
1

OPM vs. UML – Experimenting With Comprehension

and Construction of Web Application Models

Iris Reinhartz-Berger

University of Haifa

Carmel Mountain, Haifa 31905, Israel

iris@mis.hevra.haifa.ac.il

Dov Dori

Technion, Israel Institute of Technology

Technion City, Haifa 32000, Israel
dori@ie.technion.ac.il

Abstract

Object-Process Methodology (OPM), which is a holistic approach to modeling and

evolving systems, views objects and processes as two equally important entities that

describe the system's structure and behavior in a single model. Unified Modeling

Language (UML), which is the standard object-oriented modeling language for

software systems, separates the system model into various aspects, each of which is

represented in a different view (diagram type).

The exponential growth of the Web and the progress of Internet-based

architectures have set the stage for the proliferation of a variety of Web applications,

which are classified as hybrids between hypermedia and information systems. Such

applications require a modeling approach that is capable of clearly specifying aspects

of their architecture, communication, and distributive nature. Since UML and OPM

are two candidates for this task, this study has been designed to establish the level of

comprehension and the quality of the constructed Web application models using each

one of these two approaches.

In the experiment we carried out, third year undergraduate information systems

engineering students were asked to respond to comprehension and construction

questions about two representative Web application models. The comprehension

questions related to the system's structure, dynamics, and distribution aspects. The

results suggest that OPM is better than UML in modeling the dynamics aspect of the

Web applications. In specifying structure and distribution aspects, there were no

significant differences. The results further suggest that the quality of the OPM models

students built in the construction part was superior to that of the corresponding UML

models.

 2

1. Introduction

Modeling languages and methods for system specification, analysis, and design that

have been proposed over the years can be classified into three categories: structure- or

object-oriented, behavior- or process-oriented, and hybrids of the two. The object-

oriented (OO) approach focuses on the system’s objects, while its behavior is

encapsulated as operations within these objects. The large number of OO modeling

languages that had emerged and proliferated from the mid 1980’s to the mid 1990’s

set the stage for the adoption of the Unified Modeling Language (UML) (OMG, 2002)

as the standard object-oriented notation for modeling software systems. Process-

oriented approaches, which predate the OO ones, emphasize the system's behavior.

Many of them, including Structured System Analysis (SSA) (DeMarco, 1978) and

Structured System Design (SSD) (Yourdon and Constantine, 1979), are based on Data

Flow Diagrams (DFD), while others, such as Statecharts (Harel, 1987) and Petri nets

(Peterson, 1981), are elaborations of state machines.

Proponents of both the object- and the process-oriented approaches have reached

the conclusion that focusing on just one aspect of a system while neglecting the other

is counterproductive. To remedy this shortcoming, each approach adopted some

technique used by its counterpart. DFD-based techniques, for example, rely on Entity-

Relationship (ER) or class diagrams for modeling the static data scheme. UML

incorporates several process-oriented diagrams, including interaction diagrams, which

describe the system dynamics through message passing among objects, and state

diagrams (or Statecharts), each of which specifies the behavior of a single object over

time in terms of the states it traverses.

The need for adequate representation of both the static and dynamic aspects of a

system while keeping the model as simple as possible was a prime motivation for the

development of Object-Process Methodology (OPM) (Dori, 2002a). OPM is an

integrated modeling and system evolution approach that uses objects, processes, and

links to represent the system's structure and behavior in a single model that uses the

same diagram type along with equivalent natural language specification. This way,

OPM attempts to solve two of the main deficiencies of the object-oriented approach in

general and UML in particular: the unbalanced structure-behavior representation and

the model multiplicity problem (Peleg and Dori, 2000; Dori 2002b).

 3

The prevalent use of the Internet and the World Wide Web as platforms for

distributed information systems has raised questions regarding the ability of OPM to

satisfy requirements introduced by the domain of Web application (Reinhartz-Berger

et al., 2002a).

In this paper we present our empirical findings about the comprehension of given

OPM and UML models and the quality of constructed OPM and UML models in the

domain of Web applications. The structure of the rest of the paper is as follows.

Section �2 reviews related works that compare modeling languages and methods either

theoretically or empirically. Section �3 briefly presents the main principles of OPM

and UML. Section �4 describes the experiment hypothesis, setting, and design, while

Sections �5 and �6 respectively present and discuss the experiment results. Based on our

empirical findings, in Section �7 we summarize the benefits and shortcomings of OPM

and suggest ways to improve the methodology and OPCAT, its supporting CASE tool.

2. Related Studies

The emergence of the large number of software and system modeling approaches and

notations over the years has underlined the need to evaluate them either theoretically

or empirically. Theoretical approaches use metamodeling techniques or define

objective criteria for comparing modeling languages in terms of expressiveness,

complexity, and accuracy. In one theoretical study, Hillegersberg et al. (1998) applied

metamodeling to examine the fitness of the Booch method (Booch, 1991), an object-

oriented analysis and design method, to the object-oriented programming languages

Smalltalk, Eiffel, and C++. Halpin and Bloesch (1998) studied the relative strengths

and weaknesses of Object Role Model (ORM) and UML for data modeling according

to criteria of expressiveness, clarity, semantic stability, semantic relevance, validation

mechanisms, abstraction mechanisms, and formal foundation. Siau and Cao (2001)

compared the complexity metric values of UML with other object-oriented

techniques. Their comparison related to seventeen complexity metrics, including

independent metrics (such as the number of object types per technique) and aggregate

metrics (e.g., the division of work in a specific technique). They found that UML is at

least twice as complex as other object-oriented, single view notations.

Modeling languages can also be compared empirically. Empirical studies are based

on experiments, in which the results are examined quantitatively according to certain

criteria, and the subjects may be untrained people, students, or professional system

 4

analysis and design experts. Kim and March (1995) compared Extended ER (EER)

and NIAM (Nijssen Information Analysis Method) (Verheijen and Van Bekkum, 1982)

for user comprehension, which was measured by counting the number of correct

answers to questions about the various modeling constructs. Shoval and Shiran (1997)

compared EER and object-oriented data models from a design quality viewpoint.

They measured quality in terms of correctness of the achieved model, time to

complete the design task, and designer’s model preferences. Otero and Dolado (2002)

compared the semantic comprehension of three different notations for representing

behavior in UML: sequence diagrams, collaboration diagrams, and state diagrams.

The comparison was in terms of the total time to complete the tasks and their scores.

They found that the comprehension of dynamic models in object-oriented designs

depends on the complexity of the system. Peleg and Dori (2000) compared OPM/T,

an extension of OPM to real-time systems, with a variation of Object Modeling

Technique (OMT) (Rumbaugh et al., 1991) to the same domain (T/OMT). They

examined the specification quality and comprehension of both system's structural and

behavioral aspects. The subjects were asked to fill in a questionnaire consisting of

statements on a system modeled in one of the techniques and to specify another

system using the second technique. The conclusion was that the single view of

OPM/T is more effective than the multiple-view of T/OMT in generating a better

system specification. Most of the errors in the T/OMT models resulted from (1) lack

of integration among the technique’s different views and (2) the need to maintain

consistency among the three view types (object diagrams, DFD, and Statecharts) and

to gather information that is scattered across these views. The comprehension part of

the experiment revealed a significant difference in favor of T/OPM in three issues: (1)

identifying triggering events of processes, (2) identifying processes that are triggered

by a given event, and (3) identifying objects that participate in a process. T/OMT, on

the other hand, was found to be better in two other issues: (1) identifying events that

affect objects by changing their state, and (2) determining the order of process

execution. Following that experiment, the research described in this paper compares

the abilities of OPM and UML, the successor of OMT, to model systems in the

domain of Web applications.

 5

3. OPM and UML Essentials

Before going into the details of the experiment and its outcomes, we briefly describe

the basic principles of the two modeling approaches that were compared in this study.

3.1 Object-Process Methodology (OPM)

Object-Process Methodology (OPM) (Dori, 1995; Peleg and Dori, 1999; Dori 2002a)

is an integrated modeling approach to the modeling, study and lifecycle support of

systems in general and information systems in particular. Recognizing the existence of

processes as stand-alone entities, which is a major departure from the encapsulation

principle of the object-oriented approach, OPM enables modeling the system's

structure and behavior in a single unified framework. OPM allows processes to

complement objects as entities at the same level. This way, structure and behavior,

which are the two major aspects that all systems exhibit, co-exist in the same OPM

model without highlighting one at the cost of suppressing the other. This unique

structure-behavior integration in a single view makes OPM most useful for modeling

complex reactive systems, in which these two prime aspects are highly intertwined

and hard to separate.

The elements of the OPM ontology are entities (things and states) and links. A

thing is a generalization of a (stateful) object and a process – the two basic building

blocks of any OPM-based system model. Objects exist, while processes transform

them. Transformation can be generation of new objects, consumption of existing

objects, or changing objects' states. At any point in time, each object is at some state,

and object states are changed through occurrences of processes. Links can be

structural or procedural. A structural link expresses a static relation between two

objects. Aggregation, generalization, characterization, and instantiation are the four

fundamental structural relations. General tagged relations enable the definition of the

semantics of any other structural link. Procedural links describe the behavior of a

system, i.e., how processes transform (generate, consume, or update) objects, how

objects enable processes (without being transformed), and how internal or external

events trigger processes. The resulting model is expressed bimodally, both in graphics

(through a set of Object-Process Diagrams, abbreviated as OPDs) and in a subset of

English (through a corresponding set of Object-Process Language paragraphs).

OPM enables specifying system structure and dynamics to any desired level of

detail without losing legibility and comprehension of the resulting specification. This

 6

is done through three refinement/abstraction mechanisms: unfolding/folding, which

refines/abstracts the structural parts of a thing (mainly an object), in-zooming/out-

zooming, which exposes/hides the inner details of a thing (mainly a process) within its

enclosing frame, and state expressing/suppressing, which exposes/hides the states of

an object.

Introducing OPM to the Web application domain has required a few extensions

(Reinhartz-Berger et al., 2002a). These extensions, which do not add elements to

OPM ontology or symbols to its notation, provide for open reuse of component

designs through bindings among model modules (Reinhartz-Berger et al., 2002b) and

support code mobility and migration specifications (Reinhartz-Berger et al., 2003).

3.2 Unified Modeling Language (UML)

Unified Modeling Language (UML) (OMG, 2002) is an object-oriented language for

specifying, visualizing, constructing, and documenting the artifacts of software

systems, as well as for business modeling and other non-software systems. UML

defines ten types of diagrams, which are divided into three categories. Four diagram

types represent structure and include the class, object, component, and deployment

diagrams. Five diagram types, which represent different aspects of dynamic behavior,

include use case, sequence, activity, collaboration, and state diagrams (Statecharts).

Finally, package diagrams represent ways to organize and manage application

modules. A system modeled by UML consists of several different, but related,

diagrams of various types. UML also provides several extension mechanisms that

allow modelers to define domain-specific extensions without having to modify the

modeling language. One such mechanism is stereotype – a new kind of a model

element that extends the semantics of an existing kind of element. User-defined icons

can be associated with stereotypes in order to help distinguish them from other model

elements.

Several UML extensions have been proposed for the domain of Web applications.

One of them, Conallen’s extension (Conallen 1999), is based on a set of 18 domain-

specific stereotypes, which are commonly used with Web applications. These

stereotypes include such implementation-dependent concepts as RMI, IIOP, and Java

Script, along with a set of well-formedness rules for using them.

In this study we compared OPM to Conallen’s extension to UML because of its

adoption by the UML standard user community (UML 0.91 and up). In order to make

 7

the comparison between OPM and UML as fair as possible, the UML models in our

experiment used only extensions that were adapted in the core UML, namely, the

stereotypes “entity object,” “control object,” “boundary object,” and “server page.”

4. Experiment Goal, Hypotheses, and Design

Following the empirical approach to evaluating modeling languages and techniques,

the goal of the experiment was to compare OPM to UML with respect to two aspects:

(1) comprehension, namely the level of comprehending a given model expressed in

each language, and (2) construction, i.e., the quality and ease of modeling a given

system in each language.

4.1 Experiment Hypotheses

Our conjecture (hypothesis) regarding comprehension was that questions which can be

answered by inspecting a single UML view would be more correctly answered when

UML rather than OPM is used. More specifically, since UML is object-oriented and

since a UML system model is comprised of multiple views (diagram types), the UML

class diagram would better serve subjects who are looking for answers to questions

related to structural parts of a given system. Examples of questions of this type are

“What is the database structure of the given application?” and “What are the structure

and links of the pages within the application?” Conversely, OPM will be more

adequate than UML for understanding the dynamic aspects of a system and the

complex relations among various (structural and dynamic) system modules. The

reason for this is that answering such questions requires searching multiple UML

diagram types, while the OPM model uses the only one diagram type it has, the OPD,

albeit at various granularity levels.

With respect to construction, OPM was expected to be more correctly and more

easily applied than UML for modeling complex, dynamic applications. The reasons

for this conjecture were that OPM uses a single view with three scaling (abstraction-

refinement) mechanisms, and that the OPM alphabet consists of a compact set of

graphic symbols, as opposed to the large number of view-dependent UML symbols.

4.2 Population Background and Training

The subjects of the experiment were third year students in a four-year engineering

B.Sc. program at the Technion, Israel Institute of Technology, who took the course

“Specification and Analysis of Information Systems” at the spring semester of the

 8

2002 academic year. Most of them were students of the Information Systems

Engineering program, which is managed jointly by the Faculty of Industrial

Engineering and Management and the Faculty of Computer Science. They had no

previous knowledge or experience in system modeling and specification.

During the 13-week course, the syllabus of which is summarized in �Table 1, the

students studied three representative modeling notations: DFD for two weeks, UML

for five weeks, and OPM for two weeks. They then also studied how to model Web

applications in UML and OPM for one additional week each. The students were

required to submit four modeling assignments in order to practice the use of DFD,

UML (Use Case, Class, and Sequence Diagrams), Statecharts, and OPM.

Table 1. The syllabus of the “Specification and Analysis of Information Systems” course

Week
no. Lecture (3 hours per week) Recitation (2 hours per week) Assignment

1 Introduction – system
development lifecycle

Relational databases

2 DFD Relational databases

3 DFD and OO approach DFD

4 UML Use Case and Class
Diagrams

DFD Modeling in DFD

5 UML structural model -----

6 UML structural model UML Use Case and Class
Diagrams

7 UML Interaction Diagrams UML structural model

8 UML Statecharts UML Interaction Diagrams Modeling in UML

9 OPM UML Statecharts Modeling in Statecharts

10 OPM OPM

11 Modeling Web applications
with UML (Conallen’s
extension)

OPM Modeling in OPM

12 Modeling Web applications
with OPM

Modeling Web applications
with UML and OPM

13 Discussion about analysis
approaches

Rehearsal tutorial

The course staff included one adjunct lecturer and two graduate student teaching

assistants, none of whom is an author of this paper. They were all familiar with UML

and OPM prior to teaching them, but had no particular preference for, or significantly

different knowledge of, any one specific language. The students studied in a single

lecture group and four recitation groups, two for each teaching assistant. Knowing that

the final exam in the course would serve as a basis for an experiment, the course staff

 9

taught the course uniformly from a common detailed lesson plan. The lecturer also

informed the students about their participation in the experiment in the first course

session.

4.3 Experiment Design

The experiment took place during the final three-hour examination of the course. The

examination contained three tasks. The two main tasks, which related to distributed

Web applications and accounted for 80% of the examination's grade, constituted the

experiment. The third task, which related to DFD, appeared last in the examination, so

its effect on the experiment results, if there was any, was uniform.

The two experimental tasks referred to two case studies: a project management

system and a book ordering application. The project management system, presented

in Appendix A, is a distributed, data-intensive system that handles projects, their

tasks, and their intermediate products. The book ordering application, presented in

Appendix B, is a Web-based system that enables searching for books and ordering

them electronically. Each appendix presents the models of the respective system in

both UML and OPM. Each model consists of five diagrams followed by eight

comprehension questions and one modeling problem, which called for extending the

system model. The questions on both models for the same case study, which are listed

along with their expected answers in appendices A and B (figures 3 and 6,

respectively), were identical. The answers to these questions were also identical and

independent of the modeling language. The comprehension questions relate to three

major aspects of Web applications: structure, dynamics, and distribution.

The two case studies were designed to be identical in their scope, or size. The size

was measured in terms of the number of diagrams, objects, features, and relations.

The test included two form types, A and B. Since our research question referred to the

comprehension and construction quality of OPM in comparison to UML irrespective

of the case study, each test form type contained the same case studies in the same

order. The only difference was the modeling language in which each case study was

expressed. The relatively small number of subjects (81) prevented us from dividing

the students into four groups (of about 20 students) in which not only the modeling

languages order but also the order of the case studies would be counterbalanced. The

test tasks of each group and their weights are summarized in �Table 2.

 10

Table 2. Test tasks of the two experiment groups

The students were divided arbitrarily into two groups of 40 and 41 students, and

each group got a different test form type. The students were provided with alternating

form types according to their seating positions, so this arbitrary division into the two

experimental groups closely approximated random division. Nevertheless, to verify

that the populations of these two groups were identical, we carried out a preliminary

t-test on the grades the students had received in the “Design and Implementation of

Information Systems” course, which is a mandatory course in the Information

Systems Engineering program and a prerequisite to the course in which the

experiment took place. No significant difference was found between the groups

(t = –0.19, p ~ 0.85). An additional t-test we carried out on the average assignment

grades in this particular course yielded similar results (t = –0.13, p ~ 0.90).

While the time to complete the tasks was not monitored separately for each

question, the students did not seem to be under time pressure and did not ask for extra

time during the examination.

All the questions about the project management system (in both UML and OPM)

were graded by one of the two teaching assistants, while the questions about the book

ordering application were graded by the other. This grader assignment scheme was

designed to eliminate any potential bias towards one of the modeling languages in

grading the examinations. Moreover, the teaching assistants were provided with a

detailed grading policy document, examples of which are presented in �Table 3.

5. Results

�Table 4 summarizes the average score students achieved for each question in the

examination. Each comprehension question could score a maximum of 3 points (24

points in total for each system), while each modeling problem could score as much as

16 points, totaling 40 points for each system. Incomplete answers, or answers with

Test Task Weight Group A
(40 subjects)

Group B
(41 subjects)

Project management system 40% UML OPM

Book ordering application 40% OPM UML

DFD question (not included
in the experiment)

20% DFD DFD

 11

missing elements, scored less according to the detailed grading policy exemplified in

�Table 3.

Table 3. Examples from the grading policy document of the experiment

Case study Question no. Instruction description Grading policy

Missing element -0.5 Project Management/

Book Ordering

1

Additional element -0.5

Missing class -0.5

Additional class -0.5

Project Management/

Book Ordering

5

Incorrect classification (e.g.,

creation instead of effect)

-0.25

Missing node/link -0.5

Additional node/link -0.5

Incorrect requirement specification -0.25

Project Management/

Book Ordering

8

Incorrect link source/destination -0.25

Project Management/

Book Ordering

1-8 Grade Range 0-3

Project Management/

Book Ordering

9 Grade Range 0-16

Table 4. Average test scores by questions for each case and language

Project Management case Book Ordering case Question
No.

Max.
Score UML OPM UML OPM

1 3 2.03 2.82 2.65 1.99

2 3 1.78 1.88 1.79 2.01

3 3 1.53 2.70 1.55 2.58

4 3 2.78 2.85 1.67 2.03

5 3 1.98 2.49 1.85 2.33

6 3 2.24 2.11 2.20 2.23

7 3 1.90 2.16 1.83 2.14

8 3 1.94 2.40 2.78 2.78

9 16 9.18 10.73 8.32 8.95

Total 40 25.33 30.13 24.63 27.01

As �Table 4 shows, in both case studies, almost all the questions (8 out of 9) scored

higher when the system was modeled using OPM than when it was modeled using

UML. In particular, the construction problems for both systems scored higher when

students were required to use OPM.

 12

5.1 Statistical Analysis of the Comprehension, Construction, and Overall Scores

�Table 5 presents a summary of all the possible effects between the two experiment

factors, namely language (UML vs. OPM) and case (project management vs. book

ordering), with respect to (1) the comprehension question score, (2) the construction

question score, and (3) the overall grade. The results, normalized to a percentage

scale, show significant differences in the main effects (language and case) and

insignificant differences in their interaction (language*case). The significance of the

two factors was assessed using the Mixed procedure of SAS (Littell et al., 1996),

which takes into account the repeated measure structure of the data. Student answers

to questions relating to OPM models were significantly better than answers to

questions relating to UML models in all three categories. The students comprehended

the OPM models 10.5% better than the UML models, while their achievements in the

construction category were 7% better when using OPM. Regardless of the modeling

language used, on average, students achieved higher scores in the project management

system, which was the first case study in each examination.

Table 5. Results of the overall, comprehension, and construction grades – the mixed

ANOVA model

Examined
modeling aspect Factor Name Values of Factor Mean

Grade (%) F p-level

Language
UML
OPM

67.6
78.1

75.8 <0.0001

Case
Project management

Book ordering
74.2
71.6

4.18 <0.05

Model
comprehension

Score

Language*Case 1.66 n.s.

Language
UML
OPM

54.5
61.6

7.41 <0.01

Case
Project management

Book ordering
62.3
54.0

10.8 <0.002

Model
construction

Score

Language*Case 0.46 n.s.

Language
UML
OPM

62.4
71.5

54.2 <0.0001

Case
Project management

Book ordering
69.4
64.5 15.2 <0.0005 Overall Score

Language*Case 1.17 n.s.

 13

5.2 Statistical Analysis of the Comprehension Questions Subdivision

To gain more insight into the comprehension questions, we divided them into three

categories:

1. Structure: questions 1-2 in both case studies, which related to the structure of

the system;

2. Dynamics: questions 3-5 in both case studies and question 8 in the book

ordering system, which related to the system behavior; and

3. Distribution: questions 6-7 in both case studies and question 8 in the project

management system, which related to aspects of the system's distributed nature.

�Table 6 presents the analysis of the students’ achievements in the comprehension

category according to three factors: language, case, and comprehension (structure,

dynamics, and distribution). The results, normalized to a percentage scale, show

significant differences in the language (p<0.0001) and comprehension (p<0.001)

factors. The fact that the 3-way interaction between these factors was significant

required further elaboration in which each case study was analyzed for the interaction

between the modeling language and the comprehension category.

Table 6. Results of the comprehension grades – the mixed 3-way ANOVA model

Factor Name Values of Factor Mean
Grade (%) F p-level

Language
UML
OPM

67.6
78.1

40.7 <0.0001

Case
Project management

Book ordering
74.2
71.6

3.26 n.s.

Comprehension Category
Structure
Dynamics

Distribution

70.6
76.3
70.4

7.47 <0.001

Language*Case 3.41 n.s.

Case*
Comprehension Category 1.75 n.s.

Language*
Comprehension Category 8.70 <0.001

Language*Case*
Comprehension Category 5.30 <0.005

�Table 7 shows the average scores of the comprehension categories in each one of

the case studies. The average scores of the dynamics comprehension category

questions on models done with OPM were significantly higher than the respective

questions on models done with UML in both case studies (about 20% higher in the

 14

project management system and more than 15% higher in the book ordering

application).

Table 7. Analysis of the significant interaction in the comprehension results:

Language*Comprehension Category for each case

Case Comprehension Category Mean Grade (%) F p-level

Structure
UML: 63.3
OPM: 78.3

13.6 <0.0005

Dynamics
UML: 69.7
OPM: 89.3

23.6 <0.0001
Project

Management

Distribution
UML: 67.5
OPM: 74.1

2.67 n.s.

Structure
UML: 73.98
OPM: 66.67

3.27 n.s.

Dynamics
UML: 65.45
 OPM: 80.83

14.45 <0.001 Book Ordering

Distribution
UML: 67.07
OPM: 72.71

1.94 n.s.

In both case studies, when using OPM the students answered the distribution

questions more correctly, but these differences were not statistically significant. For

the structure comprehension category questions, the students’ results were

significantly better when using OPM in the project management system, while in the

book ordering application the students’ results in this category were insignificantly

better when they used UML.

6. Discussion

Examining each question separately, we found out that in the project management

system the only question in which UML scored slightly (but not significantly) higher

related to representing the navigation order of the project management pages

(question 6: 2.24 for UML vs. 2.11 for OPM). However, in the same question about

the book ordering system (question 6) the result was reversed in favor of OPM (2.23

for OPM vs. 2.20 for UML).

The largest gap in favor of OPM in the project management system was found in

question 3, which was phrased "What is the trigger of the project order handling

process? From which diagram did you conclude it?" For this question, students who

got and consulted the OPM model scored 2.70 (out of 3), almost twice as much as the

students who got the UML model, who scored 1.53. The reason for this large

 15

difference is attributed to the fact that "project order handling" is a name of an OPM

process which explicitly appears in some of the diagrams, while in the UML model

the behavior and triggers of this process need to be searched in the sequence diagram.

The next largest gap between the two modeling languages in favor of OPM (2.49

vs. 1.98) was in question 5, which was: "What database classes are affected by the

project order handling process? How? (i.e., are they created, destroyed, or

changed?)" Here, the facts that OPM combines the system's structure and behavior in

a single view and that the transformation (creation, destruction, or change) of the

process on each object is explicitly shown, helped students who used the OPM model

get a more correct answer.

In the book ordering application, the only question in which UML scored higher

(2.65 vs. 1.99) was question 1, which related to the types of pages that the user can

view and the information presented at each page. This result in favor of UML is

probably due to the fact that UML boundary object is a special element that represents

pages or screens. The symbol and meaning of a boundary object is different than a

standard class. OPM, on the other hand, represents Web pages or screens as standard

objects, with no special symbol. Assigning a special symbol to Web pages helps to

quickly and more accurately identify objects of this type. Although the addition of the

boundary object symbol was found to be helpful in answering this particular question,

adding special symbols to denote such elements as components, executables, and

libraries, as UML indeed does, comes at the price of unjustifiably complicating the

language. Indeed, Siau and Cao (2001) found that the UML vocabulary is overall 2-11

times more complex than other object-oriented, single-view techniques.

Regarding the structure comprehension category, the experiment results show that

UML was better only in the book ordering system, while OPM was better in the

project management case study. One explanation for this difference might be the

students fatigue on the three-hour examination. The students captured the structural

part of the book ordering system, which was the second case study, more easily from

the UML class diagram, a separate view that is exclusively devoted to modeling

structure. The reason for which OPM was better in the project management system in

structure-related questions is most likely the fact that the OPD called “DB Unfolded”

is purely structural, and this enabled the students to find answers to questions 1 and 2

in that OPD even more easily than in the class diagram of UML.

 16

As expected, in the dynamics category, OPM was significantly better in both case

studies. We assume that this outcome is due to the fact that finding answers to the

behavior questions involved consulting several UML views, while in OPM the

answers are found in the single diagram type, and the only thing one has to do is

traverse across Object-Process Diagrams at different granularity levels. This type of

navigation is easier than moving from one type of diagram to another, with each

diagram type using its own set of symbols and distinct semantics. UML diagram

traversal involves constantly switching the symbol vocabulary associated with each

diagram type. This unnecessary complexity puts extra mental burden on the shoulders

of system architects, designers, and the intended audience.

As for the distribution aspect, in both case studies OPM was found to be

insignificantly better than UML. This difference can be explained by the fact that the

questions in this category involved structural and behavioral aspects of the system

distribution that span across different UML views. In other words, to fully answer

these questions with the UML model, the students had to integrate information

gathered from various diagram types, while in OPM the same information could be

achieved by moving from a less detailed diagram to a more detailed (in-zoomed or

unfolded) one. Indeed, we have argued that moving across detail levels of the same

diagram type, when all the symbols are the same and the only change is the level of

detail, is cognitively easier than switching among various diagram types, where each

type employs a whole different set of graphic symbols and syntax. The findings in the

distribution category reinforce this argument.

The construction results of the experiment were significantly better in OPM than in

UML (p<0.01). The main errors in the UML modeling questions occurred when

students were required to integrate the different views into a whole, consistent model.

The modeling questions required adding a single functionality that affected two UML

diagram types—the class diagram and the site map diagram—and called for adding a

third diagram of yet another type—an interaction diagram. All these changes were

expected to leave the UML model integral and consistent. This task is difficult for

trained UML modelers, let alone untrained students. The UML multiplicity of models

(views) inevitably often requires numerous corrections in other diagram types so as to

maintain overall consistency. Each change potentially triggers changes in the rest of

the diagrams, causing a ripple effect that can be intractable. This shortcoming of the

object-oriented paradigm in general and UML in particular has been pointed out by

 17

the aspect-oriented approach (AOSD, 2003). Mezini and Lieberherr (1998) claim that

object-oriented programs are more difficult to maintain and reuse because their

functionality is spread over several methods, making it difficult to get the “big

picture.” In OPM, all the changes are done in one diagram type, OPD, the single

diagram type of OPM, which combines the structure and behavior that together

specify the additional system functionality. The only other update that needs to take

place is that of OPDs up the abstraction tree such that consistency is maintained. This

is done by inspecting the OPM system map, which is the OPD tree, as described

explicitly in the OPM metamodel (Reinhartz-Berger, 2003).

Although the results of our experiment suggest that OPM is significantly better

than UML in understanding system dynamics and in modeling Web applications,

there are three validity threatening factors that might have influenced the experiment

results. First, UML was taught before OPM during the course. Hence, by the time of

the final examination students might have forgotten more about how to effectively

work with UML than with OPM. On the other hand, UML and its Web application

extension were taught for six weeks, twice as much as OPM and its Web application

extension (see �Table 1). Moreover, since UML was the first modeling language

taught, the teaching order could help the students understand and assimilate UML

better than OPM.

Second, the project management case always appeared first on the examination,

implying that most of the students probably started working on this problem first.

Therefore, there are possible fatigue and order factors that are confounded with the

comparison results of the two cases and interactions that involve the case factor.

Finally, only one scorer assessed each exam question, which might further confound

the results. However, all scorers used a well-defined scoring scheme, which mitigates

this effect.

7. Summary and Future Work

Comparing OPM to UML in terms of Web applications comprehension and modeling

quality, we concluded that the single OPM diagram type, the Object-Process Diagram

(OPD), which supports the various structural and dynamic aspects throughout the

system lifecycle, is easier to understand and apply by untrained users. The ability to

model stand-alone processes in OPM provides for a single mechanism for specifying

system behavior. Such behavior modeling is not in line with the object-oriented

 18

encapsulation principle, as it involves more than one object and therefore cannot be

faithfully modeled as being owned by a single specific object class. These findings are

in agreement with the results described by Peleg and Dori (2000), and are also

consistent with findings of another empirical study of ours (Gilat, 2003), which

compared OPM adapted to the domain of discrete event simulation to ARENA, a

prevalent discrete event simulation software package.

Although we compared OPM to a specific extension of UML for Web applications

(Conallen, 1999), we believe that our findings can be generalized. UML’s segregation

of the system model into multiple views is a major source of difficulty in capturing

the system as a whole, understanding its parts, and being able to coherently follow the

functionality it performs. This is due to the fact that pieces of a UML system model

are scattered across different diagram types, each with its idiosyncratic set of graphic

alphabet symbols and syntax. For example, a process can appear as a use-case in a

use-case diagram, as an operation in a class diagram, as an action in a state transition

diagram, as a message in a sequence diagram, and as an activity in an activity

diagram. To be able to model complex systems, the modeling language itself should

be as simple as possible, because using a complex language to model a complex

system almost guarantees that the resulting model will be intractable. UML is

unnecessarily complex in many ways, and this inherent deficiency hinders coherent

modeling and comprehension of systems. The outcomes of this empirical study

reinforce this assertion.

While model multiplicity of UML is in general a deficiency, there are cases in

which the existence of separate views and special symbols can potentially help

answering certain questions about a specific aspect of a system, which is expressed in

only one type of diagram, such as its desired database schema or execution of its

services. These types of questions may be more difficult to answer in an OPM model,

if the information resides at separate diagrams with different granularity levels. To

overcome this, we have enhanced OPCAT, Object-Process CASE tool (Dori et al.,

2003), with animation capability. Using this feature while modeling a system, the

designer can run an animated simulation showing the active entities and links at

consecutive time points as a visual design debugging aid. This capability enables the

system architect to verify that the system behaves and executes as it is supposed to at

any point in time. To stay current with the prevailing standard, we have augmented

OPCAT with the capability of generating a set of UML views from the single OPM

 19

model, and we plan to also be able to convert a UML model to OPM. These

capabilities will enable the system architect to use the most suitable approach for each

design portion.

Another experiment which was conducted on 20 graduate and advanced

undergraduate students who studied UML and OPM for a year showed similar results.

In that experiment, the students had rehearsal tutorials about the core UML and OPM.

None of them had studied the extensions of the two modeling languages to the Web

application domain. The experiment included two models and nine comprehension

questions only. The two models were a Web Sales system, which handles sales

through the internet, in UML and a GLAP system, which handles a glossary of terms

in a distributed architecture, in OPM. The comprehension questions which refer to

system dynamics and distribution were better answered using OPM models. The

students noted that the single view and the technology-independent model in OPM

helped them understand the system’s purpose, functionality, and architecture. Future

work should validate our findings with analysis and design experts who are familiar

with these languages. This work should use a talk-aloud procedure to validate our

interpretation to the causes of the different results between the modeling languages.

Further experiments should also be carried out to compare OPM to other leading

modeling languages and methods. More specifically, in our experiment, we compared

two diagramming, visual formalisms, Object-Process Diagrams (OPD) and UML. An

OPM model is expressed not only graphically but also by a textual modality, Object-

Process Language (OPL), which is a subset of English and hence comprehensible to

non-IT professionals. The experiment done in this research completely ignored this

modality. The contribution of the natural language as a complementary modality to

understanding an OPM model should be carefully examined, especially for users who

are not familiar with a visual modeling language.

Acknowledgements: The authors would like to thank Professor Ayala Cohen for her

professional, valuable advice and insight in designing the statistical analysis and

interpreting the results. We also thank the Technion Statistics Laboratory staff in

carrying out the analysis.

 20

References

AOSD. 2003. The Aspect-Oriented Software Development site, http://aosd.net/

Booch, G. 1991. Object-Oriented Design with Applications. Redwood: Benjamin

Cummings.

Conallen, J. 1999. Building Web Applications with UML. Reading: Addison-Wesley.

DeMarco, T. Structured Analysis and System Specification. New York: Yourdon.

Dori, D. 1995. Object-Process Analysis: Maintaining the Balance between System

Structure and Behavior. Journal of Logic and Computation 5 (2): 227--249.

Dori, D. 2002. Object-Process Methodology - A Holistic Systems Paradigm. Heidelberg:

Springer Verlag.

Dori, D. 2002. Why Significant UML Change Is Unlikely. Communications of the ACM

45 (11): 82--85.

Dori, D., Reinhartz-Berger, I., and Sturm, A. 2003. OPCAT - A Bimodal CASE Tool for

Object-Process Based System Development. Proceedings of the IEEE/ACM 5th

International Conference on Enterprise Information Systems (ICEIS 2003), France,

286--291. Download site: http://www.ObjectProcess.org/

Gilat, D. 2003. A Framework for Simulation of Discrete Events Systems based on the

Object-Process Methodology. Ph.D. Thesis, Technion – Israel Institute of Technology.

Harel, D. 1987. Statecharts: a Visual Formalism for Complex Systems. Science of

Computer Programming 8: 231--274.

Halpin, T. and Bloesch, A. 1998. A Comparison of UML and ORM for Data Modeling.

Proceedings of the third International Workshop on Evaluation of Modeling Methods

in Systems Analysis and Design (EMMSAD’98), Italy.

Hillegersberg, J.V., Kumar, K. and Welke, R.J. 1998. Using Metamodeling to Analyze

the Fit of Object-Oriented Methods to Languages. Proceedings of the thirty first Hawaii

International Conference on System Sciences (HICSS'98), Hawaii.

Kim, Y.G. and March, S.T. 1995. Comparing Data Modeling Formalisms for

Representing and Validating Information Requirements. Communications of the ACM

38 (6): 103--115.

Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. 1996. SAS Systems

for Mixed Models. SAS Institute Inc.

Mezini, M. and Lieberherr, K. 1998. Adaptive Plug-and-Play Components for

Evolutionary Software Development. Conference on Object-Oriented Programming,

Systems, Languages and Applications (OOPSLA'98), Canada, 97--116.

Otero, M.C. and Dolado, J.J. 2002. An Initial Experimental Assessment of the Dynamic

Modeling in UML. Empirical Software Engineering 7: 27--47.

 21

OMG. 2002. The Object Management Group site. Unified Modeling Language

Specification – version 1.4. ftp://ftp.omg.org/pub/docs/formal/01-09-67.pdf

Peleg, M. and Dori, D. 1999. Extending the Object-Process Methodology to Handle Real-

Time Systems. Journal of Object-Oriented Programming 11 (8): 53--58.

Peleg, M. and Dori, D. 2000. The Model Multiplicity Problem: Experimenting with Real-

Time Specification Methods. IEEE Transaction on Software Engineering 26 (8): 742--

759.

Peterson, J.L. 1981. Petri Nets Theory and the Modeling of Systems. Englewood Cliffs:

Prentice Hall.

Reinhartz-Berger, I. 2003. Developing Web Applications with Object-Oriented

Approaches and Object-Process Methodology. Ph.D. Thesis, Technion – Israel Institute

of Technology. http://mis.hevra.haifa.ac.il/~iris/research/OPMwebThesis.pdf

Reinhartz-Berger, I., Dori, D., and Katz, S. 2002. OPM/Web – Object-Process

Methodology for Developing Web Applications. Annals on Software Engineering –

Special Issue on Object-Oriented Web-based Software Engineering 13: 141--161.

Reinhartz-Berger, I., Dori, D., and Katz S. 2002. Open Reuse of Component Designs in

OPM/Web. Proceeding of Computer Software and Application Conference

(COMPSAC’2002), England, 19--26.

Reinhartz-Berger, I., Dori, D., and Katz S. 2003. Modeling Code Mobility and Migration:

An OPM/Web Approach. Accepted to International Journal of Web Engineering and

Technology (IJWET).

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W. 1991. Object-

Oriented Modeling and Design. Englewood Cliffs: Prentice-Hall.

Siau, K. and Cao, Q. 2001. Unified Modeling Language (UML) – A Complexity Analysis.

Journal of Database Management 12 (1): 26--34.

Shoval, P. and Shiran, S. 1997. Entity-Relationship and Object-Oriented Data Modeling –

an Experimental Comparison of Design Quality. Data & Knowledge Engineering 21:

297--315.

Verheijen, G.M.A. and Van Bekkum, J. 1982. NIAM: An Information Analysis Method.

In Information Systems Design Methodologies: A Comparative Review, T.W. Olle, et

al. (eds.), North-Holland, 289--318.

Yourdon, Y. and Constantine, L.L. 1979. Structured Design. Englewood Cliffs: Prentice

Hall.

 22

Appendix A: The Project Management System – Models and Questions

Deployment Diagram

Server Client

Payment
System

<<internet>>

<<encrypted>>

Project and Payment Status - Statecharts

Project Status

ordered

50%
completed

supplied

ordered

50%
completed

true(calcCompletionPercentage =50)[not in (not paid)]

supplied

projectCreated

Payment Status

not paid

advance
paid

completely paid

not paid

advance
paid

projectCreated

FirstDayOfMonth / pay=0.1*agreedPrice

completely paid

FirstDayOfMonth / pay=agreedPrice
true(calcCompletionPercentage =100)[in (completely paid)]

Class Diagram

orderDate <
requestedEndDate

project details screen

(from Use Case View)

project handling screen

(from Use Case View)

Projec t Details

projectCode : char[10]
projectStatus : char
startDate : Date
actualEndDate : Date
agreedPrice : float
tasks : array of �����
products : array of ���	

validateDates() : Boolean
createProducts()

<<server page>>

Project Update

id : char[10]
orderDate : Date
requestedEndDate : Date
projectType : char[10]
remark : char[50]
maxPrice : float
tasks : array of Assignment
products : array of Product

validateDates() : Boolean

<<server page>>

customer detail screen

(from Use Case View)

Assignment
id : char[10]
startDate : Date
description : char[100]

Project

code : char[10]
startDate : Date
tentativeEndDate : Date
actualEndDate : Date
status : char
projectType : char[10]
remark : char[50]
agreedPrice : float

calcCompletionPercentage() : float

nn
views

views

customer details

id : char[10]
name : char[40]
email : char[20]
creditNo : char[20]

checkEmail() : Boolean
checkCreditNo() : Boolean

<<server page>>

Product
id : char[10]
deliveryDate : Date
description : char[100]
price : float

nn

relates to

customer

id : char[10]
name : char[40]
email : char[20]
creditNo : char[20]

nn

has

views

Debiting Details
id : char[10]
productPrice : float

<<server page>>

views

views
file for payment system

(from Use Case View)

Site Map Diagram

project

project update project details

payment system

project handling screen project details screenfile for payment system

product

employee

debiting details

customer detail screen

Customer

Customer details

Project Order Handling – Sequence Diagram

 : employee : project handling screen
 : Project

Update
 : Project : Assignment : Product : customer : customer

details : customer detail screen

project details inserting
create()

res=validateDates()

[res=true] create()

[*i=1..n] create()

customer details inderting

create()

res1=checkEmail()

res2=checkCreditNo()

[res1=true and res2=true] create()

product details inserting
createProducts()

[*i=1..n] create()

Figure 1. Conallen’s UML specification of the project management system

 23

Top Level Diagram

DB unfolded

Interface Handling in-zoomed

Database Handling in-zoomed

Project Order Handling in-zoomed

Partial Legend

Object
Physical object

Environmental, physical object
Process

State
Aggregation

Characterization
Inheritance

Structural link
Enabling link

Effect link
Result/consumption link

Condition link
(Enabling/Consumption) event link

Figure 2. OPM specification of the project management system

 c

 e
 e

 24

Answer all the following questions about the project management system model.

1. What are the classes which form the application's database?

 Expected answer: Customer, Project, Assignment, and Product.

2. Does the structure of the system support the following query: "who is the customer that

ordered a specific product?" Explain.

 Expected answer: Yes, there are relations from Product to Customer, through Assignment and

Project.

3. What is the trigger of project order handling? From which diagram did you conclude it?

 Expected answer: The trigger is the creation of a request for project ordering in the server site.

4. Is it possible that only the advance (10%) of a project of which 50% had been completed was

paid? Explain.

 Expected answer: Yes, addition of products is possible if (at least) the advance was paid. Hence,

it is possible that 50% of the assignments were completed and only the advance (10%) was

paid.

5. What database classes are affected by project order handling? How? (i.e., are they created,

destroyed, or changed?)

 Expected answer: Project is created, Assignment is created, Product is created, and Customer is

affected.

6. What is the navigation order in the application? How did you conclude it?

 Expected answer: Customer Update Request � Project Order Request � Project View

Request.

7. What is the internal architecture (nodes and links) of the system?

 Expected answer: The nodes are Client and Server. There is an Internet link between the Client

and the Server and an encrypted link between the Server and the Payment System (which is

external).

8. What are the system activities from the moment the employee connects to the site and till he

gets the project details? From which diagrams did you conclude it?

 Expected answer: The employee fills a request for viewing project details. This request is sent

to the server. In the server, the project and customer details are fetched and a page with the

project details is created and sent to the client. The client displays this page.

9. Add to the model a possibility to view a report of all the projects which 50% of their

assignments were completed, but the projects have not supplied yet. The report will be viewed

as a result of a manager request after he/she inserts a date range for the report.

 Main changes: Adding an environmental, physical object (an actor) called Manager and

zooming into the Reporting process (creating a sequence/collaboration diagram).

Figure 3. Questions related to the project management system and their expected answers

 25

Appendix B: The Book Ordering System – Models and Questions

Deployment Diagram

Client Server

publisher
system

<<internet>>

<<encrypted>>

Cart Status - Statecharts

Active

Close

CartCreated

BookAdded(Quantity) / SetQuantityInStock(Quantity)

CartClosed|Price=Sum(BookPrice*Quantity)

Class Diagram

file from publisher system

(from Use Case View)

cart line
quantity : int

book searching screen

(from Use Case View)

customer details screen

(from Use Case View)

book choosing screen

(from Use Case View)

author
firstName : char[10]
lastName : char[30]

getDetails() : char[40]

book searching

criterion : {title, publish, author}
searchString : char [50]
searchResult : array of book

validatesearchString()

<<server page>>

book inventory updating

ISBN : char[10]
title : char[50]
publishYear : int
price : float
quantity : int
AuthorFirstName : char[10]
AuthorLas tName : char[30]

updateBook()

<<server page>>

nn

updates

book choosing
userId : char[10]
password : Date
ISBN : char[10]
cartCode : char[10]

validateInputs()

<<server page>>

book
ISBN : char[10]
title : char[50]
publishYear : int
price : float
quant ityInStock : int

getDetails() : char[100]

n
n

n
n

wrote

views

n

n

n

n

views

nn

updates

customer updating

id : char[10]
name : char[40]
email : char[20]
password : char[10]

checkEmail()
checkPassword()

<<server page>>

cart
code : char[10]
startTime : Time
totalPrice : float
status : {act ive, close}

views

nn

customer

id : char[10]
name : char[40]
email : char[20]
password : char[10]

views

Site Map Diagram

customer

customer updating

customer details screen book choosing screen

cart

user

book searching screen

publisher system

book choos ing book searching

file from publisher system

book author

book inventory updating

Book Searching - Sequence Diagram

 : author

 : user

 : customer
updating

 : customer : book
searching

 : book

 : customer details screen

customer details insert ing

create

[res1=true and res2=true] create()

res1=checkEmail()

res 2 = checkPassword()

 : book searching

search a book
create()

res3=validatesearchString()

[res3=true] [*i=1..n] getDetails()

[*i=1..n] getDetails()

Figure 4. Conallen’s UML specification of the book ordering system

 26

Top Level Diagram

DB unfolded

Interface Handling in-zoomed

Database Handling in-zoomed

Book Choosing Handling in-zoomed

Partial Legend
Object
Physical object
Environmental, physical object
Process
State
Aggregation
Characterization
Inheritance
Structural link
Enabling link
Effect link
Result/consumption link
Condition link
(Enabling/Consumption) event link

Figure 5. OPM specification of the book ordering system

 c

 e e

 27

Answer all the following questions about the book ordering system model.

1. Which types of pages can the user view? What is the information presented at each page?

 Expected answer: Customer Details Screen (id, name, email, password), Book Choosing

Screen (user id, password, cart code, ISBN), Book Searching Screen (criterion, searched

string, search result).

2. Does the structure of the system support the following query: ”who are the customers that

ordered a specific book?” Explain.

 Expected answer: Not directly, the relation between Cart and User does not exist.

3. What is the trigger of customer details update handling? From which diagram did you

conclude it?

 Expected answer: The creation of a request for customer details updating in the server site.

4. What are the inputs and outputs of book searching? What are the database classes used in

this process?

 Expected answer: The inputs are criterion and searched string. The outputs are the books

which satisfy the criterion. The needed DB classes are Book and Author.

5. What database classes are affected by customer details update handling? How? (i.e., are

they created, destroyed, or changed?)

 Expected answer: User is created or affected.

6. What is the navigation order in the application? How did you conclude it?

 Expected answer: In any moment each one of the pages can be displayed according to the

user request.

7. What is the internal architecture (nodes and links) of the system?

 Expected answer: The nodes are Client and Server. The is an encrypted link between the

Client and the Server and an Internet link between the Server and the Publisher System

(which is external).

8. What are the states of cart from the moment it is created till it is closed? What are the

activities in each state and how does the system transform between the states? From which

diagrams did you conclude it?

 Expected answer: The cart is created in its active state. As long as it remains active, books

can be ended. It changes its status to “close” when an explicit request for closing arrives.

9. Add to the model a possibility to print a report of all the active carts. The report will be

automatically printed at the beginning of each week.

 Main changes: Adding a triggering event of a clock and in-zooming the Reporting process

(creating a sequence/collaboration diagram).

Figure 6. Questions related to the book ordering system and their expected answers

