Domain Engineering —

Using Domain Concepts to
Guide Software Design

Iris Reinhartz-Berger ﬁ Arnon Sturm
Department of Management Infromation Systems Department of Information Systems Engineering
University of Haifa, Israel Ben-Gurion University of the Negev, Isra€l

.

.%J Yair Wand
Sauder School of Business
University of British Columbia, Canada

Tutorial 3

Agenda (1)

e Part 1. Domain Engineering
The Landscape of Reuse
The Landscape of Knowledge Engineering & Management
The Landscape of Validation & Verification
Domain Engineering as an Intersection Point
Domain Definitions
Domain Engineering Definitions
Domain Engineering Activities
Domain Engineering & Application Engineering
Domain Analysis Techniques
o Feature-Oriented Techniques: FODA and PLUS
o Metamodeling Techniques: GME and metaEdit+
Domain Engineering Advantages & Limitations

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 2

Agenda (2)

e Part 2: The Application-based Domain
Modeling (ADOM) Approach
Motivation
General Architecture
ADOM and UML through Examples
Experimental results with ADOM
The Current State of ADOM
ADOM Advantages
ADOM Limitations & Future Work

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 3

Part 1:

Domain Engineering

Tutorial 3

The Landscape of Reuse

Wikipedia

e Reuse Is the activity of using a segment of an artifact
(code, design, requirements, etc.) again in different
context.

e The benefits of reuse include:

Reducing development time

Eliminating the likelihood of bugs and errors

Localizing modifications when a change in implementation is
required

Standartization

e Desired features for software artifacts intended to be
reused Include:

Adaptable, Brief (small size), Flexible, Parameterization,
Generic, Fast, Simple (low complexity), Localization of volatile
(changeable) design assumptions, Modularity

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

The Landscape of Reuse

Black-Box Reuse

» Component-based development
 Legacy system wrapping

* COTS integration

» Service-oriented systems

Customizable reuse eI
» Program libraries

» Configurable applications
» Application frameworks
 Application product line

* Program generators

White-Box Reuse
» Design patterns
» Aspect-Oriented Development

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 6

A Comparison of Reuse Approaches

Legacy
system
wrapping

Service-
oriented

COTS
systems

Program
libraries

Basic
Elements

Component,
independent
executable
entity

An interface

Service, unit of work
done by a service
provider to achieve
desired end results for
a service consumer

Commercial,
Off-The-Shelf
products

Classes and
functions

Features

General,
structural&
functional

Tailored
interfaces

General-purpose,
functional, business-
oriented

General,
sometimes
parameterized

General
purpose

Varies from
simple functions
to entire
applications

Varies from
simple functions
to entire
applications

Simple or complex
functions

Complete
systems

Usually does
not make an
application

Way of reuse

Through
interfaces

Through
interfaces

Through
interfaces

Activation,
through API

Utilize existing
functions

4
+
- Tutorial 3

Reinhartz-Berger, Sturm, Wand (c) 2005

A Comparison of Reuse Approaches

Design
Patterns

Aspect-
Oriented

Config.
App.

App.

frameworks

App.
product
lines

Program
generators

Basic
Elements

Pattern,
description of a
problem and
the essence of
its solution

Aspect,
concern

Configuration
mechanism

Source code

Any software
artifact

Transformation
rules

Features

Very abstract
and general,
functional

Functional,
cut-across
system
structure

Specific

Abstract and
general, object-
oriented

Varies

Domain specific

Very small

Varies

Varies from
simple to
entire
applications

Varies from
simple functions
to entire
applications

Varies from
simple functions
to entire
applications

Varies from
simple functions
to application
skeletons

Matching the
specific
problem and
then apply its
solution

Through
weavers

Change of
configuration

Usually through
inheritance and
polymorphism

Customize
according to
specific needs

Create automatic
code

T
+
- Tutorial 3

Reinhartz-Berger, Sturm, Wand (c) 2005

The Landscape of Knowledge Engineering

Knowledge-Based System Analysis And Design — A Kads Developer’'s Handbook by Tansley & Hayball, Prentice Hall, 1993

e Knowledge is a rich form of information, often stored
by humans as expertise in some restricted domain.

e Knowledge engineering covers the activities involved
with obtaining knowledge and creating formal

representation of the obtained knowledge. It includes:

Knowledge acquisition/elicitation — the activity of extracting
or filtering relevant domain knowledge from an expert or user

Knowledge representation — the activity that uses a notation
or formalism for coding the knowledge to be stored

Knowledge reasoning — the activity of inferring new
knowledge from existing information and knowledge

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 9

The Landscape of Knowledge Engineering

Interviewing
techniques

Observational
techniques

Case-based || Logic-based
techniques || te€chniques

Knowledge acquisition
Inductive learning
Knowledge reasoning (learning by examples) e
Rules: production-rules, Network: trees,
meta-rules, heuristics graphs, semantic nets

Logic: algebraic,
first-order, modal, ... Knowledge representation

Frames: attribute- Others: pseudo-code,
values, slots, defaults, problem-oriented

daemons, objects languages, tables, lists
- Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 10

Decision

Statistical
techniques

The Landscape of Validation & Verification

e Validation is the process of determining the degree to
which a model is an accurate representation of the
real world from the perspective of the intended uses of
the model (aiaa G-077-1998).

The purpose of validation is building the right system

It is partially done by getting client (and other stakeholders)

feedback
Verification is the process of determining that a
model implementation accurately represents the
developer's conceptual description of the model and
the solution to the model (aiaa G-077-1998).

The purpose of verification is developing the right building

It is partially done by monitoring the development process

-
Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 11

The Landscape of Validation & Verification

slidation & Verification Technigye

Informal methods such
as software testing
and monitoring

Formal methods, i.e.,
model checking and
theorem proving

Abstract interpretation
and static program
analysis techniques

-
Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 12

Domain Engineering as an Intersection Point

Knowledge
Engineering

S

-
Tutorial 3 emmrariz-Berger, Sturm, Wand (c) 2005 13

Examples for the use of the word Domain

The Free Dictionary by Farlex

In a LAN, a sub-network made up of a group of clients and servers under
the control of one security database. Dividing LANs into domains
improves performance and security.

In a communications network, all resources under the control of a single
computer system.

On the Internet, a registration category (domain name).

In database management, all possible values contained in a particular
field for every record in the file.

A group of end points (phones or gateways) in a SIP telephony
environment.

In magnetic storage devices, a group of molecules that makes up one
bit.

In a hierarchy, a named group that has control over the groups under it,
which may be domains themselves.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 14

Our Definition of Domain

A domain is an area of knowledge characterized by a
set of concepts, their relationships, and constraints

accepted by practitioners in that area.

a set of applications that use a common jargon for describing
the concepts, problems, and solutions

a class of similar systems that share common features and
operations

Other names for the term ‘domain’; ‘product line’,
‘product family’, ...
Domain attributes: mature, stable, economically viable

Domain examples: Telephone switches, Insurance portals,
Customer Relation Management, Online banking

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 15

Domain Engineering Definitions

e Domain engineering is the development and
evolution of domain specific knowledge and artifacts to
support the development and evolution of systems in
the domain.

The purpose of domain engineering is to identify, model,
construct, catalog, and disseminate the commonalities and
differences of particular domain applications

Domain engineering includes engineering of domain models,
components, methods and tools

Domain engineering includes three main activities: domain
analysis, domain design, and domain implementation

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 16

Domain Engineering Activities
Domain Analysis

® DO M ai N an a.l yS | S (The Free Dictionary by Farlex)

Is the domain engineering activity in which domain knowledge
Is studied and formalized as a domain definition and a domain
specification

o Relates to non-implementation issues

Is the process of identifying, collecting, organizing, analyzing
and representing a domain model and software architecture
from the study of existing systems, underlying theory,
emerging technology and development histories within the
domain of interest

Is the analysis of systems within a domain to discover
commonalities and differences among them

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 17

Domain Engineering Activities
Domain Analysis

e Domain analysis includes:
Set objectives: identify stakeholders and their objectives
Scope domain: define selection criteria

Define domain: identify boundary conditions, examples,
counter examples, main features

Define relations: define relations to other domains, divide the
domain into sub-domains

Acquire domain information from experts, legacy systems,
literature, prototyping

Describe domain terminology: lexicon of terms, commonality
& variability, features

Refine domain: build overall domain, analyze trade offs,
Innovative feature combinations

e A common way for carrying out domain analysis Is
modeling

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 18

Domain Engineering Activities
Domain Analysis

Domain » Can be reused in

AN alysi S dom_ain-.specific

applications

» Captures the domain
knowledge

* Is used for validation
and verification
purposes

Reinhartz-Berger, Sturm, Wand (c) 2005

Domain Engineering Activities
Domain Design

e Domain design the activity that takes the results of
domain analysis to identify and generalize solutions for
those common requirements in the form of a Domain-
SpeCiﬁC SOftwal‘e AI’ChiteCture (DSSA) Carnegie-Mellon Software

Engineering Institute.

It focuses on the problem space, not just on a particular
system's requirements, to design a solution (solution space)

It supports developing a common architecture for the system
In the domain and devising a production plan

The domain design model should represent a generic
architecture developed for supporting activities in the
analyzed domain and provide the framework for the
development of reusable components in domain
Implementation

-
Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 20

Domain Engineering Activities
Domain Design

~ omai ‘

Design

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 21

Domain Engineering Activities
Domain Implementation

e Domain implementation is the process of identifying
reusable components based on the domain model
and genel‘iC aI‘ChiteCture Carnegie-Mellon Software Engineering Institute.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 22

Domain Engineering Activities
Domain Implementation

Domain
Implementation

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 23

Domain Engineering & Application Engineering

Domain Engineering Application Engineering

a systematic approach to construct uses the assets to build specialized
reusable assets in a given problem software systems in the given
domain domain

Define and scope domain Do delta analysis and design relative
to a domain model and architecture

Analyze examples, needs, trends

Develop domain model and Use component systems as starting
architecture point

Structure commonality and variability | Find, specialize, and integrate
components

Engineer reusable component Exploit variability mechanisms,
\systems, languages, and tools languages, generators,

-
Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 24

Domain Engineering & Application Engineering

Domain requirements Engineering Q

(models, architecture,
Domain Components)

Engineer/Expert

Unsatisfied requirements,

errors, adaptations Reusable

assets

pplication requirements
Application Developed system

Engineering

Application
Engineer

Adapted from: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 25

Domain Engineering & Application Engineering

Domain Engineering

Domain Analysis Domain

Domain
Model Architectu re

knowledge Domaln
Analysis

Domain-specific

New Requirements
languages

Components

Generators

New Requirements { CI:DUGS;ZT — e\(/:glsotsrl'nnen

\ 4 v \

Customer .
Needs equirements\ Features (Product Integration
Analysis “\Configuratioyy’ , . and Test

Configuration

Application Engineering

Adapted from: the Software Engineering Institute at Carnegie Mellon

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 26

Domain Analysis Techniques (a partial list)

ODM — Organization
Domain Modeling
(M. Simos)

FAST — Family-Oriented
Abstraction, Specification,
and Translation (D. Weiss)

DARE — Domain Analysis

and Reuse Environment
(W. Frakes & R. Prieto-Diaz)

Draco (J. Neighbors) FODA — Feature-Orien%d

Domain Analysj
(Carnegie-Mellon S‘Eb)

PL@Product Line
‘ L-based SE

(Gomaa)

DSSA — Domain-Specific
Software Architecture
(ARPA)

ODE - Ontology-based
Domain Engineering
(Falbo et al.)

GME ?gerlc Modeling
vironment

! (ISIS) /

27

Software Factories
(Microsoft)

MetaEdQe‘a
(metaCa

Domain Analysis Techniques
Feature -Oriented Approaches

e Successful software reuse requires the systematic
discovery and exploitation of commonality across
related software systems.

e Feature Oriented Software Engineering is an
emerging discipline in which feature models are used
to model the commonality and variability in a product
family.

A feature is a requirement or characteristic that is provided by
one or more members of the software product line

Examples of such approaches:
o Feature-Oriented Domain Analysis (FODA)
e Product Line UML-based Software engineering (PLUS)

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

28

Domain Analysis Techniques
Feature -Oriented Domain Analysis (FODA)

e The Feature-Oriented Domain Analysis (FODA)
method supports reuse at the functional and
architectural levels.

Developed by the Software Engineering Institute at Carnegie
Mellon
e The basic observations of FODA:

The general knowledge of a domain can be achieved by
abstracting away “factors” that make one application different
from other applications

To develop applications from the generic products, those
factors that have been abstracted away must be made
specific and reintroduced during refinement

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

29

Domain Analysis Techniques
Feature -Oriented Domain Analysis (FODA)

Domain Analysis

Context Analysis Domain Modelling Architecture Modelling

Structure diagram Entity relationship model Process interaction
model

Context diagram Features model

Module structure
Functional model chart

Domain terminology
dictionary

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 30

Domain Analysis Techniques
Feature -Oriented Domain Analysis (FODA)

e Context Analysis aims at defining the scope of a
domain that is likely to yield exploitable domain
products.

Domain Modeling aims at analyzing the
commonalities and differences within applications in
the domain. It includes:

Feature Analysis

Entity-Relationship modeling

Functional analysis (using state and activity charts)

e Architecture Modeling aims at providing a software
"solution” to the problems defined in the domain
modeling phase.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

31

Domain Analysis Techniques
Feature -Oriented Domain Analysis (FODA)

e A basic diagram in FODA is the feature diagram, which
represents a hierarchical decomposition of features and their
kinds (mandatory, alternative, optional feature).

e Composition rules for features describe which combinations are
valid/invalid:

Requires rules: capture implications between features
Mutually-exclusive rules: Model constraints on feature combinations
e Rationale includes reasons for choosing a feature.
e Feature diagrams and their instantiations:

Feature diagrams concisely describe all possible configurations
(called instances) of a system, focusing on the features that may
differ in each of the configuration

An instance of a feature diagram consists of an actual choice of
features matching the requirements imposed by the diagram

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

32

Domain Analysis Techniques
Feature -Oriented Domain Analysis (FODA)

An example of a Feature Diagram

Car

Mandatory Opticnal
features eature

Transmission Horsepower Air conditioning

foatures Composition rule:

Air congitioning requires Horsepower > 100

Manual

Rationale:
Marual more fuel efficient

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 33

Domain Analysis Techniques
Product Line UML -based Software engineering (PLUS)

e The Product Line UML-based Software engineering
(PLUS) method extends UML-based modeling
methods in order to address software product lines

Developed by Hassan Gomaa (“Designing Software Product
Lines with UML")

e PLUS includes:

Requirements modeling:

e Product line scoping: determining the functionality, the degree
of commonality and variability, and the likely number of product
line members

e Use case modeling: the functional requirements of the product
line are specified in terms of use cases and actors

o Feature modeling: Features, which are the primary vehicle for
describing commonality and variability in software product lines,
are determined and organized into sets

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

34

Domain Analysis Techniques
Product Line UML -based Software engineering (PLUS)

e PLUS includes:
Analysis modeling:

T
+
- Tutorial 3

Static modeling: A problem-specific static model is defined

Object structuring: The objects—kernel, optional, and
alternative—that participate in each use case are determined

Dynamic modeling: The use cases from the use case model
are realized to show the interaction among the objects
participating in each kernel, optional, and alternative use case

Finite state machine modeling: The state-dependent aspects
of the product line are defined by means of hierarchical
statecharts

Feature/class dependency analysis: This step is used to
determine what classes from the analysis model are needed to
realize the features from the feature model

Reinhartz-Berger, Sturm, Wand (c) 2005

35

Domain Analysis Techniques
Product Line UML -based Software engineering (PLUS)

e PLUS includes:

Design modeling:

o Software architectural pattern—based design: It is necessary
to understand both the structural and communication patterns
that can be used for designing the product line software
architecture

o Software product line architectural design: The design of the
product line architecture is approached from the viewpoint of
structuring a distributed application into software components
and their interconnections

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

36

Domain Analysis Techniques
Product Line UML -based Software engineering (PLUS)

e There are two approaches for developing the domain
model of the software product line

The Kernel First Approach
e The kernel of the application domain is determined first
e The common aspects of the domain are determined before the
variability
The View Integration Approach
o Itis most applicable when systems that can be analyzed exists
e Each system is considered a view of the application domain
o The different views are integrated

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

37

Domain Analysis Techniques
Product Line UML -based Software engineering (PLUS)

An Example of Use Case Modeling in PLUS

«kernel»
Confirm
Shipment

«alternative»
Send Invoice

Supplier

«alternative»

A more detailed example Bill Customer

(slides103-106)

Figure 4.6 Example of kernel and alternative use cases
From: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 38

Domain Analysis Techniques
Metamodeling Techniques

e System analysis and design activities can be divided
Into three types with increasing abstraction levels:
The real world is what system analysts perceive as reality
A model is an abstraction of this perceived reality that enables

Its representation using some approach, language, or
methodology

A metamodel is a model of a model, namely the generic
constructs available for modeling a modeling language,
technique, or method, and their relationships

Real Meta-
World Abstracting ode Abstracting Model

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 39

Domain Analysis Techniques
Metamodeling Techniques

Has as source

UML Association |44 as destination] UML Class

M etamodel

possesses M
< Name
ID
License Type

—— Iris Reinhartz-Berger
< 22222222

A

Real World

-
Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 40

Domain Analysis Techniques
Metamodeling Techniques

e Some metamodels usage:

Metamodels are the foundation for integration in
software development

Metamodels help abstracting low level integration
and interoperabllity details and faclilitate partitioning
problems into orthogonal sub-problems

Metamodels enable checking and verifying the
completeness and expressiveness of a model

Metamodels enable generating implementation
artifacts

e Examples of metamodels:
UML version 1.3 (slides 107-109)

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 41

Domain Analysis Techniques
Generic Modeling Environment (GME)

e The Generic Modeling Environment (GME) is a domain-
specific, model-integrated program synthesis tool for creating and

evolving domain-specific, multi-aspect models of large-scale
engineering systems.

Developed by the institute for software integrated systems at
Vanderbilt University

e The modeling paradigm contains all the syntactic, semantic, and
presentation information regarding the domain

Which concepts will be used to construct models?
What relationships may exist among those concepts?

How the concepts may be organized and viewed by the
modeler?

What are the rules governing the construction of models?

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

42

Domain Analysis Techniques
Generic Modeling Environment (GME)

e GME modeling concepts include:
A Project contains a set of Folders
Folders are containers that help organize models

Models, Atoms, References, Connections and Sets are all
first class objects (FCO)

Atoms are the elementary modeling objects that do not have
Internal structure (i.e. they do not contain other objects)
e Each kind of Atom is associated with an icon

o Each kind of Atom can have a predefined set of attributes, whose
values are user changeable

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

43

Domain Analysis Techniques
Generic Modeling Environment (GME)

e GME modeling concepts include:

Models are compound objects that can have parts and inner
structure

e A partin a container Model always has a Role

e The modeling paradigm determines what kind of parts are
allowed in Models acting in which Roles

e E.g., if we want to model digital circuits below the gate level, then
we would have to use Models for gates (instead of Atoms) that
would contain transistor Atoms

The containment relationship creates the hierarchical
decomposition of Models

e Any object must have at most one parent, which is a Model

o At least one Model does not have a parent; it is called a root
Model

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 44

Domain Analysis Techniques
Generic Modeling Environment (GME)

e GME modeling concepts include:
Aspects provide primarily visibility control
o Every Model has a predefined set of Aspects
o Each part can be visible or hidden in an Aspect

o Every part has a set of primary aspects where it can be created
or deleted

A connection is a line that connects two parts of a model

e Connections have at least two attributes: appearance and
directionality

e In order to make a Connection between two objects they must
have the same parent in the containment hierarchy (and they
also must be visible in the same Aspect, i.e. one of the primary
Aspects of the Connection)

o Connections can further be restricted by explicit Constraints
specifying their multiplicity, for instance

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

45

Domain Analysis Techniques
Generic Modeling Environment (GME)

e GME modeling concepts include:
References are parts that are similar in concept to pointers
found in various programming languages

e Any first class object (FCO), except for a Connection, can be
referred to (even references themselves)

o References can be connected just like regular model objects

o Areference always refers to exactly one object, while a single
object can be referred to by multiple References

Sets can be used to specify a relationship among a group of
objects

o Connections and References are binary relationships

e The only restriction is that all the members of a Set must have
the same container (parent) and be visible in the same Aspect

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

46

Domain Analysis Techniques
Generic Modeling Environment (GME)

Attribute

Regnode

0.*

0.*

Constraint

Project

0..*

+member

*

Set

To a GME example (slides 110-113)

ConnRole

+re T rred K

1.*

Atom

Reference

Connection

Tutorial 3

Reinhartz-Berger, Sturm, Wand (c) 2005

47

Domain Analysis Techniques
metaEdit +

e MetaEdit+ (by metaCase) provides:

A domain specific language comprising six building blocks
(meta-meta model elements)

A scripting language for defining translation rules
An application specification environment that is based on the

domain specific language and enforces its constraints

A code generator that is based on the application model and
the translation rules

e Using MetaEdit+ includes two main steps:

An experienced developer first defines the metamodel
concepts, rules, and their mapping to code

Other developers then make models with the concepts guided
by the rules, and code is automatically generated

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 48

Domain Analysis Techniques
metakEdit +

e Form-based metamodeling
Fast to enter concepts
Scales better than graphical metamodels

e Metamodel and model in same tool
Can test metamodel as it is being built or changed

e Reuse of metamodel concepts
Within one metamodel, across different metamodels

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

49

Domain Analysis Techniques
metakEdit +

e MetaEdit+ modeling concepts include:

A graph is a collection of objects, relationships, roles, and
bindings of these to show which objects a relationship
connects via which roles

An object is a thing that exists on its own

A property is a describing or qualifying characteristic
associated with the other types
A port is a part of an object to which a role can connect

A relationship is an explicit connection between a group of
objects. Relationships attach to objects via roles

A role specifies how an object participates in a relationship

To a metaEdit+ example (slides 114-118)

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 50

Domain Analysis Techniques
Advantages

e Provide means for gathering and organizing
domain related information and knowledge .

e Provide libraries of assets to be reused In
particular applications.

e Provide validation and verification templates
for particular applications in order to avoid
semantic errors in early development stages.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 51

Domain Analysis Techniques
Limitations

e Deal with too broad areas (domains) which are
usually understood only during the
development process.

e Deal mainly with static and structural

constraints.

e Deal with two different abstraction levels: the
domain and the application.

Each level is accompanied by different notions and
notations

The transition between the levels remains
sometimes vague

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

52

Part 2:

The ADOM Approach

Tutorial 3

The ADOM Approach

Motivation

e Application and domain models are similar :
They both define structure
They both exhibit functionality (behavior)
They both introduce structural and behavioral constraints

e However they also differ in their:
Abstraction level

Flexibility level

e ADOM treats domains with regular software
engineering tools, methods, and techniques.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

54

The ADOM Approach

Motivation

e When modeling a domain, there are two policies:

Modeling whatever is allowed

o Everything that is allowed in an application model should be
presented in the domain model.

e This policy emphasizes the variability of domain applications.

Constraining whatever is needed

e The domain model should include constraints that should be
satisfied by all the application models in that domain.

e The application models can include additional information, as
long as it does not violate one of the domain constraints.

e This policy emphasizes the commonalities of the applications in
a particular domain.

e The ADOM approach adapts the “constraining
whatever is needed” policy.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

55

The ADOM Approach

General Architecture

e ADOM defines three layers of abstraction:

The application layer , which consists of domain-
specific systems

The domain layer , which captures sets of domain

concepts and relations

The modeling language layer , which consists of
modeling language metamodels

e In all layers the same languages (notions and
notations) are applied.

e Each layer defines constraints on the more
concrete layers.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

56

The ADOM Approach

General Architecture

Multi Agent

Systems
M1.5: Dorain Lay

<
= M 1: Application L ayer

applications

2

%/

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 57

The ADOM Approach

General Architecture

e In the domain layer the structural and behavioral
elements of a specific domain are specified.

This can be done, for example, by using UML structural and
behavioral views

e An application model uses a domain model as a
validation template and a reusable knowledge source:

Any element in the application model is classified according to
the elements declared in the domain model

All the constraints enforced by the domain model should be
applied in any application model of that domain

This can be done, for example, by using UML built-in
stereotype mechanism

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 58

ADOM & UML through Examples

The Domain of Process Control Systems

Applications in the domain monitor and control the values
of certain variables through a set of components that work
together to achieve a common objective or purpose.

Examples for application areas within this domain include
engineering and industrial control systems, control systems

In the human body, and financial derivation-tracking
products.

Two specific examples in the domain:

A water level control system (WLC) for monitoring and
controlling the water level in tanks

A home climate control system (HCC) for monitoring and
controlling room temperature and humidity

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 59

ADOM & UML through Examples

The Water Level Control System

The Water Level Control (WLC) system monitors and
controls the water levels in tanks

Each tank has several boundary limits according to
different manger preferences

The system is expected to satisfy all these requests,
ensuring that the actual water level is always in the
closed range [Low, High]

The actual level of the water Iin the tank iIs measured
by a boundary stick

Emptying and filling faucets are installed in each tank,
enabling changing the water level at will

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 60

ADOM & UML through Examples
The Water Level Control System — A UC Diagram

External entities — Relations
% actors

— Set Boundary

Levels Main
manager \ operations — bour_1dary
/ stick

Use cases

Turn off

Check Water
Height

«

\

\ 5 //<<include>>
filling Monitor Water /emptying

faucet Height & Act faucet

Turn on

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

61

ADOM & UML through Examples

The Water Level Control System — A Class Diagram

Water controller Water tank Desired Water Height

- checklinterval: int -tankID: int -requestingUser: String
-Location: String -minHeight: double
-capacity: double -maxHeight: double
-status: {active, non-active}

+ monitorHeightAndAct() + monitorHeightAndAct()
+ calculateMinDesiredHeight()

+ calculateMaxDesiredHeight()

Each tank has \

one filling _
faucet and Faucet Boundary Stick

one emptying -faucetID: int -stickID: int
faucet -faucetType: {filling, emptying} -actualHeight: double
-faucetStatus: {opened, closed} -datelnstalled: Date

+ open () + initialize (): boolean
+ close ()

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 62

ADOM & UML through Examples

The Water Level Control

‘Water ‘Water

:Boundary

System — A Sequence Diagram

controller tank

Stick

‘Desired Water

Emptying:

Height

Faucet

‘emptying

i*[i:l..n] monitorHéightAndAct()

AH = getActualHegight()

imaxDH:caIcuIateI:MaxDesiredHeight()

—
1

1
i

| *fi:1..] getMaxHdight()

i [AH<maxDH] cIo:Se()

[AH>maxDH] opien()

I
| —

faucet

setFaucetStatus(cloised)
1 1

close

4
.
- Tutorial 3

Reinhartz-Berger, Sturm, Wand (c) 2005

:4_
[}

=isetFaucetStatus(opened)

1
1
open '
1
1

63

ADOM & UML through Examples

The Water Level Control System — A Sequence Diagram

‘Water ‘Water | |Boundary| IDesired Water
controller tank Stick Height

minDH:calcuIateMinDesiredHeight()

S — |
' *[i:1..n] getMinHdight()

. [AH>minDH] close() .
! | setFaucetStatus(closed)
1 1

1
) —
close

[AH<mMINDH] opdian()

='setFaucetStatus(opened)
:—

¢ open
L

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 64

ADOM & UML through Examples

The Home Climate Control System

e The Home Climate Control (HCC) application ensures
that the temperature in a room of a house remains in
the closed range [LT, HT], while the humidity in this
room remains lower than the maximum defined
humidity (<MH)

The system controls several rooms, while each room
has its own limit values (LT, HT, MH) which can be
configured by the user

The actual levels of temperature and humidity are
measured by thermometers and humidity gauges,
respectively

e An air conditioner and a water sprayer are installed in
each room, enabling changing the temperature and
humidity at will

-
Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 65

ADOM & UML through Examples
The Home Climate Control System — A UC Diagram

Set Desired

_— Temp& Humidity

Turn off Ater Sprayer

Home User
Sprayin
<<include>> N praying
/
e \ Thermometer
Turn on <<include>> \
Y

\<<include>> Environment
Measuring ——

¥

li <<include>> o
_ Cooling Humidity

Alr Gauge
Conditioner

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 66

ADOM & UML through Examples

The Home Climate Control System — A Class Diagram

Water Sprayer Air Conditioner

-sprayerID: String -aclD: int
-sprayerStatus: {idle, spraying} -acStatus: {on, off}
-acMode: {heat, cool, idle}

+ act(op:{heat, cool, stop, pause, resume})

+ spray()
\ e

HC controller Room Desired Temperature

-templnterval: int -roomNumer: int -upperRange: int
-humidityInterval: int -buildingName: String -lowerRange: int
-occupied: Boolean

+ monitorTempAndAct() :
+monitorHumidityAndAct() + monitorTempAndAct()
+monitorHumidityAndAct()

i N

Humidity Gauge Thermometer Desired Humidity

-gaugelD: int -thermometerID: int -maxHumidity: int
-roomHumidity: double -roomTemperature: int
-serviceCompany: String -degrees: {C, F}

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 67

ADOM & UML through Examples

The Home Climate Control System — A Sequence Diagram

‘HC ‘Room | |:Thermometer :Desired Alr T
controller Temperature | |[Conditioner -Air
! ! ' ' ! Conditioner

*[i:1..n] monitorT:’empAndAct()

| AT = getRoomTemperature()

LT = getLowerRange()

uT = getUpperRarige()

i acStatus = getAcStatus()

»'
»

acMode = getAcMode()

[
>

[acStatus=on and acMode<>heat and AT<LT] act(heat)

' setAcMode(heat)

<
heat

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 68

ADOM & UML through Examples

The Home Climate Control System — A Sequence Diagram

‘HC ‘Room | |:Thermometer :Desired Alr T
controller Temperature| |Conditioner -Air
! ! i Conditioner

[acStatus=on and acMode=heat and AT>LT] act(stop) R !
| ' ' setAcMode(idle)

i <
| stop

[acStatus=on and acMode<>cool and AT>UT] act(cool)

' setAcMode(cool)

| —
cool

[acStatus=on and acMode=cool and AT<UT] act(stop)

’ ' setAcMode(idle)

—
stop

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 69

ADOM & UML through Examples

The Home Climate Control System — A Sequence Diagram

setSprayerStatus(idle)

P
1

‘HC :Room ‘Humidity :Desired ‘Water

controller | Gauge Humldlty Sprgyer ater
; ; : ! | Sprayer

+[i:1..n] monitorHumidityAndAct() !

EAH = getRoomHumlci:ity() i i

MH = getMaxHumidity() g

[AH>MH] spray() E N i

| i VisetsprayerStatus(spraying)

s o

: spray ;

E ack i

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 70

ADOM & UML through Examples

The Domain of Process Control Systems

e Basic concepts in the PCS domain:
Controller

Controlled Device - e.g., emptying/filling faucet,
air-conditioner, water sprayer, etc.

Controlled Element - e.g., tank, room, etc.

Controlled Value - e.g., water height, temperature,
humidity, etc.

Sensor - e.g., boundary stick, thermometer,
humidity gauge, etc.

Operator — e.g., user, maintainer, etc.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 71

ADOM & UML through Examples

The Domain of Process Control Systems

e Relations between PCS concepts:

A Controller controls Controlled Elements
e A water controller controls water tanks
e A climate controller controls rooms

The Controlled Values in a Controlled Element
are constrained

e The water height in a water tank is constrained
e The temperature and humidity in a room are constrained

A Sensor measures Controlled Values
o A boundary stick measures water height
o A thermometer measures temperature
o A humidity gauge measures humidity

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

72

ADOM & UML through Examples

The Domain of Process Control Systems

e Relations between PCS concepts:

A Controlled Device Is installed in a Controlled
Element

o An emptying/filling faucet is installed in a tank

e An air-conditioner is installed in a room

o A water sprayer is installed in a room

An Operator activates the system
o A manager activates the WLC system
e A home user activates the HCC system
An Operator might configure the system

e A manager configures the water height range in a tank

e A home user configures the temperature and humidity
levels in a room

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

73

ADOM & UML through Examples

The Domain of Process Control Systems

e The behavior in a PCS system:
Configuring

o The water height range

o The temperature and humidity levels
Monitoring & Checking the actual values

e The water height

e The temperature

e The humidity
Acting

o Filling/emptying

o Heating/cooling

e Spraying water

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

74

ADOM & UML through Examples

The Process Control Systems — Similarities

X

manager Home
User Operator

T N R

Water Controlled

filling emptying Air _
faucet faucet Conditioner Sprayer Device

X AR x

boundary Thermometer Humldlty Sensor
stick Gauge

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 75

ADOM & UML through Examples

The Process Control Systems — Similarities

Set Boundary Set Desired System Settings
Levels Tempé& Humidity

Turmn on Turn off System Activation

Check Water Environment — Checking
Height Measuring

Monitor Water Heating/
Height & Act Cooling

Monitoring&

=TI Acting

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 76

ADOM & UML through Examples

The Process Control Systems Use Case Diagram

<<0. n>>

1.

l.” <<1l..n>> <<1l..n>>
<<l.n>> 1 +_ System Activation Sensor

Operator >
1.*
1.0 . |
<<include>>

v 1.*

<<1..n>> <<include>> <<1..n>
=

Monitoring& Acting Checking

<<1..n>>
Controlled
Device

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

7

ADOM & UML through Examples

The Water Level Control Use Case Diagram

<<system settings>>
Set Boundary
/ Levels
e

<<system activation>> /
<<operator>> Turn off <<sensor>>

manager \ <<checking>> boundary stick
Check Water
<<system activation>> Height

Turn on /1
\N .
\<<|nclude>> /<<include>>
o /
<<monitoring& acting>>
Monitor Water

Height & Act
<<controlled device>> <<controlled device>>

filling faucet emptying faucet

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 78

ADOM & UML through Examples

The Home Climate Control Use Case Diagram

<<system settings>>
Set Desired

__—— Temp& Humidity

\ <<system activation>> .
<controlled device>>
W

Turn off ater Sprayer
<<operator>

Home User <<monitoring& acting>>
Spraying

<<include>> N <<sensor>>

/
. \ Thermometer
<<system activation>>

Turn on <<include>> \

Y

\ <<checking>>
<<include>> Environment

N Measuring ——

\«monitoring& acting>> _ - el

Heating/ —
. Coolin <<include>> <<sensor>>
<<controlled device>> g Humidity

Alr Gauge
Conditioner

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 79

ADOM & UML through Examples

The Process Control Systems Class Diagram

<<1..n>>

Controller Sensor

-<<0..n>> interval -<<1..n>> sensorlD
P -<<1..n>> sensorValue

+ <<1..n>> monitorAndAct()

1.*

<<1..n>> <<1..n>>

Controlled Element Controlled Device

-<<1..n>> celdentity - —| -<<1.n>>cdiD
-<<1..n>> ceStatus: Enumeration -<<1..n>> cdStatus: Enumeration

+ <<1..n>> monitorAndAct() + <<1..n>> act()

1.
1.*

<<1..n>>

Controlled Value
-<<1..n>> boundaryValue

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 80

ADOM & UML through Examples

Class Diagram Comments - Attribute Signatures

e The general signature of an attribute in a

domain model is:
<<attrMin..attrMax>> attrScope attrCName: attrType

<<attrMin..attrMax>> defines how many attributes of the particular
application class can be classifies as the attribute classification name
(attrCName)

The attribute scope (attrScope) is one of public, package, protected,
or private. A scope of a domain model element is the least restricted
scope that this element can get in an application model of that
domain.

The attribute type (attrType) can be any atomic or composite type in
UML (e.g., integer, Boolean, float, String, Date, etc.) or a set of
those.

e Examples:

<<1..n>> private cdStatus: Enumeration <>Each Controlled Device
has at least one private attribute of an enumeration type indicating
the device status.

-
Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 81

ADOM & UML through Examples

Class Diagram Comments - Operation Signatures

The general signature of an operation in a domain
model is:

<<opMin..opMax>> opScope opCName
(<<param,Min..param,Max>> param,CName: param,Type, ...,

<<param_ Min..param_Max>> param_ CName: param Type):
reType

<<opMin..opMax>> and <<param;Min..param;Max>> are multiplicity
constraints

opScope is the scope constraint
param;Type and reType are the type constraints
Examples:

<<1..n>> public monitorAndAct(): Boolean <>Each Controller has at
least one operation classified as monitorAndAct which returns a
Boolean type. The number of parameters, their types, and the
operation scope are not restricted in the domain level.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 82

ADOM & UML through Examples

The Water Level Control Class Diagram

<<controller>> <<controlled Element>> <<controlled Value>>

<<celdentity>> -requestingUser: String
-Location: String <<boundaryValue>>
-capacity: double <<boundaryValue>>
<<ceStatus>>

<<interval>>

+ calculateMinDesiredHeight()
+ calculateMaxDesiredHeight()

Each tank has \

one filling <<controlled Device>> <<sensor>>
faucet and
one emptying <<cdID>> <<sensorlD>>
faucet <<cdStatus>> <<sensorValue>>
<<cdStatus>> -datelnstalled: Data

<<act>> + initialize (): boolean
<<act>>

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 83

ADOM & UML through Examples

The Home Climate Control

<<controlled Device>>

Class Diagram

<<controlled Device>>

<<cdID>>
<<cdStatus>>

<<cdID>>
<<cdStatus>>
<<cdStatus>>

<<act>>

<<act>>

<<controller>>

<<interval>>
<<interval>>

<<monitorAndAct>>
<<monitorAndAct>>

N

e

<<controlled Element>>

<<controlled Value>>

<<celdentity>>
<<celdentity>>

/

<<sensor>>

<<sensor|D>>
<<sensorValue>>
-serviceCompany: String

=
w,
- Tutorial 3

<<ceStatus>>

<<boundaryValue>>
<<boundaryValue>>

<<monitorAndAct>>
<<monitorAndAct>>

AN

<<sensor>>

<<controlled Value>>

<<sensoriD>>
<<sensorValue>>
-degrees: {C, F}

<<boundaryValue>>

Reinhartz-Berger, Sturm, Wand (c) 2005

84

ADOM & UML through Examples

The Process Control Systems Sequence Diagram

:Controller| |:Controlled :Sensor :Controlled| |:Controlled
Element Value Device

:Controlled
Device

§<<1..n>> monitorAnd:iAct()

<<l.n>> getsensorVaIu:e()

1 <<1..n>> Check Boundary and Act Block

<<1..n>> getBoundaryValue()

+act()

»
»

action

f—

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 85

ADOM & UML through Examples

The Water Level Control

‘Water ‘Water

:Boundary

Sequence Diagram

controller tank

i*[i:l..n] monitorl—lté:ightAndAct()

Stick

‘Desired Water

Emptying:

Height

Faucet

‘emptying

AH = getActualHeight()

imaxDH:caIcuIateI:MaxDesiredHeight()

—
1

1
——

| *fi:1..] getMaxHdight()

| [AH<maxDH] close()

: [AH>maxDH] opfen()

I
| —

faucet

setFaucetStatus(cloised)
1 1

close

-
L]
- Tutorial 3

Reinhartz-Berger, Sturm, Wand (c) 2005

:4_
[}

=isetFaucetStatus(opened)

1
1
open '
1
1

86

ADOM & UML through Examples

The Water Level Control Sequence Diagram

‘Water ‘Water | |Boundary| IDesired Water
controller tank Stick Height

minDH:calcuIateMinDesiredHeight()

S — |
'\ *[i:1..n] getMinHdight()

| [AH>minDH] close()
: i !

setFaucetStatus(closed)
1 1

) —
close

\ [AH<mInDH] opd:en()

='setFaucetStatus(opened)
:—

i open

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 87

ADOM & UML through Examples

The Home Climate Control Sequence Diagram

‘HC ‘Room | |:Thermometer :Desired Air T
controller Temperature| |Conditioner -Air

. | . | Conditioner
' [i:1..n] monitorTempAndAct() |

| AT = getRoomTemﬁ:)erature()

LT = getLowerRange()

uT = getUpperRarige()

i acStatus = getAcStatus()

»
L |

acMode = getAcMode() !

[acStatus=on and acMode<>heat and AT<LT] act(heat)

’ setAcMode(heat)

' —
heat

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 88

ADOM & UML through Examples

The Home Climate Control Sequence Diagram

‘HC ‘" Thermometer :Desired Air T
controller Temperature| |Conditioner -Air

Conditioner

' setAcMode(idle)

P :
| 1
' stop

' setAcMode(cool)
— |

] l
| 1
. cool

' setAcMode(idle)

1
!
i :

| stop

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 89

ADOM & UML through Examples

The Home Climate Control Sequence Diagram

:HC :Room ‘Humidity :Desired
controller Gauge Humidity

i*[i:l..n] monitorl—jumidityAndAct()

EAH = getRoomHumidity/()

MH = getMaxHumidity()

+ [AH>MH] spray()

*
| setsprayerStatus(spraying)

—
spray

ack

setSprayerStatus(idle)

» .
!
1

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 90

The ADOM Approach

Experimental Results

e The experiments research guestions:

Does adding a domain model ease an individual’s application
comprehension?

Does adding a domain model help in creating more correct
application models?
e The subjects:

Third year students in a four-year engineering B.Sc. program
at the Ben-Gurion University of the Negev, Israel

All of them were students of the Information Systems
Engineering program

They had no previous knowledge or experience in system
modeling and specification

They took the course “Object-Oriented Analysis and Design”
at the winter semester of the 2004-5 academic year

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

91

The ADOM Approach

Experimental Results

e The experimental tasks:

In the first task the students were asked to respond to nine
true/false comprehension questions about the Home Climate
Control (HCC) application. Examples of questions:

e There are two types of devices that are controlled by the system

e The system checks its sensor data, the thermometer and the humidity
gauge, only through the Heating/Cooling use case

In each situation when the air-conditioner is on and the room
temperature is lower than the lowest bound of the desired temperature,
the heating operation of the air-conditioner is activated

In the second task the students were asked to build a model of the
Water Level Control (WLC) application based on a set of
requirements. They were asked to provide:

The system use case diagram
The system class diagram

A sequence diagram of tank filling
A statechart of a water faucet

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 92

The ADOM Approach

Experimental Results

e Experimental Settings:

The students were divided arbitrarily into two groups of 34 and
36 students

Each group got a different test form type:

e The regular UML forms included only the HCC model: a use
case diagram, a class diagram, a sequence diagram describing a
heating/cooling scenario, and state diagrams describing the
functionality of a water sprayer and an air-conditioner

e The ADOM-UML forms included the domain model, as well as
the HCC model
Checking the differences between the two groups according
to the average grades of the students in their studies, no
significant difference was found (t = 0.32, p ~ 0.75).

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 93

The ADOM Approach

Experimental Results

e Experiment Results

Regular ADOM-
UML UML

Comprehension 12.42 13.74
(out of 18) (69.00%) | (76.33%)

Modeling (out 24.88 28.51
of 32) (77.75%) | (89.09%)

Remark: Although it can be argued that having more information or knowledge
about the domain is the reason for the differences in the student
achievements, having more diagrams in different abstraction level
(application vs. domain) to consult with in exam conditions somehow
balances the asymmetry between the two groups.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 94

The ADOM Approach

Current State

e The ADOM approach was already applied to:
UML:

o |. Reinhartz-Berger and A. Sturm, Behavioral Domain Analysis — The
Application-based Domain Modeling Approach, the 7t International
Conference on the Unified Modeling Language (UML'2004), Lecture
Notes in Computer Science 3273, pp. 410-424, 2004.

A. Sturm and |. Reinhartz-Berger, Applying the Application-based
Domain Modeling Approach to UML Structural Views, the 23
International Conference on Conceptual Modeling (ER'2004), Lecture
Notes in Computer Science 3288, pp. 766-779, 2004.

Activity Diagrams for enterprise modeling

o |. Reinhartz-Berger, P. Soffer, and A. Sturm, A Domain Engineering
Approach to Specifying and Applying Reference Models, accepted to
Enterprise Modeling and Information Systems Architectures
(EMISA'05), 2005.

Object-Process Methodology (OPM)

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

95

The ADOM Approach

Perspectives

The reuse perspective

ADOM supports open reuse by incorporating domain elements
into application models

o Basic elements: the modeling language elements

e Features: structural and behavioral views and constraints

e Size: varies
o Way of reuse: utilizing domain elements

The knowledge engineering perspective
ADOM provides a means for knowledge representation

The validation and verification perspective

ADOM provides a means for specifying validation templates (i.e.,
domain models) for application modeling

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 96

The ADOM Approach

Advantages

Treating domains similarly to applications enables the specification of
behavioral constraints and not just structural ones.

ADOM can be used for validating system models against their domain

models in order to detect semantic errors in early development stages.
Validating an application model throughout gradual system development
stages reduces the development cost as errors are detected in early stages
These errors cannot be automatically found when using syntactic modeling
languages alone

Treating domains in a separate layer (and not in the metamodel layer)

enables adjustment of ADOM to different modeling languages.

The usage of the same modeling language for both the application and
domain layers can reduce the ontological gap and the communication
problems between the different stakeholders in the system development
process.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 97

The ADOM Approach

Advantages

e Applying ADOM specifically to UML, the standard object-oriented
modeling language, also benefits from the maturity of the UML
environment, including its CASE tools.

e The combination of ADOM and UML establishes a formal
framework for defining and constraining stereotypes in UML.

To the best of our knowledge the only way to define stereotypes and UML
extensions (till now) was via a natural language

While using natural languages is more comprehensible to humans, it lacks
the needed precision and formality for defining domain elements, constraints,
and usage contexts

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 98

The ADOM Approach

Limitations & Future Work

e ADOM has no supporting tools (yet).

Short term: Developing a UML-based CASE tool that supports
ADOM

Long term: Developing an ADOM guiding tool that can be
plugged into various CASE tools
e The completeness and expressiveness of the
constraints in ADOM have not been checked (yet).

Short term: Using OCL in order to support additional types of
constraints, such as requiring that a class operation will get no
parameters in any application model of the domain

Long term: Defining the set of constraints needed for any
domain engineering method and refining it to ADOM and
particular languages

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

99

The ADOM Approach

Limitations & Future Work

e As many domain engineering techniques and
methods, the ADOM approach can be criticized as
dealing with too broad areas (domains) which are
usually understood only during the development
process.

Most of these problems can be solved by taking a special care
of the declaration of domain scopes and the way domain
engineering is woven into software engineering

We plan to check these problems on different large domains,
such as e-commerce applications and training simulators

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 100

The End...

Questions can be addressed to: iris@mis.hevra.haifa.ac.il

Tutorial 3

Appendices

Domain Analysis Techniques
An Example of Feature Modeling in PLUS

«alternative feature»
Flexible Manufacturing

«altemnative» «alternative»
«alternativer Move Part to Process Part at «alternative»

Start Work Order Workstation Flexible Move Part from
Workstation Workstation Pick & Place

Robot

: N) \
«include» N «include» «include» «include»
A\

e

«alternative» Manufacturing
Flexibly Manufacture Part Robot

Part Storage,
Part Retrieval

Production

B

1
|
’, \
\ : ;
«optional feature» : «extend» \ «extend» Automme_d Guided
Storage & Retrieval | \ Yetcle

1 \
|

|

\

\
\
«optional» «optional»
Store Part Retrieve Part

Figure 5.3 Flexible Manufacturing use case and feature dependencies

From: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

A
|
I
|
|

ASRS Forklift Truck

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 103

Domain Analysis Techniques
An Example of Static Modeling in PLUS

Tutorial 3

«kernel»
«external inpu_l
device»
DoorSensar

Inputs to

>

Outputs to

>

«Kernel»
«external input
device»
WeightSensor

1

Inputs to

Outputs to

|

«kernel»
«external input
device»
Keypad

1

Inputs 10

«product line system»

1ol

«optional »
«extginal output
devicen
Beeper

MicrowaveOven Outputs to

> ProductLineSystem [1 P |

«kernel»
«external timer»
Clock

1

«kernel»
«external output
device»
HeatingElement

Awakens

>

Outputs to

[

«kernel»
«external output
device»
Display

Figure 6.6

Outputs to

>

«optional»
«external output
device»
Turntable

«optional»
«external output
device»
Lamp

Microwave oven product line context class diagram
From: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

Reinhartz-Berger, Sturm, Wand (c) 2005

104

Domain Analysis Techniques
An Example of Dynamic Modeling in PLUS

«external input device» «external input devices «exlernal imers
:Clock

: BooleanWeightSensor 1 Keypad

«gxternal input device»
: DoorSensor

1.9: Door Opened Input | 2.10: Weight Input | _4: Cooking Time Key Input |
«product line system» 3+ Door Closed Input 5*: Numeric Key Input \L
6: Start Key Input

: MicrowaveOvenSystem

7*.8: Timer Event

«timer»
: OvenTimer

«input device interface» «input device interface»

«inpul device interface» : BooleanWeightSensor : Keypadinterface

: DoorSensorlnterface Interface

T1.8.1:

2.1: Item Placed 4.1: Cooking Time Selected Decrement
I‘ﬂ‘ 1: tem Removed 5.1: Cooking Time Entered Cooking
6.1: Start Time

1.1,9.1: Door Opened

3.1: Door Closed 5.2a: Update
Cooking

Time

wentity»

«state dependent control»
:OvenData

: MicrowaveOvenControl

6.2: Start Cooking 4.2: Prompt Tor Time -
/ 62 Sun Conkin \ i = .24 Start Timer

~<<— 8.3 Timer Expired
o 7.3: Update Cooking Time Display
«output device interface» "m,"t‘;m'fd':v lce. 8.3a: Display End Prompt
interface»
nterface

: One-levelHeatingElemen : One-lineDisplay 4.3.83a.1 Read
- : One-li spla 23, : Read
Interface Interface \‘
—_— wentity
: 5 :Englis I

4.4.8.
Prompt

| |
4.5: Time Py 1
i’ 6.3: Start Cooking Output \1’ e

5 : 5.3.7.4: Display Time
8.5: Stop Cooking Output 8.32.3: End Prompt

«external outpul device» «external output devices
: One-levelHeating : One-lineDisplay

Element

Figure 7.6 Communication diagram for a kernel use case: Cook Food

From: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

y Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 105

Domain Analysis Techniques
An Example of Dynamic Modeling in PLUS

1

: MicrowaveOvenSystem

\9: Door Opened Input
«product line system» ~ 3:

«external input device»
: DoorSensor

«external inpul device»
: BooleanWeightSensor

«external input device»
: Keypad

Door Closed Input

v

| 2,10: Weight Input

v

| 4: Cooking Time Key Input

«external timer»

: Clock

«input device interface»
: DoorSensorlnterface

8.4a|beeper|:

««output device
interface»

: Beeperlnterface

8.4a.l: Beep

Output

)

1.1,9.1: Door Opened
3.1: Door Closed

BQE[/

N

5*: Numeric Key Input
6: Start Key Input

«input device interface»

_: BooleanWeightSensor

Interface

2.1: Ttem Placed
10.1: Item Removed

«inpul device interface»
: Keypadinterface

Tl

: Cooking Tune Entered
6.1: Start

/4, 1: Cooking Time Selected Decrement

Cooking
Time

5.2a: Update
Cooking

«stale dependent control»
: MicrowaveOvenControl

Time

\l, 7*.8: Timer Event

8.1:

«imers
: OvenTimer

7.2: Time left
8.2: Finished

/ 6.2: Start Cooking

8.4: Stop Cooking

\

«output device interface»
: One-levelHeatingElement
Interface

«entity»
:OvenData

4.2: Prompt for Time
5.2: Display Cooking Time

—>= 6.2a: Start Timer

«oulput device

8.3: Timer Expired

interface»

P —
7.3: Update Cooking Time Display
8.3a: Display End Prompt

v

6.3: Start Cooking Output
8.5: Stop Cooking Output

:One-lineDisplay
Interface

e

| | 4-5: Time Prompt

4.3,8.3a.1: Read
4.4.8.3a.2:

Prompt

L centity»
: EnglishDisplay
4. Prompts

«external output device»
+ Beeper

Figure 7.7 Variant communication diagram depicting the impact of the Beeper variation point and optional feature

Tutorial 3

«external outpul device»
: One-levelHeating
Element

v

«external output devices

: One-lineDisplay

5.3,7.4: Display Time
8.3a.3: End Prompt

Reinhartz-Berger, Sturm, Wand (c) 2005

From: Hassan Gomaa, Designing Software Product Lines with UML, Addison Wesley, 2004

Domain Analysis Techniques
The UML Metamodel - Version 1.3

UML Metamodel v. 1.3 R20: Top-Level Packages

Behavioral Model
Elements Management

Foundation

O

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 107

Domain Analysis Techniques
The UML Metamodel - Version 1.3

Extension
Mechanisms

O

Data Types

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 108

Domain Analysis Techniques
The UML Metamodel - Version 1.3

+taggedValue TaggedVvalue

ModelElement n tag : Name
0.1 .
n (from Core) value : String

{ordered} .
constrainedElement +requiredTag n

+extend edElement

Constraint
(from Core)

GeneralizableElement
(from Core)

n
N+stereotypeConstraint

+stereotype

0.1 Stereotype P

icon : Geometry 1 +constrainedElement
baseClass : Name

gt
0.1

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 109

Domain Analysis Techniques

Generic Modeling Environment (GME)

MetaGME - HESM - [HESM — fHESM,/]

= =]
||5| x]

el File Edit Wiew ‘Window Help

ey | X &'

|« BB x |9 Qs 443 &3 o @EEOEE=Em] 2

[& T Mame[HFSM |ParadigmSheet Aspect|ClassDiagram = Base: [NA8 Zoom: [100% | _ =
ey - Aggiegate | Inheritance | Meta |

s |HFSH =1
por] F- %" HFSM

BY

=

State

=G
Transition dst ST
==Zonnection== |_____________

Event field Star‘[TState :hool

£ 8

modeling language
» The language will include states and transitions

« States can be connected together by transitions

Creating and using a simple hierarchical finite stat e machine (HFSM)

» States can contain other states

-

Define Entities and Relations for HFSM

-

Resdy

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005

EDIT [100% [MetaGME [11:34 &

110

Domain Analysis Techniques

Generic Modeling Environment (GME)

MetaGME - HFSM - [HFSM - /HFSM/] _I— ili*_f
fal File Edit View window Help =
| & Wl B @ X |8 O 4 A 4|35 Hatuap EEEEsm| 2 a8 [X &

~] e W78 Zoom: [100% ~| : _ =
Agaregate | Inheritance | Meta |

Rk T Mame:|HFSM {ParadigmS heet Acbect R
e HFSHM =l
StateMachine . F
& =<fspect== <’ HESM
1= 8
&
4
=rc
Transition dst State
==Connection== |_____________ ==Mode|==
Event feld StartState : bool
| ! ’j
= x =
State = farkind
==hspact== ==AzpectPromy== e e - = : :
B B i =] Attributes F'rpfe;ér_'neesl F:'rupedl'esl _
3 bstract? Falze -
I oot folder? True)
General preferences: color=0:0080C0
SameAspect
|
| ClassDiagram. Visualization | Constraints | attributes |
® . =
Ready EDIT [100% [MetaGME [11:35 A

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 111

Domain Analysis Techniques

Generic Modeling Environment (GME)

MetaGME - [HFSM - /HFSM /]
%4l File Edit Wiew wWindow Help

|« & |l Ba @ X |8 3| 4 o4 4|35 Foorumirtm EmEasEm| s [X &w
K T Mame:[HFSM |Paradigms heet Aﬁ:dmmbutes > Yase: N7 Zoom: [100% | — = ==
a Agareaate | Inheritance | Meta |
= HFSH] =l
t -Odl HF«SM'
T State StartState
b <<(;rgr?1:iléltiognn>> ==Model== =<BooleanAttributes=
ﬁ Eiart: feld StartState : bool
[
Event
==FieldAttribute==
< |5
o £ 2% IE il
- 3= wvent el i igle
==HooleanAttribute== % = — = T T
Attibutes | Preferences | Properties |
ey e
== Global Scope? True
Help:
- e able’? True
<=EnumAtiribute>- FPrompt: Ewent:
[ata tvpe: String
D efault:
Murmber of ines: 1
==FieldAttribute== _'J ‘
ClassDiagram | Visualization | Constraints atributes |
= . =
Ready EDIT [100% [MetaGlE [11:33 &
T
L]

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 112

Domain Analysis Techniques
Generic Modeling Environment (GME)

HESM - Root Folder - [ATM - /ATM]

Lal File Edit View Window

Help

[fildBm@X | Qs bt 3 @EnEEasEm| 2

B

,? T Mame: IATM

AspectlStateMachine ;l Basze: IN.-".Q_ Z'aom:lSDX ;I

Pleare Inge rhyonr Cand

{State

Pleare Take yorr Cath

Cark Dispe iged
Tiawk

Plears £ekota di

Erertamont
ko ke Dprifta rece pe

ntChegking

jonidyon [k D pinta rece ipt

Thank ¥ou

Print

Recz jpt Brivied

P rinted

P (i | inhertance | Meta |

| |aTM

E-5® AT
S ATM
i-fd AccountChecking
i-fdd CashEjmcted
T4l PIMcodeTest
-Tdl Ready
i-f4f ReceiptPrinted

LTl W aitingForPrink

State

3
IHead_l,l

m'ifib!-?lﬁé‘l Freferences | F_"ropefll'esl

= forfind

Skart State? Fals=

|

StateM achine

Create an ATM model based on the HFSM metamodel

-

4
L]
- Tutorial 3

Reinhartz-Berger, Sturm, Wand (c) 2005

ECIT |90% HFSM [12:04 P

113

Domain Analysis Techniques

metaEdit +

e A Family Tree Language
There has to be a concept of Person
Each Person must have two other Persons as Parents
A Person can be a Parent to his or her Children
Parents and Children together form a Family relationship

Abraham Mona
Simpson Simpson
Homer Marge
Simpson Simpson
Bart Lisa Margaret
Simpson Simpson Simpson

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 114

Domain Analysis Techniques
metakEdit +

[&] Object Tool

Open... | Perzon .
Symbol Editor
New... | Object sl El fEn G
Froject... |FaminTree |é‘é E|Q|TDO\|’.\40?’7$|

Froperties

Local name Property name D ata type Unique?

“Firgt narme First narme String F

Farnily narme Farnily narme String [Editable List) F Fi I'St name
Family %a me

Drescription

£ Il]
Calor: |. V| Fill: ||E V| Style: | i | weight:
Active: None Grid: 1010 Zoom: 200%

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 115

Domain Analysis Techniques

metaEdit +

Relationship Tool |:||E||g| P Role Tool

Open... | | Farnily
[T] | Relationzhip

Project... | | Family Tree = =[]
Properties Opern... child |
Local name Froperty name [T] | Frole | D ata wpe Inigue?

Project... | Family Tree |

Properties

E Role Tool

Local name Froperty name [rata type Urigue?

Drezcription

Diezcription

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 116

Domain Analysis Techniques
metakEdit +

F=l Graph Tool F=l Graph bindings definer

Relationzships Roles Objects

Parent Person |

| Parent
0N Child

Froperties

Local name Froper

“Family name |Fan'|il_l,I

Dezcription

Generate Types | E=plogions

Irfi Bindings | Decompozitions

Help Conztraints Feparts

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 117

Domain Analysis Techniques

metaEdit +

-
L]
- Tutorial 3

E Family Tree: Simpson, Movember 7, 2003, 11:49

Graph Edit Wiew Twpes Help

S ¥ DR oo

|:||Fa|

Abraham
Simpson

Mona

Simpson

Homer
Simpson

Marge
Simpson

Barnt
Simpson

Lol il]

Lisa
Simpsan

Margaret
Simpson

b
>

Active: None

Subgraph[s]: Mone

Grid: 1010

Reinhartz-Berger, Sturm, Wand (c) 2005

Zoom: 100%

118

Domain Analysis Techniques
References (1)

Arango, G. “Domain analysis: from art form to engineering discipline”,
Proceedings of the Fifth International Workshop on Software Specification and
Design, p.152-159, 19809.

Carnegie, M. “Domain Engineering: A Model-Based Approach”, Software
Engineering Institute, http://www.sel.cmu.edu/domain-engineering/, 2002.

Champeaux, D. de, Lea, D., and Faure, P. Object-Oriented System
Development, Addison Wesley, 1993.

Cleaveland, C. “Domain Engineering”, http://craigc.com/cs/de.html, 2002.

Clauss, M. "Generic Modeling using UML extensions for variability”, Workshop
on Domain Specific Visual Languages, Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA'01), 2001.

Davis, J. “Model Integrated Computing: A Framework for Creating Domain
Specific Design Environments”, The Sixth World Multiconference on Systems,
Cybernetics, and Informatics (SCI), 2002.

Gomma, H., Designing Software Product Lines with UML, 2004.

Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 119

Domain Analysis Techniques
References (2)

Gomma, H. and Eonsuk-Shin, M. "Multiple-View Meta-Modeling of Software
Product Lines", Proceedings of the Eighth IEEE International Confrerence on
Engineering of Complex Computer Systems, 2002.

Gomaa, E. and Kerschberg, L. "Domain Modeling for Software Reuse and
Evolution”, Proceedings of Computer Assisted Software Engineering Workshop
(CASE 95), 1995.

Harel, D. Statecharts: a Visual Formalism for Complex Systems. Science of
Computer Programming 8: 231-274, 1987.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A.,"Feature-Oriented
Domain Analysis (FODA) Feasibility Study”, CMU/SEI-90-TR-021 ADA235785,
1990.

Morisio, M., Travassos, G. H., and Stark, M. “Extending UML to Support
Domain Analysis”, Proceedings of the Fifth IEEE International Conference on
Automated Software Engineering, pp. 321-324, 2000.

Nordstrom, G., Sztipanovits, J., Karsai, G., and Ledeczi, A. “Metamodeling -
Rapid Design and Evolution of Domain-Specific Modeling Environments”,
Proceedings of the IEEE Sixth Symposium on Engineering Computer-Based
Systems (ECBS), pp. 68-74, 1999.

Petro, J. J., Peterson, A. S., and Ruby, W. F. “In-Transit Visibility
Modernization Domain Modeling Report Comprehensive Approach to Reusable
Defense Software” (STARS-VC-H002a/001/00).

-
Tutorial 3 Reinhartz-Berger, Sturm, Wand (c) 2005 120

