
Applying the Application-based Domain Modeling
Approach to UML Structural Views

Arnon Sturm1 and Iris Reinhartz-Berger2

1Department of Information System Engineering,

Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
sturm@bgumail.bgu.ac.il

2Department of Management Information Systems,
University of Haifa, Haifa 31905, Israel

iris@mis.hevra.haifa.ac.il

Abstract. Being part of domain engineering, domain analysis enables
identifying domains and capturing their ontologies in order to assist and guide
system developers to design domain-specific applications. Several studies
suggest using metamodeling techniques for modeling domains and their
constraints. However, these techniques use different notions, and sometimes
even different notations, for defining domains and their constraints and for
specifying and designing the domain-specific applications. We propose an
Application-based DOmain Modeling (ADOM) approach in which domains are
treated as regular applications that need to be modeled before systems of those
domains are specified and designed. This way, the domain models enforce
static and dynamic constraints on their application models. The ADOM
approach consists of three-layers and defines dependency and enforcement
relations between these layers. In this paper we describe the ADOM
architecture and validation rules focusing on applying them to UML static
views, i.e., class, component, and deployment diagrams.

1 Introduction

Domain Engineering is a software engineering discipline concerned with building
reusable assets and components in a specific domain [�4], [�5], [�6]. We refer to a
domain as a set of applications that use a common jargon for describing the concepts
and problems in that domain. The purpose of domain engineering is to identify,
model, construct, catalog, and disseminate a set of software artifacts that can be
applied to existing and future software in a particular application domain [�22]. As
such, it is an important type of software reuse, verification, and validation [�15], [�16].

Similarly to software engineering, domain engineering includes three main
activities: domain analysis, domain design, and domain implementation. Domain
analysis identifies a domain and captures its ontology [�28]. Hence, it should specify
the basic elements of the domain, organize an understanding of the relationships
among these elements, and represent this understanding in a useful way [�4]. Domain
design and domain implementation are concerned with mechanisms for translating

requirements into systems that are made up of components with the intent of reusing
them to the highest extent possible.

Domain analysis is especially crucial because of two main reasons. First, analysis
is one of the initial steps of the system development lifecycle. Avoiding syntactic and
semantic mistakes at this stage (using domain analysis principles) helps to reduce
development time and to improve product quality and reusability. Secondly, the core
elements of a domain and the relations among them usually remain unchanged, while
the technologies and implementation environments are in progressive improvement.
Hence, domain analysis models usually remain valid for long periods.

Several methods and architectures have been developed to support domain
analysis. Some of them rely on Unified Modeling Language (UML) [�3] and
metamodeling techniques [�29], for example Catalysis [�11]. Using standard notations
and techniques has many advantages, including accessibility, reliability, and
uniformity. However, most of the suggested works to domain analysis use different
notions, and sometimes even different notations, for defining domains and their
constraints and for specifying and designing applications, weakening the mentioned
standardization benefits. Other techniques (e.g., [�7], [�26]) use UML extension
mechanisms, more accurately stereotypes. Yet, this mechanism provides no formal
definition of domain models.

In this paper we present the Application-based DOmain Modeling (ADOM)
approach, which enables modeling domains as if they were regular applications. This
approach enables the validation of domain-specific application models against their
domain models. The ADOM approach consists of three layers: the application layer,
the domain layer, and the (modeling) language layer. In the application layer, the
required application is modeled as composed of classes, associations, collaborations,
etc. In the domain layer, the domain elements and relations are modeled as if the
domain itself is an application. Finally, the language layer includes metamodels of
modeling languages (or methods). We also provide a set of validation rules between
the different layers: the domain layer enforces constraints on the application layer,
while the language layer enforces constraints on both the application and domain
layers. Thus, the contribution of this paper is twofold. First, we provide an approach
for modeling various aspects of domains and for validating application models against
domain models. This approach uses a single, standard modeling language, UML, and
a standard technique, metamodeling. Secondly, applying the ADOM approach to
UML, we provide a formal framework for defining and constraining stereotypes.

The structure of the rest of the paper is as follows. Section 2 reviews existing
works in domain analysis, dividing them into single-level and two-level domain
analysis approaches. Section 3 introduces our three-level ADOM approach. In this
section, we elaborate on applying ADOM to UML class, component, and deployment
diagrams, exemplifying the approach stages and validation rules on a domain of Web
applications and a Web-based glossary application. Finally, Section 4 summarizes the
strengths of this approach and refers to future research plans.

2 Domain Analysis – Literature Review

Referring to domain analysis as an engineering approach, Argano [�1] suggested that
domain analysis should consist of conceptual analysis combined with infrastructure
specification and implementation. Meekel et al. [�16] suggested that in addition to its
static definition, domain analysis may be conceived of as a development process
which identifies a domain scope, builds a domain model, and validates that model.
Since the domain keeps evolving as the product users within its scope generate new
requirements, domain analysis in not a one-shot affair [�5], [�6]. Gomaa and Kerschberg
[�13] agreed that the domain model lifecycle is constantly evolving via an iterative
process. Supporting this domain evolution concept, Drake and Ett [�10] claimed that
domain analysis gives rise to two concurrent, mutually dependent lifecycles that
should be correlated: the fundamental system lifecycle and the domain lifecycle.
Becker and Diaz-Herrera [�2] proposed that the two concurrent streams are the design
for reuse (i.e., the domain model) and the design with reuse (i.e., the application
model). Following this spirit, the Model-Driven Architecture (MDA) [�20], which
originally aimed to separate business or application logic from underlying platform
technology, observes that system functionality will gradually become more
knowledge-based and capable of automatically discovering common properties of
dissimilar domains. In other words, the aim of MDA is to eventually build systems in
which considerable amount of domain knowledge is pushed up into higher abstraction
levels. However, this vision is supported in a conceptual level and not (yet) in a
practical one.

Several methods and techniques have been developed to support domain analysis.
We classify them into two categories: single-level and two-level domain analysis
approaches.

2.1 Single-Level Domain Analysis Approaches

In the single level domain analysis approaches, the domain engineer defines domain
components, libraries, or architectures. The application designer reuses these domain
artifacts and can change them in the application model. Meekel et al. [�16], for
example, propose a domain analysis process that is based on multiple views. They
used Object Modeling Technique (OMT) [�25] to produce a domain-specific
framework and components. Gomaa and Kerschberg [�13] suggest that a system
specification will be derived by tailoring the domain model according to the features
desired in the specific system.

Feature-Oriented Domain Analysis (FODA) [�14] defines several activities to
support domain analysis, including context definition, domain characterization, data
analysis and modeling, and reusable architecture definition. A specific system makes
use of the reusable architecture but not of the domain model.

Clauss [�7] suggests two stereotypes for maintaining variability within a domain
model: <<variation point>>, which indicates the variability of an element, and
<<variant>>, which indicates the extension part. These stereotypes seems to be weak
when defining a domain model and validating a specific application model of that
domain.

Catalysis [�11] is an approach to systematic business-driven development of
component-based systems. It defines a process to help business users and software
developers share a clear and precise vocabulary, design and specify component
interfaces so they plug together readily, and reuse domain models, architectures,
interfaces, code, etc. Catalysis introduced two types of mechanisms for separating
different subject areas: package extension and package template. Package extension
allows definitions of fragments of language to be developed separately and then
merged to form complete languages. Package templates, on the other hand, allow
patterns of language definition to be distilled and then applied consistently across the
definition of languages and their components. Both package extension and package
template mechanisms deal basically with classes and packages and enable renaming
of the structural elements when reusing them in particular systems. In addition, that
work does not address the application model validation against its domain model(s).

2.2 Two-Level Domain Analysis Approaches

In the two-level domain analysis approaches, connection is made between the domain
model and its usage in the application model. Contrary to the single-level domain
analysis approaches, the domain and application models in the two-level domain
analysis approaches remain separate, while validation rules between them are defined.
These validation rules enable avoiding syntactic and semantic mistakes during the
initial stages of the application modeling, reducing development time and improving
system quality. Petro et al. [�21], for example, present a concept of building reusable
repositories and architectures, which consist of correlated component classes,
connections, constraints, and rationales. When modeling a specific system, the system
model is validated with respect to the domain model in order to check that no
constraint has been violated.

Schleicher and Westfechtel [�26] discuss static metamodeling techniques in order to
define domain specific extensions. They divide these extensions into descriptive
stereotypes for expressing the elements of the underlying domain metamodel,
restrictive stereotypes for attaching constraints to stereotyped model elements, regular
metamodel extensions, and restrictive metamodel extensions. They mostly deal with
packages and classes, but not with behavioral elements. Furthermore, the semantics
and constraints of the stereotypes used in this work are expressed in a natural
language, weakening the formality of this approach.

Gomma and Eonsuk-Shin [�12] suggest a multiple view metamodeling method for
software product lines. They solve model commonalty and variability problems
within the product line domain by defining special stereotypes which are used in the
use case, class, collaboration, statechart, and feature model views. These stereotypes
are modeled in the metamodel level by class diagrams, while the relations among
them are specified in Object Constraint Language (OCL) [�0�30]. The main
shortcoming of this method is in using a new dialect of UML for modeling the
domain elements and constraints (e.g., adding alternating paths).

Morisio et al. [�17] propose an extension to UML that includes a special stereotype
indicating that a class may be altered within a specific system. The extension is
demonstrated by applying it to UML class diagrams. The validation of an application

model with respect to its domain model entails checking whether a class appears in
the application model along with its associate classes, but not if the class is correctly
connected.

The Institute for Software Integrated Systems (ISIS) at Vanderbilt University
suggested a metamodeling technique for building a domain-specific model using
UML and OCL [�18]. The application models are created from the domain metamodel,
enabling validation of their consistency and integrity in terms of the domain analysis
[�9]. However, the domain models are specified using UML class diagrams and OCL,
while the application models use other notations, conceding the benefits of applying a
standard modeling language to the application models as well.

3 The Application-Based Domain Modeling (ADOM) Approach

Application models and domain models are similar in many aspects. An application
model consists of classes and associations among them and it specifies a set of
possible behaviors. Similarly, a domain model consists of core elements, static
constraints, and dynamic relations. The main difference between these models is in
their abstraction levels, i.e., domain models are more abstract than application
models. Furthermore, domain models should be flexible in order to handle
commonalities and differences of the applications within the domain.

The classical framework for metamodeling is based on an architecture with four
abstraction layers [�19]. The first layer is the information layer, which is comprised of
the desired data. The model layer, which is the second layer, is comprised of the
metadata that describes data in the information layer. The third metamodel layer is
comprised of the descriptions that define the structure and semantics of metadata.
Finally, the meta-metamodel layer consists of a description of the structure and
semantics of meta-metadata (for example, metaclasses, metaattributes, etc.).
Following this general architecture, we divide our Application-based DOmain
Modeling (ADOM) approach into three layers: the application layer, the domain
layer, and the (modeling) language layer. The application layer, which is equivalent to
the model layer (M1), consists of models of particular systems, including their
structure (scheme) and behavior. The domain layer, i.e., the metamodel layer (M2),
consists of specifications of various domains. The language layer, which is equivalent
to the meta-metamodel layer (M3), includes metamodels of modeling languages. The
modeling languages may be graphical, textual, mathematical, etc. In addition, the
ADOM approach explicitly enforces constraints among the different layers: the
domain layer enforces constraints on the application layer, while the language layer
enforces constraints on both the application and domain layers.
Figure 1 depicts the architecture of the ADOM approach. The application layer in this
figure includes three examples of applications: Amazon, which is a Web-based book
store, eBay, which is an auction site supported by agents, and Kasbah, which is a
multi-agent electronic marketplace. Each one of these systems may have several
models in different modeling languages. The domain layer in
Figure 1 includes two domains: Web applications and multi agent systems, while the
language layer in this example includes only one modeling language, UML. Since

UML is the current standard (object-oriented) modeling language, we apply the
ADOM approach to UML.

Figure 1 shows also the relations between the layers. The black arrows indicate
constraint enforcement of the domain models on the application models, while the
grey arrows indicate constraint enforcement of the language metamodels on the
application and domain models.

Figure 1. The Application-based DOmain Modeling (ADOM) architecture

The rest of this section elaborates on the domain and application layers, while the

language layer is restricted to the UML metamodel [�3] except of two minor changes:
1. A model element (e.g., attribute, operation, message, etc.) has an additional

feature, called "multiplicity", which represents how many times the model
element can appear in a particular system. This feature appears as
<<min..max>> before a relevant domain element in a domain model, while
<<1..1>> is the default (and, hence, does not appear).

2. A model element can have several stereotypes, which are separated by
commas.

3.1 Applying UML Structural Views to the Domain Layer of the ADOM
Approach

When referring to the static views of a domain, the domain engineer can use UML
class, component, and deployment diagrams for specifying the domain elements and
the (structural) constraints among them. In what follows, we demonstrate the ADOM
approach on a part of the Web application domain as defined by Conallen [�8]. Figure
2 cites a definition of a server page given by Conallen.

M2: Domain
Layer

M3:
Language
Layer

amazon eBay Kasbah

Web
applications

Multi Agent
Systems

UML

M1: Application Layer

1. A server page represents a web page that has scripts which are executed by the server.
2. These scripts interact with resources on the server (databases, business logic, external

systems, etc).
3. The object’s operations represent the functions in the script, and its attributes represent

the variables that are visible in the page’s scope (accessible by all functions in the page).
4. Server pages can only have relationships with objects on the server.

Figure 2. A part of Conallen's specification for the Web application domain –
A Server Page definition

As can be seen, the definition in Figure 2 includes logical and physical elements

(classes, components, and nodes). Hence, modeling this particular domain element, a
server page, requires UML class, component, and deployment diagrams.

Figure 3 is a partial class diagram that models the logical aspects of a server page:
A server page is specified as a class the attributes of which are classified as
variables. A server page may have any number (including 0) of variables which can
be of any type recognized in UML. These constraints are modeled in the domain
model as the attribute "<<0..m>> variable: anyType" of the server page class. Since
these variables are visible only within the server page's scope (including its scripts),
their scope is defined to be "package" in the domain model. The order of scopes (from
the least restricted to the most restricted) is public, package, protected, and private. A
scope of a model element defined in a domain model is the least restricted scope that
this element can get in any application model of that domain1. In particular, a variable
scope within an application model can be package, protected, or private.

Figure 3 also specifies that a server page may have any number of operations
regardless of their signatures as indicated by "<<0..m>> anyMethod (<<0..m>>
anyParameter :anyType): anyType" declaration. All the operations of a server page
(as all the operations in this domain model) are defined as public in the domain model
and, hence, their scopes are not limited in the application models, i.e., they can be
public, package, protected, or private. A server page may have relations with any
class (on the server, as will be constrained next), as indicated by the association
between server page and anyClass. In addition, a server page may aggregate any
number of scripts. A script has any number of operations regardless of their
signatures, may have any relations with other scripts, as indicated by the self
association labeled anyRelation, and interacts with any number of resources (on the
server), as indicate by the dependency relation labeled "interacts with".

Similarly to scopes, the ADOM approach defines a precedence order between
relations. The most general relation is an association, followed by a navigational
association, an aggregation, a navigational aggregation, a composition, and a
navigational composition. A relation specified in a domain model is the most general
relation possible between the two model elements in any application model of that
domain. Enforcing a specific relation type (e.g., aggregation) requires definition of a
new type of an OCL constraint.

1 Enforcing a specific scope on a model element (e.g., public) can be done by defining an OCL

constraint.

business logic external system

anyClass
<<0..m>> anyAttribute : anyType

<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

server page
<<0..m>> variable : anyType

<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

*

*

*

*

anyRelationscript

<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

**

* **
anyRelation

*

resource
<<0..m>> anyAttribute : anyType

<<0..m>> anyMethod(<<0..m>>anyParameter : anyType) : anyType

interacts with

*

database

* *anyRelation **

Figure 3. A partial class diagram of a Server Page in the Web application domain

Figure 3 does not limit the structure of a resource element, i.e., it may have any

attributes, any operations, and any relations with other resources. However, this
figure defines the hierarchy of resources: a resource is specialized into database,
business logic, and external system, each of which is a special type of resources.

<<1..m>>server

<<1..m>>resource component

<<1..m>>server page component <<0..m>>anyType component

<<1..m>>resource
<<0..m>>business logic
<<0..m>>database
<<0..m>>external system

<<1..m>>server page
<<0..m>>script

<<1..m>>anyClass

<<1..m
>>

<<0..m>>

<<0..m>>

Figure 4. A partial merged component and deployment diagram describing the physical

constraints on a Server Page in the Web application domain

Figure 4 presents a component diagram merged into a deployment diagram. The
merged diagram expresses the physical constraints of the domain on server pages. The
main domain node is a server from which at least one physical node exists as
indicated by the multiplicity feature (<<1..m>>). The server hosts at least one
resource component and at least one server page component. It may also host
components of any type each of which implements at least one class (of any type). A
resource component implements at least one resource class and may implement
any number of other resource classes, i.e., business logic, database, and/or
external system. A server page component implements at least one server page
class and any number (including 0) of script classes. Figure 4 also defines dependency
constraints among components: a server page component depends on at least one
resource component and may depend on other components of any type, including
other server page components.

3.2 Applying UML Structural Views to the Application Layer of the ADOM
Approach

An application model uses a domain model as a validation template. All the
constraints enforced by the domain model should be applied to any application model
of that domain. In order to achieve this goal, any element in the application model is
classified according to the elements declared in the domain model using UML
stereotype mechanism. As defined in UML user guide [�3], a stereotype is a kind of a
model element whose information content and form are the same as the basic model
element, but its meaning and usage are different. The ADOM approach requires that a
model element in an application model will preserve the relations of its stereotypes in
the relevant domain model(s).

Returning to our example of the Web application domain, we describe in this
section a partial model of a Web-based glossary application (GLAP) in that domain.
The GLAP system [�8] provides an online version of a software development project’s
glossary of terms. The project’s team members can access the database of terms,
using a common Web browser. Team members may also update, add entries to the
database, and remove entries from it, using the same browser interface. Figure 5 is a
partial class diagram of the GLAP system. Following the server page definition in the
Web application domain, shown in Figure 3, the GLAP system defines two types of
server pages: process search, which uses the glossary API to search the glossary for
words (or descriptions) that match a string, and edit entry, which builds an edit page
for a specific entry in the glossary. Process search consists of writeEntry (classified
as a script) and getEntries (also classified as a script). It also has four variables
(attributes): searchWord, searchDescription, nl (the new line string), and
messageWord (the word searched for, modified for use as a hyperlink parameter).
All the variables of process search are of type string. The Edit entry server page
consists of getEntry (classified as a script) and has three variables (id, word, and
description). The getEntries script consists of a getEntry script. writeEntry and
getEntries interact with the glossary DB (classified as a database), which in turn
consists of many glossary entries (classified as "database" elements).

glossary entry
word : String
description : String
id : long

<<database>>

glossary DB
<<database>>

**

edit entry
<<variable>> id : long
<<variable>> word : String
<<variable>> description : String

main()

<<server page>>

getEntry
<<script>>

<<interacts with>>

getEntries
<<script>>

<<interacts with>>

writeEntry
<<script>>

<<interacts with>>

process search
<<variable>> searchWord : String
<<variable>> searchDescription : String
<<variable>> nl : String
<<variable>> messagedWord : String

main()

<<server page>>

Figure 5. A partial class diagram of the GLAP system – A description of process search and

edit entry server pages

Table 1. The Web application domain constraints and their fulfillment in the GLAP system
model – comparing the class diagrams

Class Feature
Name

Feature
Constraint

Allowed
Feature

Multiplicity

Actual Features

variable Max scope:
package

0..� � 4 package variables for process
search
� 3 package variables for edit entry

general
operation

Max scope:
public

0..� � 1 public operation for each server
page (process search & edit entry)

relation to
script

Type:
navigational
aggregation

0..� � 2 navigational aggregations for
process search (writeEntry&getEntries)
� 1 navigational aggregation for edit
entry (getEntry)

Server
page

relation to
any class

Type:
association

0..� � 0 relation to other classes for both
process search & edit entry

general
attribute

None 0 � 0 attributes for both process search
& edit entry

general
operation

Max scope:
public

0..� � 0 public operations for each script

relation to
script

Type:
association

0..� � 1 navigational aggregation for
getEntries
� 0 relations for the other scripts

script

dependency
to resource

None 0..� � 1 dependency relation for each
script

general
attribute

Max scope:
private

0..� � 0 attributes for glossary DB

� 3 private attributes for glossary
entry

general
operation

Max scope:
public

0..� � 0 public operations for each
resource

resource

relation to
resource

Type:
association

0..� � 1 aggregation for glossary DB
� 0 relations for the other resources

The ADOM approach validates the structure of each application class and the
relations among them using the domain model. Table 1 summarizes the domain
constraints of the Web application elements, and how these are correctly fulfilled in
the class diagram of the GLAP system. For each domain class, the table lists its
features (in the "Feature Name" column), scope or relation type constraints (in the
"Feature Constraint" column), and multiplicity constraints (in the "Allowed Feature
Multiplicity" column). In addition, the table summaries the actual features of each
class in the application model (in the "Actual Features" column). As can be seen,
none of the constraints expressed in the domain model, shown in Figure 3, are
violated by the application model, specified in Figure 5.

Figure 6 depicts the implementation view of the GLAP system. This diagram
follows the guidelines of the Web application domain for components and their
deployment as expressed in Figure 4. The ADOM approach validates the existence of
the defined classes and their associations to components and nodes. It also validates
the relationships among the various model elements and their multiplicities.

G LA P s e rve r
< < s e rve r> >

process search component
<<server page component>>

edit entry
<<server page component>>

glossary DB component
<<resource component>>

<<server page>> process search
<<script>> writeEntry
<<script>> getEntries

<<server page>> edit entry
<<script>> getEntry

<<database>> glossary DB
<<database>>glossary entry

Figure 6. A partial merged component and deployment diagram of the GLAP system –

Allocating the process search and edit entry server pages into components and nodes

Table 2 summarizes the physical constraints of the Web application domain
(specified in Figure 4) and shows that none of them is violated by the GLAP system.
For each component or node, the domain constraints (the "Feature Constraints"
column) and the relevant features in the application model (the "Actual Features"
column) are listed side-by-side.

4 Summary and Future Work

The Application-based DOmain Modeling (ADOM) approach enables domain
engineers to define structural and behavioral constraints that are applicable to all the
systems in a specific domain. When developing a system in ADOM, its domain (or
domains) is first defined in order to enforce domain restrictions on particular systems.

Then, the application models are validated against their domain models in order to
detect semantic errors in early development stages. These errors cannot be
automatically found when using syntactic modeling language alone.

Table 2. The domain constraints and their fulfillment in the GLAP system
model – comparing the component and deployment diagrams

Component/
Node

Feature Constraints Actual Features

At least one node One server called GLAP server
Includes at least one
resource component

One resource component called glossary DB
component

Includes at least one
server page component

Two server page components called process
search component and edit entry component

server

Includes 0 or more
components of any type

No other components

Includes at least one
server page class

� The process search component includes
one server page class (process search)
� The edit entry component includes one
server page class (edit entry)

Includes 0 or more script
classes

� The process search component includes
two script classes (writeEntry and getEntries)
� The edit entry component includes one
script class (getEntry)

Depends on at least one
resource component

� The process search component depends on
one resource component (glossary DB
component)
� The edit entry component depends on one
resource component (glossary DB
component)

Depends on 0 or more
server page components

� The process search component depends on
one server page component (edit entry
component)
� The edit entry component does not depend
on other server page components

server page
component

Depends on 0 or more
other components of any
type

� Neither the process search component nor
the edit entry component depends on other
components

Includes at least one
resource class

The glossary DB component includes two
resource classes of type database (glossary DB
and glossary entry)

Includes 0 or more
business logic classes

The glossary DB component includes 0
business logic classes

Includes 0 or more
database classes

The glossary DB component includes two
database classes (glossary DB and glossary
entry)

resource
component

Includes 0 or more
external system classes

The glossary DB component includes 0
external system classes

Two major techniques are usually used when applying UML to the domain

analysis area: stereotypes and metamodeling. The main limitation of the stereotypes
technique is the need to define the basic elements of a domain outside the model via a
natural language, as was done, for example, by Conallen for the Web application

domain [�8]. While using natural languages is more comprehensible to humans, it
lacks the needed formality for defining domain elements, constraints, and usage
contexts. The ADOM approach enables modeling the domain world in a (semi-)
formal UML model. This model is used to validate domain-specific application
models.

While applying a metamodeling technique, the basic elements of the domain and
the relations among them are modeled. Usually, the domain and application models
are specified using different notions (and even different notations). In the case of
UML, the domain models are expressed using class diagrams, while the application
models are expressed using various UML diagram types. This unreasonably limits the
expressiveness of domain models. In the ADOM approach, the domain and
application models are specified using the same notation and ontology. In other
words, the ADOM approach enables specification of physical and behavioral
constraints in the domain level (layer). Furthermore, keeping the same notation and
ontology for the entire development team (which includes domain engineers and
system engineers) improves collaboration during the development process.

In this paper, we applied the ADOM approach to UML static views. In [�23], we
have also applied the ADOM approach to UML interaction diagrams. In the future,
we plan to develop a domain validation tool that will check a system model against its
domain model and will even guide system developers according to given domain
models. An experiment is planned to classify domain-specific modeling errors when
using the ADOM approach and other domain analysis methods. This experiment will
also check the adoption of several different domains within the same application
utilizing the ADOM approach.

References

1. Arango, G. “Domain analysis: from art form to engineering discipline”, Proceedings of the
Fifth International Workshop on Software Specification and Design, p.152-159, 1989.

2. Becker, M. and Diaz-Herrera, J. L. “Creating domain specific libraries: a methodology,
design guidelines and an implementation”, Proceedings of the Third International
Conference on Software Reuse, pp. 158-168, 1994.

3. Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Language User Guide,
Addison-Wesley, 1998.

4. Carnegie, M. “Domain Engineering: A Model-Based Approach”, Software Engineering
Institute, http://www.sei.cmu.edu/domain-engineering/, 2002.

5. Champeaux, D. de, Lea, D., and Faure, P. Object-Oriented System Development, Addison
Wesley, 1993.

6. Cleaveland, C. “Domain Engineering”, http://craigc.com/cs/de.html, 2002.
7. Clauss, M. "Generic Modeling using UML extensions for variability", Workshop on

Domain Specific Visual Languages, Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA'01), 2001.

8. Conallen, J., Building Web Applications with UML, First Edition, Addison-Wesley,
Reading, MA, 1999.

9. Davis, J. “Model Integrated Computing: A Framework for Creating Domain Specific
Design Environments”, The Sixth World Multiconference on Systems, Cybernetics, and
Informatics (SCI), 2002.

10. Drake, R. and Ett, W. “Reuse: the two concurrent life cycles paradigm”, Proceedings of the
conference on TRI-ADA '90, p.208-221, 1990.

11. D’Souza, D. F., Wills, A.C. Objects, Components, and Frameworks with UML – The
CatalysisSM Approach. Addison-Wesley, 1999.

12. Gomma, H. and Eonsuk-Shin, M. "Multiple-View Meta-Modeling of Software Product
Lines", Proceedings of the Eighth IEEE International Confrerence on Engineering of
Complex Computer Systems, 2002.

13. Gomaa, E. and Kerschberg, L. "Domain Modeling for Software Reuse and Evolution",
Proceedings of Computer Assisted Software Engineering Workshop (CASE 95), 1995.

14. Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A.,”Feature-Oriented Domain
Analysis (FODA) Feasibility Study”, CMU/SEI-90-TR-021 ADA235785, 1990.

15. Massonet, P., Deville, Y., and Neve, C. “From AOSE Methodology to Agent
Implementation”, Proceedings of the First Joint Conference on Autonomous Agents and
Multi-Agents Systems, pp. 27-34, 2002.

16. Meekel, J., Horton, T. B., France, R. B., Mellone, C., and Dalvi, S. “From domain models
to architecture frameworks”, Proceedings of the 1997 symposium on Software reusability,
pp. 75-80, 1997.

17. Morisio, M., Travassos, G. H., and Stark, M. “Extending UML to Support Domain
Analysis”, Proceedings of the Fifth IEEE International Conference on Automated Software
Engineering, pp. 321-324, 2000.

18. Nordstrom, G., Sztipanovits, J., Karsai, G., and Ledeczi, A. “Metamodeling - Rapid Design
and Evolution of Domain-Specific Modeling Environments”, Proceedings of the IEEE Sixth
Symposium on Engineering Computer-Based Systems (ECBS), pp. 68-74, 1999.

19. OMG, “Meta-Object Facility (MOF™)”, version 1.4, 2003,
http://www.omg.org/docs/formal/02-04-03.pdf

20. OMG, "Model Driven Architecture (MDA™)", version 1.0.1, 2003,
http://www.omg.org/docs/omg/03-06-01.pdf

21. Petro, J. J., Peterson, A. S., and Ruby, W. F. “In-Transit Visibility Modernization Domain
Modeling Report Comprehensive Approach to Reusable Defense Software” (STARS-VC-
H002a/001/00). Fairmont, WV: Comprehensive Approach to Reusable Defense Software,
1995.

22. Pressman, R.S. "Software Engineering: A Practitioner's Approach", 5th Edition, New York:
McGraw-Hill, 2000.

23. Reinhartz-Berger, I. and Sturm, A. Behavioral Domain Analysis – The Application-based
Domain Modeling Approach, accepted to UML'2004, 2004.

24. Rix, M. “Case study of a Successful Firmware Reuse Program”, HP Software Productivity
Conference, 1992.

25. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-Oriented
Modeling and Design, Prentice-Hall International, Inc., Englewood Cliffs, New Jersey,
1991

26. Schleicher, A. and Westfechtel, B. “Beyond Stereotyping: Metamodeling Approaches for
the UML”, Proceedings of the Thirty Fourth Annual Hawaii International Conference on
System Sciences, pp. 1243-1252, 2001.

27. Troy R. “Software Re-Use”, Presentation at ObjectWorld conference, 1993.
28. Valerio, A., Giancarlo, S., and Massimo, F. “Domain analysis and framework-based

software development”, ACM SIGAPP Applied Computing Review, 5 (2), 1997.
29. Van Gigch, J. P. System Design Modeling and Metamodeling. Kluwer Academic

Publishers, 1991.
30. Warmer, J. and Kleppe, A. The Object Constraint Language: Precise Modeling with UML.

Addison-Wesley, 1998.

