
Iris Reinhartz-Berger
Department of Management Infromation Systems

University of Haifa, Israel

Arnon Sturm
Department of Information Systems Engineering

Ben-Gurion University of the Negev, Israel

Yair Wand
Sauder School of Business

University of British Columbia, Canada

Reinhartz-Berger, Sturm, Wand (c) 2005 2

Agenda (1)Agenda (1)

� Part 1: Domain Engineering
� The Landscape of Reuse
� The Landscape of Knowledge Engineering & Management
� The Landscape of Validation & Verification
� Domain Engineering as an Intersection Point

� Domain Definitions
� Domain Engineering Definitions
� Domain Engineering Activities

� Domain Engineering & Application Engineering

� Domain Analysis Techniques
� Feature-Oriented Techniques: FODA and PLUS
� Metamodeling Techniques: GME and metaEdit+

� Domain Engineering Advantages & Limitations

Reinhartz-Berger, Sturm, Wand (c) 2005 3

Agenda (2)Agenda (2)

� Part 2: The Application-based Domain
Modeling (ADOM) Approach
� Motivation
� General Architecture
� ADOM and UML through Examples
� Experimental results with ADOM
� The Current State of ADOM
� ADOM Advantages
� ADOM Limitations & Future Work

Reinhartz-Berger, Sturm, Wand (c) 2005 5

The Landscape of ReuseThe Landscape of Reuse

� Reuse is the activity of using a segment of an artifact
(code, design, requirements, etc.) again in different
context.

� The benefits of reuse include:
� Reducing development time
� Eliminating the likelihood of bugs and errors
� Localizing modifications when a change in implementation is

required
� Standartization

� Desired features for software artifacts intended to be
reused include:
� Adaptable, Brief (small size), Flexible, Parameterization,

Generic, Fast, Simple (low complexity), Localization of volatile
(changeable) design assumptions, Modularity

Wikipedia

Reinhartz-Berger, Sturm, Wand (c) 2005 6

The Landscape of ReuseThe Landscape of Reuse

Black-Box Reuse
• Component-based development
• Legacy system wrapping
• COTS integration
• Service-oriented systems
• Program libraries

White-Box Reuse
• Design patterns
• Aspect-Oriented Development

Customizable reuse
• Configurable applications
• Application frameworks
• Application product line
• Program generators

Reinhartz-Berger, Sturm, Wand (c) 2005 7

A Comparison of Reuse ApproachesA Comparison of Reuse Approaches

Way of reuse

Size

Features

Basic
Elements

Program
libraries

COTS
systems

Service-
oriented

Legacy
system

wrapping

CBD

Component,
independent
executable
entity

General,
structural&
functional

Varies from
simple functions
to entire
applications

Through
interfaces

Service, unit of work
done by a service
provider to achieve
desired end results for
a service consumer

General-purpose,
functional, business-
oriented

Simple or complex
functions

Through
interfaces

Commercial,
Off-The-Shelf
products

General,
sometimes
parameterized

Complete
systems

Activation,
through API

An interface

Tailored
interfaces

Varies from
simple functions
to entire
applications

Through
interfaces

Classes and
functions

General
purpose

Usually does
not make an
application

Utilize existing
functions

Reinhartz-Berger, Sturm, Wand (c) 2005 8

A Comparison of Reuse ApproachesA Comparison of Reuse Approaches

Way of
reuse

Size

Features

Basic
Elements

Program
generators

App.
product

lines

App.
frameworks

Config.
App.

Aspect-
Oriented

Design
Patterns

Source code Any software
artifact

Configuration
mechanism

Transformation
rules

Abstract and
general, object-
oriented

VariesSpecific Domain specific

Varies from
simple functions
to entire
applications

Varies from
simple functions
to entire
applications

Varies from
simple to
entire
applications

Varies from
simple functions
to application
skeletons

Usually through
inheritance and
polymorphism

Customize
according to
specific needs

Change of
configuration

Create automatic
code

Pattern,
description of a
problem and
the essence of
its solution
Very abstract
and general,
functional

Very small

Matching the
specific
problem and
then apply its
solution

Aspect,
concern

Through
weavers

Functional,
cut-across
system
structure

Varies

Reinhartz-Berger, Sturm, Wand (c) 2005 9

The Landscape ofThe Landscape of Knowledge EngineeringKnowledge Engineering

� Knowledge is a rich form of information, often stored
by humans as expertise in some restricted domain.

� Knowledge engineering covers the activities involved
with obtaining knowledge and creating formal
representation of the obtained knowledge. It includes:
� Knowledge acquisition/elicitation – the activity of extracting

or filtering relevant domain knowledge from an expert or user
� Knowledge representation – the activity that uses a notation

or formalism for coding the knowledge to be stored
� Knowledge reasoning – the activity of inferring new

knowledge from existing information and knowledge

Knowledge-Based System Analysis And Design – A Kads Developer’s Handbook by Tansley & Hayball, Prentice Hall, 1993

Reinhartz-Berger, Sturm, Wand (c) 2005 10

The Landscape ofThe Landscape of Knowledge EngineeringKnowledge Engineering

Knowledge acquisitionKnowledge acquisition

Interviewing
techniques

Observational
techniques

Inductive learning
(learning by examples)

Decision
trees

Knowledge representationKnowledge representation

Network: trees,
graphs, semantic nets

Rules: production-rules,
meta-rules, heuristics

Logic: algebraic,
first-order, modal, …

Frames: attribute-
values, slots, defaults,

daemons, objects

Others: pseudo-code,
problem-oriented

languages, tables, lists

Knowledge reasoningKnowledge reasoning

Case-based
techniques

Logic-based
techniques

Statistical
techniques

Reinhartz-Berger, Sturm, Wand (c) 2005 11

The Landscape ofThe Landscape of Validation & VerificationValidation & Verification

� Validation is the process of determining the degree to
which a model is an accurate representation of the
real world from the perspective of the intended uses of
the model (AIAA G-077-1998).
� The purpose of validation is building the right system
� It is partially done by getting client (and other stakeholders)

feedback

� Verification is the process of determining that a
model implementation accurately represents the
developer's conceptual description of the model and
the solution to the model (AIAA G-077-1998).
� The purpose of verification is developing the right building
� It is partially done by monitoring the development process

Reinhartz-Berger, Sturm, Wand (c) 2005 12

The Landscape ofThe Landscape of Validation & VerificationValidation & Verification

Informal methods such
as software testing
and monitoring

Formal methods, i.e.,
model checking and
theorem proving

Abstract interpretation
and static program
analysis techniques

Reinhartz-Berger, Sturm, Wand (c) 2005 13

Validation & Validation &
VerificationVerificationReuseReuse

Knowledge Knowledge
EngineeringEngineering

Domain EngineeringDomain Engineering as an Intersection Pointas an Intersection Point

Reinhartz-Berger, Sturm, Wand (c) 2005 14

Examples for the use of the word Domain

1. In a LAN, a sub-network made up of a group of clients and servers under
the control of one security database. Dividing LANs into domains
improves performance and security.

2. In a communications network, all resources under the control of a single
computer system.

3. On the Internet, a registration category (domain name).
4. In database management, all possible values contained in a particular

field for every record in the file.
5. A group of end points (phones or gateways) in a SIP telephony

environment.
6. In magnetic storage devices, a group of molecules that makes up one

bit.
7. In a hierarchy, a named group that has control over the groups under it,

which may be domains themselves.

The Free Dictionary by Farlex

Reinhartz-Berger, Sturm, Wand (c) 2005 15

Our Definition of DomainOur Definition of Domain

� A domain is an area of knowledge characterized by a
set of concepts, their relationships, and constraints
accepted by practitioners in that area.
� a set of applications that use a common jargon for describing

the concepts, problems, and solutions
� a class of similar systems that share common features and

operations

� Other names for the term ‘domain’: ‘product line’,
‘product family’, …

� Domain attributes: mature, stable, economically viable

� Domain examples: Telephone switches, Insurance portals,
Customer Relation Management, Online banking

Reinhartz-Berger, Sturm, Wand (c) 2005 16

Domain Engineering DefinitionsDomain Engineering Definitions

� Domain engineering is the development and
evolution of domain specific knowledge and artifacts to
support the development and evolution of systems in
the domain.
� The purpose of domain engineering is to identify, model,

construct, catalog, and disseminate the commonalities and
differences of particular domain applications

� Domain engineering includes engineering of domain models,
components, methods and tools

� Domain engineering includes three main activities: domain
analysis, domain design, and domain implementation

Reinhartz-Berger, Sturm, Wand (c) 2005 17

Domain Engineering ActivitiesDomain Engineering Activities
Domain AnalysisDomain Analysis

� Domain analysis (The Free Dictionary by Farlex)

� Is the domain engineering activity in which domain knowledge
is studied and formalized as a domain definition and a domain
specification

� Relates to non-implementation issues

� Is the process of identifying, collecting, organizing, analyzing
and representing a domain model and software architecture
from the study of existing systems, underlying theory,
emerging technology and development histories within the
domain of interest

� Is the analysis of systems within a domain to discover
commonalities and differences among them

Reinhartz-Berger, Sturm, Wand (c) 2005 18

Domain Engineering ActivitiesDomain Engineering Activities
Domain AnalysisDomain Analysis

� Domain analysis includes:
� Set objectives: identify stakeholders and their objectives
� Scope domain: define selection criteria
� Define domain: identify boundary conditions, examples,

counter examples, main features
� Define relations: define relations to other domains, divide the

domain into sub-domains
� Acquire domain information from experts, legacy systems,

literature, prototyping
� Describe domain terminology: lexicon of terms, commonality

& variability, features
� Refine domain: build overall domain, analyze trade offs,

innovative feature combinations

� A common way for carrying out domain analysis is
modeling

Reinhartz-Berger, Sturm, Wand (c) 2005 19

• Can be reused in
domain-specific
applications

• Captures the domain
knowledge

• Is used for validation
and verification
purposes

Domain Engineering ActivitiesDomain Engineering Activities
Domain AnalysisDomain Analysis

Domain
Analysis

Technical literature

Customer surveys

Expert advice

Current & future

requirements

Existingimplementations

do
m

ai
n

ex
pe

rt
m

ethods

Domain analysis
model

Business Processes

Reinhartz-Berger, Sturm, Wand (c) 2005 20

Domain Engineering ActivitiesDomain Engineering Activities
Domain DesignDomain Design

� Domain design the activity that takes the results of
domain analysis to identify and generalize solutions for
those common requirements in the form of a Domain-
Specific Software Architecture (DSSA) Carnegie-Mellon Software

Engineering Institute.
� It focuses on the problem space, not just on a particular

system's requirements, to design a solution (solution space)
� It supports developing a common architecture for the system

in the domain and devising a production plan
� The domain design model should represent a generic

architecture developed for supporting activities in the
analyzed domain and provide the framework for the
development of reusable components in domain
implementation

Reinhartz-Berger, Sturm, Wand (c) 2005 21

Domain Engineering ActivitiesDomain Engineering Activities
Domain DesignDomain Design

Domain
Design

Technology

definition

Domain analysismodel

de
si

gn
er

D
om

ain-specific
languages

Domain design
model

Reinhartz-Berger, Sturm, Wand (c) 2005 22

Domain Engineering ActivitiesDomain Engineering Activities
Domain ImplementationDomain Implementation

� Domain implementation is the process of identifying
reusable components based on the domain model
and generic architecture Carnegie-Mellon Software Engineering Institute.

Reinhartz-Berger, Sturm, Wand (c) 2005 23

Domain Engineering ActivitiesDomain Engineering Activities
Domain ImplementationDomain Implementation

Domain
Implementation

Compiling tools

Domain designmodel

Im
pl

em
en

te
r

D
om

ain-specific
languages

Library of
components

Coding standards

G
enerators

Reinhartz-Berger, Sturm, Wand (c) 2005 24

Domain Engineering & Application EngineeringDomain Engineering & Application Engineering

Exploit variability mechanisms,
languages, generators, ….

Engineer reusable component
systems, languages, and tools

Find, specialize, and integrate
components

Structure commonality and variability

Use component systems as starting
point

Develop domain model and
architecture

Analyze examples, needs, trends

Do delta analysis and design relative
to a domain model and architecture

Define and scope domain

uses the assets to build specialized
software systems in the given
domain

a systematic approach to construct
reusable assets in a given problem
domain

Application EngineeringDomain Engineering

Reinhartz-Berger, Sturm, Wand (c) 2005 25

Domain Engineering & Application EngineeringDomain Engineering & Application Engineering

Adapted from: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

Domain Engineering

Domain
Engineer/Expert

Domain requirements

Domain Repository

(models, architecture,
Components)

Domain
Engineering
artifacts

Application
Engineering

Application
Engineer

Application requirements

Reusable
assets

Developed system

Unsatisfied requirements,
errors, adaptations

Reinhartz-Berger, Sturm, Wand (c) 2005 26

Domain Engineering

Application Engineering

Domain
Analysis

Domain
Design

Domain
Implementation

Requirements
Analysis

Product
Configuration

Integration
and Test

Domain
knowledge

Domain Analysis
Model

Domain
Architecture

Customer
Needs Features

Product
Configuration

Product

Domain-specific
languages

Components

Generators

New Requirements

New Requirements
Custom
Design

Custom
Development

Domain Engineering & Application EngineeringDomain Engineering & Application Engineering

Adapted from: the Software Engineering Institute at Carnegie Mellon

Reinhartz-Berger, Sturm, Wand (c) 2005 27

Domain Analysis Techniques Domain Analysis Techniques (a partial list)(a partial list)

ODM – Organization
Domain Modeling

(M. Simos)

Draco (J. Neighbors)

DARE – Domain Analysis
and Reuse Environment
(W. Frakes & R. Prieto-Diaz)

DSSA – Domain-Specific
Software Architecture

(ARPA)

FAST – Family-Oriented
Abstraction, Specification,
and Translation (D. Weiss)

ODE – Ontology-based
Domain Engineering

(Falbo et al.)

FODA – Feature-Oriented
Domain Analysis

(Carnegie-Mellon SE Institute)

PLUS – Product Line
UML-based SE

(Gomaa)
GME – Generic Modeling

Environment
(ISIS)

MetaEdit+
(metaCase)

Software Factories
(Microsoft)

Reinhartz-Berger, Sturm, Wand (c) 2005 28

Domain Analysis TechniquesDomain Analysis Techniques
FeatureFeature --Oriented ApproachesOriented Approaches

� Successful software reuse requires the systematic
discovery and exploitation of commonality across
related software systems.

� Feature Oriented Software Engineering is an
emerging discipline in which feature models are used
to model the commonality and variability in a product
family.
� A feature is a requirement or characteristic that is provided by

one or more members of the software product line
� Examples of such approaches:

� Feature-Oriented Domain Analysis (FODA)
� Product Line UML-based Software engineering (PLUS)

Reinhartz-Berger, Sturm, Wand (c) 2005 29

Domain Analysis TechniquesDomain Analysis Techniques
FeatureFeature --Oriented Domain Analysis (FODA)Oriented Domain Analysis (FODA)

� The Feature-Oriented Domain Analysis (FODA)
method supports reuse at the functional and
architectural levels.
� Developed by the Software Engineering Institute at Carnegie

Mellon

� The basic observations of FODA:
� The general knowledge of a domain can be achieved by

abstracting away “factors” that make one application different
from other applications

� To develop applications from the generic products, those
factors that have been abstracted away must be made
specific and reintroduced during refinement

Reinhartz-Berger, Sturm, Wand (c) 2005 30

Domain Analysis TechniquesDomain Analysis Techniques
FeatureFeature --Oriented Domain Analysis (FODA)Oriented Domain Analysis (FODA)

Reinhartz-Berger, Sturm, Wand (c) 2005 31

Domain Analysis TechniquesDomain Analysis Techniques
FeatureFeature --Oriented Domain Analysis (FODA)Oriented Domain Analysis (FODA)

� Context Analysis aims at defining the scope of a
domain that is likely to yield exploitable domain
products.

� Domain Modeling aims at analyzing the
commonalities and differences within applications in
the domain. It includes:
� Feature Analysis
� Entity-Relationship modeling
� Functional analysis (using state and activity charts)

� Architecture Modeling aims at providing a software
"solution" to the problems defined in the domain
modeling phase.

Reinhartz-Berger, Sturm, Wand (c) 2005 32

Domain Analysis TechniquesDomain Analysis Techniques
FeatureFeature --Oriented Domain Analysis (FODA)Oriented Domain Analysis (FODA)

� A basic diagram in FODA is the feature diagram, which
represents a hierarchical decomposition of features and their
kinds (mandatory, alternative, optional feature).

� Composition rules for features describe which combinations are
valid/invalid:
� Requires rules: capture implications between features
� Mutually-exclusive rules: Model constraints on feature combinations

� Rationale includes reasons for choosing a feature.
� Feature diagrams and their instantiations:

� Feature diagrams concisely describe all possible configurations
(called instances) of a system, focusing on the features that may
differ in each of the configuration

� An instance of a feature diagram consists of an actual choice of
features matching the requirements imposed by the diagram

Reinhartz-Berger, Sturm, Wand (c) 2005 33

Domain Analysis TechniquesDomain Analysis Techniques
FeatureFeature --Oriented Domain Analysis (FODA)Oriented Domain Analysis (FODA)

An example of a Feature Diagram

Reinhartz-Berger, Sturm, Wand (c) 2005 34

Domain Analysis TechniquesDomain Analysis Techniques
Product Line UMLProduct Line UML --based Software engineering based Software engineering (PLUS)(PLUS)

� The Product Line UML-based Software engineering
(PLUS) method extends UML-based modeling
methods in order to address software product lines
� Developed by Hassan Gomaa (“Designing Software Product

Lines with UML”)

� PLUS includes:
� Requirements modeling:

� Product line scoping: determining the functionality, the degree
of commonality and variability, and the likely number of product
line members

� Use case modeling: the functional requirements of the product
line are specified in terms of use cases and actors

� Feature modeling: Features, which are the primary vehicle for
describing commonality and variability in software product lines,
are determined and organized into sets

Reinhartz-Berger, Sturm, Wand (c) 2005 35

Domain Analysis TechniquesDomain Analysis Techniques
Product Line UMLProduct Line UML --based Software engineering based Software engineering (PLUS)(PLUS)

� PLUS includes:
� Analysis modeling:

� Static modeling: A problem-specific static model is defined
� Object structuring: The objects—kernel, optional, and

alternative—that participate in each use case are determined
� Dynamic modeling: The use cases from the use case model

are realized to show the interaction among the objects
participating in each kernel, optional, and alternative use case

� Finite state machine modeling: The state-dependent aspects
of the product line are defined by means of hierarchical
statecharts

� Feature/class dependency analysis: This step is used to
determine what classes from the analysis model are needed to
realize the features from the feature model

Reinhartz-Berger, Sturm, Wand (c) 2005 36

Domain Analysis TechniquesDomain Analysis Techniques
Product Line UMLProduct Line UML --based Software engineering based Software engineering (PLUS)(PLUS)

� PLUS includes:
� Design modeling:

� Software architectural pattern–based design: It is necessary
to understand both the structural and communication patterns
that can be used for designing the product line software
architecture

� Software product line architectural design: The design of the
product line architecture is approached from the viewpoint of
structuring a distributed application into software components
and their interconnections

Reinhartz-Berger, Sturm, Wand (c) 2005 37

Domain Analysis TechniquesDomain Analysis Techniques
Product Line UMLProduct Line UML --based Software engineering based Software engineering (PLUS)(PLUS)

� There are two approaches for developing the domain
model of the software product line
� The Kernel First Approach

� The kernel of the application domain is determined first

� The common aspects of the domain are determined before the
variability

� The View Integration Approach
� It is most applicable when systems that can be analyzed exists
� Each system is considered a view of the application domain
� The different views are integrated

Reinhartz-Berger, Sturm, Wand (c) 2005 38

Domain Analysis TechniquesDomain Analysis Techniques
Product Line UMLProduct Line UML --based Software engineering based Software engineering (PLUS)(PLUS)

An Example of Use Case Modeling in PLUS

B2C

B2B

From: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

A more detailed example
(slides 103-106)

Reinhartz-Berger, Sturm, Wand (c) 2005 39

Domain Analysis TechniquesDomain Analysis Techniques
Metamodeling TechniquesMetamodeling Techniques

� System analysis and design activities can be divided
into three types with increasing abstraction levels:
� The real world is what system analysts perceive as reality
� A model is an abstraction of this perceived reality that enables

its representation using some approach, language, or
methodology

� A metamodel is a model of a model, namely the generic
constructs available for modeling a modeling language,
technique, or method, and their relationships

Real
World

Abstracting Model Abstracting
Meta-
Model

Reinhartz-Berger, Sturm, Wand (c) 2005 40

Domain Analysis TechniquesDomain Analysis Techniques
Metamodeling TechniquesMetamodeling Techniques

Car
Type

ID

Person
Name

ID
License Type

possesses

Model

Real World

BMW
W-1234

Iris Reinhartz-Berger
22222222

A

possesses

Metamodel

UML ClassUML Association
Has as source

Has as destination

Reinhartz-Berger, Sturm, Wand (c) 2005 41

Domain Analysis TechniquesDomain Analysis Techniques
Metamodeling TechniquesMetamodeling Techniques

� Some metamodels usage:
� Metamodels are the foundation for integration in

software development
� Metamodels help abstracting low level integration

and interoperability details and facilitate partitioning
problems into orthogonal sub-problems

� Metamodels enable checking and verifying the
completeness and expressiveness of a model

� Metamodels enable generating implementation
artifacts

� Examples of metamodels:
� UML version 1.3 (slides 107-109)

Reinhartz-Berger, Sturm, Wand (c) 2005 42

Domain Analysis TechniquesDomain Analysis Techniques
Generic Modeling Environment (GME)Generic Modeling Environment (GME)

� The Generic Modeling Environment (GME) is a domain-
specific, model-integrated program synthesis tool for creating and
evolving domain-specific, multi-aspect models of large-scale
engineering systems.
� Developed by the institute for software integrated systems at

Vanderbilt University

� The modeling paradigm contains all the syntactic, semantic, and
presentation information regarding the domain

� Which concepts will be used to construct models?

� What relationships may exist among those concepts?

� How the concepts may be organized and viewed by the
modeler?

� What are the rules governing the construction of models?

Reinhartz-Berger, Sturm, Wand (c) 2005 43

Domain Analysis TechniquesDomain Analysis Techniques
Generic Modeling Environment (GME)Generic Modeling Environment (GME)

� GME modeling concepts include:
� A Project contains a set of Folders
� Folders are containers that help organize models
� Models, Atoms, References, Connections and Sets are all

first class objects (FCO)
� Atoms are the elementary modeling objects that do not have

internal structure (i.e. they do not contain other objects)
� Each kind of Atom is associated with an icon
� Each kind of Atom can have a predefined set of attributes, whose

values are user changeable

Reinhartz-Berger, Sturm, Wand (c) 2005 44

Domain Analysis TechniquesDomain Analysis Techniques
Generic Modeling Environment (GME)Generic Modeling Environment (GME)

� GME modeling concepts include:
� Models are compound objects that can have parts and inner

structure
� A part in a container Model always has a Role
� The modeling paradigm determines what kind of parts are

allowed in Models acting in which Roles
� E.g., if we want to model digital circuits below the gate level, then

we would have to use Models for gates (instead of Atoms) that
would contain transistor Atoms

� The containment relationship creates the hierarchical
decomposition of Models

� Any object must have at most one parent, which is a Model
� At least one Model does not have a parent; it is called a root

Model

Reinhartz-Berger, Sturm, Wand (c) 2005 45

Domain Analysis TechniquesDomain Analysis Techniques
Generic Modeling Environment (GME)Generic Modeling Environment (GME)

� GME modeling concepts include:
� Aspects provide primarily visibility control

� Every Model has a predefined set of Aspects
� Each part can be visible or hidden in an Aspect
� Every part has a set of primary aspects where it can be created

or deleted

� A connection is a line that connects two parts of a model
� Connections have at least two attributes: appearance and

directionality
� In order to make a Connection between two objects they must

have the same parent in the containment hierarchy (and they
also must be visible in the same Aspect, i.e. one of the primary
Aspects of the Connection)

� Connections can further be restricted by explicit Constraints
specifying their multiplicity, for instance

Reinhartz-Berger, Sturm, Wand (c) 2005 46

Domain Analysis TechniquesDomain Analysis Techniques
Generic Modeling Environment (GME)Generic Modeling Environment (GME)

� GME modeling concepts include:
� References are parts that are similar in concept to pointers

found in various programming languages
� Any first class object (FCO), except for a Connection, can be

referred to (even references themselves)
� References can be connected just like regular model objects
� A reference always refers to exactly one object, while a single

object can be referred to by multiple References

� Sets can be used to specify a relationship among a group of
objects

� Connections and References are binary relationships
� The only restriction is that all the members of a Set must have

the same container (parent) and be visible in the same Aspect

Reinhartz-Berger, Sturm, Wand (c) 2005 47

Domain Analysis TechniquesDomain Analysis Techniques
Generic Modeling Environment (GME)Generic Modeling Environment (GME)

Project

Reqnode0..*0..*

Constraint
Attribute

AtomSet Reference Connection

ConnRole

1..*1..*

Folder

1..*1..*

0..*0..*

0..*0..*

**

FCO

0..*0..*

0..*0..*

0..*0..*

**
+member

+referred

0..*0..*

Role
0..*0..*

Aspect

Part0..*0..*

0.. *0.. *

Model

0..*0..*

0..*0..*

0..*0..*

+sub
+base+type

+inst

113)-(slides 110To a GME example

Reinhartz-Berger, Sturm, Wand (c) 2005 48

Domain Analysis Techniques Domain Analysis Techniques
metaEditmetaEdit ++

� MetaEdit+ (by metaCase) provides:
� A domain specific language comprising six building blocks

(meta-meta model elements)
� A scripting language for defining translation rules
� An application specification environment that is based on the

domain specific language and enforces its constraints
� A code generator that is based on the application model and

the translation rules

� Using MetaEdit+ includes two main steps:
� An experienced developer first defines the metamodel

concepts, rules, and their mapping to code
� Other developers then make models with the concepts guided

by the rules, and code is automatically generated

Reinhartz-Berger, Sturm, Wand (c) 2005 49

Domain Analysis TechniquesDomain Analysis Techniques
metaEditmetaEdit ++

� Form-based metamodeling
� Fast to enter concepts
� Scales better than graphical metamodels

� Metamodel and model in same tool
� Can test metamodel as it is being built or changed

� Reuse of metamodel concepts
� Within one metamodel, across different metamodels

Reinhartz-Berger, Sturm, Wand (c) 2005 50

Domain Analysis TechniquesDomain Analysis Techniques
metaEditmetaEdit ++

� MetaEdit+ modeling concepts include:
� A graph is a collection of objects, relationships, roles, and

bindings of these to show which objects a relationship
connects via which roles

� An object is a thing that exists on its own
� A property is a describing or qualifying characteristic

associated with the other types
� A port is a part of an object to which a role can connect
� A relationship is an explicit connection between a group of

objects. Relationships attach to objects via roles
� A role specifies how an object participates in a relationship

118)-(slides 114+ examplemetaEditTo a

Reinhartz-Berger, Sturm, Wand (c) 2005 51

Domain Analysis TechniquesDomain Analysis Techniques
AdvantagesAdvantages

� Provide means for gathering and organizing
domain related information and knowledge .

� Provide libraries of assets to be reused in
particular applications.

� Provide validation and verification templates
for particular applications in order to avoid
semantic errors in early development stages.

Reinhartz-Berger, Sturm, Wand (c) 2005 52

Domain Analysis TechniquesDomain Analysis Techniques
LimitationsLimitations

� Deal with too broad areas (domains) which are
usually understood only during the
development process.

� Deal mainly with static and structural
constraints.

� Deal with two different abstraction levels: the
domain and the application.
� Each level is accompanied by different notions and

notations
� The transition between the levels remains

sometimes vague

Reinhartz-Berger, Sturm, Wand (c) 2005 54

The ADOM ApproachThe ADOM Approach
MotivationMotivation

� Application and domain models are similar :
� They both define structure
� They both exhibit functionality (behavior)
� They both introduce structural and behavioral constraints

� However they also differ in their:
� Abstraction level
� Flexibility level

� ADOM treats domains with regular software
engineering tools, methods, and techniques.

Reinhartz-Berger, Sturm, Wand (c) 2005 55

The ADOM ApproachThe ADOM Approach
MotivationMotivation

� When modeling a domain, there are two policies:
� Modeling whatever is allowed

� Everything that is allowed in an application model should be
presented in the domain model.

� This policy emphasizes the variability of domain applications.

� Constraining whatever is needed
� The domain model should include constraints that should be

satisfied by all the application models in that domain.
� The application models can include additional information, as

long as it does not violate one of the domain constraints.
� This policy emphasizes the commonalities of the applications in

a particular domain.

� The ADOM approach adapts the “constraining
whatever is needed” policy.

Reinhartz-Berger, Sturm, Wand (c) 2005 56

The ADOM ApproachThe ADOM Approach
General ArchitectureGeneral Architecture

� ADOM defines three layers of abstraction:
� The application layer , which consists of domain-

specific systems
� The domain layer , which captures sets of domain

concepts and relations
� The modeling language layer , which consists of

modeling language metamodels

� In all layers the same languages (notions and
notations) are applied.

� Each layer defines constraints on the more
concrete layers.

Reinhartz-Berger, Sturm, Wand (c) 2005 57

The ADOM ApproachThe ADOM Approach
General ArchitectureGeneral Architecture

M1.5: Domain Layer

Web
applications

Multi Agent
Systems

M2: Language Layer

UML

Amazon eBay Kasbah

M1: Application Layer

Reinhartz-Berger, Sturm, Wand (c) 2005 58

The ADOM ApproachThe ADOM Approach
General ArchitectureGeneral Architecture

� In the domain layer the structural and behavioral
elements of a specific domain are specified.
� This can be done, for example, by using UML structural and

behavioral views

� An application model uses a domain model as a
validation template and a reusable knowledge source:
� Any element in the application model is classified according to

the elements declared in the domain model
� All the constraints enforced by the domain model should be

applied in any application model of that domain
� This can be done, for example, by using UML built-in

stereotype mechanism

Reinhartz-Berger, Sturm, Wand (c) 2005 59

ADOM & UML through ExamplesADOM & UML through Examples
The Domain of The Domain of Process Control SystemsProcess Control Systems

� Applications in the domain monitor and control the values
of certain variables through a set of components that work
together to achieve a common objective or purpose.

� Examples for application areas within this domain include
engineering and industrial control systems, control systems
in the human body, and financial derivation-tracking
products.

� Two specific examples in the domain:
� A water level control system (WLC) for monitoring and

controlling the water level in tanks
� A home climate control system (HCC) for monitoring and

controlling room temperature and humidity

Reinhartz-Berger, Sturm, Wand (c) 2005 60

ADOM & UML through ExamplesADOM & UML through Examples
The The Water Level Control Water Level Control SystemSystem

� The Water Level Control (WLC) system monitors and
controls the water levels in tanks

� Each tank has several boundary limits according to
different manger preferences

� The system is expected to satisfy all these requests,
ensuring that the actual water level is always in the
closed range [Low, High]

� The actual level of the water in the tank is measured
by a boundary stick

� Emptying and filling faucets are installed in each tank,
enabling changing the water level at will

Reinhartz-Berger, Sturm, Wand (c) 2005 61

ADOM & UML through ExamplesADOM & UML through Examples
The The Water Level Control Water Level Control System System –– A UC DiagramA UC Diagram

manager boundary
stick

emptying
faucet

filling
faucet

External entities –
actors

Set Boundary
Levels

Turn on

Turn off

Monitor Water
Height & Act

Check Water
Height

Main
operations –
Use cases

<<include>>
<<include>>

Relations

Reinhartz-Berger, Sturm, Wand (c) 2005 62

-tankID: int
-Location: String
-capacity: double
-status: {active, non-active}

+ monitorHeightAndAct()
+ calculateMinDesiredHeight()
+ calculateMaxDesiredHeight()

ADOM & UML through ExamplesADOM & UML through Examples
The The Water Level Control Water Level Control System System –– A Class DiagramA Class Diagram

Water controller Water tank

Faucet

Desired Water Height

Boundary Stick

+ monitorHeightAndAct()

+ initialize (): boolean+ open ()
+ close ()

- checkInterval: int -requestingUser: String
-minHeight: double
-maxHeight: double

-stickID: int
-actualHeight: double
-dateInstalled: Date

-faucetID: int
-faucetType: {filling, emptying}
-faucetStatus: {opened, closed}

* *
*

2Each tank has
one filling
faucet and
one emptying
faucet

Reinhartz-Berger, Sturm, Wand (c) 2005 63

ADOM & UML through ExamplesADOM & UML through Examples
The The Water Level Control Water Level Control System System –– A Sequence DiagramA Sequence Diagram

*[i:1..n] monitorHeightAndAct()

:Water
controller

AH = getActualHeight()

maxDH=calculateMaxDesiredHeight()

:Desired Water
Height

*[i:1..n] getMaxHeight()

:Water
tank

[AH<maxDH] close()

setFaucetStatus(closed)

close
[AH>maxDH] open()

setFaucetStatus(opened)

open

:Boundary
Stick

Emptying:
Faucet :emptying

faucet

Reinhartz-Berger, Sturm, Wand (c) 2005 64

ADOM & UML through ExamplesADOM & UML through Examples
The The Water Level Control Water Level Control System System –– A Sequence DiagramA Sequence Diagram

:Water
controller

minDH=calculateMinDesiredHeight()

:Desired Water
Height

*[i:1..n] getMinHeight()

:Water
tank

[AH>minDH] close()

setFaucetStatus(closed)

close
[AH<minDH] open()

setFaucetStatus(opened)

open

:Boundary
Stick

Filling:
Faucet :filling

faucet

Reinhartz-Berger, Sturm, Wand (c) 2005 65

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control SystemSystem

� The Home Climate Control (HCC) application ensures
that the temperature in a room of a house remains in
the closed range [LT, HT], while the humidity in this
room remains lower than the maximum defined
humidity (<MH)

� The system controls several rooms, while each room
has its own limit values (LT, HT, MH) which can be
configured by the user

� The actual levels of temperature and humidity are
measured by thermometers and humidity gauges,
respectively

� An air conditioner and a water sprayer are installed in
each room, enabling changing the temperature and
humidity at will

Reinhartz-Berger, Sturm, Wand (c) 2005 66

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control System System –– A UC DiagramA UC Diagram

Home User

Thermometer

Humidity
GaugeAir

Conditioner

Set Desired
Temp& Humidity

Turn on

Turn off

Heating/
Cooling

Environment
Measuring

<<include>>

<<include>>

Water Sprayer

Spraying
<<include>>

<<include>>

Reinhartz-Berger, Sturm, Wand (c) 2005 67

-roomNumer: int
-buildingName: String
-occupied: Boolean

+ monitorTempAndAct()
+monitorHumidityAndAct()

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control System System –– A Class DiagramA Class Diagram

HC controller Room

Thermometer

Desired Temperature

Desired Humidity

+ monitorTempAndAct()
+monitorHumidityAndAct()

-tempInterval: int
-humidityInterval: int

-upperRange: int
-lowerRange: int

-maxHumidity: int-thermometerID: int
-roomTemperature: int
-degrees: {C, F}

*

Humidity Gauge
-gaugeID: int
-roomHumidity: double
-serviceCompany: String

Air Conditioner

-acID: int
-acStatus: {on, off}
-acMode: {heat, cool, idle}

Water Sprayer
-sprayerID: String
-sprayerStatus: {idle, spraying}

+ spray() + act(op:{heat, cool, stop, pause, resume})

Reinhartz-Berger, Sturm, Wand (c) 2005 68

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control System System –– A Sequence DiagramA Sequence Diagram

*[i:1..n] monitorTempAndAct()

:HC
controller

AT = getRoomTemperature()

:Desired
Temperature

UT = getUpperRange()

:Room

setAcMode(heat)

heat

:Thermometer :Air
Conditioner :Air

Conditioner

LT = getLowerRange()

acStatus = getAcStatus()

acMode = getAcMode()

[acStatus=on and acMode<>heat and AT<LT] act(heat)

Reinhartz-Berger, Sturm, Wand (c) 2005 69

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control System System –– A Sequence DiagramA Sequence Diagram

:HC
controller

:Desired
Temperature

:Room

setAcMode(idle)

stop

:Thermometer
:Air

Conditioner
[acStatus=on and acMode=heat and AT>LT] act(stop)

setAcMode(cool)

cool

[acStatus=on and acMode<>cool and AT>UT] act(cool)

setAcMode(idle)

stop

[acStatus=on and acMode=cool and AT<UT] act(stop)

:Air
Conditioner

Reinhartz-Berger, Sturm, Wand (c) 2005 70

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control System System –– A Sequence DiagramA Sequence Diagram

*[i:1..n] monitorHumidityAndAct()

:HC
controller

AH = getRoomHumidity()

:Desired
Humidity

:Room

setsprayerStatus(spraying)

:Humidity
Gauge

:Water
Sprayer :Water

Sprayer

MH = getMaxHumidity()

[AH>MH] spray()

spray

ack

setSprayerStatus(idle)

Reinhartz-Berger, Sturm, Wand (c) 2005 71

ADOM & UML through ExamplesADOM & UML through Examples
The Domain of The Domain of Process Control SystemsProcess Control Systems

� Basic concepts in the PCS domain:
� Controller
� Controlled Device – e.g., emptying/filling faucet,

air-conditioner, water sprayer, etc.
� Controlled Element – e.g., tank, room, etc.
� Controlled Value – e.g., water height, temperature,

humidity, etc.
� Sensor – e.g., boundary stick, thermometer,

humidity gauge, etc.
� Operator – e.g., user, maintainer, etc.

Reinhartz-Berger, Sturm, Wand (c) 2005 72

ADOM & UML through ExamplesADOM & UML through Examples
The Domain of The Domain of Process Control SystemsProcess Control Systems

� Relations between PCS concepts:
� A Controller controls Controlled Elements

� A water controller controls water tanks
� A climate controller controls rooms

� The Controlled Values in a Controlled Element
are constrained

� The water height in a water tank is constrained
� The temperature and humidity in a room are constrained

� A Sensor measures Controlled Values
� A boundary stick measures water height
� A thermometer measures temperature
� A humidity gauge measures humidity

Reinhartz-Berger, Sturm, Wand (c) 2005 73

ADOM & UML through ExamplesADOM & UML through Examples
The Domain of The Domain of Process Control SystemsProcess Control Systems

� Relations between PCS concepts:
� A Controlled Device is installed in a Controlled

Element
� An emptying/filling faucet is installed in a tank
� An air-conditioner is installed in a room
� A water sprayer is installed in a room

� An Operator activates the system
� A manager activates the WLC system
� A home user activates the HCC system

� An Operator might configure the system
� A manager configures the water height range in a tank
� A home user configures the temperature and humidity

levels in a room

Reinhartz-Berger, Sturm, Wand (c) 2005 74

ADOM & UML through ExamplesADOM & UML through Examples
The Domain of The Domain of Process Control SystemsProcess Control Systems

� The behavior in a PCS system:
� Configuring

� The water height range
� The temperature and humidity levels

� Monitoring & Checking the actual values
� The water height
� The temperature
� The humidity

� Acting
� Filling/emptying
� Heating/cooling
� Spraying water

Reinhartz-Berger, Sturm, Wand (c) 2005 75

ADOM & UML through ExamplesADOM & UML through Examples
The The Process Control Systems Process Control Systems –– SimilaritiesSimilarities

manager

boundary
stick

emptying
faucet

filling
faucet

Home
User

Thermometer Humidity
Gauge

Air
Conditioner

Water
Sprayer

Operator

=

Controlled
Device

=

Sensor

=

Reinhartz-Berger, Sturm, Wand (c) 2005 76

ADOM & UML through ExamplesADOM & UML through Examples
The The Process Control Systems Process Control Systems –– SimilaritiesSimilarities

=

=

=

Set Boundary
Levels

Turn on Turn off

Monitor Water
Height & Act

Check Water
Height

Set Desired
Temp& Humidity

Heating/
Cooling

Environment
Measuring

Spraying

=

System Settings

System Activation

Checking

Monitoring&
Acting

Reinhartz-Berger, Sturm, Wand (c) 2005 77

ADOM & UML through ExamplesADOM & UML through Examples
The The Process Control Systems Process Control Systems Use Case DiagramUse Case Diagram

<<1..n>>
Operator

<<1..n>>
Controlled

Device

<<0..n>>
System Settings

<<1..n>>
System Activation

<<1..n>>
Monitoring& Acting

<<1..n>>
Checking

<<1..n>>
Sensor

<<include>>

<<include>>

0..*
1..*

1..*

1..*

1..*

1..*

1..*
1..* 1..*

1..*

Reinhartz-Berger, Sturm, Wand (c) 2005 78

ADOM & UML through ExamplesADOM & UML through Examples
The The Water Level ControlWater Level Control Use Case DiagramUse Case Diagram

manager boundary stick

filling faucet

Set Boundary
Levels

Turn on

Turn off

Monitor Water
Height & Act

Check Water
Height

<<include>> <<include>>

emptying faucet

<<operator>>

<<controlled device>> <<controlled device>>

<<sensor>>

<<system settings>>

<<system activation>>

<<system activation>>

<<monitoring& acting>>

<<checking>>

Reinhartz-Berger, Sturm, Wand (c) 2005 79

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control Use Case DiagramUse Case Diagram

Home User

Thermometer

Humidity
GaugeAir

Conditioner

Set Desired
Temp& Humidity

Turn on

Turn off

Heating/
Cooling

Environment
Measuring

<<include>>

<<include>>

Water Sprayer

Spraying
<<include>>

<<include>>

<<operator>>

<<controlled device>>

<<controlled device>>

<<sensor>>

<<system settings>>

<<system activation>>

<<system activation>>

<<monitoring& acting>>

<<checking>>

<<sensor>>

<<monitoring& acting>>

Reinhartz-Berger, Sturm, Wand (c) 2005 80

ADOM & UML through ExamplesADOM & UML through Examples
The The Process Control Systems Process Control Systems Class DiagramClass Diagram

Controller

+ <<1..n>> monitorAndAct()

-<<0..n>> interval

-<<1..n>> ceIdentity
-<<1..n>> ceStatus: Enumeration

+ <<1..n>> monitorAndAct()

<<1..n>>

Controlled Element

<<1..n>>

Controlled Value
-<<1..n>> boundaryValue

<<1..n>>

Sensor
-<<1..n>> sensorID
-<<1..n>> sensorValue

<<1..n>>

Controlled Device
-<<1..n>> cdID
-<<1..n>> cdStatus: Enumeration

+ <<1..n>> act()

1..*

1..*
1..*

1..*

1..*

1..*1..*

Reinhartz-Berger, Sturm, Wand (c) 2005 81

ADOM & UML through ExamplesADOM & UML through Examples
Class Diagram Comments Class Diagram Comments –– Attribute SignaturesAttribute Signatures

� The general signature of an attribute in a
domain model is:
<<attrMin..attrMax>> attrScope attrCName: attrType
� <<attrMin..attrMax>> defines how many attributes of the particular

application class can be classifies as the attribute classification name
(attrCName)

� The attribute scope (attrScope) is one of public, package, protected,
or private. A scope of a domain model element is the least restricted
scope that this element can get in an application model of that
domain.

� The attribute type (attrType) can be any atomic or composite type in
UML (e.g., integer, Boolean, float, String, Date, etc.) or a set of
those.

� Examples:
� <<1..n>> private cdStatus: Enumeration �Each Controlled Device

has at least one private attribute of an enumeration type indicating
the device status.

Reinhartz-Berger, Sturm, Wand (c) 2005 82

ADOM & UML through ExamplesADOM & UML through Examples
Class Diagram Comments Class Diagram Comments –– Operation SignaturesOperation Signatures

� The general signature of an operation in a domain
model is:
<<opMin..opMax>> opScope opCName
(<<param1Min..param1Max>> param1CName: param1Type, …,
<<paramnMin..paramnMax>> paramnCName: paramnType):
reType
� <<opMin..opMax>> and <<paramiMin..paramiMax>> are multiplicity

constraints
� opScope is the scope constraint
� paramiType and reType are the type constraints

� Examples:
� <<1..n>> public monitorAndAct(): Boolean �Each Controller has at

least one operation classified as monitorAndAct which returns a
Boolean type. The number of parameters, their types, and the
operation scope are not restricted in the domain level.

Reinhartz-Berger, Sturm, Wand (c) 2005 83

ADOM & UML through ExamplesADOM & UML through Examples
The The Water Level Control Water Level Control Class DiagramClass Diagram

-tankID: int
-Location: String
-capacity: double
-status: {active, non-active}

+ monitorHeightAndAct()
+ calculateMinDesiredHeight()
+ calculateMaxDesiredHeight()

Water controller Water tank

Faucet

Desired Water Height

Boundary Stick

+ monitorHeightAndAct()

+ initialize (): boolean+ open ()
+ close ()

- checkInterval: int -requestingUser: String
-minHeight: double
-maxHeight: double

-stickID: int
-actualHeight: double
-dateInstalled: Data

-faucetID: int
-faucetType: {filling, emptying}
-faucetStatus: {opened, closed}

* *
*

2Each tank has
one filling
faucet and
one emptying
faucet

<<controlled Element>><<controller>> <<controlled Value>>

<<controlled Device>> <<sensor>>

<<interval>> <<ceIdentity>>

<<ceStatus>>

<<boundaryValue>>
<<boundaryValue>>

<<cdID>>
<<cdStatus>>
<<cdStatus>>

<<sensorID>>
<<sensorValue>>

<<monitorAndAct>> <<monitorAndAct>>

<<act>>
<<act>>

Reinhartz-Berger, Sturm, Wand (c) 2005 84

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control Class DiagramClass Diagram

-roomNumer: int
-buildingName: String
-occupied: Boolean

+ monitorTempAndAct()
+monitorHumidityAndAct()

HC controller Room

Thermometer

Desired Temperature

Desired Humidity

+ monitorTempAndAct()
+monitorHumidityAndAct()

-tempInterval: int
-humidityInterval: int

-upperRange: int
-lowerRange: int

-maxHumidity: int-thermometerID: int
-roomTemperature: int
-degrees: {C, F}

*

Humidity Gauge
-gaugeID: int
-roomHumidity: double
-serviceCompany: String

Air Condition

-acID: int
-acStatus: {on, off}
-acMode: {heat, cool, idle}

Water Sprayer
-sprayerID: String
-sprayerStatus: {idle, spraying}

+ spray() + act(op:{heat, cool, stop, pause, resume})

<<controlled Element>><<controller>> <<controlled Value>>

<<controlled Device>>

<<sensor>><<sensor>> <<controlled Value>>

<<controlled Device>>

<<interval>>
<<interval>>

<<ceIdentity>>
<<ceIdentity>>
<<ceStatus>>

<<boundaryValue>>
<<boundaryValue>>

<<cdID>>
<<cdStatus>>
<<cdStatus>>

<<sensorID>>
<<sensorValue>>

<<boundaryValue>><<sensorID>>
<<sensorValue>>

<<cdID>>
<<cdStatus>>

<<monitorAndAct>>
<<monitorAndAct>>

<<act>>

<<monitorAndAct>>
<<monitorAndAct>>

<<act>>

Reinhartz-Berger, Sturm, Wand (c) 2005 85

<<1..n>> Check Boundary and Act Block

ADOM & UML through ExamplesADOM & UML through Examples
The The Process Control Systems Process Control Systems Sequence DiagramSequence Diagram

<<1..n>> monitorAndAct()

:Controller

<<1..n>> getsensorValue()

:Controlled
Value

:Controlled
Element

:Sensor :Controlled
Device :Controlled

Device

<<1..n>> getBoundaryValue()

act()

action

Reinhartz-Berger, Sturm, Wand (c) 2005 86

ADOM & UML through ExamplesADOM & UML through Examples
The The Water Level Control Water Level Control Sequence DiagramSequence Diagram

*[i:1..n] monitorHeightAndAct()

:Water
controller

AH = getActualHeight()

maxDH=calculateMaxDesiredHeight()

:Desired Water
Height

*[i:1..n] getMaxHeight()

:Water
tank

[AH<maxDH] close()

setFaucetStatus(closed)

close
[AH>maxDH] open()

setFaucetStatus(opened)

open

:Boundary
Stick

Emptying:
Faucet :emptying

faucet

Reinhartz-Berger, Sturm, Wand (c) 2005 87

ADOM & UML through ExamplesADOM & UML through Examples
The The Water Level Control Water Level Control Sequence DiagramSequence Diagram

:Water
controller

minDH=calculateMinDesiredHeight()

:Desired Water
Height

*[i:1..n] getMinHeight()

:Water
tank

[AH>minDH] close()

setFaucetStatus(closed)

close
[AH<minDH] open()

setFaucetStatus(opened)

open

:Boundary
Stick

Filling:
Faucet :filling

faucet

Reinhartz-Berger, Sturm, Wand (c) 2005 88

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control Sequence DiagramSequence Diagram

*[i:1..n] monitorTempAndAct()

:HC
controller

AT = getRoomTemperature()

:Desired
Temperature

UT = getUpperRange()

:Room

setAcMode(heat)

heat

:Thermometer :Air
Conditioner :Air

Conditioner

LT = getLowerRange()

acStatus = getAcStatus()

acMode = getAcMode()

[acStatus=on and acMode<>heat and AT<LT] act(heat)

Reinhartz-Berger, Sturm, Wand (c) 2005 89

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control Sequence DiagramSequence Diagram

:HC
controller

:Desired
Temperature

:Room

setAcMode(idle)

stop

:Thermometer
:Air

Conditioner
[acStatus=on and acMode=heat and AT>LT] act(stop)

setAcMode(cool)

cool

[acStatus=on and acMode<>cool and AT>UT] act(cool)

setAcMode(idle)

stop

[acStatus=on and acMode=cool and AT<UT] act(stop)

:Air
Conditioner

Reinhartz-Berger, Sturm, Wand (c) 2005 90

ADOM & UML through ExamplesADOM & UML through Examples
The The Home Climate Control Home Climate Control Sequence DiagramSequence Diagram

:Water
Sprayer

*[i:1..n] monitorHumidityAndAct()

:HC
controller

AH = getRoomHumidity()

:Desired
Humidity

:Room

setsprayerStatus(spraying)

:Humidity
Gauge

:Water
Sprayer

MH = getMaxHumidity()

[AH>MH] spray()

spray

ack

setSprayerStatus(idle)

Reinhartz-Berger, Sturm, Wand (c) 2005 91

The ADOM ApproachThe ADOM Approach
Experimental ResultsExperimental Results

� The experiments research questions:
� Does adding a domain model ease an individual’s application

comprehension?
� Does adding a domain model help in creating more correct

application models?
� The subjects:

� Third year students in a four-year engineering B.Sc. program
at the Ben-Gurion University of the Negev, Israel

� All of them were students of the Information Systems
Engineering program

� They had no previous knowledge or experience in system
modeling and specification

� They took the course “Object-Oriented Analysis and Design”
at the winter semester of the 2004-5 academic year

Reinhartz-Berger, Sturm, Wand (c) 2005 92

The ADOM ApproachThe ADOM Approach
Experimental ResultsExperimental Results

� The experimental tasks:
� In the first task the students were asked to respond to nine

true/false comprehension questions about the Home Climate
Control (HCC) application. Examples of questions:
� There are two types of devices that are controlled by the system
� The system checks its sensor data, the thermometer and the humidity

gauge, only through the Heating/Cooling use case
� In each situation when the air-conditioner is on and the room

temperature is lower than the lowest bound of the desired temperature,
the heating operation of the air-conditioner is activated

� In the second task the students were asked to build a model of the
Water Level Control (WLC) application based on a set of
requirements. They were asked to provide:
� The system use case diagram
� The system class diagram
� A sequence diagram of tank filling
� A statechart of a water faucet

Reinhartz-Berger, Sturm, Wand (c) 2005 93

The ADOM ApproachThe ADOM Approach
Experimental ResultsExperimental Results

� Experimental Settings:
� The students were divided arbitrarily into two groups of 34 and

36 students
� Each group got a different test form type:

� The regular UML forms included only the HCC model: a use
case diagram, a class diagram, a sequence diagram describing a
heating/cooling scenario, and state diagrams describing the
functionality of a water sprayer and an air-conditioner

� The ADOM-UML forms included the domain model, as well as
the HCC model

� Checking the differences between the two groups according
to the average grades of the students in their studies, no
significant difference was found (t = 0.32, p ~ 0.75).

Reinhartz-Berger, Sturm, Wand (c) 2005 94

The ADOM ApproachThe ADOM Approach
Experimental ResultsExperimental Results

� Experiment Results

< 0.0013.52 28.51
(89.09%)

24.88
(77.75%)

Modeling (out
of 32)

< 0.01 1.68 13.74
(76.33%)

12.42
(69.00%)

Comprehension
(out of 18)

ptADOM-
UML

Regular
UML

Remark: Although it can be argued that having more information or knowledge
about the domain is the reason for the differences in the student
achievements, having more diagrams in different abstraction level
(application vs. domain) to consult with in exam conditions somehow
balances the asymmetry between the two groups.

Reinhartz-Berger, Sturm, Wand (c) 2005 95

The ADOM ApproachThe ADOM Approach
Current StateCurrent State

� The ADOM approach was already applied to:
� UML:

� I. Reinhartz-Berger and A. Sturm, Behavioral Domain Analysis – The
Application-based Domain Modeling Approach, the 7th International
Conference on the Unified Modeling Language (UML'2004), Lecture
Notes in Computer Science 3273, pp. 410-424, 2004.

� A. Sturm and I. Reinhartz-Berger, Applying the Application-based
Domain Modeling Approach to UML Structural Views, the 23rd

International Conference on Conceptual Modeling (ER'2004), Lecture
Notes in Computer Science 3288, pp. 766-779, 2004.

� Activity Diagrams for enterprise modeling
� I. Reinhartz-Berger, P. Soffer, and A. Sturm, A Domain Engineering

Approach to Specifying and Applying Reference Models, accepted to
Enterprise Modeling and Information Systems Architectures
(EMISA'05), 2005.

� Object-Process Methodology (OPM)

Reinhartz-Berger, Sturm, Wand (c) 2005 96

The ADOM ApproachThe ADOM Approach
PerspectivesPerspectives

� The reuse perspective
� ADOM supports open reuse by incorporating domain elements

into application models
� Basic elements: the modeling language elements

� Features: structural and behavioral views and constraints

� Size: varies

� Way of reuse: utilizing domain elements

� The knowledge engineering perspective
� ADOM provides a means for knowledge representation

� The validation and verification perspective
� ADOM provides a means for specifying validation templates (i.e.,

domain models) for application modeling

Reinhartz-Berger, Sturm, Wand (c) 2005 97

The ADOM ApproachThe ADOM Approach
AdvantagesAdvantages

� Treating domains similarly to applications enables the specification of
behavioral constraints and not just structural ones.

� ADOM can be used for validating system models against their domain
models in order to detect semantic errors in early development stages.
� Validating an application model throughout gradual system development

stages reduces the development cost as errors are detected in early stages

� These errors cannot be automatically found when using syntactic modeling
languages alone

� Treating domains in a separate layer (and not in the metamodel layer)
enables adjustment of ADOM to different modeling languages.

� The usage of the same modeling language for both the application and
domain layers can reduce the ontological gap and the communication
problems between the different stakeholders in the system development
process.

Reinhartz-Berger, Sturm, Wand (c) 2005 98

The ADOM ApproachThe ADOM Approach
AdvantagesAdvantages

� Applying ADOM specifically to UML, the standard object-oriented
modeling language, also benefits from the maturity of the UML
environment, including its CASE tools.

� The combination of ADOM and UML establishes a formal
framework for defining and constraining stereotypes in UML.
� To the best of our knowledge the only way to define stereotypes and UML

extensions (till now) was via a natural language
� While using natural languages is more comprehensible to humans, it lacks

the needed precision and formality for defining domain elements, constraints,
and usage contexts

Reinhartz-Berger, Sturm, Wand (c) 2005 99

The ADOM ApproachThe ADOM Approach
Limitations & Future WorkLimitations & Future Work

� ADOM has no supporting tools (yet).
� Short term: Developing a UML-based CASE tool that supports

ADOM
� Long term: Developing an ADOM guiding tool that can be

plugged into various CASE tools

� The completeness and expressiveness of the
constraints in ADOM have not been checked (yet).
� Short term: Using OCL in order to support additional types of

constraints, such as requiring that a class operation will get no
parameters in any application model of the domain

� Long term: Defining the set of constraints needed for any
domain engineering method and refining it to ADOM and
particular languages

Reinhartz-Berger, Sturm, Wand (c) 2005 100

The ADOM ApproachThe ADOM Approach
Limitations & Future WorkLimitations & Future Work

� As many domain engineering techniques and
methods, the ADOM approach can be criticized as
dealing with too broad areas (domains) which are
usually understood only during the development
process.
� Most of these problems can be solved by taking a special care

of the declaration of domain scopes and the way domain
engineering is woven into software engineering

� We plan to check these problems on different large domains,
such as e-commerce applications and training simulators

Questions can be addressed to: iris@mis.hevra.haifa.ac.il

Reinhartz-Berger, Sturm, Wand (c) 2005 103

Domain Analysis TechniquesDomain Analysis Techniques
An Example of Feature Modeling in PLUSAn Example of Feature Modeling in PLUS

From: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

Reinhartz-Berger, Sturm, Wand (c) 2005 104

Domain Analysis TechniquesDomain Analysis Techniques
An Example of Static Modeling in PLUSAn Example of Static Modeling in PLUS

From: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

Reinhartz-Berger, Sturm, Wand (c) 2005 105

Domain Analysis TechniquesDomain Analysis Techniques
An Example of Dynamic Modeling in PLUSAn Example of Dynamic Modeling in PLUS

From: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

Reinhartz-Berger, Sturm, Wand (c) 2005 106

Domain Analysis TechniquesDomain Analysis Techniques
An Example of Dynamic Modeling in PLUSAn Example of Dynamic Modeling in PLUS

From: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

Reinhartz-Berger, Sturm, Wand (c) 2005 107

Domain Analysis TechniquesDomain Analysis Techniques
The UML Metamodel The UML Metamodel –– Version 1.3Version 1.3

Foundation

Behavioral
Elements

Model
Management

UML Metamodel v. 1.3 R20: Top-Level Packages

Reinhartz-Berger, Sturm, Wand (c) 2005 108

Domain Analysis TechniquesDomain Analysis Techniques
The UML Metamodel The UML Metamodel –– Version 1.3Version 1.3

Core

Data Types

Extension
Mechanism s

Reinhartz-Berger, Sturm, Wand (c) 2005 109

Domain Analysis TechniquesDomain Analysis Techniques
The UML Metamodel The UML Metamodel –– Version 1.3Version 1.3

GeneralizableElement
(f rom Core)

TaggedValue

tag : Name
value : String

ModelElement
(f rom Core)

0..1 n0..1

+taggedValue

n

Stereotype

icon : Geometry
baseClass : Name

n

0..1

+requiredTag n

0..1

0..1

n

+stereotype

0..1

+extendedElement

n

Constraint
(f rom Core)

...

n

+constrainedElement
... {ordered}

+stereotypeConstraint
n

1

n

+constrainedElement1

n

{xor}

Reinhartz-Berger, Sturm, Wand (c) 2005 110

Domain Analysis TechniquesDomain Analysis Techniques
Generic Modeling Environment (GME)Generic Modeling Environment (GME)

Define Entities and Relations for HFSMDefine Entities and Relations for HFSM

Creating and using a simple hierarchical finite stat e machine (HFSM)
modeling language

• The language will include states and transitions
• States can be connected together by transitions
• States can contain other states

Reinhartz-Berger, Sturm, Wand (c) 2005 111

Domain Analysis TechniquesDomain Analysis Techniques
Generic Modeling Environment (GME)Generic Modeling Environment (GME)

Define Aspects for HFSMDefine Aspects for HFSM

Reinhartz-Berger, Sturm, Wand (c) 2005 112

Domain Analysis TechniquesDomain Analysis Techniques
Generic Modeling Environment (GME)Generic Modeling Environment (GME)

Define Attributes for HFSMDefine Attributes for HFSM

Reinhartz-Berger, Sturm, Wand (c) 2005 113

Domain Analysis TechniquesDomain Analysis Techniques
Generic Modeling Environment (GME)Generic Modeling Environment (GME)

Create an ATM model based on the HFSM metamodelCreate an ATM model based on the HFSM metamodel

Reinhartz-Berger, Sturm, Wand (c) 2005 114

Domain Analysis TechniquesDomain Analysis Techniques
metaEditmetaEdit ++

� A Family Tree Language
� There has to be a concept of Person
� Each Person must have two other Persons as Parents
� A Person can be a Parent to his or her Children
� Parents and Children together form a Family relationship

Reinhartz-Berger, Sturm, Wand (c) 2005 115

Domain Analysis TechniquesDomain Analysis Techniques
metaEditmetaEdit ++

Reinhartz-Berger, Sturm, Wand (c) 2005 116

Domain Analysis TechniquesDomain Analysis Techniques
metaEditmetaEdit ++

parent

child

Reinhartz-Berger, Sturm, Wand (c) 2005 117

Domain Analysis TechniquesDomain Analysis Techniques
metaEditmetaEdit ++

Reinhartz-Berger, Sturm, Wand (c) 2005 118

Domain Analysis TechniquesDomain Analysis Techniques
metaEditmetaEdit ++

Reinhartz-Berger, Sturm, Wand (c) 2005 119

Domain Analysis TechniquesDomain Analysis Techniques
References (1)References (1)

� Arango, G. “Domain analysis: from art form to engineering discipline”,
Proceedings of the Fifth International Workshop on Software Specification and
Design, p.152-159, 1989.

� Carnegie, M. “Domain Engineering: A Model-Based Approach”, Software
Engineering Institute, http://www.sei.cmu.edu/domain-engineering/, 2002.

� Champeaux, D. de, Lea, D., and Faure, P. Object-Oriented System
Development, Addison Wesley, 1993.

� Cleaveland, C. “Domain Engineering”, http://craigc.com/cs/de.html, 2002.
� Clauss, M. "Generic Modeling using UML extensions for variability", Workshop

on Domain Specific Visual Languages, Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA'01), 2001.

� Davis, J. “Model Integrated Computing: A Framework for Creating Domain
Specific Design Environments”, The Sixth World Multiconference on Systems,
Cybernetics, and Informatics (SCI), 2002.

� Gomma, H., Designing Software Product Lines with UML, 2004.

Reinhartz-Berger, Sturm, Wand (c) 2005 120

Domain Analysis TechniquesDomain Analysis Techniques
References (2)References (2)

� Gomma, H. and Eonsuk-Shin, M. "Multiple-View Meta-Modeling of Software
Product Lines", Proceedings of the Eighth IEEE International Confrerence on
Engineering of Complex Computer Systems, 2002.

� Gomaa, E. and Kerschberg, L. "Domain Modeling for Software Reuse and
Evolution", Proceedings of Computer Assisted Software Engineering Workshop
(CASE 95), 1995.

� Harel, D. Statecharts: a Visual Formalism for Complex Systems. Science of
Computer Programming 8: 231-274, 1987.

� Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A.,”Feature-Oriented
Domain Analysis (FODA) Feasibility Study”, CMU/SEI-90-TR-021 ADA235785,
1990.

� Morisio, M., Travassos, G. H., and Stark, M. “Extending UML to Support
Domain Analysis”, Proceedings of the Fifth IEEE International Conference on
Automated Software Engineering, pp. 321-324, 2000.

� Nordstrom, G., Sztipanovits, J., Karsai, G., and Ledeczi, A. “Metamodeling -
Rapid Design and Evolution of Domain-Specific Modeling Environments”,
Proceedings of the IEEE Sixth Symposium on Engineering Computer-Based
Systems (ECBS), pp. 68-74, 1999.

� Petro, J. J., Peterson, A. S., and Ruby, W. F. “In-Transit Visibility
Modernization Domain Modeling Report Comprehensive Approach to Reusable
Defense Software” (STARS-VC-H002a/001/00).

