific points of their execution.

m communicate m

Required Reguested
Data Result

:Requested

Processing
e
Private Execution Status

Data
s -1

Code trans ferrin
transferring

Agent -
Migrating * Requested

Processing
e —

Agent
Activating

9

Execution Status Private
™ | e |
NG
=N
Resource Site Requesting Site

Figure 6. A generic OPD of the MA paradigm
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Requesting Site is physical.
Requesting Site zooms into Required Data and Requested Result, as well as Requested Processing instance.
Requested Processing instance exhibits Execution Status and Private Data.
Execution Status can be transfer or local.
Requested Processing instance affects Required Data.
Requested Processing instance yields Requested Result.
Resource Site is physical.
Resource Site zooms into Requested Processing instance.
Requested Processing instance exhibits Execution Status and Private Data.
Execution Status can be transfer or local.
Execution Status triggers MA Interacting when it enters transfer.
Many Requesting Sites and many Resource Sites communicate, and this relation exhibits MA Interacting
MA Interacting zooms into Agent Migrating and Agent Activating.
Following path code transferring, Agent Migrating requires Requested Processing instance of
Resource Site.
Following path code transferring, Agent Migrating yields Requested Processing instance of
Requesting Site.
Agent Activating changes Execution Status of Requested Processing instance of Requesting Site
from transfer to local.
Agent Activating invokes Requested Processing instance of Requesting Site.

Figure 6 and the corresponding OPL paragraph describe a mobile agent model for the case
which the agent is cloned from the Resource Site to the Requesting Site. The agent, which
characterized by Private Data and an Execution Status, initiates (triggers) its own transfer wt
its Executing Status enters the transfer state. After completing the agent transfer, its Executi
Status returns to the local state.

The instrument link from the agent (the Requested Processing instance at the Resource Site)
Agent Migrating (within MA Interacting) in Figure 6 denotes that this migration clones (i.e., mal
a copy of) the Resource Site‘s agent at the Requesting Site. Alternatively, MA Interacting mi;
move the agent, in which case a consumption link from Requested Processing of Resource €
to Agent Migrating replaces the instrument link, implying that the agent at the Resource €

disappears.
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5. Reusing OPM/Web Code Mobility Models: The QoS System Example

In this section we demonstrate the expressive power of OPM/Web as a means to explicitly mo
what pieces of code are migrated along with their sources and destinations, and the effects of
migration on the effectiveness of the application. Transferring a (resource or computation
component between sites involves determining the source and target sites, integrating
transferred component within the target sites, addressing network security issues, and handl
errors that may occur in the process. These aspects can be incorporated in the single, bimo
graphic-textual OPM/Web model, in which one or more of the code migration models, presen
in the previous section, are reused. To demonstrate our approach, we present an OPM/Web mo
of a Quality of Service (QoS) system, a mobile application that is based on (Klein et. al., 20(
This system has been chosen in order to be able to demonstrate most of the code mobil
concepts and design paradigms explained in this paper and their integration into a compl
application. In this QoS system, software components from multiple parties collaborate
provide a particular service to end users. The service users access service provider hosts vi
Web interface. They select the specific value-added services for their applications. A serv
provider communicates with several routers to achieve the QoS goals. The service users ¢
control their requests remotely at any time.

As the System Diagram (SD), i.e., the top-level diagram, in Figure 7 shows, our QoS syst
consists of three types of sites: Client, ISP (Internet Service Provider) Agency, and Rou
Agency, each of which may have multiple instances. Each site type is modeled as a physi

object that inherits from Site, a network node.

At this level of abstraction, the Client is shown to include only the QoS Interface Handli

process, with which the Service User interacts. The Service User is an actor using the system ¢
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is therefore modeled as an external (dashed) and physical (shadowed) object. Not knowing wh
routers provide the requested service, the Service User interacts via the QoS Interface Handli
process, which the Client site hosts. This interaction is indicated in Figure 7 by the agent |
(which ends with a black circle) from Service User to QoS Interface Handling. Each Client

connected to ISP Agencies, and each ISP Agency is connected to several sites of type Rou

Agency.
Site
Client n Eommunicatss with ISP mRcaTmunCEtEeld th Router
=] Agency m | Agency
QoS Interface
Handling
Service |

Figure 7. The top level System Diagram of the QoS System
If we were to model this system with UML, we would need three different types of U}

diagrams: deployment diagrams to describe the system physical architecture, use case diagra
to describe the user-system interactions, and sequence diagrams to describe scenarios of
communication processes. However, even these three diagram types combined do not descr
the details of the interaction processes, as do the next two OPDs in Figure 8 and Figure 9.
Refining the interaction between Client and the ISP Agency, Figure 8 shows that th
communication structural relation exhibits two operations: CS Interacting and COD Interactil
The details of the models of the Client-Server (CS) and Code-on-Demand (COD) paradigms h:
been presented earlier. COD Interacting, for example, is the same as the process modeled

Figure 4, where ISP Agency is the server (Resource Site), Parameter Check Request is
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Activation Request, and Parameter Checking is Requested Processing. Therefore, CS Interacti

and COD Interacting are not in-zoomed further here.
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Parameter Check _________—————
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Figure 8.  Detailing the Client — ISP Agency interaction

When weaving these models into a complete application, the combined model can
enhanced to handle security issues and possible transfer errors. Since the security and priv:
algorithms are often pre-defined computational components, they can be modeled as OPM/W
processes, from which the transfer processes can inherit both the functionality and the interfa
This open reuse mode of OPM/Web, which is beyond the scope of this paper, is described
Reinhartz-Berger, Dori and Katz (2002). The different kinds of transfer errors, such
communication failures, unknown addresses, and timeout exceptions, can be traced using Ol
event links. These links model a variety of events, including process timeout, proc
termination, state change, state entrance, state timeout, and external events. These types of eve
trigger stand-alone processes, which handle the exceptions or errors as explained by Peleg :
Dori (1999).

In addition to showing the details of the interaction between the Client and the ISP Ager

components, Figure 8 also zooms into the Client and the ISP Agency components, exposin;
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more refined view of their internal objects and processes. QoS Interface Handling, which is

computational component of the Client, handles requests that the Service User submits. Wt
activated by the Service User, QoS Interface Handling creates the objects QoS Parameter Set ¢
Parameter Check Request. Upon its creation, Parameter Check Request activates COD Interactil
The occurrence of COD Interacting transfers an instance (one-time executable version)
Parameter Checking from the ISP Agency to the Client, enabling its local execution at the Cli
site. This Parameter Checking execution changes the state of QoS Parameter Set from created
either checked or wrong, indicating whether the QoS Parameter Set supplied by the Service U.
is correct or wrong. Through the QoS Interface Handling process, the Service User can contir
affecting QoS Parameter Set, in order to request services (via the update path) or to cancel th
(via the cancel path). These requests are transferred to the ISP Agency by the CS Interacti
process, which does not need to wait for a response from the ISP Agency.

Unlike UML and its extension mechanisms, OPM/Web specifies the communication proces
generically, regardless of their implementation technology. For example, the COD Interact
process specifies a common design paradigm for code mobility without limiting it to speci
implementation language constructs (such as Java applets). As this example shows, OPM/W
also supports modeling the events which trigger the communication processes, as well as

conditions that enable their activations.

Figure 9 shows a refinement of the interaction between the ISP Agency and the Router Agen
Since not all the Router Agencies provide all the services, the QoS Choice Handling use:
Service Provider Catalog as an instrument for creating a Service Control Message and the Serv
Address object, which defines a router agency address for the required service. If the Serv

Control Message requests a new service (which is the case when its state is create), then the R
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Interacting process is activated, transferring an executable version of QoS Agent Processing
the Router Agency according to the Service Address. If the Service Control Message is created
its update or cancel states, it is transferred as is to the Router Agency by the CS Interact
process, enabling the continuous running of QoS Agent Processing in the Router Agency, wh

it can use the Service Control Message and any required Local Data.
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X T

—

QoS Choice QoS Agent
Handling Processing
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muter agency

Semice Control
Message

=
Router

Agency
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1

Serice Control
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| update

\

cs
2\ Interacting

3

Figure 9.  Detailing the ISP Agency — Router Agency interaction
Other OPM/Web code mobility models could be plugged and linked into our QoS applicat

for specific purposes. For example, if we want QoS Agent Processing to be able to move or clc
itself among various Router Agencies according to the Mobile Agent (MA) paradigm, explair
in Section 4.4, we can add a structural relation between Router Agency and itself and specify t

this relation exhibits the MA Interacting process as its operation.

6. Summary and Future Work
Existing Web and distributed system development methods are not up to the task of complete ¢
accurate modeling of code mobility and migration. While some of them can specify stz
bindings of software components to their physical locations, the specification of dynamic syst

reconfiguration and code migration is not satisfactorily supported by any of the exist
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approaches. Mentally integrating the structure and behavior aspects of these systems in order
comprehend them in their entirety can be achieved with current methods only with gr
difficulties due to the multiplicity of models that need to be consulted.

Using a small set of concepts and symbols, OPM/Web combines the physical, sta
behavioral, and functional views of a system within a single framework. OPM/Web augme
OPM to enable modeling code mobility concepts and design paradigms by specifying proces
as residents of some node (site) and moving or cloning them to other nodes, where they can
activated or transferred further. This approach provides for a technology-independent moc
where triggers, preconditions, and postconditions for the migration process are specif
generically. Once the mobile application is modeled, a solid skeleton of the technolo;
dependent implementation can be automatically generated and simulated by the Object-Proc
CASE Tool (OPCAT). This skeleton includes not only the structure of the application, but a
its behavior, enabling design verification and leaving to the implementer only the coding at
bottom level.

The single OPM view with its combined graphic-textual modalities and abstraction-refinem
mechanisms benefits from consistency, relative simplicity, and ease of learning. The struct
and behavior of the different components are explicitly modeled in the same view, making th
understandable and communicable. In order to model distributed applications in UML, a set
stereotypes (denoted by different graphical symbols), tagged values, and constraints must
defined. Such extension mechanisms undermine UML standardization efforts, since e:
researcher or company working in the domain of distributed systems is free to develop a differ
set of extensions. Lack of a universal set of such extension entities inhibits the efforts to deve.

reusable components. The segregation of a UML model into multiple views, which span acr
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different diagram types, is yet another source of difficulty in capturing and understanding
system as a whole (Peleg and Dori, 2000). Indeed, comparing the complexity metric values
UML with other object-oriented techniques, Siao and Cao (2001) found that each diagram
UML is not distinctly more complex than techniques in other object-oriented methods, but a
whole, UML is 2-11 times more complex than other object-oriented methods.

In a separate work (Reinhartz-Berger and Dori, 2003), we have established the level
comprehension of a given OPM/Web model and the quality of the models constructed using it
comparing OPM/Web experimentally to an extension of UML to Web applications (Conall
1999). Third year undergraduate information systems engineering students had to respond
comprehension and construction questions about two representative Web application models. 1
questions related to the system's structure, dynamics, and distribution aspects. We found t
OPM/Web is significantly better in modeling the dynamics of Web applications, while
specifying their structure and distribution aspects, there were no significant differences. In b
case studies, the quality of the resulting OPM/Web models was superior. The main errors in
UML modeling questions occurred when students were required to integrate the different vie
into a whole, consistent model. The modeling questions required adding a single functional
that affected several UML diagram types. All these changes were expected to leave the Ul
model integral and consistent. This task is difficult for trained UML modelers, let alone untrair
students.

On the other hand, as our experiment indicated to some extent, UML's use of multiple vie
may help system architects focus on a specific aspect of a system, and answer questions abou
when the needed information is fully contained in a single diagram type, such as a class or

interaction diagram. These types of questions may be more difficult to answer by examining

29



OPM/Web model, since the information might reside in several OPDs at different levels of det
To benefit from this potential advantage of UML and to stay current with the prevailing standa
we have augmented OPCAT with the ability to automatically generate a set of UML views fr
the single OPM/Web model. Since UML does not have a single mechanism to express stai
alone processes, the resulting UML views may not necessarily be unique or complet
equivalent to the OPM/Web model. Nevertheless, when we complete developing an UML
OPM/Web generator, the system architect will be able to use the most suitable approach for e:
design portion by using OPM/Web, UML, or a combination of these two approaches. In paral
we are working on developing the ability to generate the application (code and database scher

from the system's OPL script.
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Appendix A: Main OPM/Web Concepts, their symbols, and their meaning

Concept Name

Symbol

Concept Meaning

Informatical object

]

A piece of information

Physical object

.

An object which consists of matter and/or energy

Process class

>

A pattern of transformation that objects undergo

Process instance

An executable version of code

Initial/Regular/Final state

o o ()

An initial/regular/final situation at which an object can exist for a

period of time

A

Characterization A fundamental structural relation representing that an element
A exhibits a thing (object/process)
Aggregation A fundamental structural relation representing that a thing

(object/process) consists of one or more things

General structural link

A bidirectional or unidirectional association between things that
holds for a period of time, possibly with a tag denoting the

association semantics

Enabling event link A link denoting an event (such as data change or an external
event) which triggers (tries to activate) a process. Even if
activated, the process does not change the triggering entity.

Consumption event link e A link denoting an event which triggers (tries to activate) a

«— process. If activated, the process consumes the triggering entity.

Condition link A link denoting a condition required for a process execution,
which is checked when the process is triggered. If the condition
does not hold, the next process (if any) tries to execute.

Agent link ° A link denoting that a human agent (actor) is required for
triggering a process execution

Instrument link A link denoting that a process uses an entity without changing it.
If the entity is not available (possibly in a specific state), the
process waits for its availability.

Effect link A link denoting that a process changes an entity. The black
arrowhead points towards the process that affects the entity.

Consumption link A A link denoting that a process consumes an (input) entity. The
black arrowhead points towards the process that consumes the
entity.

Result link 4 A link denoting that a process creates an (output) entity. The

white arrowhead points towards the created entity.

Invocation link

A link denoting that a process triggers (invokes) another process

when it ends

XOR connection

A connection between procedural links denoting that exactly one
of the process incoming/outgoing links is applicable (active) in a

single execution of the process
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Appendix B: Simulating Mobile Specifications with OPCAT

Using Object-Process CASE Tool (OPCAT)3 (Dori et. al., 2003), with which the OPM models
this paper were generated, a system design model can also be simulated. In the CS paradigm,
example, the simulation starts by making the precondition set of the CS Interacting process tr
This is done by enabling (through highlighting) all the components (objects and processes) wh
are not created by processes in the given model, i.e., the objects Activation Request

Requesting Site) and Required Data and the process Requested Processing, as shown in Figl
10(a). While executing CS Interacting, the Activation Request at the Processing Site becon
highlighted, then the Requested Result at the Processing Site, and finally the Requested Resul
the Requesting Site. After the transfer process has been completed, its postcondition set becon
true, i.e., Requesting Site’s Requested Result, Processing Site’s Required Data, and Reques
Processing are highlighted, as shown in Figure 10(b). Using this simulation capability
OPCAT, design errors that were not detected in the static model can be spotted and correc

before starting the implementation.
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Processing Site
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Figure 10.  OPCAT 2 simulation snapshots before (a) and after (b) executing CS Interacting.

Existing things in a snapshot appear in grey.

3 OPCAT 2 can be freely downloaded from http://www.objectprocess.org/

34



