OPM vs. UML - Experimenting With Comprehension
and Construction of Web Application Models

Iris Reinhartz-Berger Dov Dori
University of Haifa Technion, Israel Institute of Technology
Carmel Mountain, Haifa 31905, Israel Technion City, Haifa 32000, Israel
iris@mis.hevra.haifa.ac.il dori@ie.technion.ac.il

Abstract

Object-Process Methodology (OPM), which is a holistic approach to modeling and
evolving systems, views objects and processes as two equally important entities that
describe the system's structure and behavior in a single model. Unified Modeling
Language (UML), which is the standard object-oriented modeling language for
software systems, separates the system model into various aspects, each of which is
represented in a different view (diagram type).

The exponential growth of the Web and the progress of Internet-based
architectures have set the stage for the proliferation of a variety of Web applications,
which are classified as hybrids between hypermedia and information systems. Such
applications require a modeling approach that is capable of clearly specifying aspects
of their architecture, communication, and distributive nature. Since UML and OPM
are two candidates for this task, this study has been designed to establish the level of
comprehension and the quality of the constructed Web application models using each
one of these two approaches.

In the experiment we carried out, third year undergraduate information systems
engineering students were asked to respond to comprehension and construction
questions about two representative Web application models. The comprehension
questions related to the system's structure, dynamics, and distribution aspects. The
results suggest that OPM is better than UML in modeling the dynamics aspect of the
Web applications. In specifying structure and distribution aspects, there were no
significant differences. The results further suggest that the quality of the OPM models
students built in the construction part was superior to that of the corresponding UML

models.

1. Introduction

Modeling languages and methods for system specification, analysis, and design that
have been proposed over the years can be classified into three categories: structure- or
object-oriented, behavior- or process-oriented, and hybrids of the two. The object-
oriented (OO) approach focuses on the system’s objects, while its behavior is
encapsulated as operations within these objects. The large number of OO modeling
languages that had emerged and proliferated from the mid 1980’s to the mid 1990’s
set the stage for the adoption of the Unified Modeling Language (UML) (OMG, 2002)
as the standard object-oriented notation for modeling software systems. Process-
oriented approaches, which predate the OO ones, emphasize the system's behavior.
Many of them, including Structured System Analysis (SSA) (DeMarco, 1978) and
Structured System Design (SSD) (Yourdon and Constantine, 1979), are based on Data
Flow Diagrams (DFD), while others, such as Statecharts (Harel, 1987) and Petri nets
(Peterson, 1981), are elaborations of state machines.

Proponents of both the object- and the process-oriented approaches have reached
the conclusion that focusing on just one aspect of a system while neglecting the other
is counterproductive. To remedy this shortcoming, each approach adopted some
technique used by its counterpart. DFD-based techniques, for example, rely on Entity-
Relationship (ER) or class diagrams for modeling the static data scheme. UML
incorporates several process-oriented diagrams, including interaction diagrams, which
describe the system dynamics through message passing among objects, and state
diagrams (or Statecharts), each of which specifies the behavior of a single object over
time in terms of the states it traverses.

The need for adequate representation of both the static and dynamic aspects of a
system while keeping the model as simple as possible was a prime motivation for the
development of Object-Process Methodology (OPM) (Dori, 2002a). OPM is an
integrated modeling and system evolution approach that uses objects, processes, and
links to represent the system's structure and behavior in a single model that uses the
same diagram type along with equivalent natural language specification. This way,
OPM attempts to solve two of the main deficiencies of the object-oriented approach in
general and UML in particular: the unbalanced structure-behavior representation and

the model multiplicity problem (Peleg and Dori, 2000; Dori 2002b).

The prevalent use of the Internet and the World Wide Web as platforms for
distributed information systems has raised questions regarding the ability of OPM to
satisfy requirements introduced by the domain of Web application (Reinhartz-Berger
et al., 2002a).

In this paper we present our empirical findings about the comprehension of given
OPM and UML models and the quality of constructed OPM and UML models in the
domain of Web applications. The structure of the rest of the paper is as follows.
Section 2 reviews related works that compare modeling languages and methods either
theoretically or empirically. Section 3 briefly presents the main principles of OPM
and UML. Section 4 describes the experiment hypothesis, setting, and design, while
Sections 5 and 6 respectively present and discuss the experiment results. Based on our
empirical findings, in Section 7 we summarize the benefits and shortcomings of OPM

and suggest ways to improve the methodology and OPCAT, its supporting CASE tool.

2. Related Studies

The emergence of the large number of software and system modeling approaches and
notations over the years has underlined the need to evaluate them either theoretically
or empirically. Theoretical approaches use metamodeling techniques or define
objective criteria for comparing modeling languages in terms of expressiveness,
complexity, and accuracy. In one theoretical study, Hillegersberg et al. (1998) applied
metamodeling to examine the fitness of the Booch method (Booch, 1991), an object-
oriented analysis and design method, to the object-oriented programming languages
Smalltalk, Eiffel, and C++. Halpin and Bloesch (1998) studied the relative strengths
and weaknesses of Object Role Model (ORM) and UML for data modeling according
to criteria of expressiveness, clarity, semantic stability, semantic relevance, validation
mechanisms, abstraction mechanisms, and formal foundation. Siau and Cao (2001)
compared the complexity metric values of UML with other object-oriented
techniques. Their comparison related to seventeen complexity metrics, including
independent metrics (such as the number of object types per technique) and aggregate
metrics (e.g., the division of work in a specific technique). They found that UML is at
least twice as complex as other object-oriented, single view notations.

Modeling languages can also be compared empirically. Empirical studies are based
on experiments, in which the results are examined quantitatively according to certain

criteria, and the subjects may be untrained people, students, or professional system

analysis and design experts. Kim and March (1995) compared Extended ER (EER)
and NIAM (Nijssen Information Analysis Method) (Verheijen and Van Bekkum, 1982)
for user comprehension, which was measured by counting the number of correct
answers to questions about the various modeling constructs. Shoval and Shiran (1997)
compared EER and object-oriented data models from a design quality viewpoint.
They measured quality in terms of correctness of the achieved model, time to
complete the design task, and designer’s model preferences. Otero and Dolado (2002)
compared the semantic comprehension of three different notations for representing
behavior in UML: sequence diagrams, collaboration diagrams, and state diagrams.
The comparison was in terms of the total time to complete the tasks and their scores.
They found that the comprehension of dynamic models in object-oriented designs
depends on the complexity of the system. Peleg and Dori (2000) compared OPM/T,
an extension of OPM to real-time systems, with a variation of Object Modeling
Technique (OMT) (Rumbaugh et al., 1991) to the same domain (T/OMT). They
examined the specification quality and comprehension of both system's structural and
behavioral aspects. The subjects were asked to fill in a questionnaire consisting of
statements on a system modeled in one of the techniques and to specify another
system using the second technique. The conclusion was that the single view of
OPM/T is more effective than the multiple-view of T/OMT in generating a better
system specification. Most of the errors in the T/OMT models resulted from (1) lack
of integration among the technique’s different views and (2) the need to maintain
consistency among the three view types (object diagrams, DFD, and Statecharts) and
to gather information that is scattered across these views. The comprehension part of
the experiment revealed a significant difference in favor of T/OPM in three issues: (1)
identifying triggering events of processes, (2) identifying processes that are triggered
by a given event, and (3) identifying objects that participate in a process. T/OMT, on
the other hand, was found to be better in two other issues: (1) identifying events that
affect objects by changing their state, and (2) determining the order of process
execution. Following that experiment, the research described in this paper compares
the abilities of OPM and UML, the successor of OMT, to model systems in the

domain of Web applications.

3. OPM and UML Essentials

Before going into the details of the experiment and its outcomes, we briefly describe

the basic principles of the two modeling approaches that were compared in this study.
3.1 Object-Process Methodology (OPM)

Object-Process Methodology (OPM) (Dori, 1995; Peleg and Dori, 1999; Dori 2002a)
is an integrated modeling approach to the modeling, study and lifecycle support of
systems in general and information systems in particular. Recognizing the existence of
processes as stand-alone entities, which is a major departure from the encapsulation
principle of the object-oriented approach, OPM enables modeling the system's
structure and behavior in a single unified framework. OPM allows processes to
complement objects as entities at the same level. This way, structure and behavior,
which are the two major aspects that all systems exhibit, co-exist in the same OPM
model without highlighting one at the cost of suppressing the other. This unique
structure-behavior integration in a single view makes OPM most useful for modeling
complex reactive systems, in which these two prime aspects are highly intertwined
and hard to separate.

The elements of the OPM ontology are entities (things and states) and links. A
thing is a generalization of a (stateful) object and a process — the two basic building
blocks of any OPM-based system model. Objects exist, while processes transform
them. Transformation can be generation of new objects, consumption of existing
objects, or changing objects' states. At any point in time, each object is at some state,
and object states are changed through occurrences of processes. Links can be
structural or procedural. A structural link expresses a static relation between two
objects. Aggregation, generalization, characterization, and instantiation are the four
fundamental structural relations. General tagged relations enable the definition of the
semantics of any other structural link. Procedural links describe the behavior of a
system, i.e., how processes transform (generate, consume, or update) objects, how
objects enable processes (without being transformed), and how internal or external
events trigger processes. The resulting model is expressed bimodally, both in graphics
(through a set of Object-Process Diagrams, abbreviated as OPDs) and in a subset of
English (through a corresponding set of Object-Process Language paragraphs).

OPM enables specifying system structure and dynamics to any desired level of

detail without losing legibility and comprehension of the resulting specification. This

is done through three refinement/abstraction mechanisms: unfolding/folding, which
refines/abstracts the structural parts of a thing (mainly an object), in-zooming/out-
zooming, which exposes/hides the inner details of a thing (mainly a process) within its
enclosing frame, and state expressing/suppressing, which exposes/hides the states of
an object.

Introducing OPM to the Web application domain has required a few extensions
(Reinhartz-Berger et al., 2002a). These extensions, which do not add elements to
OPM ontology or symbols to its notation, provide for open reuse of component
designs through bindings among model modules (Reinhartz-Berger et al., 2002b) and

support code mobility and migration specifications (Reinhartz-Berger et al., 2003).
3.2 Unified Modeling Language (UML)

Unified Modeling Language (UML) (OMG, 2002) is an object-oriented language for
specifying, visualizing, constructing, and documenting the artifacts of software
systems, as well as for business modeling and other non-software systems. UML
defines ten types of diagrams, which are divided into three categories. Four diagram
types represent structure and include the class, object, component, and deployment
diagrams. Five diagram types, which represent different aspects of dynamic behavior,
include use case, sequence, activity, collaboration, and state diagrams (Statecharts).
Finally, package diagrams represent ways to organize and manage application
modules. A system modeled by UML consists of several different, but related,
diagrams of various types. UML also provides several extension mechanisms that
allow modelers to define domain-specific extensions without having to modify the
modeling language. One such mechanism is stereotype — a new kind of a model
element that extends the semantics of an existing kind of element. User-defined icons
can be associated with stereotypes in order to help distinguish them from other model
elements.

Several UML extensions have been proposed for the domain of Web applications.
One of them, Conallen’s extension (Conallen 1999), is based on a set of 18 domain-
specific stereotypes, which are commonly used with Web applications. These
stereotypes include such implementation-dependent concepts as RMI, IIOP, and Java
Script, along with a set of well-formedness rules for using them.

In this study we compared OPM to Conallen’s extension to UML because of its

adoption by the UML standard user community (UML 0.91 and up). In order to make

the comparison between OPM and UML as fair as possible, the UML models in our
experiment used only extensions that were adapted in the core UML, namely, the

9

stereotypes “‘entity object,” “control object,” “boundary object,” and “server page.”

4. Experiment Goal, Hypotheses, and Design

Following the empirical approach to evaluating modeling languages and techniques,
the goal of the experiment was to compare OPM to UML with respect to two aspects:
(1) comprehension, namely the level of comprehending a given model expressed in
each language, and (2) construction, i.e., the quality and ease of modeling a given

system in each language.
4.1 Experiment Hypotheses

Our conjecture (hypothesis) regarding comprehension was that questions which can be
answered by inspecting a single UML view would be more correctly answered when
UML rather than OPM is used. More specifically, since UML is object-oriented and
since a UML system model is comprised of multiple views (diagram types), the UML
class diagram would better serve subjects who are looking for answers to questions
related to structural parts of a given system. Examples of questions of this type are
“What is the database structure of the given application?” and “What are the structure
and links of the pages within the application?” Conversely, OPM will be more
adequate than UML for understanding the dynamic aspects of a system and the
complex relations among various (structural and dynamic) system modules. The
reason for this is that answering such questions requires searching multiple UML
diagram types, while the OPM model uses the only one diagram type it has, the OPD,
albeit at various granularity levels.

With respect to construction, OPM was expected to be more correctly and more
easily applied than UML for modeling complex, dynamic applications. The reasons
for this conjecture were that OPM uses a single view with three scaling (abstraction-
refinement) mechanisms, and that the OPM alphabet consists of a compact set of

graphic symbols, as opposed to the large number of view-dependent UML symbols.
4.2 Population Background and Training

The subjects of the experiment were third year students in a four-year engineering
B.Sc. program at the Technion, Israel Institute of Technology, who took the course

“Specification and Analysis of Information Systems” at the spring semester of the

2002 academic year. Most of them were students of the Information Systems
Engineering program, which is managed jointly by the Faculty of Industrial
Engineering and Management and the Faculty of Computer Science. They had no
previous knowledge or experience in system modeling and specification.

During the 13-week course, the syllabus of which is summarized in Table 1, the
students studied three representative modeling notations: DFD for two weeks, UML
for five weeks, and OPM for two weeks. They then also studied how to model Web
applications in UML and OPM for one additional week each. The students were
required to submit four modeling assignments in order to practice the use of DFD,
UML (Use Case, Class, and Sequence Diagrams), Statecharts, and OPM.

Table 1. The syllabus of the “Specification and Analysis of Information Systems” course

‘Y:)ek Lecture (3 hours per week) | Recitation (2 hours per week) Assignment
1 | Introduction — system Relational databases
development lifecycle
2 | DFD Relational databases
DFD and OO approach DFD
4 | UML Use Case and Class DFD Modeling in DFD
Diagrams
UML structural model || -----
6 | UML structural model UML Use Case and Class
Diagrams
7 | UML Interaction Diagrams | UML structural model
UML Statecharts UML Interaction Diagrams Modeling in UML
9 | OPM UML Statecharts Modeling in Statecharts
10| OPM OPM
11| Modeling Web applications | OPM Modeling in OPM
with UML (Conallen’s
extension)
12| Modeling Web applications | Modeling Web applications
with OPM with UML and OPM
13| Discussion about analysis Rehearsal tutorial
approaches

The course staff included one adjunct lecturer and two graduate student teaching
assistants, none of whom is an author of this paper. They were all familiar with UML
and OPM prior to teaching them, but had no particular preference for, or significantly
different knowledge of, any one specific language. The students studied in a single
lecture group and four recitation groups, two for each teaching assistant. Knowing that

the final exam in the course would serve as a basis for an experiment, the course staff

taught the course uniformly from a common detailed lesson plan. The lecturer also
informed the students about their participation in the experiment in the first course

session.

4.3 Experiment Design

The experiment took place during the final three-hour examination of the course. The
examination contained three tasks. The two main tasks, which related to distributed
Web applications and accounted for 80% of the examination's grade, constituted the
experiment. The third task, which related to DFD, appeared last in the examination, so
its effect on the experiment results, if there was any, was uniform.

The two experimental tasks referred to two case studies: a project management
system and a book ordering application. The project management system, presented
in Appendix A, is a distributed, data-intensive system that handles projects, their
tasks, and their intermediate products. The book ordering application, presented in
Appendix B, is a Web-based system that enables searching for books and ordering
them electronically. Each appendix presents the models of the respective system in
both UML and OPM. Each model consists of five diagrams followed by eight
comprehension questions and one modeling problem, which called for extending the
system model. The questions on both models for the same case study, which are listed
along with their expected answers in appendices A and B (figures 3 and 6,
respectively), were identical. The answers to these questions were also identical and
independent of the modeling language. The comprehension questions relate to three
major aspects of Web applications: structure, dynamics, and distribution.

The two case studies were designed to be identical in their scope, or size. The size
was measured in terms of the number of diagrams, objects, features, and relations.
The test included two form types, A and B. Since our research question referred to the
comprehension and construction quality of OPM in comparison to UML irrespective
of the case study, each test form type contained the same case studies in the same
order. The only difference was the modeling language in which each case study was
expressed. The relatively small number of subjects (81) prevented us from dividing
the students into four groups (of about 20 students) in which not only the modeling
languages order but also the order of the case studies would be counterbalanced. The

test tasks of each group and their weights are summarized in Table 2.

Table 2. Test tasks of the two experiment groups

Test Task Weight Group A Group B
(40 subjects) (41 subjects)
Project management system 40% UML OPM
Book ordering application 40% OPM UML
DFD question (not included 20% DFD DFD
in the experiment)

The students were divided arbitrarily into two groups of 40 and 41 students, and
each group got a different test form type. The students were provided with alternating
form types according to their seating positions, so this arbitrary division into the two
experimental groups closely approximated random division. Nevertheless, to verify
that the populations of these two groups were identical, we carried out a preliminary
t-test on the grades the students had received in the “Design and Implementation of
Information Systems” course, which is a mandatory course in the Information
Systems Engineering program and a prerequisite to the course in which the
experiment took place. No significant difference was found between the groups
(t =-0.19, p ~ 0.85). An additional t-test we carried out on the average assignment
grades in this particular course yielded similar results (t =—0.13, p ~ 0.90).

While the time to complete the tasks was not monitored separately for each
question, the students did not seem to be under time pressure and did not ask for extra
time during the examination.

All the questions about the project management system (in both UML and OPM)
were graded by one of the two teaching assistants, while the questions about the book
ordering application were graded by the other. This grader assignment scheme was
designed to eliminate any potential bias towards one of the modeling languages in
grading the examinations. Moreover, the teaching assistants were provided with a

detailed grading policy document, examples of which are presented in Table 3.

5. Results

Table 4 summarizes the average score students achieved for each question in the
examination. Each comprehension question could score a maximum of 3 points (24
points in total for each system), while each modeling problem could score as much as

16 points, totaling 40 points for each system. Incomplete answers, or answers with

10

missing elements, scored less according to the detailed grading policy exemplified in

Table 3.
Table 3. Examples from the grading policy document of the experiment
Case study Question no. Instruction description Grading policy
Project Management/ 1 Missing element -0.5
Book Ordering Additional element -0.5
Project Management/ 5 Missing class -0.5
Book Ordering Additional class -0.5
Incorrect classification (e.g., -0.25
creation instead of effect)
Project Management/ 8 Missing node/link -0.5
Book Ordering Additional node/link -0.5
Incorrect requirement specification -0.25
Incorrect link source/destination -0.25
Project Management/ 1-8 Grade Range 0-3
Book Ordering
Project Management/ 9 Grade Range 0-16
Book Ordering
Table 4. Average test scores by questions for each case and language
Question Max. Project Management case Book Ordering case
No. Score UML OPM UML OPM
1 3 2.03 2.82 2.65 1.99
2 3 1.78 1.88 1.79 2.01
3 3 1.53 2.70 1.55 2.58
4 3 2.78 2.85 1.67 2.03
5 3 1.98 2.49 1.85 2.33
6 3 2.24 2.11 2.20 2.23
7 3 1.90 2.16 1.83 2.14
8 3 1.94 2.40 2.78 2.78
9 16 9.18 10.73 8.32 8.95
Total 40 25.33 30.13 24.63 27.01

As Table 4 shows, in both case studies, almost all the questions (8 out of 9) scored
higher when the system was modeled using OPM than when it was modeled using
UML. In particular, the construction problems for both systems scored higher when

students were required to use OPM.

11

5.1 Statistical Analysis of the Comprehension, Construction, and Overall Scores

Table 5 presents a summary of all the possible effects between the two experiment
factors, namely language (UML vs. OPM) and case (project management vs. book
ordering), with respect to (1) the comprehension question score, (2) the construction
question score, and (3) the overall grade. The results, normalized to a percentage
scale, show significant differences in the main effects (language and case) and
insignificant differences in their interaction (language*case). The significance of the
two factors was assessed using the Mixed procedure of SAS (Littell et al., 1996),
which takes into account the repeated measure structure of the data. Student answers
to questions relating to OPM models were significantly better than answers to
questions relating to UML models in all three categories. The students comprehended
the OPM models 10.5% better than the UML models, while their achievements in the
construction category were 7% better when using OPM. Regardless of the modeling
language used, on average, students achieved higher scores in the project management

system, which was the first case study in each examination.

Table 5. Results of the overall, comprehension, and construction grades — the mixed
ANOVA model
Examined Mean
modeling aspect Factor Name Values of Factor Grade (%) F p-level
UML 67.6
Language 75.8 <0.0001
Model OPM 78.1
comprehension Project management 74.2
Score Case Book ordering 71.6 418 <0.05
Language*Case 1.66 n.s
UML 54.5
Language 7.41 <0.01
Model OPM 61.6
construction Project management 62.3
Score Case Book ordering 54.0 10.8 <0.002
Language*Case 0.46 n.s.
UML 62.4
Language 54.2 <0.0001
OPM 71.5
Project management 69.4
Overall Score
Case Book ordering 64.5 15.2 <0.0005
Language*Case 1.17 n.s

12

5.2 Statistical Analysis of the Comprehension Questions Subdivision

To gain more insight into the comprehension questions, we divided them into three
categories:
1. Structure: questions 1-2 in both case studies, which related to the structure of
the system;
2. Dynamics: questions 3-5 in both case studies and question 8 in the book
ordering system, which related to the system behavior; and
3. Distribution: questions 6-7 in both case studies and question 8 in the project
management system, which related to aspects of the system's distributed nature.
Table 6 presents the analysis of the students’ achievements in the comprehension
category according to three factors: language, case, and comprehension (structure,
dynamics, and distribution). The results, normalized to a percentage scale, show
significant differences in the language (p<0.0001) and comprehension (p<0.001)
factors. The fact that the 3-way interaction between these factors was significant
required further elaboration in which each case study was analyzed for the interaction
between the modeling language and the comprehension category.

Table 6. Results of the comprehension grades — the mixed 3-way ANOVA model

Mean
Factor Name Values of Factor Grade (%) F p-level
UML 67.6
Language 40.7 <0.0001
OPM 78.1
Project management 74.2
C 3.26 8.
ase Book ordering 71.6 s
Structure 70.6
Comprehension Category Dynamics 76.3 7.47 <0.001
Distribution 70.4
Language*Case 341 n.s.
Case*
Comprehension Category 175 s
Language*
Comprehension Category 870 <0.001
Language*Case*
Comprehension Category 330 <0.005

Table 7 shows the average scores of the comprehension categories in each one of
the case studies. The average scores of the dynamics comprehension category
questions on models done with OPM were significantly higher than the respective

questions on models done with UML in both case studies (about 20% higher in the

13

project management system and more than 15% higher in the book ordering
application).
Table 7. Analysis of the significant interaction in the comprehension results:

Language*Comprehension Category for each case

Case Comprehension Category | Mean Grade (%) F p-level

Structure ggﬁ s:; 13.6 | <0.0005

Mai:;:em Dynamics giﬁ gi; 23.6 | <0.0001
Distribution [Oﬂ}\)/ll\]/; ;Zi 2.67 n.s.
Structure [Oﬂ}\)/ll\ill 2223 3.27 n.s.

Book Ordering Dynamics Ig\;I\L/[:: 23’_‘;53 14.45 | <0.001
Distribution [OH}\)/II; szgz 1.94 n.s.

In both case studies, when using OPM the students answered the distribution
questions more correctly, but these differences were not statistically significant. For
the structure comprehension category questions, the students’ results were
significantly better when using OPM in the project management system, while in the
book ordering application the students’ results in this category were insignificantly

better when they used UML.

6. Discussion

Examining each question separately, we found out that in the project management
system the only question in which UML scored slightly (but not significantly) higher
related to representing the navigation order of the project management pages
(question 6: 2.24 for UML vs. 2.11 for OPM). However, in the same question about
the book ordering system (question 6) the result was reversed in favor of OPM (2.23
for OPM vs. 2.20 for UML).

The largest gap in favor of OPM in the project management system was found in
question 3, which was phrased "What is the trigger of the project order handling
process? From which diagram did you conclude it?" For this question, students who
got and consulted the OPM model scored 2.70 (out of 3), almost twice as much as the

students who got the UML model, who scored 1.53. The reason for this large

14

difference is attributed to the fact that "project order handling” is a name of an OPM
process which explicitly appears in some of the diagrams, while in the UML model
the behavior and triggers of this process need to be searched in the sequence diagram.

The next largest gap between the two modeling languages in favor of OPM (2.49
vs. 1.98) was in question 5, which was: "What database classes are affected by the
project order handling process? How? (i.e., are they created, destroyed, or
changed?)" Here, the facts that OPM combines the system's structure and behavior in
a single view and that the transformation (creation, destruction, or change) of the
process on each object is explicitly shown, helped students who used the OPM model
get a more correct answer.

In the book ordering application, the only question in which UML scored higher
(2.65 vs. 1.99) was question 1, which related to the types of pages that the user can
view and the information presented at each page. This result in favor of UML is
probably due to the fact that UML boundary object is a special element that represents
pages or screens. The symbol and meaning of a boundary object is different than a
standard class. OPM, on the other hand, represents Web pages or screens as standard
objects, with no special symbol. Assigning a special symbol to Web pages helps to
quickly and more accurately identify objects of this type. Although the addition of the
boundary object symbol was found to be helpful in answering this particular question,
adding special symbols to denote such elements as components, executables, and
libraries, as UML indeed does, comes at the price of unjustifiably complicating the
language. Indeed, Siau and Cao (2001) found that the UML vocabulary is overall 2-11
times more complex than other object-oriented, single-view techniques.

Regarding the structure comprehension category, the experiment results show that
UML was better only in the book ordering system, while OPM was better in the
project management case study. One explanation for this difference might be the
students fatigue on the three-hour examination. The students captured the structural
part of the book ordering system, which was the second case study, more easily from
the UML class diagram, a separate view that is exclusively devoted to modeling
structure. The reason for which OPM was better in the project management system in
structure-related questions is most likely the fact that the OPD called “DB Unfolded”
is purely structural, and this enabled the students to find answers to questions 1 and 2

in that OPD even more easily than in the class diagram of UML.

15

As expected, in the dynamics category, OPM was significantly better in both case
studies. We assume that this outcome is due to the fact that finding answers to the
behavior questions involved consulting several UML views, while in OPM the
answers are found in the single diagram type, and the only thing one has to do is
traverse across Object-Process Diagrams at different granularity levels. This type of
navigation is easier than moving from one type of diagram to another, with each
diagram type using its own set of symbols and distinct semantics. UML diagram
traversal involves constantly switching the symbol vocabulary associated with each
diagram type. This unnecessary complexity puts extra mental burden on the shoulders
of system architects, designers, and the intended audience.

As for the distribution aspect, in both case studies OPM was found to be
insignificantly better than UML. This difference can be explained by the fact that the
questions in this category involved structural and behavioral aspects of the system
distribution that span across different UML views. In other words, to fully answer
these questions with the UML model, the students had to integrate information
gathered from various diagram types, while in OPM the same information could be
achieved by moving from a less detailed diagram to a more detailed (in-zoomed or
unfolded) one. Indeed, we have argued that moving across detail levels of the same
diagram type, when all the symbols are the same and the only change is the level of
detail, is cognitively easier than switching among various diagram types, where each
type employs a whole different set of graphic symbols and syntax. The findings in the
distribution category reinforce this argument.

The construction results of the experiment were significantly better in OPM than in
UML (p<0.01). The main errors in the UML modeling questions occurred when
students were required to integrate the different views into a whole, consistent model.
The modeling questions required adding a single functionality that affected two UML
diagram types—the class diagram and the site map diagram—and called for adding a
third diagram of yet another type—an interaction diagram. All these changes were
expected to leave the UML model integral and consistent. This task is difficult for
trained UML modelers, let alone untrained students. The UML multiplicity of models
(views) inevitably often requires numerous corrections in other diagram types so as to
maintain overall consistency. Each change potentially triggers changes in the rest of
the diagrams, causing a ripple effect that can be intractable. This shortcoming of the

object-oriented paradigm in general and UML in particular has been pointed out by

16

the aspect-oriented approach (AOSD, 2003). Mezini and Lieberherr (1998) claim that
object-oriented programs are more difficult to maintain and reuse because their
functionality is spread over several methods, making it difficult to get the “big
picture.” In OPM, all the changes are done in one diagram type, OPD, the single
diagram type of OPM, which combines the structure and behavior that together
specify the additional system functionality. The only other update that needs to take
place is that of OPDs up the abstraction tree such that consistency is maintained. This
is done by inspecting the OPM system map, which is the OPD tree, as described
explicitly in the OPM metamodel (Reinhartz-Berger, 2003).

Although the results of our experiment suggest that OPM is significantly better
than UML in understanding system dynamics and in modeling Web applications,
there are three validity threatening factors that might have influenced the experiment
results. First, UML was taught before OPM during the course. Hence, by the time of
the final examination students might have forgotten more about how to effectively
work with UML than with OPM. On the other hand, UML and its Web application
extension were taught for six weeks, twice as much as OPM and its Web application
extension (see Table 1). Moreover, since UML was the first modeling language
taught, the teaching order could help the students understand and assimilate UML
better than OPM.

Second, the project management case always appeared first on the examination,
implying that most of the students probably started working on this problem first.
Therefore, there are possible fatigue and order factors that are confounded with the
comparison results of the two cases and interactions that involve the case factor.
Finally, only one scorer assessed each exam question, which might further confound
the results. However, all scorers used a well-defined scoring scheme, which mitigates

this effect.

7. Summary and Future Work

Comparing OPM to UML in terms of Web applications comprehension and modeling
quality, we concluded that the single OPM diagram type, the Object-Process Diagram
(OPD), which supports the various structural and dynamic aspects throughout the
system lifecycle, is easier to understand and apply by untrained users. The ability to
model stand-alone processes in OPM provides for a single mechanism for specifying

system behavior. Such behavior modeling is not in line with the object-oriented

17

encapsulation principle, as it involves more than one object and therefore cannot be
faithfully modeled as being owned by a single specific object class. These findings are
in agreement with the results described by Peleg and Dori (2000), and are also
consistent with findings of another empirical study of ours (Gilat, 2003), which
compared OPM adapted to the domain of discrete event simulation to ARENA, a
prevalent discrete event simulation software package.

Although we compared OPM to a specific extension of UML for Web applications
(Conallen, 1999), we believe that our findings can be generalized. UML’s segregation
of the system model into multiple views is a major source of difficulty in capturing
the system as a whole, understanding its parts, and being able to coherently follow the
functionality it performs. This is due to the fact that pieces of a UML system model
are scattered across different diagram types, each with its idiosyncratic set of graphic
alphabet symbols and syntax. For example, a process can appear as a use-case in a
use-case diagram, as an operation in a class diagram, as an action in a state transition
diagram, as a message in a sequence diagram, and as an activity in an activity
diagram. To be able to model complex systems, the modeling language itself should
be as simple as possible, because using a complex language to model a complex
system almost guarantees that the resulting model will be intractable. UML is
unnecessarily complex in many ways, and this inherent deficiency hinders coherent
modeling and comprehension of systems. The outcomes of this empirical study
reinforce this assertion.

While model multiplicity of UML is in general a deficiency, there are cases in
which the existence of separate views and special symbols can potentially help
answering certain questions about a specific aspect of a system, which is expressed in
only one type of diagram, such as its desired database schema or execution of its
services. These types of questions may be more difficult to answer in an OPM model,
if the information resides at separate diagrams with different granularity levels. To
overcome this, we have enhanced OPCAT, Object-Process CASE tool (Dori et al.,
2003), with animation capability. Using this feature while modeling a system, the
designer can run an animated simulation showing the active entities and links at
consecutive time points as a visual design debugging aid. This capability enables the
system architect to verify that the system behaves and executes as it is supposed to at
any point in time. To stay current with the prevailing standard, we have augmented

OPCAT with the capability of generating a set of UML views from the single OPM

18

model, and we plan to also be able to convert a UML model to OPM. These
capabilities will enable the system architect to use the most suitable approach for each
design portion.

Another experiment which was conducted on 20 graduate and advanced
undergraduate students who studied UML and OPM for a year showed similar results.
In that experiment, the students had rehearsal tutorials about the core UML and OPM.
None of them had studied the extensions of the two modeling languages to the Web
application domain. The experiment included two models and nine comprehension
questions only. The two models were a Web Sales system, which handles sales
through the internet, in UML and a GLAP system, which handles a glossary of terms
in a distributed architecture, in OPM. The comprehension questions which refer to
system dynamics and distribution were better answered using OPM models. The
students noted that the single view and the technology-independent model in OPM
helped them understand the system’s purpose, functionality, and architecture. Future
work should validate our findings with analysis and design experts who are familiar
with these languages. This work should use a talk-aloud procedure to validate our
interpretation to the causes of the different results between the modeling languages.

Further experiments should also be carried out to compare OPM to other leading
modeling languages and methods. More specifically, in our experiment, we compared
two diagramming, visual formalisms, Object-Process Diagrams (OPD) and UML. An
OPM model is expressed not only graphically but also by a textual modality, Object-
Process Language (OPL), which is a subset of English and hence comprehensible to
non-IT professionals. The experiment done in this research completely ignored this
modality. The contribution of the natural language as a complementary modality to
understanding an OPM model should be carefully examined, especially for users who

are not familiar with a visual modeling language.

Acknowledgements: The authors would like to thank Professor Ayala Cohen for her
professional, valuable advice and insight in designing the statistical analysis and
interpreting the results. We also thank the Technion Statistics Laboratory staff in

carrying out the analysis.

19

References

AOSD. 2003. The Aspect-Oriented Software Development site, http://aosd.net/

Booch, G. 1991. Object-Oriented Design with Applications. Redwood: Benjamin
Cummings.

Conallen, J. 1999. Building Web Applications with UML. Reading: Addison-Wesley.

DeMarco, T. Structured Analysis and System Specification. New York: Yourdon.

Dori, D. 1995. Object-Process Analysis: Maintaining the Balance between System
Structure and Behavior. Journal of Logic and Computation 5 (2): 227--249.

Dori, D. 2002. Object-Process Methodology - A Holistic Systems Paradigm. Heidelberg:
Springer Verlag.

Dori, D. 2002. Why Significant UML Change Is Unlikely. Communications of the ACM
45 (11): 82--85.

Dori, D., Reinhartz-Berger, I., and Sturm, A. 2003. OPCAT - A Bimodal CASE Tool for
Object-Process Based System Development. Proceedings of the IEEE/ACM 5
International Conference on Enterprise Information Systems (ICEIS 2003), France,

286--291. Download site: http://www.ObjectProcess.org/

Gilat, D. 2003. A Framework for Simulation of Discrete Events Systems based on the
Object-Process Methodology. Ph.D. Thesis, Technion — Israel Institute of Technology.
Harel, D. 1987. Statecharts: a Visual Formalism for Complex Systems. Science of

Computer Programming 8: 231--274.

Halpin, T. and Bloesch, A. 1998. A Comparison of UML and ORM for Data Modeling.
Proceedings of the third International Workshop on Evaluation of Modeling Methods
in Systems Analysis and Design (EMMSAD’98), Italy.

Hillegersberg, J.V., Kumar, K. and Welke, R.J. 1998. Using Metamodeling to Analyze
the Fit of Object-Oriented Methods to Languages. Proceedings of the thirty first Hawaii
International Conference on System Sciences (HICSS'98), Hawaii.

Kim, Y.G. and March, S.T. 1995. Comparing Data Modeling Formalisms for
Representing and Validating Information Requirements. Communications of the ACM
38 (6): 103--115.

Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. 1996. SAS Systems
for Mixed Models. SAS Institute Inc.

Mezini, M. and Lieberherr, K. 1998. Adaptive Plug-and-Play Components for
Evolutionary Software Development. Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA'98), Canada, 97--116.

Otero, M.C. and Dolado, J.J. 2002. An Initial Experimental Assessment of the Dynamic
Modeling in UML. Empirical Software Engineering 7: 27--47.

20

OMG. 2002. The Object Management Group site. Unified Modeling Language
Specification — version 1.4. ftp://ftp.omg.org/pub/docs/formal/01-09-67.pdf

Peleg, M. and Dori, D. 1999. Extending the Object-Process Methodology to Handle Real-
Time Systems. Journal of Object-Oriented Programming 11 (8): 53--58.

Peleg, M. and Dori, D. 2000. The Model Multiplicity Problem: Experimenting with Real-
Time Specification Methods. IEEE Transaction on Software Engineering 26 (8): 742--
759.

Peterson, J.L.. 1981. Petri Nets Theory and the Modeling of Systems. Englewood Cliffs:
Prentice Hall.

Reinhartz-Berger, 1. 2003. Developing Web Applications with Object-Oriented
Approaches and Object-Process Methodology. Ph.D. Thesis, Technion — Israel Institute
of Technology. http://mis.hevra.haifa.ac.il/~iris/research/OPMwebThesis.pdf

Reinhartz-Berger, 1., Dori, D., and Katz, S. 2002. OPM/Web - Object-Process
Methodology for Developing Web Applications. Annals on Software Engineering —

Special Issue on Object-Oriented Web-based Software Engineering 13: 141--161.

Reinhartz-Berger, 1., Dori, D., and Katz S. 2002. Open Reuse of Component Designs in
OPM/Web. Proceeding of Computer Software and Application Conference
(COMPSAC’2002), England, 19--26.

Reinhartz-Berger, 1., Dori, D., and Katz S. 2003. Modeling Code Mobility and Migration:
An OPM/Web Approach. Accepted to International Journal of Web Engineering and
Technology (IWWET).

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W. 1991. Object-
Oriented Modeling and Design. Englewood Cliffs: Prentice-Hall.

Siau, K. and Cao, Q. 2001. Unified Modeling Language (UML) — A Complexity Analysis.

Journal of Database Management 12 (1): 26--34.

Shoval, P. and Shiran, S. 1997. Entity-Relationship and Object-Oriented Data Modeling —
an Experimental Comparison of Design Quality. Data & Knowledge Engineering 21:
297--315.

Verheijen, G.M.A. and Van Bekkum, J. 1982. NIAM: An Information Analysis Method.
In Information Systems Design Methodologies: A Comparative Review, T.W. Olle, et
al. (eds.), North-Holland, 289--318.

Yourdon, Y. and Constantine, L.L. 1979. Structured Design. Englewood Cliffs: Prentice
Hall.

21

Appendix A: The Project Management System — Models and Questions

Deployment Diagram

<<internet>> Client

Class Diagram

<<server page>>
customer details

customer 4 o [101
&id : char[10] e < charl
<2encrypted>> @name - charaq) | |Sname - charl40]
&emai : char[20] epemail : char(20] |
&creditNo : char[20] wereditNo : char(20]
Payment .) : Boolean customer detail screen
System file for payment system . S ScheckCreditNo() : Boolean (from Use Case View)
(rom Use Case View)
n
Froioct <<server page>>
Project and P t Status - Statechart smermmoes | o crafto]
roject an aymen atus - dtatecharts Debiting Details SretarDato . Dato &id - char[10]
- A . orderDate : Date
Eyd.char[w] ot ibtentauveEr’gl?:t‘ebal?eate @srequestedEndDate : Date
e Sstatus : char : views gprojecﬁype : char[10]
s - ohar remark : char(50]
Project Status Payment Status %p“"ecf_"’f‘ : ";}a’[‘m &maxPrice : float
.) %;ZTBLF;; :_f[“o]a‘ ;uasks : amay of Assignment| project handling screen
ws : : f Product
rojectCreated amay o (from Use Case View)
ojectCreated o, .
calcCompletionPercentage() - float validateDates() : Boolean
i viows
n orderDate <
Product -
Date
FirstDayOfMontH / pay=0.1*agreedPrice &id : char[10] relates to [&pid : char(10] <<server page>>

true(caleCompletionPercentage()=50)[not in (not paid)]

50%
completed

true(calcCx

)=100)[in paid

é supplied

(=

FirstDayOfMonth / pay=agreedPrice

é completely paid

&deliveryDate : Date

&price : float

&description : char[100] | n

BystartDate : Date
&description : char[100]

Project Details
&project Code : char[10]
&project Status : char

&startDate : Date

=, Date : Date |
&agreedPrice : float [
&

=

O

project details screen

tasks : array of nn'wn
Sproducts : aray of win

#validateDates() : Boolean (from Use Case View)

ScreateProducts ()

payment system

O

file for payment system Customer detail screen

debiting details

©4

product

O

Site Map Diagram

employee

@

/
O

roject update
Customer details propet up

O HO

project handling screen project details screen

/

project details

\/

@,

Customer project

Project Order Handling — Sequence Diagram

x

employee cusiomer detail soeen

FAsomev detailsindering

Project Project Assgnment Product
Update

create() ‘

project details inserting

rest=checkEmpil()

res2=checkCreditNo()

T

1=tiue and res2=true] create()
F——

produd details inserting

create()
res=validateDates()

=

[es=tue] create()

[fi=1..n] crate()

| reroiomaen | \

| Y

Figure 1.

Conallen’s UML specification of the project management system

22

'
, Employee

Top Level Diagram

e

Intertace
Handling

m communicate

Client
Request

Internet
Transferring

| I)

Client
Result

Client

Client
Result

7
=~ <
o Database
Handling

Encrypted
Transterring

DB unfolded

1D

Name
char[40]

Email
charf20]

CreditNo :
charf20]

/A

Code 1D
char[10] charf10]
Description
char[100]
Tentative
End Date Delivery Date
date date
Actual
End Date Price
date float
Project Status
) %) =2

Remark
char[50]

Payment Status

advance
paid

Agreed Price
float

Project Details
Project
A

Proje ct View
equest

Project Details
Project

. Employee :
‘

Interface
Handling

Client
Result M
o

[| 1

Cusigmor Update
Reques

Fmaem Order Project View
equest Request

Database
s Handing

Project
Debiting

x5 L . £
Project Order Project View
Handing Handing
o

Client
Result

¥
Customer Up

date
Status Page

Project Details
Page

Project Details
Project

Project Order Handling in-zoomed

Project Order
equest
Request Essence

add add add
project assignmant product
va 7 T

Object
Physical object

Environmental, physical object

PmJept;lg%erans O Process
() State
Projec Aosgpmert Produt A Aggregation
A Characterization
- A Inheritance
Customer P, rder -— Structural link
: o— Enabling link
Project Product .
e - +—> Effect link
Z\ Assignment
Payme/nt Status . .
— Result/consumption link
Projoet S © Condition link
Coore) (omber) (e ® S (Enabling/Consumption) event link
Figure 2. OPM specification of the project management system

23

Answer all the following questions about the project management system model.

1

. What are the classes which form the application's database?

Expected answer: Customer, Project, Assignment, and Product.

. Does the structure of the system support the following query: "who is the customer that

ordered a specific product?" Explain.
Expected answer: Yes, there are relations from Product to Customer, through Assignment and

Project.

. What is the trigger of project order handling? From which diagram did you conclude it?

Expected answer: The trigger is the creation of a request for project ordering in the server site.

. Is it possible that only the advance (10%) of a project of which 50% had been completed was

paid? Explain.
Expected answer: Yes, addition of products is possible if (at least) the advance was paid. Hence,
it is possible that 50% of the assignments were completed and only the advance (10%) was

paid.

. What database classes are affected by project order handling? How? (i.e., are they created,

destroyed, or changed?)
Expected answer: Project is created, Assignment is created, Product is created, and Customer is

affected.

. What is the navigation order in the application? How did you conclude it?

Expected answer: Customer Update Request — Project Order Request — Project View

Request.

. What is the internal architecture (nodes and links) of the system?

Expected answer: The nodes are Client and Server. There is an Internet link between the Client
and the Server and an encrypted link between the Server and the Payment System (which is

external).

. What are the system activities from the moment the employee connects to the site and till he

gets the project details? From which diagrams did you conclude it?
Expected answer: The employee fills a request for viewing project details. This request is sent
to the server. In the server, the project and customer details are fetched and a page with the

project details is created and sent to the client. The client displays this page.

. Add to the model a possibility to view a report of all the projects which 50% of their

assignments were completed, but the projects have not supplied yet. The report will be viewed
as a result of a manager request after he/she inserts a date range for the report.
Main changes: Adding an environmental, physical object (an actor) called Manager and

zooming into the Reporting process (creating a sequence/collaboration diagram).

Figure 3. Questions related to the project management system and their expected answers

24

Appendix B: The Book Ordering System — Models and Questions

Deployment Diagram

<<encrypted>>

Client

<<internet>>

publisher
system

Class Diagram

Cart Status - Statecharts

BookAdded(Quantity) / SetQuantityInStock(Quantity)

CartClosed|Price=Sum(BookPrice*Quantity)

Close

customer details screen

(from Use Case View)

<<server page>>
customer customer updating
T &id : char(10]
:I:a;“c:_ﬂfcl:‘g]q a0) views name : char(40]
&email : char(20] jemail : char[20]
@password : char[10] Ripassword : char10)
ScheckEmail()
file from publisher system ScheckPassword()
(from Use Case View)
<<sener page>> <<sener page>>
book_inventory updating cart book _choosing
BSISBN : char[10] &code : char{10] userld : char[10]
&title : char(50] &startTime : Time views :

&publishYear : int
&price : float

BtotalPrice : float
Bstatus : {active, close}

&quantity : int

&AuthorFirstName : char{10]
& AuthorLastName : char[30]

cart line
Bquantity : int

iews

[=

&p: : Date
&5ISBN : char10]
&cartCode : char[10]

@

Salidatelnputs()

book choosing screen

<<server page>>
book searching

views n|

%cmenon {title, publis h, author}

SupdateBook ()
updhtes dates
n n "
author book
&firstName : char{10] wrote &ISBN : char[10]
&lastName : char{30] Btitle : char{50]
| "
n &publishYear : int
BgetDetails() : char40] " &price : float
&

&quantityinStock : int

&searchResult : aray of book

ring : char [50]

SgetDetails() : char{ 100]

®validatesearchString()

(from Use Case View)

O

book searching screen
(from Use Case View)

Site Map Diagram

X

user

x

publisher system

J O FO O

customer details screen book choosing screen book searching screen file from publisher system

|

book inventory updating

customer updating book choosing

-

book searching

customer book

author

Book Searching - Sequence Diagram

R HO

2 USeT ; customer details screerr scree

—customer details|inserting
-y
create

search a book

=—

res 2=

res1=checkEmal(

res1=true and rssz

O
]

checkPassword() ‘

true] create()

create()

res3=true] ["i=1.,|

_book _ book _author
: book searching searching

res3=validates earchString()

n] getDetails()
[*i=1..n] getDetails()

Figure 4.

25

Conallen’s UML specification of the book ordering system

Top Level Diagram

Interface
Handling

m communiate

Client
Request

Encrypted
Tr‘anggrrin

A I

e

ve

Client
Result Client
Result

Client

DB unfolded

™
ID:
char{10]

Name
char[40]

Emall :
charf2

Password
char{10]

ISBN
char[10]

First Name :
char[10]

Last Name :
char[30]

Title
char[50]

Start Time
time
Total Price :
float
Status

active close

Quantity :
integer

Publish Year :
integer

Price
float

I

Quantity In
Stock

integer

Client

A\

eques
/A

Book Detalls :
Book

Book Searchin
Request 94

/A

Request
Customer Details
Update Request

Customer Details
Customer

Book Choosing
R t

Book
Searching

Interface
Handling

Cart Details
Cart

Client
Result

Criterion

title
Search String :
char[50]

Database Handling in-zoomed

[

&

Customer Details
Update Request

Baok Choosing
Request

Book Searching
Request

File From
Publisher System

[

Database
Handling

Book Invento
Handling

Book Searchin ry
Handling g.

Client
Result

=

H o

Cart Details Search Book

Customer Update
Status Page Result Page

Cart Details .
Book Details :

Book Choosing Handling in-zoomed

Book Choosing
Request

Request Essence

Cari Details
Page

Quantity
integer

Status+¥

Total Price
float

Partial Legend

UU

b

-
(-
A
A
A

-
o—
<—>
«—
©_
— &

Object

Physical object
Environmental, physical object
Process

State

Aggregation
Characterization
Inheritance

Structural link

Enabling link

Effect link
Result/consumption link
Condition link

(Enabling/Consumption) event link

Figure 5.

26

OPM specification of the book ordering system

Answer all the following questions about the book ordering system model.

1. Which types of pages can the user view? What is the information presented at each page?
Expected answer: Customer Details Screen (id, name, email, password), Book Choosing
Screen (user id, password, cart code, ISBN), Book Searching Screen (criterion, searched
string, search result).

2. Does the structure of the system support the following query: “who are the customers that
ordered a specific book?”” Explain.

Expected answer: Not directly, the relation between Cart and User does not exist.

3. What is the trigger of customer details update handling? From which diagram did you
conclude it?

Expected answer: The creation of a request for customer details updating in the server site.

4. What are the inputs and outputs of book searching? What are the database classes used in
this process?

Expected answer: The inputs are criterion and searched string. The outputs are the books
which satisfy the criterion. The needed DB classes are Book and Author.

5. What database classes are affected by customer details update handling? How? (i.e., are
they created, destroyed, or changed?)

Expected answer: User is created or affected.

6. What is the navigation order in the application? How did you conclude it?

Expected answer: In any moment each one of the pages can be displayed according to the
user request.

7. What is the internal architecture (nodes and links) of the system?

Expected answer: The nodes are Client and Server. The is an encrypted link between the
Client and the Server and an Internet link between the Server and the Publisher System
(which is external).

8. What are the states of cart from the moment it is created till it is closed? What are the
activities in each state and how does the system transform between the states? From which
diagrams did you conclude it?

Expected answer: The cart is created in its active state. As long as it remains active, books
can be ended. It changes its status to “close” when an explicit request for closing arrives.

9. Add to the model a possibility to print a report of all the active carts. The report will be
automatically printed at the beginning of each week.

Main changes: Adding a triggering event of a clock and in-zooming the Reporting process

(creating a sequence/collaboration diagram).

Figure 6. Questions related to the book ordering system and their expected answers

27

