Behavioral Domain Analysis — The Application-based
Domain Modeling Approach

Iris Reinhartz-Berger' and Arnon Sturm’

"Department of Management Information Systems,
University of Haifa, Haifa 31905, Israel
iris@mis.hevra.haifa.ac.il
*Department of Information System Engineering,
Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
sturm @bgumail.bgu.ac.il

Abstract. Being part of domain engineering, domain analysis enables
identifying domains and capturing their ontologies in order to assist and guide
system developers to design domain-specific applications. Domain analysis
should consider commonalities and differences of systems in a domain,
organize an understanding of the relationships between the various elements in
that domain, and represent this understanding in a formal, yet easy to use, way.
Several studies suggest using metamodeling techniques for modeling domains
and their constraints. These metamodels are basically structural and present
static constraints only. We propose an Application-based DOmain Modeling
(ADOM) approach for domain analysis. This approach treats a domain as a
regular application that needs to be modeled before systems of that domain are
specified and designed. This way, the domain structure and behavior are
modeled, enforcing static and dynamic constraints on the relevant application
models. The ADOM approach consists of three-layers: the language layer
handles modeling language ontologies and their constraints, the domain layer
holds the building elements of domains and the relations among them, and the
application layer consists of domain-specific systems. Furthermore, the ADOM
approach defines dependency and enforcement relations between these layers.
In this paper we focus on applying the ADOM approach to UML and especially
to its class and sequence diagrams.

1 Introduction

Domain Engineering is a software engineering discipline concerned with building
reusable assets and components in a specific domain [4, 5, 6]. We refer to a domain as
a set of applications that use a common jargon for describing the concepts and
problems in that domain. The purpose of domain engineering is to identify, model,
construct, catalog, and disseminate the commonalities and differences of the domain
applications [21]. As such, it is an important type of software reuse, verification, and
validation [14, 15].

Similarly to software engineering, domain engineering includes three main
activities: domain analysis, domain design, and domain implementation. Domain

analysis identifies a domain and captures its ontology [24]. Hence, it should identify
the basic elements of the domain, organize an understanding of the relationships
among these elements, and represent this understanding in a useful way [4]. Domain
design and domain implementation are concerned with mechanisms for translating
requirements into systems that are made up of components with the intent of reusing
them to the highest extent possible.

Domain analysis is especially crucial because of two main reasons. First, analysis
is one of the initial steps of the system development lifecycle. Avoiding syntactic and
semantic mistakes at this stage (using domain analysis principles) helps to reduce
development time and to improve product quality and reusability. Secondly, the core
elements of a domain and the relations among them usually remain unchanged, while
the technologies and implementation environments are in continuous improvement.
Hence, domain analysis models usually remain valid for long periods.

Several methods and architectures have been developed to support domain
analysis. Most of them rely on Unified Modeling Language (UML) [3] and
metamodeling techniques [25]. However, most of these works are concerned with
domain structural elements and relations, neglecting domain behavioral constraints.
Other techniques for domain analysis (e.g., [7, 23]) use UML extension mechanisms,
or more accurately stereotypes. Yet, this mechanism provides no formal definition of
domain models.

In this paper we present the Application-based DOmain Modeling (ADOM)
approach which enables modeling domains as if they were regular applications. This
approach enables the specification of both structural and behavioral aspects of any
application within a domain. The ADOM approach consists of three layers: the
application layer, the domain layer, and the (modeling) language layer. In the
application layer, the required application is modeled as composed of classes,
associations, collaborations, etc. In the domain layer, the domain elements and
relations are modeled as if the domain itself is an application. Finally, the language
layer includes metamodels of modeling languages (or methods). We also provide a set
of verification and validation rules between the different layers: the domain layer
enforces constraints on the application layer, while the language layer enforces
constraints on both the application and domain layers. Thus, the contribution of this
paper is twofold. First, we provide an approach for modeling the structure and
behavior of domains and for validating application models against domain models.
Secondly, basing the ADOM approach on UML, we provide a formal framework for
defining and constraining stereotypes.

The structure of the rest of the paper is as follows. In Section 2 we review existing
works in domain analysis, dividing them into single-level and two-level domain
analysis approaches. Section 3 introduces our three-level ADOM approach,
elaborating on its applicability to UML class and sequence diagrams. We exemplify
the approach stages and validation constraints on a domain of sensor-based machines
and an elevator system. Finally, Section 4 summarizes the strengths of this approach
and refer to the future research plan.

2 Domain Analysis — Literature Review

Referring to domain analysis as an engineering approach, Argano [1] suggested that
domain analysis should consist of conceptual analysis combined with infrastructure
specification and implementation. Meekel et al. [15] suggested that in addition to its
static definition, domain analysis may be conceived of as a development process,
which identifies a domain scope, builds a domain repository (model), and validates
that model. Since the domain keeps evolving as new requirements are introduced,
domain analysis in not a one-shot affair [5, 6]. Gomaa and Kerschberg [12] agreed
that the domain model lifecycle is constantly evolving via an iterative process.
Supporting this domain evolution concept, Drake and Ett [9] claimed that domain
analysis gives rise to two concurrent, mutually dependent lifecycles that should be
correlated: the fundamental system lifecycle and the domain lifecycle. Becker and
Diaz-Herrera [2] proposed that the two concurrent streams are the design for reuse
(i.e., the domain model) and the design with reuse (i.e., the application model).
Following this spirit, the Model-Driven Architecture (MDA) [19], which originally
aimed to separate business or application logic from underlying platform technology,
observes that system functionality will gradually become more knowledge-based and
capable of automatically discovering common properties of dissimilar domains. In
other words, the aim of MDA is to eventually build systems in which considerable
amount of domain knowledge is pushed up into higher abstraction levels. However,
this vision is supported in a conceptual level and not in a practical one.

Several methods and techniques have been developed to support domain analysis.
We classify them into two categories: single-level and two-level domain analysis
approaches.

2.1 Single-Level Domain Analysis Approaches

In the single level domain analysis approaches, the domain engineer defines domain
components, libraries, or architectures. The application designer reuses these domain
artifacts and can change them in the application model. Meekel et al. [15], for
example, propose a domain analysis process that is based on multiple views. They
used Object Modeling Technique (OMT) [22] notations to produce a domain-specific
framework and components. Gomaa and Kerschberg [12] suggest that a system
specification will be derived by tailoring the domain model according to the features
desired in the specific system.

Feature-Oriented Domain Analysis (FODA) [13] defines several activities to
support domain analysis, including context definition, domain characterization, data
analysis and modeling, and reusable architecture definition. A specific system makes
use of the reusable architecture but not of the domain model.

Clauss [7] suggests two stereotypes for maintaining variability within a domain
model: <<variation point>>, which indicates the variability of an element, and
<<variant>>, which indicates the extension part. These stereotypes seems to be weak
when defining a domain model and validating a specific application model of that
domain.

Catalysis [10] is an approach to systematic business-driven development of
component-based systems. It defines a process to help business users and software
developers share a clear and precise vocabulary, design and specify component
interfaces so they plug together readily, and reuse domain models, architectures,
interfaces, code, etc. Catalysis introduced two types of mechanisms for separating
different subject areas: package extension and package template. Package extension
allows definitions of language fragments to be developed separately and then merged
to form complete languages. Package templates, on the other hand, allow patterns of
language definition to be distilled and then applied consistently across the definition
of languages and their components. Both package extension and package template
mechanisms deal basically with classes and enable renaming of the structural
elements when reusing them in particular systems.

2.2 Two-Level Domain Analysis Approaches

In the two-level domain analysis approaches, connection is made between the domain
model and its use in the application model. Contrary to the single-level domain
analysis approaches, the domain and application models in the two-level domain
analysis approaches remain separate, while validation rules between them are defined.
These validation rules enable avoiding syntactic and semantic mistakes during the
initial stages of the application modeling, reducing development time and improving
system quality. Petro et al. [20], for example, present a concept of building reusable
repositories and architectures, which consist of correlated component classes,
connections, constraints, and rationales. When modeling a specific system, the system
model is validated with respect to the domain model in order to check that no
constraint has been violated.

Schleicher and Westfechtel [23] discuss static metamodeling techniques in order to
define domain specific extensions. They divide these extensions into descriptive
stereotypes for expressing the elements of the underlying domain metamodel,
restrictive stereotypes for attaching constraints to stereotyped model elements, regular
metamodel extensions, and restrictive metamodel extensions. They mostly deal with
packages and classes, but not with behavioral elements.

Gomma and Eonsuk-Shin [11] suggest a multiple view meta-modeling method for
software product lines. They solve model commonalty and variability problems
within a specific domain (the product line) by defining special stereotypes which are
used in the use case, class, collaboration, statechart, and feature model views. These
stereotypes are modeled in the metamodel level by class diagrams, while the relations
among them are modeled in Object Constraint Language (OCL) [26]. The main
shortcoming of this method is in changing the core UML notation (e.g., by adding
alternating paths) and in using structural metamodels that capture only the static
constraints of the extension.

Morisio et al. [16] propose an extension to UML that includes a special stereotype
indicating that a class may be altered within a specific system. The extension is
demonstrated by applying it to the UML class diagram. The validation of an
application model with respect to its domain model entails checking whether a class

appears in the application model along with its associate classes, but not if the class is
correctly connected.

The Institute for Software Integrated Systems (ISIS) at Vanderbilt University
suggested a metamodeling technique for building a domain-specific model [17] using
UML and OCL. The application models are created from the domain metamodel,
enabling validation of their consistency and integrity in terms of the domain analysis
[8]. While the ISIS project provides an environment for performing the tasks of
building domain metamodels and domain application models, it is not clear how the
domain dynamics is specified and validated, as the metamodel technique is basically
static.

3 The Application-Based Domain Modeling (ADOM) Approach

Application models and domain models are similar in many aspects. An application
model consists of classes and associations among them and it specifies a set of
possible behaviors. Similarly, a domain model consists of core elements, static
constraints, and dynamic relations. The main difference between these models is in
their abstraction levels: domain models are more abstract than application models.
Furthermore, domain models should be flexible in order to handle commonalities and
differences of the applications within the domain.

The classical framework for metamodeling is based on an architecture with four
abstraction layers [18]. The first layer is the information layer, which is comprised of
the desired data. The model layer, which is the second layer, is comprised of the
metadata that describes data in the information layer. The third metamodel layer is
comprised of the descriptions that define the structure and semantics of metadata.
Finally, the meta-metamodel layer consists of the description of the structure and
semantics of meta-metadata (for example, metaclasses, metaattributes, etc.).
Following this general architecture, we divide our Application-based DOmain
Modeling (ADOM) approach into three layers: the application layer, the domain
layer, and the (modeling) language layer. The application layer, which is equivalent to
the model layer (M1), consists of models of particular systems, including their
structure and behavior. The domain layer, i.e., the metamodel layer (M2), consists of
specifications of various domains. The language layer, which is equivalent to the
meta-metamodel layer (M3), includes metamodels of modeling languages. The
modeling languages may be graphical, textual, mathematical, etc. In addition, the
ADOM approach explicitly enforces constraints among the different layers: the
domain layer enforces constraints on the application layer, while the language layer
enforces constraints on both the application and domain layers. Figure 1 depicts the
architecture of the ADOM approach. The application layer in this figure includes
three applications: Amazon, which is a Web-based book store, eBay, which is an
auction site supported by agents, and Kasbah, which is a multi-agent electronic
marketplace. Each one of these systems may have several models in different
modeling languages. The domain layer in Figure 1 includes two domains: Web
applications and multi agent systems, while the language layer in this example
includes only one modeling language, UML. Since UML is the current standard

(object-oriented) modeling language, we apply the ADOM approach to UML in this
work.

Figure 1 also shows the relations between the layers. The black arrows indicate
constraint enforcement of the domain models on the application models, while the
grey arrows indicate constraint enforcement of the language metamodels on the
application and domain models.

Multi Agent
Systems

Web
applications

M1: Application Layer

Figure 1. The Application-based DOmain Modeling (ADOM) architecture

The rest of this section elaborates on the domain and application layers, while the

language layer is restricted to the UML metamodel except of two minor changes:

1. A model element (e.g., attribute, operation, message, etc.) has an additional
feature, "multiplicity", which represents how many times the model element
can appear in a particular context. This feature appears as <<min..max>>
before a relevant domain element in a domain model, while <<1..1>> is the
default (and, hence, does not appear).

2. A model element can have several stereotypes, which are separated by
commas.

3.1 The Domain Layer of the ADOM Approach

In the domain layer, the domain engineer specifies the structural and behavioral
elements of a specific domain. This is done using UML structural and behavioral
views. Figures 2-4 are a (partial) UML model that describes a domain of sensor-based
machines. Figure 2 is the class diagram of the domain, which includes the basic
elements of the domain and the static relations among them. The top-level class is
machine which may have any number (including 0) of attributes of any type, as the

"<<0..m>> anyAttribute: anyType" declaration indicates. The scope of these
attributes in the application models must be private. The order of scopes (from the
least resticted to the most restricted) is public, package, protected, and private. A
scope of a model element defined in a domain model is the least restricted scope that
this element can get in any application model of that domain!'.

machine
B5<<0..m>> anyAttribute : anyType

operates
R . W<<1..2>> initialize()
W<<1..m>> work(<<0..m>>anyParameter : anyType) : anyType

®<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

{

Operator

controller
E¥5<<0..m>> anyAttribute : anyType

Wstart(mode : int, anyParameter : anyType)
W<<1..m>> work(<<0..m>>anyParameter : anyType) : anyType
W<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

0.

sensor
B<<0..m>> anyAttribute : anyType

<<1..m>> test(<<0..m>>anyParameter : anyType) : Boolean
®<<1..m>> result(<<0..m>>anyParameter : any Type) : anyType
®<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

data

B5<<0..m>> anyAttribute : anyType

W<<1..m>> find(<<0..m>>anyParameter : anyType) : anyType
®<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

Figure 2. A UML class diagram describing a domain of sensor-based machines

Figure 2 also specifies that machine has one or two operations of type initialize
and at least one operation of type work. The initialize operations get no parameters
and their return type is void, while the work operations can get any number of
parameters of any type and their return types are not specified in the domain layer, as
indicated by the ": anyType" declaration at the end of the operation signature. In
addition to these types of operations, machine may have any number (including 0) of
operations (as the reserved word anyMethod indicates) with any type of signature.
All the operations of a machine (as all the operations in this domain model) are
defined as public in the domain model and, hence, their scopes are not restricted in the
domain-specific application models, i.e., they can be public, package, protected, or
private.

! Enforcing a specific scope on a model element (e.g., public) can be done by defining an OCL
constraint.

A machine consists of one controller, which is composed of any number of
sensors and any number of data items. A controller may have any attributes of any
type, exactly one start operation with one mode parameter of type integer and any
number of additional parameters of any type, at least one work operation, and other
possible operations. A sensor should have at least one test operation and at least one
result operation, in addition to other attributes and operations. A test operation gets
any number of parameters of any type and returns a Boolean value, while a result
operation may have any signature. Finally, data should have at least one find
operation with any signature. Figure 2 also shows that an operator (a system actor)
has a relation with the class machine, labeled "operates".

Using UML sequence diagram notation, Figure 3 describes a possible scenario of
initialization in the domain of sensor-based machines. According to this scenario, the
operator invokes an initialize operation of a machine. As a consequence, the
machine invokes a start operation of its controller, which immediately invokes at
least one test operation of the relevant sensors. All these messages are synchronous,
enforcing that the corresponding messages in the application models will be
synchronous too. Specifying a message to be asynchronous in a domain model
enables defining this message as either synchronous or asynchronous in an application
model of that domain.

A

: Operator

‘ : machine H : controller

‘ . sensor ‘

1: initialize ‘ ‘
L

B 3 <<1.m>> test

Figure 3. A UML sequence diagram describing an initialization operation in the

domain of sensor-based machines

The ADOM approach also supports conditional messages and loops. Figure 4

describes a possible scenario of the machine work:

1. The operator invokes a work operation of a machine.

2. The machine invokes a work operation of its controller.

3. The controller invokes at least one result operation of its sensors. This
invocation can be conditional and/or run in a loop, as indicated by
[anyCondition] and [anyLoop], respectively.

4. The controller invokes zero or more find operations of its data items. This
invocation can run in a loop, but it is not conditional.

5. Finally, the controller invokes at least one work operation of itself. This
invocation can be conditional and/or run in a loop.

6. Steps 3-5 can run in a loop, as indicated by the <<1..m>> anyLoop note
enclosing steps 3-5.

2 Enforcing a message to be only asynchronous can be done by introducing a new type of an
OCL constraint.

X

: Operator

_:machine : controller : sensor : data

Q J i

1: work

2: work

>

<<1..m>> anyLoop AN
3: <<1..m>> [anyLoop] [anyCondition] result

T

4: <<0..m>> [anyLoop] find

5: <<1..m>> [anyLoop] [anyCond] work

pu—

J f

Figure 4. A UML sequence diagram describing a machine work operation in the
domain of sensor-based machines

3.2 The Application Layer of the ADOM Approach

An application model uses a domain model as a validation template. All the static and
dynamic constraints enforced by the domain model should be applied in any
application model of that domain. In order to achieve this goal, any element in the
application model is classified according to the elements declared in the domain
model using UML built-in stereotype mechanism. As defined in the UML user guide
[3], a stereotype is a kind of a model element whose information content and form are
the same as a basic model element, but its meaning and usage are different. The
ADOM approach requires that a model element in an application model will preserve
the static and behavioral relations of its stereotypes in the relevant domain model(s).

Returning to our example of the sensor-based machine domain, we describe in this
section a model of an elevator system in that domain. Figure 5 is the class diagram of
the elevator system. Following the class hierarchy of the domain, shown in Figure 2,
the elevator (classified as a machine) consists of an elevator controller (classified as
a controller). The elevator controller consists of two types of sensors, a door sensor
and a button sensor, and music items (classified as data items). Two types of
operators are defined: user who uses the elevator and technical person who fixes
the elevator.

<<operates>> <<machine>> <<operates>>
uses Elevator fixes
* +|®<<initialize>> normallnitialization() * *
<<Gperators> S <<initialize>> recovery() <<operator>>
User % <<work>> gotoFloor() Technical Person
=
/ <<Sensor>>
<<controller>> Button Sensor
Elevator Controller
&noOfFloors : int < <test>> testButton() : Boolean
&5currentFloor : int — ® < <result>> minPressedButtonld() : int
& doorOpen : Boolean S<<result>> maxPressedButtonld() : int
5 direction : {up, down}
W< <start>> initialization(<<mode>> initialMode : int) [<>—| BZ:?ES;::;
®<<work>> gotoFloor()
% <<work>> openDoor() i
% <work>> closeDoor() :<<test>> testDoorStatus(doorStatus : String) : Boolean
%< <work>> playMusic(musicIDs : int[]) <<result>> PeopleAtDoor() : Boolean

<<data>>
Music
BSmusicld : int

BmusicName : String
E5floorRange : int

W <<find>> getCriterionMusicld(requiredFloorRange : int) : int

Figure 5. A UML class diagram describing an elevator system in the domain of
sensor-based machines

Table 1. The domain constraints and their fulfillment in the elevator system
model — comparing the class diagrams

Class Feature Feature Constraint Allowed Actual
Feature Feature
Multiplicity | Multiplicity
General attribute Private 0..0 0
Initialize No parameters 1.2 2
Machine operation No return type
Work operation - 1.0 1
General - 0..00
operation
General attribute Private 0..0 4
Start operation Mode:int parameter 1.1 1
Controller - No return type
Work operation - 1.0 4
General - 0..0 0
operation
General attribute Private 0..00 0
Test operation Boolean return type 1.0 1
Sensor Result operation - 1.0 1* | 2%

General - 0..0 0
operation
General attribute Private 0..0 3

Data Find operation - 1.0 1
General - 0..0
operation

* for door sensor, ** for button sensor

Table 1 summarizes the domain constraints of the four basic domain elements,
machine, controller, sensor, and data, and how they are correctly fulfilled in the class
diagram of the elevator system. As can be seen, none of the constraints expressed in
Figure 2 are violated by the application model shown in Figure 5.

Figure 6 includes two possible scenarios for initializing the elevator system: Figure
6(a) describes a normal initialization of the elevator, while Figure 6(b) describes an
initialization operation that occurs after recovery (due to electrical power interruption,
for example). These scenarios follow the guidelines of an initialization operation in
the sensor-based machine domain as expressed in Figure 3. In these scenarios, no
conditions and no loops are defined; hence, the ADOM approach validates only the
order of the stereotyped operations and their multiplicities.

Table 2 summaries the constraints on an initialization operation in the domain of
sensor-based machines and how the various constraints are fulfilled by the sequence
diagrams of the elevator system specified in Figure 6. Note that the validation is done
with respect to the stereotype of a model element in the application layer, which is
itself an element in the domain layer.

% <<machine>> <<controller>> <<sensor>> <<sensor>>
: : Elevator _: Door Sensor _ Button
: Technical Person Controller Sensor
Qt <<initialize>> normallnitialization() D
P2 <cstarts> initialization(0)
3: <<test>> testDoorStatus("open")
4: <<test>> testDoorStatus("close")
5: <<test>> testButton()
(a)
;ﬁ <<machine>> <<controller>> <<Sensor>>
_t Elevator. _: Door Sensor
: Technical Person Controller
Q 1: <<initialize>> recovery() D
P 2: <<start>> initialization(1)
3: <<test>> testDoorStatus("close")
(b)

Figure 6. UML sequence diagrams describing initialization operations.
(a) Normal initialization. (b) Initialization after recovery.

Table 2. The domain constraints and their fulfillment in the elevator system
model — comparing the sequence diagrams of the initialization operations

Layer/ Operation Source Destination Mulit.
Sequence
Domain/ initialize operator machine 1..1
Initialization
Application/ normallnitialization technical person | elevator 1
normal init.
Application/ recovery technical person | elevator 1
recovery
Domain/ Start machine controller 1..1
Initialization
Application/ initialization(0) elevator elevator 1
normal init. controller
Application/ initialization(1) elevator elevator 1
recovery controller
Domain/ test controller sensor 1..00
Initialization
testDoorStatus("open") elevator door sensor

controller
Application/ testDoorStatus("close") | elevator door sensor 3
normal init. controller

testButton() elevator button

controller sensor
Application/ testDoorStatus("close") | elevator door sensor 1
recovery controller

(@)

c
o
]
2

‘ : Elevator ‘ ‘ : Elevator ‘ ‘ : Door Sensor

: Button : Music
Controller Sensor

D 1: gotoFloor() Q F D D

3: canCIose:PeopIe?tDoor()
)

4: [canClose] closeDoor(

-

5: currentFloor=getCurrentFloor()
-
6: direction=getDirection()

-«

7: [direction::"dowrl"] dest:minPressgiBunonld()

2: gotoFloor()

.

I
8: [direction=="up"] gest=maxPressedELL1'Lonld()

>

9: *[i:1..n] musicToIJIay[i]=getCriterionMusicId(abs(dest-currentFIoor))

gl

10: pIayMusic(musi%ToF’lay)

-«

Figure 7. A UML sequence diagram describing an elevator work operation called
gotoFloor

Figure 7 describes a possible work scenario of the elevator system. According to
this scenario, called "go to floor", after the user pressed a button, the elevator
(through its controller and door sensor) checks if the door can be closed, close it (if
s0), check the travel length, and choose music accordingly?.

Table 3. The domain constraints and their fulfillment in the elevator system
model — comparing the sequence diagrams of the work operation

Layer/ Operation Cond./ Source Destination Mult.
Sequence Loops
Domain/ work None operator machine 1..1
work
Application/ | gotoFloor() None user elevator 1
go to floor
Domain/ work None machine controller 1.1
work
Application/ | gotoFloor() None elevator elevator 1
g0 to floor controller
Domain/ result Any controller sensor 1.0
work
Application/ | peopleAtDoor() None elevator door sensor 1
go to floor controller
Domain/ find AnyLoop | controller data 0..00
work
Application/
0
g0 to floor
Domain/ work Any controller controller 1.0
work
Application/ | closeDoor() canClose elevator elevator 1
go to floor controller controller
Domain/ result Any controller sensor 1.0
work
minPressedButton | direction= | elevator button
Application/ 1d() "down" controller sensor 5
go to floor maxPressedButto direction= | elevator button
nld() "up" controller sensor
Domain/ find AnyLoop | controller data 0..0
work
. getCriterionMusic | *[i:1..n] elevator music
Api)llt?latlon/ Id(abs(dest- controller 1
g0 to Hoor currentFloor))
Domain/ work Any controller controller 1.0
work
Application/ | playMusic(music | None elevator elevator 1
g0 to floor ToPlay) controller controller

Table 3 summarizes the fulfillment of the constraints enforced by the domain
sequence diagram expressed in Figure 4 on this particular scenario. Note that in
Figure 7 there are several calls for operations that were not explicitly specified within

3 For simplicity, the stereotypes of the messages and the objects in Figure 7 are suppressed.

the domain sequence diagram in Figure 4, for example, getDirection() and
getCurrentFloor(). These operations are categorized as the additional methods
allowed by the domain class diagram (Figure 2) for the controller class. They can be
invoked in any stage in a sequence diagram, since they are basic operations (getter
methods in this case).

4 Summary and Future Work

In this paper we introduced the Application-based DOmain Modeling (ADOM)
approach which enables domain engineers to define structural and behavioral
constraints that are applicable to all the systems within a specific domain. When
developing a system, its domain (or domains) should be defined in order to enforce
domain restrictions on the system. The advantages of this approach are twofold. First,
it validates system models against their domain models in order to detect semantic
errors in early development stages. These errors cannot be automatically found when
using syntactic modeling languages alone. Secondly, the usage of the same modeling
language for the application and domain layers reduces the ontological gap and the
communication problems between the different stakeholders in the system
development process. Applying ADOM specifically to UML, the standard object-
oriented modeling language, also benefits from the maturity of the UML environment,
including its CASE tools. Furthermore, this combination of ADOM and UML
establishes a formal framework for defining and constraining stereotypes in UML.
However, the separation of the ADOM architecture into three layers (application,
domain, and language) makes it flexible enough to be applied to other languages as
well.

Further work is planned to develop a domain verification tool that will check a
system model against its domain model and will even guide system developers
according to given domain models. An experiment is also planned to classify domain-
specific modeling errors when using the ADOM approach and other domain analysis
methods. This experiment will also check the adoption of several different domains to
the same application following the ADOM approach.

References

1. Arango, G. “Domain analysis: from art form to engineering discipline”, Proceedings of the
Fifth International Workshop on Software Specification and Design, p.152-159, 1989.

2. Becker, M. and Diaz-Herrera, J. L. “Creating domain specific libraries: a methodology,
design guidelines and an implementation”, Proceedings of the Third International
Conference on Software Reuse, pp. 158-168, 1994.

3. Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Language User Guide,
Addison-Wesley, 1998.

4. Carnegie, M. “Domain Engineering: A Model-Based Approach”, Software Engineering
Institute, http://www.sei.cmu.edu/domain-engineering/, 2002.

5. Champeaux, D. de, Lea, D., and Faure, P. Object-Oriented System Development, Addison
Wesley, 1993.

6. Cleaveland, C. “Domain Engineering”, http://craigc.com/cs/de.html, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Clauss, M. "Generic Modeling using UML extensions for variability", Workshop on
Domain Specific Visual Languages, Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA'01), 2001.

Davis, J. “Model Integrated Computing: A Framework for Creating Domain Specific
Design Environments”, The Sixth World Multiconference on Systems, Cybernetics, and
Informatics (SCI), 2002.

Drake, R. and Ett, W. “Reuse: the two concurrent life cycles paradigm”, Proceedings of the
conference on TRI-ADA '90, p.208-221, 1990.

D’Souza, D. F., Wills, A.C. Objects, Components, and Frameworks with UML — The
CatalysisSM Approach. Addison-Wesley, 1999.

Gomma, H. and Eonsuk-Shin, M. "Multiple-View Meta-Modeling of Software Product
Lines", Proceedings of the Eighth IEEE International Confrerence on Engineering of
Complex Computer Systems, 2002.

Gomaa, E. and Kerschberg, L. "Domain Modeling for Software Reuse and Evolution",
Proceedings of Computer Assisted Software Engineering Workshop (CASE 95), 1995.
Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A.,”Feature-Oriented Domain
Analysis (FODA) Feasibility Study”, CMU/SEI-90-TR-021 ADA235785, 1990.

Massonet, P., Deville, Y., and Neve, C. “From AOSE Methodology to Agent
Implementation”, Proceedings of the First Joint Conference on Autonomous Agents and
Multi-Agents Systems, pp. 27-34, 2002.

Meekel, J., Horton, T. B., France, R. B., Mellone, C., and Dalvi, S. “From domain models
to architecture frameworks”, Proceedings of the 1997 symposium on Software reusability,
pp. 75-80, 1997.

Morisio, M., Travassos, G. H., and Stark, M. “Extending UML to Support Domain
Analysis”, Proceedings of the Fifth IEEE International Conference on Automated Software
Engineering, pp. 321-324, 2000.

Nordstrom, G., Sztipanovits, J., Karsai, G., and Ledeczi, A. “Metamodeling - Rapid Design
and Evolution of Domain-Specific Modeling Environments”, Proceedings of the IEEE Sixth
Symposium on Engineering Computer-Based Systems (ECBS), pp. 68-74, 1999.

OMG, “Meta-Object Facility (MOF™)”, version 1.4, 2003,
http://www.omg.org/docs/formal/02-04-03.pdf

OMG, "Model Driven Architecture (MDA™)" version 1.0.1, 2003,
http://www.omg.org/docs/omg/03-06-01.pdf

Petro, J. J., Peterson, A. S., and Ruby, W. F. “In-Transit Visibility Modernization Domain
Modeling Report Comprehensive Approach to Reusable Defense Software” (STARS-VC-
H002a/001/00).

Pressman, R.S. "Software Engineering: A Practitioner's Approach", Sth Edition, New York:
McGraw-Hill, 2000.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-Oriented
Modeling and Design, Prentice-Hall International, Inc., Englewood Cliffs, New Jersey,
1991

Schleicher, A. and Westfechtel, B. “Beyond Stereotyping: Metamodeling Approaches for
the UML”, Proceedings of the Thirty Fourth Annual Hawaii International Conference on
System Sciences, pp. 1243-1252, 2001.

Valerio, A., Succi, G., and Fenaroli M. “Domain analysis and framework-based software
development”, ACM SIGAPP Applied Computing Review, 5 (2), 1997.

Van Gigch, J. P. System Design Modeling and Metamodeling. Kluwer Academic
Publishers, 1991.

Warmer, J. and Kleppe, A. The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley, 1998.

