
 1

Modeling Code Mobility and Migration:
An OPM/Web Approach

Iris Reinhartz-Berger, Dov Dori, and Shmuel Katz
Technion, Israel Institute of Technology

Technion City, Haifa 32000, Israel
Emails: {ieiris@tx, dori@ie, katz@cs}.technion.ac.il

Abstract

Web applications exhibit dynamic behavior through such features as animation, rapidly changing

presentations, and interactive forms. The growing complexity of Web applications requires a

rigorous modeling approach that would be capable of clearly and explicitly addressing code

mobility issues. While mobile agent systems and programming languages support the

implementation of code mobility with features such as applets or mobile agents, existing system

analysis and design methods lack the facilities to model code mobility at a satisfactory level.

OPM/Web is an extension of Object-Process Methodology (OPM) for modeling distributed

systems and Web applications that enables intuitive modeling of code mobility concepts in a

single framework. In this paper, we propose generic OPM/Web models for common code

mobility design paradigms, including Remote Evaluation, Code-on-Demand, PUSH, and Mobile

Agents. An OPM/Web model of a mobile application that handles requests for Quality of Service

over the Internet exemplifies the use and advantages of modeling such systems in OPM/Web.

Keywords: mobile code, code migration, code mobility design paradigms, Web application

modeling, Object-Process Methodology.

1. Introduction

Although Web applications seem to exhibit a relatively simple distributed architecture, their

underlying architecture is dynamic and complex. The complexity arises from the requirements of

 2

Web applications to respond to an unlimited number of heterogeneously skilled users, address

security and privacy concerns, access heterogeneous, up-to-date information sources, and exhibit

dynamic behavior. The growing complexity of Web applications requires a rigorous modeling

approach. Such approach should be capable, among other things, of addressing code mobility

issues to enable dynamic reconfiguration of the binding between software components and their

physical locations. Code mobility is the capability of software systems to dynamically

reconfigure the binding between the software components of an application and their physical

locations (nodes) within a computer network (Fugetta et. al., 1998). Mobile Code is a piece of

code that exhibits the mobility property, i.e., code that can be transmitted across a network and

executed on another node. Code migration is the function which controls how code mobility is

achieved (Dale and DeRoure, 1997). Although most applications do not require mobile code,

adding this capability to applications supports disconnected operations and can enhance system

flexibility, reduce bandwidth consumption and total completion time, and improve fault tolerance

(Fugetta et. al., 1998).

The code migration process involves determining the operation targets, transferring the code,

and integrating it into the target system. In static system architectures, the targets can be

determined at compilation time. If the system architecture is dynamic, the operation targets

should be computed immediately prior to transferring the code. Following the target

determination, the code can be transferred by applying one of the design paradigms for code

mobility, which extend the traditional client-server paradigm from data to code. Once transferred,

the code can be integrated with the local target system by activating an instance of it, connecting

it to existing data or code, or continuing its transfer over the network to yet another target.

 3

Modeling the code migration process also includes defining process triggers, preconditions and

postconditions, and handling security issues and possible transfer errors.

Current techniques for modeling code mobility and migration require determining the operation

targets separately from the transferring stage (e.g., by class services) and do not specify how the

code is to migrate. In the object-oriented approach, the description of code migration is scattered.

For example, in UML (Object Management Group, 1999), which is the standard object-oriented

modeling language, code migration specifications are decomposed into at least five views: use

case, class, interaction, state, and deployment diagrams. This decomposition is hard to integrate

to a whole, consistent system and is also complicate to maintain (Mezini and Lieberherr, 1998).

OPM/Web, which is the extension of Object-Process Methodology (OPM) to distributed

systems and Web applications, constitutes a complete approach to modeling the structure and

behavior of a system within a single view by considering objects and processes as two equally

important classes of entities. The purpose of this paper is to show how OPM/Web can clearly

model all the important aspects of code migration. In Section �2, we review the literature

concerning the main concepts and design paradigms of code mobility, and discuss the

shortcomings of existing modeling techniques in specifying code migration. In Section �3, we

connect and map OPM/Web concepts to the terminology of mobility, while in Section �4 the main

code mobility design paradigms are modeled in OPM/Web. Section �5 explains and demonstrates

how to use these models in a complete mobile application, which handles requests for Quality of

Service. Section �6 summarizes and discusses OPM/Web advantages and shortcomings in

modeling code migration.

 4

2. Modeling Code Mobility: Literature Review

Applications that involve code mobility are defined in terms of components, interactions, and

sites (Carzaniga et. al., 1997). Components are the building blocks of system architecture. They are

further divided into resource components, which are objects (architectural elements representing

data, or physical devices), and computational components, which are programs that embody

flows of control. A resource component is represented in object-oriented terms as an object with

attributes and operations (services) that contain knowledge about how to execute a particular

task, while a computational component, which contains code, may also be characterized by

private data, an execution state, and bindings to other (resource or computational) components.

Interactions are events that involve two or more components communicating with each other.

Sites are nodes or execution environments – they host components and provide support for the

execution of computational components.

2.1 The Client-Server Paradigm and Related Approaches

The Client-Server (CS) paradigm (Renaud, 1993) is the traditional design approach for

distributed communication among sites, in which messages are transferred from one site to

another, but actual code is not. In a typical client-server interaction, site SB, which acts as the

interaction server, offers a set of services. It also hosts the resources and the knowledge needed

for executing these services. Site SA, which is the operation client, requests the execution of some

service offered by SB by sending it a message. As a response, SB performs the requested service

and delivers the result back to SA in a subsequent interaction. If the server does not have all the

data and knowledge required, it can act as a client in another client-server interaction.

The CS paradigm has been criticized as being too low-level, requiring developers to determine

network addresses and synchronization points. CS interaction is also too specific, since the client

 5

must “know” the exact services that the server can provide (Dale and DeRoure, 1997). The Remote

Procedure Call (RPC) (Bloomer, 1992) tries to overcome these shortcomings by permitting the

client to request a service to be executed on a server in the same way a local function call is

made; The location of the server, the initiation of the service, and the transportation of the results

are handled transparently to the client. The object-oriented approach attempts to make the CS

paradigm more accessible and uniform by adopting reuse, inheritance, and encapsulation

principles. OMG’s Common Object Request Broker Architecture (CORBA) (Object Management

Group, 1995) is a CS technology that is based on the object-oriented approach.

2.2 Design Paradigms for Code Mobility

Design paradigms for code mobility extend the CS paradigm by transporting computational

components across a network. Four common design paradigms for code mobility are Remote

Evaluation (REV), Code-on-Demand (COD), PUSH, and Mobile Agents (MA). These paradigms

differ in their preconditions, postconditions, and triggers.

In the Remote Evaluation (REV) paradigm (Stamos and Gifford, 1990), a computational

component, C, located at SA, has the knowledge (represented by code) necessary to perform a

service, but it lacks the required resource components, which are located at a remote site S

Therefore, C is transferred from SA to SB and is executed there. The results of this execution are

delivered back to SA in an additional interaction.

In the Code-on-Demand (COD) paradigm (Carzaniga et. al., 1997), site SA can access the

resource components needed for a service, but it does not have the knowledge required to process

them. Therefore, SA requests the service execution knowledge, i.e., the computation component

C, from its hosting site, SB. SB delivers the knowledge to SA, which subsequently processes C at

 6

site SA on the resource components residing there. Contrary to REV, in COD the code is executed

at the client.

In the PUSH paradigm (Franklin and Zdonik, 1998), site SB sends a (computational or resource

component to site SA in advance of any specific request. This push-based operation is often

preceded by a profiling operation, in which SA specifies a profile that reflects its users’ interests.

The profile is sent to site SB, saved there, and used by SB to decide which components SA should

receive and when to send them. The advantage of this paradigm over COD is that the users do not

have to know when to pull new components and where to pull them from. Rather, the system

automatically sends necessary new components when they become available, and they are often

used later by the receiving node.

In the Mobile Agent (MA) paradigm (Gray et. al., 2000), site SB owns the service execution

knowledge, C, but some of the required resource components are located at site SA. Hence, C

migrates to SA and completes the service using the resource components available there. The

migration is usually initiated by the agent (C), but it might be requested by SA or SB. Contrary to

the REV, COD, and PUSH paradigms, which focus on the transfer of just code between sites, the

mobile agent migrates to the remote site as a whole computational component, along with its

state, the code it needs, and some of the resource components required to perform the task.

Discussing these design paradigms for code mobility, Carzaniga et al. (Carzaniga et. al., 1997

claim that none of them is absolutely better than the others and suggest choosing the most

appropriate paradigm for a system under development on a case-by-case basis according to the

application type and needs.

 7

2.3 Modeling Code Mobility and Migration

Code mobility is supported by such programming environments as Java, Telescript (White, 1996

and D’Agents (Gray et. al., 2001). However, current modeling techniques that are used in the

analysis and design phases of Web applications do not address code mobility concepts at a

satisfactory level.

Web applications can be classified as hybrids between hypermedia and information systems

(Fraternali, 1999). Most commonly, such systems are modeled using hypermedia authoring

techniques or visual software engineering methods, especially object-oriented ones. Hypermedia

authoring techniques, including Hypertext Design Model (HDM) (Garzotto et. al., 1993

Relationship Management Methodology (RMM) (Isakowitz et. al., 1995), Object-Oriented

Hypertext Design Model (OOHDM) (Schwabe and Rossi, 1998), and WebML (Ceri et. al., 2000)

model the content and navigational aspects of an application, but not its functionality, physical

architecture, or security requirements. Therefore, they do not explicitly address code-related

issues, such as code migration.

Object-oriented development languages, notably UML (Object Management Group, 1999), enable

modeling of the application functionality through class services and message passing among

objects. Concepts involving code mobility, such as Java applets, are modeled in separate views

using pre-declared UML stereotypes. Conallen’s extension of UML for Web applications

(Conallen, 1999), for example, is based on a set of 18 domain-specific stereotypes, which are

commonly used with Web applications. These stereotypes include such implementation

dependent concepts as RMI, IIOP, and Java Script, along with a set of well-formedness rules for

using them. In general, UML does not handle the code migration process as a whole pattern,

including its preconditions (e.g., the existence of a request in the client site and source code at the

 8

server site), postconditions (e.g., the existence of executable code at the client site), and triggers

(e.g., a change in a server component). To overcome these shortcomings, UML has been

extended by various research teams, including the mobile agent extension (Klein et. al., 2001

Agent UML (AUML) (Odell et. al., 2000), and MASIF-DESIGN (Muscutariu and Gervais, 2001

Even though the proliferation of such extensions undermine and weaken UML standardization

efforts, they still do not separate the execution knowledge (services) from the resource

components (classes). It should come as no surprise that such separation is not possible, since

doing so would work against the encapsulation of operations within object classes, which is a

major principle in the object-oriented approach.

Behavior-oriented techniques, including Aspect-Oriented Design (AOSD site, 2003) and

superimposition (Katz, 1993), model parts of the system functionality separately from the

application structure. They enable static binding of processes to sites, but do not support the

modeling of dynamic configurations and the actual migration process.

Object-Process Methodology (OPM) (Dori, 2002) combines ideas from the object-oriented

development methods and behavior-oriented techniques in order to specify the system structure

and dynamics within a single framework. OPM enables the existence of processes as stand-alone

entities. This way, structure and behavior, the two major aspects that each system exhibits, co

exist in the same OPM model without highlighting one at the cost of suppressing the other. By

integrating structure and behavior, OPM provides a solid basis for modeling complex systems, in

which these two most prominent system aspects are highly intertwined and hard to separate.

Mobile applications are prime examples of such systems. Since OPM lacks the ability to specify

the code migration process and dynamic reconfiguration at run time, it has been extended by

OPM/Web, as discussed in the next section.

 9

3. OPM/Web and Mobile Components

OPM/Web extends Object-Process Methodology to distributed systems and especially to Web

applications, enabling the modeling of such systems within a single view. As in OPM, the

OPM/Web universe of discourse is specified in terms of “things”: object classes and process

classes. An object class (abbreviated as an object) is a set of object instances which exist, or at

least have the potential of stable, unconditional physical or logical existence. A process class

(abbreviated as a process) is a pattern of transformation of one or more object classes. A

program, an operation, a procedure, and an algorithm are examples of process classes. An actual

execution of a process (such as the carrying out of an executable version of a program or an

algorithm) is a process instance. The relations between things (objects and processes) are

modeled by structural links (e.g., generalization and aggregation) and procedural links (which

specify transformations, enablers, and triggers). Contrary to object-oriented methods, an OPM

process can stand alone and involve several object classes.

OPM enables managing the complexity of a model applying three refining/abstracting

mechanisms: unfolding/folding, in which the thing being refined is shown as the root of a

structural graph; in-zooming/out-zooming, in which the thing being refined is blown up to enclose

its constituents; and state expression/suppression, which allows showing or hiding the possible

states of an object. Using flexible combinations of these three scaling mechanisms, OPM enables

specifying a system to any desired level of detail without losing legibility and comprehension of

the resulting specification.

Two semantically equivalent modalities, one graphic and the other textual, jointly express the

same OPM model. A set of inter-related Object-Process Diagrams (OPDs) constitute the

graphical, visual OPM formalism. Each OPM element is denoted in an OPD by a symbol, and the

 10

OPD syntax specifies correct and consistent ways in which entities can be linked. The Object

Process Language (OPL), defined by a grammar, is the textual counterpart of the graphical OPD

set. OPL is a dual-purpose language, oriented towards humans as well as machines. Catering to

human needs, OPL is designed as a constrained subset of English, which serves domain experts

and system architects engaged in analyzing and designing a system. Every OPD construct is

expressed by a semantically equivalent OPL sentence or phrase. While the OPD set and the OPL

script are equivalent in their semantic content, they are complementary from a human cognition

viewpoint. Designed also for machine interpretation through a well-defined set of production

rules, OPL provides a solid basis for automatically generating the designed application. An

integrated software engineering environment, called OPCAT (Object-Process CASE Tool) (Dori

et. al., 2003), automatically translates from one modality to the other in either direction.

OPM/Web enhances the ability of OPM to model distributed systems in general and Web

applications in particular in two ways. The first extension is the ability to reuse component

designs in an open manner through bindings among model components, thereby improving

model scalability (Reinhartz-Berger et. al., 2002). The second extension is the support for code

mobility and migration specifications. In this paper we focus on defining and modeling code

mobility concepts and design paradigms using OPM/Web.

3.1 Mapping Mobility Terms onto OPM/Web Concepts

The terms used in the various design paradigms for code mobility are mapped to OPM/Web

concepts as follows.

� A resource component is an informatical or physical object. An informatical object is a piece

of information, such as the data required for a process execution. A physical object is tangible

in the broad sense, for example a device.

 11

� A computational component is a process. It can own private data (objects) and include sub

processes. The migration process can transfer the computational component source code (i.e.,

a process class), which can be compiled at the target site and run there any number of times,

or an executable version of the code (i.e., a process instance), which can run at the target site

only a specified number of times.

� A site, which is analogous to a node in the UML implementation model, is a physical object

in OPM/Web. This physical object can be in-zoomed to expose its resource and

computational components.

� An interaction has both structural and dynamic aspects. The structural aspect of an interaction

specifies how two sites can communicate with each other, irrespective of a specific point in

time. This aspect is modeled in OPM/Web by a (unidirectional or bi-directional) structural

link between the communicating sites, which, as noted, are physical objects. The dynamic

aspect of an interaction is the ability to transfer data (objects) or code (processes) between

two sites and is specified in OPM/Web by an event-driven process. Since interaction

conceptually characterizes the communication between the sites, the interaction process is

associated in the model to the structural link that connects the two interacting sites. The

implementation of this interaction may still be carried out as two inter-related processes, one

at each interacting site.

A summary of the main OPM/Web symbols and their meanings is provided in Appendix A.

The basic code transferring operations are represented by the generic OPDs in �Figure 1. The

computational Component on the left of �Figure 1(a) and �Figure 1(b), which is a process class,

denoted by an ellipse, is the (unchangeable) input for the Component Transferring process, as the

instrument link between them indicates. In �Figure 1(a) the Component Transferring process

 12

transfers Component’s source code, while in �Figure 1(b) Component Transferring transfers a

process instance, i.e., only an executable version of Component. Following the UML notation of

classes and objects, a process instance is denoted in OPM by an ellipse within which the process

class name is written as :ProcessClassName, where the identifier of the instance can optionally

precede the colon.

The semantics of the arrow with the white (blank) arrowhead from Component Transferring

the right appearance of Component is a result link1, which means that Component Transferring

creates (a copy of) the process class Component, as in �Figure 1(a), or an instance of it, as in

�Figure 1(b). The identical path labels2 on the instrument and result links and the identical

component names indicate that Component Transferring transfers Component as is rather than

computing it from an input.

Figure 1. A generic OPM/Web model of a Component Transferring process.

(a) Component Transferring transfers Component's code, leaving the original Component intact.

(b) Component Transferring transfers an instance of Component, leaving the original Component

intact.

1 In the original OPM, processes are not connected, and, hence, there is no difficulty to determine which is the

processing entity. To remove the ambiguity arising from connecting two processes in OPM/Web via consumption or

result links, a consumption link is denoted as a black-headed arrow from the consumed entity to the process, while

the semantics of a white-headed arrow from a process to an entity remains a result link.

2 A path label in OPM is a label on a procedural link that removes the ambiguity arising from multiple

incoming/outgoing procedural links. Here we use identical path labels on the incoming link to and outgoing link

from the Component Transferring process to denote the transfer flow.

(b) (a)

��

 13

3.2 Modeling the Client-Server Paradigm using OPM/Web

Based on the mapping of code mobility terms onto OPM/Web concepts, an OPM/Web model of

the traditional client-server paradigm, presented in �Figure 2, consists of two equivalent

modalities: graphical – the OPD in �Figure 2(a), and textual – the OPL paragraph in �Figure 2(b).

The objective of this unique dual representation is to enhance the readability of the model by

humans: engineering-oriented readers, who are familiar with OPM and its diagrammatic notation,

can relate to the OPD, while domain experts, or those who are new to the OPM graphic notatio

can refer to the OPL paragraph and learn the correspondence between each OPL sentence or

phrase and its OPD construct counterpart. The OPL paragraphs also improve system

documentation.

Examining �Figure 2, one can see that Requesting Site (the client) and Processing Site (the

server) are both physical objects (as denoted by shadowed rectangles). The computational

component, Requested Processing, resides in the Processing Site, which also hosts the resource

components required for that computation, Required Data and (later on) Requested Result. The

two sites are connected via a bi-directional structural link, tagged communicate, which exhibits

(i.e., is characterized by) the CS Interacting process. A change in (an instance of) Activation

Request at the Requesting Site initiates the CS Interacting process, as the event link (the circle

headed arrow with the letter 'e' inside it) between the two things shows. Following the request

transferring path, the first subprocess of the CS Interacting process, which is Result Requesting

transfers a copy of Activation Request to the Processing Site. As soon as this copy is placed at the

Processing Site, it activates the Requested Processing, as the consumption event link (the black

headed arrow with the letter 'e' next to it) denotes. This Requested Processing potentially affects

the Required Data object and yields (produces) the Requested Result object.

 14

�

 Requesting Site physical.

 Requesting Site zooms into Activation Request and Requested Result.

 Activation Request triggers CS Interacting.
 Processing Site is physical.

 Processing Site zooms into Activation Request, Required Data and Requested Result,

 as well as Requested Processing.

 Activation Request triggers Requested Processing when its state changes.
 Requested Processing consumes Activation Request of Processing Site.

 Requested Processing affects Required Data.

 Requested Processing yields Requested Result of Processing Site.

 Many Requesting Sites and many Processing Sites communicate, and this relation

 exhibits CS Interacting.

 CS Interacting zooms into Result Requesting and Result Retrieving.

 Following path request transferring, Result Requesting consumes Activation

 Request of Requesting Site.

 Following path request transferring, Result Requesting yields Activation

 Request of Processing Site.

 Following path result transferring, Result Retrieving consumes Requested Result

 of Processing Site.

 Following path result transferring, Result Retrieving yields Requested Result of

 Requesting Site.

Figure 2. An OPM/Web model of the Client-Server (CS) paradigm:

(a) The OPD (b) The corresponding OPL paragraph

(b)

 15

The creation of Requested Result enables the second stage of the interaction, executed by

Result Retrieving. Following the result transferring path, this process moves the local copy of the

generated Requested Result from the Processing Site to the Requesting Site.

� Table 1 summarizes the structure of Requesting Site and Processing Site before and after an

activation of a CS Interacting process. The dynamic aspect of the CS Interacting process can be

vividly simulated using OPM Case Tool (OPCAT), as explained in Appendix B.

 Table 1. The resource and computational components in Requesting Site (the client) and Processing Site (the

server) before and after an activation of CS Interacting

Design Paradigm

(Process Name)
Time Requesting Site Processing Site

Before Activation Request
Requested Processing (code)

Required Data Client Server

(CS Interacting)
After Requested Result

Requested Processing (code)

Required Data

4. OPM/Web Models of Code Mobility Design Paradigms

OPM/Web enables precise modeling of the REV, COD, PUSH, and MA paradigms, which were

explained informally in Section �2.2. In this section, we present generic OPM/Web models for

these design paradigms. In all of these models, Requesting Site is the transaction client, and as

such, it obtains a copy of the Requested Result and keeps it at the end of the process. Activation

Request is the trigger for the code transferring process. The Resource Site is the transaction

server, i.e., it hosts the Requested Processing (as in COD, PUSH, and MA) or the Required Data

(as in REV). The COD, PUSH, and MA models describe transferring a one-time executable

version of code (i.e., a process instance) from the Resource Site to the Requesting Site, and

executing it in the remote site. The REV model specifies a process that transfers an executable

version of code from Requesting Site to Resource Site and executes it there. Replacing the

 16

process instance with a process class supports transfer of source code that can later be

instantiated, i.e., compiled and executed. The various code mobility models can become generic

components in specifications of mobile applications, as explained and demonstrated in Section

 Table 2. The resource and computational components in Requesting Site (the “client”) and Resource

Site (the “server”) before and after an activation of the transfer processes in each one of the four code

mobility design paradigms.

Code Mobility

Design Paradigm

(Process Name)

Time Requesting Site Resource Site

Before
Activation Request

Requested Processing code
Required Data Remote

Evaluation

(REV Interacting) After Requested Processing code
Required Data

Requested Processing instance

Before
Activation Request

Required Data
Requested Processing code

Code-on-Demand

(COD Interacting)
After

Required Data

Requested Processing

instance

Requested Processing code

Before Required Data

Requested Processing code

Profile

Activation Request
PUSH

(PUSH

Interacting) After
Required Data

Requested Processing

instance

Requested Processing code

Profile

Before Required Data

Requested Processing instance

(+ Execution Status + Private

Data) Mobile Agent

(MA Interacting)
After

Required Data

Requested Processing

instance (+ Execution Status +

Private Data)

If clones:

Requested Processing instance

(+ Execution Status + Private

Data)

� Table 2 summarizes the components that reside at the Requesting Site and the Resource Site

before and after the transfer of a process instance in each of the four mobile code design

 17

paradigms. Note that the table reflects the situation before Requested Processing took place, so

Requested Result does not yet exist. After this transfer, the executable code may be activated,

creating Requested Result.

4.1 Remote Evaluation

The OPD in �Figure 3 is an OPM/Web model of the Remote Evaluation (REV) paradigm. Code

Sending transfers an instance of Requested Processing from the Requesting Site to the Resource

Site, while Code Activating invokes (triggers the execution of) this instance in the Resource Site

Finally, Requested Processing transfers the Requested Result from the Resource Site to the

Requesting Site.

Figure 3. A�generic OPD of the REV paradigm

The following OPL paragraph describes the same REV model textually.

�����

 18

Requesting Site is physical.

Requesting Site zooms into Activation Request and Requested Result, as well as Requested

Processing.

 Activation Request triggers REV Interacting.

Resource Site is physical.

Resource Site zooms into Required Data and Requested Result, as well as Requested

Processing instance.

 Requested Processing instance affects Required Data.

 Requested Processing instance yields Requested Result of Resource Site.

Many Requesting Sites and many Resource Sites communicate, and this relation exhibits REV

Interacting.

REV Interacting consumes Activation Request.

REV Interacting zooms into Code Sending, Code Activating and Result Retrieving.

Following path code transferring, Code Sending requires Requested Processing of

Requesting Site.

Following path code transferring, Code Sending yields Requested Processing

instance of Resource Site.

Code Activating invokes Requested Processing instance of Resource Site.

Following path result transferring, Result Retrieving consumes Requested Result

of Resource Site.

Following path result transferring, Result Retrieving yields Requested Result of

Requesting Site.

4.2 Code-on-Demand

The OPD in �Figure 4 is a generic model of the Code-on-Demand (COD) paradigm. It clearly

shows that processing (i.e., the activation of a Requested Processing instance) in the COD model

occurs at the Requesting Site, whereas in the REV model, shown in �Figure 3, the processing takes

place in the Resource Site. The fact that Requested Processing is not initially at the Requesting

Site is denoted in �Figure 4 by the result link (the white arrowhead) whose destination is the

Requested Processing instance at the Requesting Site, indicating that the Requested Processing

instance was created there only after the first stage of COD Interacting, Code Retrieving, occurred.

As described in Appendix B, OPCAT enables simulation of the behavior of this system, showing

more vividly the sequence of occurrences. When the animated simulation is run, the Requested

Processing instance appears only in the postcondition set of Code Retrieving.

 19

Figure 4. A generic OPD of the COD paradigm

The OPL paragraph below is the textual counterpart of the OPD in Figure 4 of the COD

paradigm.

Requesting Site is physical.

Requesting Site zooms into Activation Request, Required Data, and Requested Result, as well as Requested

Processing instance.

 Activation Request triggers COD Interacting.

 Requested Processing instance affects Required Data.

 Requested Processing instance yields Requested Result.

Resource Site is physical.

Resource Site zooms into Requested Processing.

Many Requesting Sites and many Resource Sites communicate, and this relation exhibits COD Interacting.

 COD Interacting consumes Activation Request.

 COD Interacting zooms into Code Retrieving and Code Activating.

 Following path code transferring, Code Retrieving requires Requested Processing of Resource Site.

 Following path code transferring, Code Retrieving yields Requested Processing instance of

 Requesting Site. ��������

 Code Activating invokes Requested Processing instance of Requesting Site.

4.3 PUSH

�Figure 5 is a generic model of the PUSH paradigm. The following OPL sentences describe the

model.

�����

 20

Requesting Site is physical.

Requesting Site zooms into Required Data and Requested Result, as well as Requested Processing instance.

 Requested Processing instance affects Required Data.

 Requested Processing instance yields Requested Result.

Resource Site is physical.

Resource Site zooms into Activation Request and Profile, as well as Requested Processing.

 Many Activation Requests relates to many Profiles.

 Activation Request triggers PUSH Interacting.

Many Requesting Sites and many Resource Sites communicate, and this relation exhibits PUSH Interacting.

 PUSH Interacting occurs if Profile of Resource Site is requesting site.

 PUSH Interacting consumes Activation Request.

 PUSH Interacting zooms into Code Retrieving and Code Activating.

 Following path code transferring, Code Retrieving requires Requested Processing of Resource

 Site.

 Following path code transferring, Code Retrieving yields Requested Processing instance of

 Requesting Site.

 Code Activating invokes Requested Processing instance of Requesting Site.

Figure 5. A generic OPD of the PUSH paradigm

The condition link from requesting site Profile to PUSH Interacting specifies that when triggered

(by Activation Request), Requested Processing is transferred only to sites that were registered in

the Profile. The Activation Request and the Profile are not transferred to the Requesting Site, but

only enable the transfer of Requested Processing from the Resource Site to the relevant

�����

 21

Requesting Sites. As noted, the creation of the Activation Request and the Profile at the Resource

Site is done in a separate process whose execution precedes the execution of PUSH Interacting.

4.4 Mobile Agents

Various definitions of an agent (Franklin and Graesser, 1996) agree that all software agents are

computer programs, but not all programs are agents. Each agent definition indicates some

properties that differentiate an agent from a “conventional” program. Various definitions expect

an agent to be reactive, autonomous, goal-oriented, temporally continuous, communicative,

learning, mobile, and flexible. Agents of the same class or of different classes can communicate

with each other using objects. These definitions of an agent as a computer program with

additional characteristics call for modeling an OPM/Web agent as a process instance, which

belongs to a process class. These process instances (agents) initiate their own migration at

specific points of their execution.

Figure 6. A generic OPD of the MA paradigm

�����

�����

 22

Requesting Site is physical.

Requesting Site zooms into Required Data and Requested Result, as well as Requested Processing instance.

 Requested Processing instance exhibits Execution Status and Private Data.

 Execution Status can be transfer or local.

 Requested Processing instance affects Required Data.

 Requested Processing instance yields Requested Result.

Resource Site is physical.

Resource Site zooms into Requested Processing instance.

 Requested Processing instance exhibits Execution Status and Private Data.

 Execution Status can be transfer or local.

 Execution Status triggers MA Interacting when it enters transfer.

Many Requesting Sites and many Resource Sites communicate, and this relation exhibits MA Interacting

 MA Interacting zooms into Agent Migrating and Agent Activating.

 Following path code transferring, Agent Migrating requires Requested Processing instance of

 Resource Site.

 Following path code transferring, Agent Migrating yields Requested Processing instance of

 Requesting Site.

 Agent Activating changes Execution Status of Requested Processing instance of Requesting Site

 from transfer to local.

 Agent Activating invokes Requested Processing instance of Requesting Site.

�Figure 6 and the corresponding OPL paragraph describe a mobile agent model for the case in

which the agent is cloned from the Resource Site to the Requesting Site. The agent, which is

characterized by Private Data and an Execution Status, initiates (triggers) its own transfer when

its Executing Status enters the transfer state. After completing the agent transfer, its Execution

Status returns to the local state.

The instrument link from the agent (the Requested Processing instance at the Resource Site) to

Agent Migrating (within MA Interacting) in �Figure 6 denotes that this migration clones (i.e., makes

a copy of) the Resource Site‘s agent at the Requesting Site. Alternatively, MA Interacting might

move the agent, in which case a consumption link from Requested Processing of Resource Site

to Agent Migrating replaces the instrument link, implying that the agent at the Resource Site

disappears.

 23

5. Reusing OPM/Web Code Mobility Models: The QoS System Example

In this section we demonstrate the expressive power of OPM/Web as a means to explicitly model

what pieces of code are migrated along with their sources and destinations, and the effects of the

migration on the effectiveness of the application. Transferring a (resource or computational)

component between sites involves determining the source and target sites, integrating the

transferred component within the target sites, addressing network security issues, and handling

errors that may occur in the process. These aspects can be incorporated in the single, bimodal

graphic-textual OPM/Web model, in which one or more of the code migration models, presented

in the previous section, are reused. To demonstrate our approach, we present an OPM/Web model

of a Quality of Service (QoS) system, a mobile application that is based on (Klein et. al., 2001)

This system has been chosen in order to be able to demonstrate most of the code mobility

concepts and design paradigms explained in this paper and their integration into a complete

application. In this QoS system, software components from multiple parties collaborate

provide a particular service to end users. The service users access service provider hosts via a

Web interface. They select the specific value-added services for their applications. A service

provider communicates with several routers to achieve the QoS goals. The service users can

control their requests remotely at any time.

As the System Diagram (SD), i.e., the top-level diagram, in �Figure 7 shows, our QoS system

consists of three types of sites: Client, ISP (Internet Service Provider) Agency, and Router

Agency, each of which may have multiple instances. Each site type is modeled as a physical

object that inherits from Site, a network node.

At this level of abstraction, the Client is shown to include only the QoS Interface Handling

process, with which the Service User interacts. The Service User is an actor using the system and

 24

is therefore modeled as an external (dashed) and physical (shadowed) object. Not knowing which

routers provide the requested service, the Service User interacts via the QoS Interface Handling

process, which the Client site hosts. This interaction is indicated in �Figure 7 by the agent link

(which ends with a black circle) from Service User to QoS Interface Handling. Each Client

connected to ISP Agencies, and each ISP Agency is connected to several sites of type Router

Agency.

Figure 7. The top level System Diagram of the QoS System

If we were to model this system with UML, we would need three different types of UML

diagrams: deployment diagrams to describe the system physical architecture, use case diagrams

to describe the user-system interactions, and sequence diagrams to describe scenarios of the

communication processes. However, even these three diagram types combined do not describe

the details of the interaction processes, as do the next two OPDs in �Figure 8 and �Figure 9.

Refining the interaction between Client and the ISP Agency, �Figure 8 shows that their

communication structural relation exhibits two operations: CS Interacting and COD Interacting

The details of the models of the Client-Server (CS) and Code-on-Demand (COD) paradigms have

been presented earlier. COD Interacting, for example, is the same as the process modeled in

�Figure 4, where ISP Agency is the server (Resource Site), Parameter Check Request is the

 25

Activation Request, and Parameter Checking is Requested Processing. Therefore, CS Interacting

and COD Interacting are not in-zoomed further here.

Figure 8. Detailing the Client – ISP Agency interaction

When weaving these models into a complete application, the combined model can be

enhanced to handle security issues and possible transfer errors. Since the security and privacy

algorithms are often pre-defined computational components, they can be modeled as OPM/Web

processes, from which the transfer processes can inherit both the functionality and the interface.

This open reuse mode of OPM/Web, which is beyond the scope of this paper, is described in

Reinhartz-Berger, Dori and Katz (2002). The different kinds of transfer errors, such as

communication failures, unknown addresses, and timeout exceptions, can be traced using OPM

event links. These links model a variety of events, including process timeout, process

termination, state change, state entrance, state timeout, and external events. These types of events

trigger stand-alone processes, which handle the exceptions or errors as explained by Peleg and

Dori (1999).

In addition to showing the details of the interaction between the Client and the ISP Agency

components, �Figure 8 also zooms into the Client and the ISP Agency components, exposing a

�����

 26

more refined view of their internal objects and processes. QoS Interface Handling, which is the

computational component of the Client, handles requests that the Service User submits. When

activated by the Service User, QoS Interface Handling creates the objects QoS Parameter Set and

Parameter Check Request. Upon its creation, Parameter Check Request activates COD Interacting

The occurrence of COD Interacting transfers an instance (one-time executable version) of

Parameter Checking from the ISP Agency to the Client, enabling its local execution at the Client

site. This Parameter Checking execution changes the state of QoS Parameter Set from created

either checked or wrong, indicating whether the QoS Parameter Set supplied by the Service User

is correct or wrong. Through the QoS Interface Handling process, the Service User can continue

affecting QoS Parameter Set, in order to request services (via the update path) or to cancel them

(via the cancel path). These requests are transferred to the ISP Agency by the CS Interacting

process, which does not need to wait for a response from the ISP Agency.

Unlike UML and its extension mechanisms, OPM/Web specifies the communication processes

generically, regardless of their implementation technology. For example, the COD Interacting

process specifies a common design paradigm for code mobility without limiting it to specific

implementation language constructs (such as Java applets). As this example shows, OPM/Web

also supports modeling the events which trigger the communication processes, as well as the

conditions that enable their activations.

�Figure 9 shows a refinement of the interaction between the ISP Agency and the Router Agency

Since not all the Router Agencies provide all the services, the QoS Choice Handling uses a

Service Provider Catalog as an instrument for creating a Service Control Message and the Service

Address object, which defines a router agency address for the required service. If the Service

Control Message requests a new service (which is the case when its state is create), then the REV

 27

Interacting process is activated, transferring an executable version of QoS Agent Processing

the Router Agency according to the Service Address. If the Service Control Message is created in

its update or cancel states, it is transferred as is to the Router Agency by the CS Interactin

process, enabling the continuous running of QoS Agent Processing in the Router Agency, where

it can use the Service Control Message and any required Local Data.

Figure 9. Detailing the ISP Agency – Router Agency interaction

Other OPM/Web code mobility models could be plugged and linked into our QoS application

for specific purposes. For example, if we want QoS Agent Processing to be able to move or clone

itself among various Router Agencies according to the Mobile Agent (MA) paradigm, explained

in Section �4.4, we can add a structural relation between Router Agency and itself and specify that

this relation exhibits the MA Interacting process as its operation.

6. Summary and Future Work

Existing Web and distributed system development methods are not up to the task of complete and

accurate modeling of code mobility and migration. While some of them can specify static

bindings of software components to their physical locations, the specification of dynamic system

reconfiguration and code migration is not satisfactorily supported by any of the existing

�����

�

Data

 28

approaches. Mentally integrating the structure and behavior aspects of these systems in order to

comprehend them in their entirety can be achieved with current methods only with great

difficulties due to the multiplicity of models that need to be consulted.

Using a small set of concepts and symbols, OPM/Web combines the physical, static,

behavioral, and functional views of a system within a single framework. OPM/Web augments

OPM to enable modeling code mobility concepts and design paradigms by specifying processes

as residents of some node (site) and moving or cloning them to other nodes, where they can be

activated or transferred further. This approach provides for a technology-independent model,

where triggers, preconditions, and postconditions for the migration process are specified

generically. Once the mobile application is modeled, a solid skeleton of the technology

dependent implementation can be automatically generated and simulated by the Object-Process

CASE Tool (OPCAT). This skeleton includes not only the structure of the application, but also

its behavior, enabling design verification and leaving to the implementer only the coding at the

bottom level.

The single OPM view with its combined graphic-textual modalities and abstraction-refinement

mechanisms benefits from consistency, relative simplicity, and ease of learning. The structure

and behavior of the different components are explicitly modeled in the same view, making them

understandable and communicable. In order to model distributed applications in UML, a set of

stereotypes (denoted by different graphical symbols), tagged values, and constraints must be

defined. Such extension mechanisms undermine UML standardization efforts, since each

researcher or company working in the domain of distributed systems is free to develop a different

set of extensions. Lack of a universal set of such extension entities inhibits the efforts to develop

reusable components. The segregation of a UML model into multiple views, which span across

 29

different diagram types, is yet another source of difficulty in capturing and understanding the

system as a whole (Peleg and Dori, 2000). Indeed, comparing the complexity metric values of

UML with other object-oriented techniques, Siao and Cao (2001) found that each diagram in

UML is not distinctly more complex than techniques in other object-oriented methods, but as a

whole, UML is 2-11 times more complex than other object-oriented methods.

In a separate work (Reinhartz-Berger and Dori, 2003), we have established the level of

comprehension of a given OPM/Web model and the quality of the models constructed using it by

comparing OPM/Web experimentally to an extension of UML to Web applications (Conallen,

1999). Third year undergraduate information systems engineering students had to respond to

comprehension and construction questions about two representative Web application models. The

questions related to the system's structure, dynamics, and distribution aspects. We found that

OPM/Web is significantly better in modeling the dynamics of Web applications, while in

specifying their structure and distribution aspects, there were no significant differences. In both

case studies, the quality of the resulting OPM/Web models was superior. The main errors in the

UML modeling questions occurred when students were required to integrate the different views

into a whole, consistent model. The modeling questions required adding a single functionality

that affected several UML diagram types. All these changes were expected to leave the UML

model integral and consistent. This task is difficult for trained UML modelers, let alone untrained

students.

On the other hand, as our experiment indicated to some extent, UML's use of multiple views

may help system architects focus on a specific aspect of a system, and answer questions about it

when the needed information is fully contained in a single diagram type, such as a class or an

interaction diagram. These types of questions may be more difficult to answer by examining an

 30

OPM/Web model, since the information might reside in several OPDs at different levels of detail.

To benefit from this potential advantage of UML and to stay current with the prevailing standard,

we have augmented OPCAT with the ability to automatically generate a set of UML views from

the single OPM/Web model. Since UML does not have a single mechanism to express stand

alone processes, the resulting UML views may not necessarily be unique or completely

equivalent to the OPM/Web model. Nevertheless, when we complete developing an UML to

OPM/Web generator, the system architect will be able to use the most suitable approach for each

design portion by using OPM/Web, UML, or a combination of these two approaches. In parallel

we are working on developing the ability to generate the application (code and database schema)

from the system's OPL script.

References

Aspect-Oriented Software Development site (2003). http://aosd.net/

Bloomer, J. (1992). Power Programming with RPC. O’Reilly and Associates.

Ceri, S., Fraternali, P. and Bongio, A. (2000). Web Modeling Language (WebML): a modeling language

for designing Web sites. Proceedings of the 9th World Wide Web Conference (WWW9), Computer

Networks, 137-157.

Carzaniga, A., Picco, G.P. , and Vigna, G. (1997). Designing Distributed Applications with Mobile Code

Paradigms. Proceedings of the 1997 International Conference on Software Engineering, 22-32.

Conallen, J. (1999). Building Web Applications with UML. Addison-Wesley.

Dale, J., and DeRoure, D. (1997). A Mobile Agent Architecture to Support Distributed Resource

Information Management. Proceedings of the International Workshop on the Virtual Multicomputer.

http://www.mmrg.ecs.soton.ac.uk/publications/archive/dale1997b/vim97.pdf

Dori, D. (2002). Object-Process Methodology - A Holistic Systems Paradigm. Springer Verlag.

Dori, D., Reinhartz-Berger, I., and Sturm A. (2003). OPCAT – A Bimodal Case Tool for Object-Process

Based System Development. 5th International Conference on Enterprise Information Systems (ICEIS

2003), 286-291. Software download site: http://www.objectprocess.org/

 31

Franklin, S. and Graesser, A. (1996). Is it an Agent, or just a Program?: A Taxonomy for Autonomous

Agents. Proceedings of the 3rd International Workshop on Agent Theories, Architectures, and

Languages, Springer-Verlag, 21-36.

Franklin, M. and Zdonik, S. (1998). Data In Your Face: Push Technology in Perspective. Proceedings of

the ACM SIGMOD international conference on Management of Data, 516-519,

http://www.cs.berkeley.edu/~franklin/Papers/datainface.pdf

Fraternali, P. (1999). Tools and Approaches for Developing Data-Intensive Web Applications: A Survey.

ACM Computing Surveys, 31 (3), 227-263.

Fugetta, A., Picco, G., and Vigna, G. (1998). Understanding Code Mobility. IEEE Transactions on

Software Engineering, 24 (5), 342-361.

Gray, R., Kotz, D., Cybenko, G. , and Rus, D. (2000). Mobile Agent: Motivations and State-of-the-

Systems. In Bradshaw J. M. (Ed.), Handbook of Agent Technology, AAAI/MIT Press.

ftp://ftp.cs.dartmouth.edu/TR/TR2000-365.ps.Z.

Gray, R.S., Cybenko, G., Kotz, D., Peterson, R.A., and Rus, D. (2001). D’Agents: Applications and

Performance of a Mobile-Agent System. Software Practice and Experience, 32(6), 543-573.

Garzotto, F., Paolini, P., and Schwabe, D. (1993). HDM – A Model Based Approach to Hypertext

Application Design. ACM Transactions on Information Systems, 11 (1), 1- 26.

Isakowitz, T., Stohr, E.A., and Balasubramanian, P. (1995). RMM: A Methodology for Structured

Hypermedia Design. Communication of the ACM, 38 (8), 34-44.

Katz, S. (1993). A Superimposition Control Construct for Distributed Systems, ACM Transactions on

Programming Languages and Systems, 15 (2), 337-356.

Klein, C., Rausch, A., Shiling, M., and Wen, Z. (2001). Extension of the Unified Modeling Language for

Mobile Agents. On Siau, K. and Halpin, T. (Eds.), The Unified Modeling Language: Systems

Analysis, Design and Development Issues, Idea Group Publishing Book, 116-128.

http://www4.in.tum.de/~rausch/publications/2001/MobileUML.pdf

Mezini, M., and Lieberherr, K. (1998). Adaptive Plug-and-Play Components for Evolutionary Software

Development. Conference on Object-Oriented Programming, Systems, Languages and Applications

(OOPSLA’98), 97-116.

 32

Muscutariu, F. and Gervais, M.P. (2001). On the Modeling of Mobile Agent-Based Systems. Proceeding

of the 3rd International Workshop on Mobile Agents for Telecommunication Applications

(MATA'01), Lecture Notes in Computer Science 2164, 219-234.

http://www-scr.lip6.fr/homepages/Marie-Pierre.Gervais/MATA2001.pdf

Object Management Group. (1995). The common object request broker: Architecture and specification.

Technical Report Version 2.0, http://www.infosys.tuwien.ac.at/Research/Corba/OMG/cover.htm

Object Management Group. (1999). Unified Modeling Language Specification, Version 1.3,

http://www.rational.com/media/uml/resources/documentation/ad99-06-08-ps.zip.

Odell, J., Parunak, H.V.D., and Bauer, B. (2000). Extending UML for Agents. In Wagner, G.,

Lesperance, Y., and Yu, Er. (Eds.), proceedings of the Agent-Oriented Information Systems

Workshop at the 17th National conference on Artificial Intelligence, 3-17.

Peleg, M. and Dori, D. (1999). Extending the Object-Process Methodology to Handle Real-Time

Systems, Journal of object-oriented programming, 11 (8), 53-58.

Peleg, M. and Dori, D. (2000). The Model Multiplicity Problem: Experimenting with Real-Time

Specification Methods. IEEE Transaction on Software Engineering, 26 (8), 742-759.

Reinhartz-Berger, I. and Dori, D. (2003). OPM vs. UML – Experimenting Comprehension and

Construction of Web Application Models. Submitted to Empirical Software Engineering journal.

Reinhartz-Berger, I., Dori, D. and Katz, S. (2002). Open Reuse of Component Designs in OPM/Web.

Proceeding of Computer Software and Application Conference (COMPSAC’2002), 19-24.

Renaud, P. E. (1993). Introduction to Client/Server Systems: A Practical Guide for Systems Professionals.

Wiley & Sons.

Siau, K. and Cao, Q. (2001). Unified Modeling Language (UML) – A Complexity Analysis. Journal of

Database Management 12 (1), 26-34.

Stamos, J. and Gifford, G. (1990). Remote Evaluation. ACM Transactions on Programming Languages

and Systems, 12 (4), 537-565.

Schwabe, D. and Rossi, G. (1998). Developing Hypermedia Applications using OOHDM. Electronic

Proceedings of the 1st Workshop on Hypermedia Development Processes, Methods and Models

(Hypertext'98), ACM, http://heavenly.nj.nec.com/266278.html

White, J.E. (1996). Telescript Technology: Mobile Agents. Software Agents, AAAI Press/MIT Press.

 33

Appendix A: Main OPM/Web Concepts, their symbols, and their meaning

Concept Name Symbol Concept Meaning

Informatical object A piece of information

Physical object An object which consists of matter and/or energy

Process class A pattern of transformation that objects undergo

Process instance An executable version of code

Initial/Regular/Final state An initial/regular/final situation at which an object can exist for a

period of time

Characterization A fundamental structural relation representing that an element

exhibits a thing (object/process)

Aggregation

 A fundamental structural relation representing that a thing

(object/process) consists of one or more things

General structural link A bidirectional or unidirectional association between things that

holds for a period of time, possibly with a tag denoting the

association semantics

Enabling event link A link denoting an event (such as data change or an external

event) which triggers (tries to activate) a process. Even if

activated, the process does not change the triggering entity.

Consumption event link

 A link denoting an event which triggers (tries to activate) a

process. If activated, the process consumes the triggering entity.

Condition link A link denoting a condition required for a process execution,

which is checked when the process is triggered. If the condition

does not hold, the next process (if any) tries to execute.

Agent link A link denoting that a human agent (actor) is required for

triggering a process execution

Instrument link A link denoting that a process uses an entity without changing it.

If the entity is not available (possibly in a specific state), the

process waits for its availability.

Effect link A link denoting that a process changes an entity. The black

arrowhead points towards the process that affects the entity.

Consumption link A link denoting that a process consumes an (input) entity. The

black arrowhead points towards the process that consumes the

entity.

Result link A link denoting that a process creates an (output) entity. The

white arrowhead points towards the created entity.

Invocation link A link denoting that a process triggers (invokes) another process

when it ends

XOR connection A connection between procedural links denoting that exactly one

of the process incoming/outgoing links is applicable (active) in a

single execution of the process

e

c

P

:P

e

���������<sp><sp>

 34

Appendix B: Simulating Mobile Specifications with OPCAT

Using Object-Process CASE Tool (OPCAT)3 (Dori et. al., 2003), with which the OPM models in

this paper were generated, a system design model can also be simulated. In the CS paradigm, for

example, the simulation starts by making the precondition set of the CS Interacting process true.

This is done by enabling (through highlighting) all the components (objects and processes) which

are not created by processes in the given model, i.e., the objects Activation Request (of

Requesting Site) and Required Data and the process Requested Processing, as shown in �Figure

10(a). While executing CS Interacting, the Activation Request at the Processing Site becomes

highlighted, then the Requested Result at the Processing Site, and finally the Requested Result

the Requesting Site. After the transfer process has been completed, its postcondition set becomes

true, i.e., Requesting Site’s Requested Result, Processing Site’s Required Data, and Requested

Processing are highlighted, as shown in �Figure 10(b). Using this simulation capability of

OPCAT, design errors that were not detected in the static model can be spotted and corrected

before starting the implementation.

Figure 10. OPCAT 2 simulation snapshots before (a) and after (b) executing CS Interacting.

Existing things in a snapshot appear in grey.

3 OPCAT 2 can be freely downloaded from http://www.objectprocess.org/

(a) (b)

