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Abstract. Being part of domain engineering, domain analysis enables 
identifying domains and capturing their ontologies in order to assist and guide 
system developers to design domain-specific applications. Domain analysis 
should consider commonalities and differences of systems in a domain, 
organize an understanding of the relationships between the various elements in 
that domain, and represent this understanding in a formal, yet easy to use, way.  
Several studies suggest using metamodeling techniques for modeling domains 
and their constraints. These metamodels are basically structural and present 
static constraints only. We propose an Application-based DOmain Modeling 
(ADOM) approach for domain analysis. This approach treats a domain as a 
regular application that needs to be modeled before systems of that domain are 
specified and designed. This way, the domain structure and behavior are 
modeled, enforcing static and dynamic constraints on the relevant application 
models. The ADOM approach consists of three-layers: the language layer 
handles modeling language ontologies and their constraints, the domain layer 
holds the building elements of domains and the relations among them, and the 
application layer consists of domain-specific systems. Furthermore, the ADOM 
approach defines dependency and enforcement relations between these layers. 
In this paper we focus on applying the ADOM approach to UML and especially 
to its class and sequence diagrams. 

1 Introduction 

Domain Engineering is a software engineering discipline concerned with building 
reusable assets and components in a specific domain [�4, �5, �6]. We refer to a domain as 
a set of applications that use a common jargon for describing the concepts and 
problems in that domain. The purpose of domain engineering is to identify, model, 
construct, catalog, and disseminate the commonalities and differences of the domain 
applications [�21]. As such, it is an important type of software reuse, verification, and 
validation [�14, �15].  

Similarly to software engineering, domain engineering includes three main 
activities: domain analysis, domain design, and domain implementation. Domain 



 

analysis identifies a domain and captures its ontology [�24]. Hence, it should identify 
the basic elements of the domain, organize an understanding of the relationships 
among these elements, and represent this understanding in a useful way [�4].  Domain 
design and domain implementation are concerned with mechanisms for translating 
requirements into systems that are made up of components with the intent of reusing 
them to the highest extent possible.  

Domain analysis is especially crucial because of two main reasons. First, analysis 
is one of the initial steps of the system development lifecycle. Avoiding syntactic and 
semantic mistakes at this stage (using domain analysis principles) helps to reduce 
development time and to improve product quality and reusability. Secondly, the core 
elements of a domain and the relations among them usually remain unchanged, while 
the technologies and implementation environments are in continuous improvement. 
Hence, domain analysis models usually remain valid for long periods. 

Several methods and architectures have been developed to support domain 
analysis. Most of them rely on Unified Modeling Language (UML) [�3] and 
metamodeling techniques [�25]. However, most of these works are concerned with 
domain structural elements and relations, neglecting domain behavioral constraints. 
Other techniques for domain analysis (e.g., [�7, �23]) use UML extension mechanisms, 
or more accurately stereotypes. Yet, this mechanism provides no formal definition of 
domain models. 

In this paper we present the Application-based DOmain Modeling (ADOM) 
approach which enables modeling domains as if they were regular applications. This 
approach enables the specification of both structural and behavioral aspects of any 
application within a domain. The ADOM approach consists of three layers: the 
application layer, the domain layer, and the (modeling) language layer. In the 
application layer, the required application is modeled as composed of classes, 
associations, collaborations, etc. In the domain layer, the domain elements and 
relations are modeled as if the domain itself is an application. Finally, the language 
layer includes metamodels of modeling languages (or methods). We also provide a set 
of verification and validation rules between the different layers: the domain layer 
enforces constraints on the application layer, while the language layer enforces 
constraints on both the application and domain layers. Thus, the contribution of this 
paper is twofold. First, we provide an approach for modeling the structure and 
behavior of domains and for validating application models against domain models. 
Secondly, basing the ADOM approach on UML, we provide a formal framework for 
defining and constraining stereotypes. 

The structure of the rest of the paper is as follows. In Section 2 we review existing 
works in domain analysis, dividing them into single-level and two-level domain 
analysis approaches. Section 3 introduces our three-level ADOM approach, 
elaborating on its applicability to UML class and sequence diagrams. We exemplify 
the approach stages and validation constraints on a domain of sensor-based machines 
and an elevator system. Finally, Section 4 summarizes the strengths of this approach 
and refer to the future research plan. 



 

2 Domain Analysis – Literature Review 

Referring to domain analysis as an engineering approach, Argano [�1] suggested that 
domain analysis should consist of conceptual analysis combined with infrastructure 
specification and implementation. Meekel et al. [�15] suggested that in addition to its 
static definition, domain analysis may be conceived of as a development process, 
which identifies a domain scope, builds a domain repository (model), and validates 
that model. Since the domain keeps evolving as new requirements are introduced, 
domain analysis in not a one-shot affair [�5, �6]. Gomaa and Kerschberg [�12] agreed 
that the domain model lifecycle is constantly evolving via an iterative process. 
Supporting this domain evolution concept, Drake and Ett [�9] claimed that domain 
analysis gives rise to two concurrent, mutually dependent lifecycles that should be 
correlated: the fundamental system lifecycle and the domain lifecycle. Becker and 
Diaz-Herrera [�2] proposed that the two concurrent streams are the design for reuse 
(i.e., the domain model) and the design with reuse (i.e., the application model). 
Following this spirit, the Model-Driven Architecture (MDA) [�19], which originally 
aimed to separate business or application logic from underlying platform technology, 
observes that system functionality will gradually become more knowledge-based and 
capable of automatically discovering common properties of dissimilar domains. In 
other words, the aim of MDA is to eventually build systems in which considerable 
amount of domain knowledge is pushed up into higher abstraction levels. However, 
this vision is supported in a conceptual level and not in a practical one. 

Several methods and techniques have been developed to support domain analysis. 
We classify them into two categories: single-level and two-level domain analysis 
approaches.  

2.1 Single-Level Domain Analysis Approaches 

In the single level domain analysis approaches, the domain engineer defines domain 
components, libraries, or architectures. The application designer reuses these domain 
artifacts and can change them in the application model.  Meekel et al. [�15], for 
example, propose a domain analysis process that is based on multiple views. They 
used Object Modeling Technique (OMT) [�22] notations to produce a domain-specific 
framework and components. Gomaa and Kerschberg [�12] suggest that a system 
specification will be derived by tailoring the domain model according to the features 
desired in the specific system.   

Feature-Oriented Domain Analysis (FODA) [�13] defines several activities to 
support domain analysis, including context definition, domain characterization, data 
analysis and modeling, and reusable architecture definition. A specific system makes 
use of the reusable architecture but not of the domain model. 

Clauss [�7] suggests two stereotypes for maintaining variability within a domain 
model: <<variation point>>, which indicates the variability of an element, and 
<<variant>>, which indicates the extension part. These stereotypes seems to be weak 
when defining a domain model and validating a specific application model of that 
domain. 



 

Catalysis [�10] is an approach to systematic business-driven development of 
component-based systems. It defines a process to help business users and software 
developers share a clear and precise vocabulary, design and specify component 
interfaces so they plug together readily, and reuse domain models, architectures, 
interfaces, code, etc. Catalysis introduced two types of mechanisms for separating 
different subject areas: package extension and package template. Package extension 
allows definitions of language fragments to be developed separately and then merged 
to form complete languages. Package templates, on the other hand, allow patterns of 
language definition to be distilled and then applied consistently across the definition 
of languages and their components. Both package extension and package template 
mechanisms deal basically with classes and enable renaming of the structural 
elements when reusing them in particular systems. 

2.2 Two-Level Domain Analysis Approaches 

In the two-level domain analysis approaches, connection is made between the domain 
model and its use in the application model. Contrary to the single-level domain 
analysis approaches, the domain and application models in the two-level domain 
analysis approaches remain separate, while validation rules between them are defined. 
These validation rules enable avoiding syntactic and semantic mistakes during the 
initial stages of the application modeling, reducing development time and improving 
system quality. Petro et al. [�20], for example, present a concept of building reusable 
repositories and architectures, which consist of correlated component classes, 
connections, constraints, and rationales. When modeling a specific system, the system 
model is validated with respect to the domain model in order to check that no 
constraint has been violated. 

Schleicher and Westfechtel [�23] discuss static metamodeling techniques in order to 
define domain specific extensions. They divide these extensions into descriptive 
stereotypes for expressing the elements of the underlying domain metamodel, 
restrictive stereotypes for attaching constraints to stereotyped model elements, regular 
metamodel extensions, and restrictive metamodel extensions. They mostly deal with 
packages and classes, but not with behavioral elements. 

Gomma and Eonsuk-Shin [�11] suggest a multiple view meta-modeling method for 
software product lines. They solve model commonalty and variability problems 
within a specific domain (the product line) by defining special stereotypes which are 
used in the use case, class, collaboration, statechart, and feature model views. These 
stereotypes are modeled in the metamodel level by class diagrams, while the relations 
among them are modeled in Object Constraint Language (OCL) [�26]. The main 
shortcoming of this method is in changing the core UML notation (e.g., by adding 
alternating paths) and in using structural metamodels that capture only the static 
constraints of the extension. 

Morisio et al. [�16] propose an extension to UML that includes a special stereotype 
indicating that a class may be altered within a specific system. The extension is 
demonstrated by applying it to the UML class diagram. The validation of an 
application model with respect to its domain model entails checking whether a class 



 

appears in the application model along with its associate classes, but not if the class is 
correctly connected. 

The Institute for Software Integrated Systems (ISIS) at Vanderbilt University 
suggested a metamodeling technique for building a domain-specific model [�17] using 
UML and OCL. The application models are created from the domain metamodel, 
enabling validation of their consistency and integrity in terms of the domain analysis 
[�8]. While the ISIS project provides an environment for performing the tasks of 
building domain metamodels and domain application models, it is not clear how the 
domain dynamics is specified and validated, as the metamodel technique is basically 
static. 

3 The Application-Based Domain Modeling (ADOM) Approach 

Application models and domain models are similar in many aspects. An application 
model consists of classes and associations among them and it specifies a set of 
possible behaviors. Similarly, a domain model consists of core elements, static 
constraints, and dynamic relations. The main difference between these models is in 
their abstraction levels: domain models are more abstract than application models. 
Furthermore, domain models should be flexible in order to handle commonalities and 
differences of the applications within the domain.  

The classical framework for metamodeling is based on an architecture with four 
abstraction layers [�18]. The first layer is the information layer, which is comprised of 
the desired data. The model layer, which is the second layer, is comprised of the 
metadata that describes data in the information layer. The third metamodel layer is 
comprised of the descriptions that define the structure and semantics of metadata. 
Finally, the meta-metamodel layer consists of the description of the structure and 
semantics of meta-metadata (for example, metaclasses, metaattributes, etc.). 
Following this general architecture, we divide our Application-based DOmain 
Modeling (ADOM) approach into three layers: the application layer, the domain 
layer, and the (modeling) language layer. The application layer, which is equivalent to 
the model layer (M1), consists of models of particular systems, including their 
structure and behavior. The domain layer, i.e., the metamodel layer (M2), consists of 
specifications of various domains. The language layer, which is equivalent to the 
meta-metamodel layer (M3), includes metamodels of modeling languages. The 
modeling languages may be graphical, textual, mathematical, etc. In addition, the 
ADOM approach explicitly enforces constraints among the different layers: the 
domain layer enforces constraints on the application layer, while the language layer 
enforces constraints on both the application and domain layers. Figure 1 depicts the 
architecture of the ADOM approach. The application layer in this figure includes 
three applications: Amazon, which is a Web-based book store, eBay, which is an 
auction site supported by agents, and Kasbah, which is a multi-agent electronic 
marketplace. Each one of these systems may have several models in different 
modeling languages. The domain layer in Figure 1 includes two domains: Web 
applications and multi agent systems, while the language layer in this example 
includes only one modeling language, UML. Since UML is the current standard 



 

(object-oriented) modeling language, we apply the ADOM approach to UML in this 
work.  

Figure 1 also shows the relations between the layers. The black arrows indicate 
constraint enforcement of the domain models on the application models, while the 
grey arrows indicate constraint enforcement of the language metamodels on the 
application and domain models.  

 
 

Figure 1. The Application-based DOmain Modeling (ADOM) architecture 

 
The rest of this section elaborates on the domain and application layers, while the 

language layer is restricted to the UML metamodel except of two minor changes: 
1. A model element (e.g., attribute, operation, message, etc.) has an additional 

feature, "multiplicity", which represents how many times the model element 
can appear in a particular context. This feature appears as <<min..max>> 
before a relevant domain element in a domain model, while <<1..1>> is the 
default (and, hence, does not appear). 

2. A model element can have several stereotypes, which are separated by 
commas. 

3.1 The Domain Layer of the ADOM Approach 

In the domain layer, the domain engineer specifies the structural and behavioral 
elements of a specific domain. This is done using UML structural and behavioral 
views. Figures 2-4 are a (partial) UML model that describes a domain of sensor-based 
machines.  Figure 2 is the class diagram of the domain, which includes the basic 
elements of the domain and the static relations among them. The top-level class is 
machine which may have any number (including 0) of attributes of any type, as the 
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"<<0..m>> anyAttribute: anyType" declaration indicates. The scope of these 
attributes in the application models must be private. The order of scopes (from the 
least resticted to the most restricted) is public, package, protected, and private. A 
scope of a model element defined in a domain model is the least restricted scope that 
this element can get in any application model of that domain1. 

Operator

machine
<<0..m>> anyAttribute : anyType

<<1..2>> initialize()
<<1..m>> work(<<0..m>>anyParameter : anyType) : anyType
<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

** **

operates

data
<<0..m>> anyAttribute : anyType

<<1..m>> find(<<0..m>>anyParameter : anyType) : anyType
<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

sensor
<<0..m>> anyAttribute : anyType

<<1..m>> test(<<0..m>>anyParameter : anyType) : Boolean
<<1..m>> result(<<0..m>>anyParameter : anyType) : anyType
<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

controller
<<0..m>> anyAttribute : anyType

start(mode : int, anyParameter : anyType)
<<1..m>> work(<<0..m>>anyParameter : anyType) : anyType
<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

**

**

 
Figure 2. A UML class diagram describing a domain of sensor-based machines 

Figure 2 also specifies that machine has one or two operations of type initialize 
and at least one operation of type work. The initialize operations get no parameters 
and their return type is void, while the work operations can get any number of 
parameters of any type and their return types are not specified in the domain layer, as 
indicated by the ": anyType" declaration at the end of the operation signature. In 
addition to these types of operations, machine may have any number (including 0) of 
operations (as the reserved word anyMethod indicates) with any type of signature. 
All the operations of a machine (as all the operations in this domain model) are 
defined as public in the domain model and, hence, their scopes are not restricted in the 
domain-specific application models, i.e., they can be public, package, protected, or 
private. 

                                                           
1 Enforcing a specific scope on a model element (e.g., public) can be done by defining an OCL 

constraint. 



 

A machine consists of one controller, which is composed of any number of 
sensors and any number of data items. A controller may have any attributes of any 
type, exactly one start operation with one mode parameter of type integer and any 
number of additional parameters of any type, at least one work operation, and other 
possible operations. A sensor should have at least one test operation and at least one 
result operation, in addition to other attributes and operations. A test operation gets 
any number of parameters of any type and returns a Boolean value, while a result 
operation may have any signature. Finally, data should have at least one find 
operation with any signature. Figure 2 also shows that an operator (a system actor) 
has a relation with the class machine, labeled "operates". 

Using UML sequence diagram notation, Figure 3 describes a possible scenario of 
initialization in the domain of sensor-based machines. According to this scenario, the 
operator invokes an initialize operation of a machine. As a consequence, the 
machine invokes a start operation of its controller, which immediately invokes at 
least one test operation of the relevant sensors. All these messages are synchronous, 
enforcing that the corresponding messages in the application models will be 
synchronous too. Specifying a message to be asynchronous in a domain model 
enables defining this message as either synchronous or asynchronous in an application 
model of that domain2.  

 : Operator  : machine  : controller  : sensor

1: initialize
2: start

3: <<1..m>> test

 
Figure 3. A UML sequence diagram describing an initialization operation in the 

domain of sensor-based machines 
The ADOM approach also supports conditional messages and loops. Figure 4 

describes a possible scenario of the machine work: 
1. The operator invokes a work operation of a machine. 
2. The machine invokes a work operation of its controller. 
3. The controller invokes at least one result operation of its sensors. This 

invocation can be conditional and/or run in a loop, as indicated by 
[anyCondition] and [anyLoop], respectively. 

4. The controller invokes zero or more find operations of its data items. This 
invocation can run in a loop, but it is not conditional. 

5. Finally, the controller invokes at least one work operation of itself. This 
invocation can be conditional and/or run in a loop. 

6. Steps 3-5 can run in a loop, as indicated by the <<1..m>> anyLoop note 
enclosing steps 3-5. 

                                                           
2 Enforcing a message to be only asynchronous can be done by introducing a new type of an 

OCL constraint. 



 

 : Operator
 : machine  : controller  : sensor  : data

1: work

2: work

3: <<1..m>> [anyLoop] [anyCondition] result

4: <<0..m>> [anyLoop] find

<<1..m>> anyLoop

5: <<1..m>> [anyLoop] [anyCond] work

 
Figure 4. A UML sequence diagram describing a machine work operation in the 

domain of sensor-based machines 

3.2 The Application Layer of the ADOM Approach 

An application model uses a domain model as a validation template. All the static and 
dynamic constraints enforced by the domain model should be applied in any 
application model of that domain. In order to achieve this goal, any element in the 
application model is classified according to the elements declared in the domain 
model using UML built-in stereotype mechanism. As defined in the UML user guide 
[�3], a stereotype is a kind of a model element whose information content and form are 
the same as a basic model element, but its meaning and usage are different. The 
ADOM approach requires that a model element in an application model will preserve 
the static and behavioral relations of its stereotypes in the relevant domain model(s). 

Returning to our example of the sensor-based machine domain, we describe in this 
section a model of an elevator system in that domain. Figure 5 is the class diagram of 
the elevator system. Following the class hierarchy of the domain, shown in Figure 2, 
the elevator (classified as a machine) consists of an elevator controller (classified as 
a controller). The elevator controller consists of two types of sensors, a door sensor 
and a button sensor, and music items (classified as data items). Two types of 
operators are defined: user who uses the elevator and technical person who fixes 
the elevator.  



 

User Technical Person

Elevator

<<initialize>> normalInitialization()
<<initialize>> recovery()
<<work>> gotoFloor()

<<machine>>

** **

uses
<<operates>>

** **

fixes
<<operates>>

Door Sensor

<<test>> testDoorStatus(doorStatus : String) : Boolean
<<result>> PeopleAtDoor() : Boolean

<<sensor>>

Button Sensor

<<test>> testButton() : Boolean
<<result>> minPressedButtonId() : int
<<result>> maxPressedButtonId() : int

<<sensor>>

Music
musicId : int
musicName : String
floorRange : int

<<find>> getCriterionMusicId(requiredFloorRange : int) : int

<<data>>

Elevator Controller
noOfFloors : int
currentFloor : int
doorOpen : Boolean
direction : {up, down}

<<start>> initialization(<<mode>> initialMode : int)
<<work>> gotoFloor()
<<work>> openDoor()
<<work>> closeDoor()
<<work>> playMusic(musicIDs : int[])

<<controller>>

**

<<operator>> <<operator>>

 
Figure 5. A UML class diagram describing an elevator system in the domain of 

sensor-based machines 

Table 1. The domain constraints and their fulfillment in the elevator system  
model – comparing the class diagrams 

Class Feature Feature Constraint Allowed 
Feature 

Multiplicity  

Actual 
Feature 

Multiplicity 
General attribute Private 0..� 0 
Initialize 
operation 

No parameters 
No return type 

1..2 2 

Work operation --- 1..� 1 
Machine 

General 
operation 

--- 0..� 0 

General attribute Private 0..� 4 
Start operation Mode:int parameter 

No return type 
1..1 1 

Work operation --- 1..� 4 
Controller 

General 
operation 

--- 0..� 0 

General attribute Private 0..� 0 
Test operation Boolean return type 1.. � 1 
Result operation --- 1..� 1* 2** Sensor 
General 
operation 

--- 0..� 0 

General attribute Private 0..� 3 
Find operation --- 1..� 1 Data 
General 
operation 

--- 0..� 0 

* for door sensor, ** for button sensor 



 

Table 1 summarizes the domain constraints of the four basic domain elements, 
machine, controller, sensor, and data, and how they are correctly fulfilled in the class 
diagram of the elevator system. As can be seen, none of the constraints expressed in 
Figure 2 are violated by the application model shown in Figure 5. 

Figure 6 includes two possible scenarios for initializing the elevator system: Figure 
6(a) describes a normal initialization of the elevator, while Figure 6(b) describes an 
initialization operation that occurs after recovery (due to electrical power interruption, 
for example). These scenarios follow the guidelines of an initialization operation in 
the sensor-based machine domain as expressed in Figure 3. In these scenarios, no 
conditions and no loops are defined; hence, the ADOM approach validates only the 
order of the stereotyped operations and their multiplicities. 

Table 2 summaries the constraints on an initialization operation in the domain of 
sensor-based machines and how the various constraints are fulfilled by the sequence 
diagrams of the elevator system specified in Figure 6. Note that the validation is done 
with respect to the stereotype of a model element in the application layer, which is 
itself an element in the domain layer. 

 

 : Technical Person
 : Elevator  : Elevator 

Controller
 : Door Sensor  : Button 

Sensor

1: <<initialize>> normalInitialization( )
2: <<start>> initialization(0)

3: <<test>> testDoorStatus("open")

4: <<test>> testDoorStatus("close")

5: <<test>> testButton( )

<<machine>> <<controller>> <<sensor>> <<sensor>>

 

 : Elevator
 : Technical Person

 : Elevator 
Controller

 : Door Sensor

1: <<initialize>> recovery( )
2: <<start>> initialization(1)

3: <<test>> testDoorStatus("close")

<<machine>> <<controller>> <<sensor>>

 

Figure 6. UML sequence diagrams describing initialization operations.  
(a) Normal initialization. (b) Initialization after recovery. 

(a) 

(b) 



 

Table 2. The domain constraints and their fulfillment in the elevator system  
model – comparing the sequence diagrams of the initialization operations 

Layer/ 
Sequence 

Operation Source Destination Mult. 

Domain/ 
Initialization 

initialize operator machine 1..1 

Application/ 
normal init. 

normalInitialization technical person elevator 1 

Application/ 
recovery 

recovery technical person elevator 1 

Domain/ 
Initialization 

Start machine controller 1..1 

Application/ 
normal init. 

initialization(0) elevator elevator 
controller 

1 

Application/ 
recovery 

initialization(1) elevator elevator 
controller 

1 

Domain/ 
Initialization 

test controller sensor 1..� 

testDoorStatus("open") elevator 
controller 

door sensor 

testDoorStatus("close") elevator 
controller 

door sensor Application/ 
normal init. 

testButton() elevator 
controller 

button 
sensor 

3 

Application/ 
recovery 

testDoorStatus("close") elevator 
controller 

door sensor 1 

 

 : Elevator
 : User  : Elevator 

Controller
 : Door Sensor  : Button 

Sensor
 : Music

1: gotoFloor()

2: gotoFloor()
3: canClose=PeopleAtDoor( )

4: [canClose] closeDoor( )

5: currentFloor=getCurrentFloor()

6: direction=getDirection()

7: [direction=="down"] dest=minPressedButtonId( )

8: [direction=="up"] dest=maxPressedButtonId( )

9: *[i:1..n] musicToPlay[i]=getCriterionMusicId(abs(dest-currentFloor))

10: playMusic(musicToPlay)

 
Figure 7. A UML sequence diagram describing an elevator work operation called 

gotoFloor  



 

Figure 7 describes a possible work scenario of the elevator system. According to 
this scenario, called "go to floor", after the user pressed a button, the elevator 
(through its controller and door sensor) checks if the door can be closed, close it (if 
so), check the travel length, and choose music accordingly3.  

Table 3. The domain constraints and their fulfillment in the elevator system  
model – comparing the sequence diagrams of the work operation 

Layer/ 
Sequence 

Operation Cond./ 
Loops 

Source Destination Mult. 

Domain/ 
work 

work None operator machine 1..1 

Application/ 
go to floor 

gotoFloor() None user elevator 1 

Domain/ 
work 

work None machine controller 1..1 

Application/ 
go to floor 

gotoFloor() None elevator elevator 
controller 

1 

Domain/ 
work  

result Any controller sensor 1..� 

Application/ 
go to floor 

peopleAtDoor() None elevator 
controller 

door sensor 1 

Domain/ 
work 

find AnyLoop controller data 0..� 

Application/ 
go to floor 

    0 

Domain/ 
work 

work Any controller controller 1..� 

Application/ 
go to floor 

closeDoor() canClose elevator 
controller 

elevator 
controller 1 

Domain/ 
work  

result Any controller sensor 1..� 

minPressedButton
Id() 

direction=
"down" 

elevator 
controller 

button 
sensor Application/ 

go to floor maxPressedButto
nId() 

direction=
"up" 

elevator 
controller 

button 
sensor 

2 

Domain/ 
work 

find AnyLoop controller data 0..� 

Application/ 
go to floor 

getCriterionMusic
Id(abs(dest-
currentFloor)) 

*[i:1..n] elevator 
controller 

music 
1 

Domain/ 
work 

work Any controller controller 1..� 

Application/ 
go to floor 

playMusic(music
ToPlay) 

None elevator 
controller 

elevator 
controller 1 

Table 3 summarizes the fulfillment of the constraints enforced by the domain 
sequence diagram expressed in Figure 4 on this particular scenario. Note that in 
Figure 7 there are several calls for operations that were not explicitly specified within 

                                                           
3 For simplicity, the stereotypes of the messages and the objects in Figure 7 are suppressed. 



 

the domain sequence diagram in Figure 4, for example, getDirection() and 
getCurrentFloor(). These operations are categorized as the additional methods 
allowed by the domain class diagram (Figure 2) for the controller class. They can be 
invoked in any stage in a sequence diagram, since they are basic operations (getter 
methods in this case). 

4 Summary and Future Work 

In this paper we introduced the Application-based DOmain Modeling (ADOM) 
approach which enables domain engineers to define structural and behavioral 
constraints that are applicable to all the systems within a specific domain. When 
developing a system, its domain (or domains) should be defined in order to enforce 
domain restrictions on the system. The advantages of this approach are twofold. First, 
it validates system models against their domain models in order to detect semantic 
errors in early development stages. These errors cannot be automatically found when 
using syntactic modeling languages alone. Secondly, the usage of the same modeling 
language for the application and domain layers reduces the ontological gap and the 
communication problems between the different stakeholders in the system 
development process. Applying ADOM specifically to UML, the standard object-
oriented modeling language, also benefits from the maturity of the UML environment, 
including its CASE tools. Furthermore, this combination of ADOM and UML 
establishes a formal framework for defining and constraining stereotypes in UML. 
However, the separation of the ADOM architecture into three layers (application, 
domain, and language) makes it flexible enough to be applied to other languages as 
well. 

Further work is planned to develop a domain verification tool that will check a 
system model against its domain model and will even guide system developers 
according to given domain models. An experiment is also planned to classify domain-
specific modeling errors when using the ADOM approach and other domain analysis 
methods. This experiment will also check the adoption of several different domains to 
the same application following the ADOM approach. 
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