
Enhancing UML Models: A Domain Analysis Approach

Iris Reinhartz-Berger

Address: Department of Management Information Systems,

 University of Haifa, Haifa 31905, Israel

Tel: 972-4-8288502

Fax: 972-4-8288522

e-mail: iris@mis.haifa.ac.il

Arnon Sturm

Address: Department of Information Systems Engineering,

 Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

Tel: 972-8-6479337

Fax: 972-8-6479337

e-mail: sturm@bgu.ac.il

Enhancing UML Models: A Domain Analysis Approach

Abstract. UML has been largely adopted as a standard modeling language. The emergence of

UML from different modeling languages that refer to various system aspects causes a wide

variety of completeness and correctness problems in UML models. Several methods have been

proposed for dealing with correctness issues, mainly providing internal consistency rules but

ignoring correctness and completeness with respect to the system requirements and the domain

constraints. In this paper, we propose addressing both completeness and correctness problems of

UML models by adopting a domain analysis approach called Application-based DOmain

Modeling (ADOM). We present experimental results from our study which checks the quality of

application models when utilizing ADOM on UML. The results advocate that the availability of

the domain model helps achieve more complete models without reducing the comprehension of

these models.

Keywords: UML, Domain Analysis, Model Correctness, Model Completeness

INTRODUCTION

Conceptual modeling is fundamental to any area where one has to cope with complex real

world systems. The most popular, de-facto modeling language today is UML, which is used

for specifying, visualizing, constructing, and documenting the artifacts of software systems,

as well as for business modeling and other non-software systems (OMG-UML, 2003; OMG-

UML, 2006). Although UML provides convenient, standard mechanisms for software

engineers to represent high-level system designs as well as low-level implementation details

(Tilley & Huang, 2003), it also introduces a variety of correctness and completeness

problems. According to Major and McGregor (1999), correctness is measured as how

accurately the model represents the information specified within the requirements. For

defining the correctness of a model, a source that is assumed to be (nearly) infallible is

identified. This source, termed a “test oracle”, is usually a human expert whose personal

knowledge is judged to be sufficiently reliable to be used as a reference. The accuracy of the

model representation is measured relatively to the results expected by the oracle.

Completeness, on the other hand, deals with the necessity and usefulness of the model to

represent the real life application, as well as the lack of required elements within the model

(Major & McGregor, 1999). In other words, completeness is judged as to whether the

information being modeled is described in sufficient details for the established goals. This

judgment is based on the model’s ability to represent the required situations, as well as on

the knowledge of experts.

Different studies concluded that it is difficult to model a correct and consistent application

using UML and even to understand such a specification (Kabeli & Shoval, 2001; Peleg &

Dori, 2000; Dori, 2001; Reinhartz-Berger & Dori, 2005; Siau & Cao; 2001). Several

methods have been suggested for checking the correctness of UML models. However, these

mainly deal with syntactic issues directly derived from the modeling language metamodel,

neglecting the correctness and completeness of the models with respect to the domain

constraints and the system requirements.

In this research we utilize the Application-based DOmain Modeling (ADOM) approach

(Reinhartz-Berger & Sturm, 2004; Sturm & Reinhartz-Berger, 2004), whose roots are in the

area of domain engineering, for enhancing UML models. ADOM enables specifying and

modeling domain artifacts that capture the common knowledge and the allowed variability in

specific areas, guiding the development of particular applications in the area, and validating

the correctness and completeness of applications with respect to their relevant domains.

ADOM does these with regular application and software engineering techniques and

languages, bridging the gap between the different abstraction levels at which application and

domain models reside and reducing learning and training times. We present initial results

from our study which checks the comprehension and quality of UML models when applying

ADOM.

Following the introduction we review relevant works from related areas and briefly

introduce the ADOM approach, emphasizing its usage for developing correct and complete

UML models. We then elaborate on the experiment we conducted, its hypotheses, settings,

and results. Finally, we summarize the advantages and limitations of the proposed approach,

raising topics for future research.

LITERATURE REVIEW

Shull et al. (2000) defined six types of software defects that can be found in object-oriented

designs: missing information, incorrect facts, inconsistent information, ambiguous

information, extraneous information, and miscellaneous defects. Incorrect facts, inconsistent

information, ambiguous information, and extraneous information refer to the model

correctness, while missing information refers to completeness.

Several solutions have been proposed over the years for handling these defects, mainly

concerning consistency and integration problems. These solutions can be roughly divided

into translation and verification approaches. Translation approaches, such as Bowman et al.

(2002), Rasch & Wehrheim (2002), Mens et al. (2003), Große-Rhode (2001), and Baresi &

Pezze (2001), translate multi-view models into formal languages that can be analyzed by

model checkers. After detecting inconsistencies or mistakes a backward process should be

applied, translating the locations where the defects were found back to the multi-view

models in order to enable the developers to fix them. Whittle (2000) surveyed some of the

attempts to formalize the semantics of UML by applying formal methods for analyzing UML

models. His main conclusion was that UML semantics is largely informal and, hence, more

effort should be directed towards making the semantics precise. Verification approaches, on

the other hand, such as Chiorean et al. (2003), Bodeveix et al. (2002), Engels et al. (2002),

and Nentwich et al. (2003), present testing or validation algorithms which check

inconsistencies and contradictions between various views. They require sophisticated

environments which include test drivers, interpreters, controllers, etc. Reinhartz-Berger

(2005) suggests a top-level approach that glues the different UML views into one coherent

system throughout the entire development process life-cycle. However, all these works refer

to the syntax of the models only. Moreover, none of them deals with completeness issues

and errors that originate from the constraints imposed by the application domain.

Examining common knowledge and utilizing it for developing applications may help

construct better applications in less time and efforts. Indeed, pattern-based modeling

approaches, such as Neal and Linington (2001) and Mapelsden et al. (2002), aim at helping

produce better design and implementation of applications by reusing solutions for recurring

design problems. However, these are usually too abstract to be used directly, refer mainly to

the common features of the solutions in the different contexts, and require further expertise

in order to correctly apply the patterns.

Domain analysis refers to the commonality and variability of sets or families of

applications, defined as domains (Valerio et al., 1997). It specifies the basic elements of the

domain, organizes an understanding of the relationships among these elements, and

represents this understanding in a useful way (Champeaux et al., 1993). Three main groups

of domain analysis techniques are architectural-based, feature-oriented, and metamodeling.

Architectural-based methods (e.g., Neighbors, 1989; Meekel et al., 1997) define the domain

knowledge in components, libraries, or architectures, which may be reused in an application

as they are, but can be also modified to support the particular requirements at hand. Feature-

oriented methods (e.g., Gomaa & Kerschberg, 1995; Kang et al., 1990; Kang et al., 1998;

Gomaa, 2004) suggest that a system specification will be derived by tailoring the domain

model according to the features desired in a specific system. Metamodeling techniques (e.g.,

Schleicher & Westfechtel, 2001; Gomaa and Eonsuk-Shin, 2002; Nordstrom et al., 1999)

enable definition of domains as metamodels that serve both for capturing domain knowledge

and validating particular applications in the domain.

Similarly to the software engineering field, the area of business process design and

management also promote domain analysis in the form of reference models, which are

models used for supporting the construction of other models. Reference models were

originally suggested as a vehicle for enhancing the development of information systems

(Schuette & Rotthowe, 1998; Fettke & Loos, 2003; Thomas, 2005), but they also provide

generic knowledge about business processes in order to assist in their design in specific

enterprises.

We decided to use a specific domain analysis approach, called Application-based DOmain

Modeling (ADOM), which can serve as a method for guiding and validating the

development of more complete and correct application models in a specific domain. ADOM

has already presented in (Reinhartz-Berger & Sturm, 2004; Sturm & Reinhartz-Berger,

2004; Reinhartz-Berger et al., 2005; and Soffer et al., 2007). In this research, we focus on the

ability of ADOM to enhance the correctness and completeness of UML models in given

domains. Furthermore, we provide empirical evidence for the support of ADOM for these

issues, somehow justifying the costs and efforts required for developing domain models.

THE APPLICATION-BASED DOMAIN MODELING (ADOM) APPROACH

The ADOM approach is based on a three layered architecture: application, domain, and

(modeling) language. Being influenced from the classical framework for metamodeling

presented in OMG-MOF (2003), the application layer, which is equivalent to the model layer

(M1), consists of models of particular applications, including their structure (scheme) and

behavior. The language layer, which is equivalent to the metamodel layer (M2), includes

metamodels of modeling languages. The intermediate domain layer consists of specifications

of various domains, such as web applications, multi agent systems, and process control

systems.

ADOM is a general approach which can be used in conjunction with different modeling

languages, but when adopting ADOM with a specific modeling language, this language is

used for both application and domain layers, easing the task of application design and

validation by employing the same terminology in both layers. The only requirement from the

modeling language used in conjunction with ADOM is that it will have a classification

mechanism that enables categorizing groups of elements. The stereotype and profile

mechanisms in UML are examples of such mechanism.

A domain model in ADOM captures generic knowledge (know-how), in terms of common

elements and the allowed variability among them. In particular, the classification mechanism

is used in the domain layer in order to denote the multiplicity indicators of the different

domain model elements, where a multiplicity indicator specifies a range for the number of

specializations of a specific domain element that may be included in an application model in

that domain.

An application model can be constructed on the basis of the knowledge captured in the

domain model. In this case, we refer to the application model as an instantiation of the

domain model. Instantiation can be mainly achieved by configuration or specialization

operations, performed at design time (when the application model is created). Configuration

is the selection of a subset of existing elements from a domain model for the purpose of

specifying a lawful specific application model. Specialization, on the other hand, is the result

of concretization of a domain model element into a specific application model element. The

generic (domain) elements can be specialized through operations of refinement, sub-typing,

and contextual adoption, so that one generic element may be specialized into more than one

element in the specific application model (Soffer et al., 2007). The relations between a

generic element and its instantiations are maintained by the classification mechanism of the

modeling language. In addition, some generic elements may be omitted and some new

specific elements may be inserted to the specific (application) model. Nevertheless, the

domain knowledge embedded in the generic model must be maintained in the specific one.

The Theoretical Foundations of ADOM

ADOM advocates the application of two main cognitive theory principles: analogical

problem solving and analogical reasoning. These principles promote the usage of existing

knowledge for solving new problems. Analogy was found as a powerful tool for

understanding new situations and finding appropriate solutions for them (Yanowitz, 2001).

From the early 90's, its possible usage for requirements analysis was introduced and

discussed (e.g., Maiden & Sutcliffe, 1992). According to Holyoak (1984), analogical

problem solving is performed in four steps: (1) forming a mental representation of both the

reference and target, (2) generating the relevant analogy, (3) mapping across the features,

and (4) generating the solution based on the analogy. In ADOM, the domain model is

constructed according to the knowledge gained with previous applications and literature

review. Having a domain model, it is used as a reference for developing the target

application model. Both generating the analogy and mapping across features are done by the

customization and specialization operations and the classification mechanism of the used

modeling language. Finally, the ADOM approach supports additions to the application

models in order to generate complete solutions that are based on the analogy.

In this paper we use ADOM-UML, in which UML version 1.5 is used as the underlying

modeling language for specifying both applications and domains and the analogy between

them. We chose ADOM for enhancing UML models because of the following main reasons.

First, ADOM treats domains similarly to applications, enabling the usage of the same

techniques to both application and domain levels. Hence, it is more accessible to software

engineers and enables the specification of both behavioral and structural constraints. Second,

ADOM supports the construction of legal application models throughout the entire

development process and does not execute model checking or validation algorithms at

certain development stages. Thus, it helps avoid and handle model incorrectness and

incompleteness at early development stages. In what follows we elaborate on representing

domain models in ADOM-UML and specifying correct and complete application models.

ADOM-UML Domain Layer

In the language layer of ADOM-UML, a new <<multiplicity>> stereotype is defined in order

to represent the multiplicity indicators. We use the stereotype mechanism for defining

multiplicity constraints since UML multiplicity mechanism is applicable only for

associations and attributes and we wish to express multiplicity constraints on all model

elements. Furthermore, we apply the stereotype mechanism also in cases where the

multiplicity mechanism is applicable in order to preserve uniformity and avoid confusion

between the meaning of multiplicity in the application and domain models.

The <<multiplicity>> stereotype has two associated tagged values, min and max, which

define the lowest and upper most multiplicity boundaries, respectively. For simplicity

purposes, we shorten the notation <<multiplicity min=m max=n>> to <<m..n>> and define

<<1..1>> as the default (i.e., this stereotype may not explicitly appear). These multiplicity

stereotypes are used in the domain layer, where the main concepts of the domain and the

relations among them are specified. This type of stereotypes constrains the number of the

specializations of a domain model element in the application models to be built. This way a

variety of correctness and completeness rules (constraints) can be defined at the domain

level, enforcing their validation in all applications in the domain. Examples of such rules,

which are specified in the process control systems (PCS) domain model that appears in

Appendix A, are given below. Note that applications in the PCS domain monitor and control

the values of certain variables through a set of components that work together to achieve a

common objective or purpose (Duffy, 2004). However, as will be demonstrated latter, their

purposes and implementations may be quite different.

Rule 1 (from the UC diagram): An application in the PCS domain interacts with three

types of actors, Operator, Sensor, and Controlled Device, each of which must be

specialized at least once in any application in this domain.

Rule 2 (from the UC diagram): Each application in the domain has at least one use case

in the following categories: System Settings, System Activation, Monitoring & Acting,

and Checking.

Rule 3 (from the class diagram): Each application in the domain has exactly one class

classified as Controller and at least one class in each of the following categories:

SensorInfo, ControlledDeviceInfo, ControlledElement, and ControlledValue.

Note that the domain model also provides additional knowledge on the structure of each

concept, including its attributes, operations, and relations to other concepts. Each

ControlledElement class, for example, has at least one attribute classified as

controlledElementIdentity, at least one operation classified as monitorAndAct, and at

least one operation classified as checkCondition (each of which returns a Boolean value). In

addition, ControlledElement may have enumerated attributes classified as

controlledElementStatus.

Rule 4 (from the sequence diagram): Each application in the domain deals with

monitoring and acting in the following way. The Controller activates (in a loop) a

monitorAndAct operation on the ControlledElements. This operation acts in two stages: in

the first stage the condition is checked, while in the second stage the action takes place. The

activation part of the sequence is embedded within the condition checking part and each one

of them can be repeated several times.

Rule 5 (from the statechart diagram): Each ControlledDevice has exactly one "off" state

and at least one "on" state. The transition between "off" and "on" states is done by an action,

while no additional information is provided in the domain level about the transitions between

"on" and "off" states.

3.3 ADOM-UML Application Layer

An application model may use a domain model as guidelines (or analogy) for creation and as

a validation template for checking that all the constraints enforced by the domain model are

actually fulfilled by the application at hand. For these purposes, elements in the application

model are classified according to the elements declared in the domain model using the UML

stereotype mechanism. A model element in an application model is required to preserve the

constraints of its stereotypes in the relevant domain model.

Returning to our PCS example, we describe in this section two applications in the domain:

a Home Climate Control (HCC) application and a Water Level Control (WLC) system. The

HCC application ensures that the temperature in the rooms of a house remains in the closed

range [TL, TH] and the humidity in these rooms remains in the closed range [HL, HH]. Each

room has its own limit values (TL, TH, HH, and HL) which are configurable. The actual

levels of temperature and humidity are measured by thermometers and humidity gauges,

respectively. An air conditioner and a water sprayer are installed in each room, enabling

changing the temperature and humidity at will. The ADOM-UML model of the HCC

application appears in Appendix B.

The purpose of the WLC application is to monitor and control the water levels in tanks,

ensuring that the actual water level is always in the closed range [Lowest Limit, Highest

Limit]. The values of the lowest and highest limits are configurable. The actual level is

measured by a boundary stick. The tank is also coupled to emptying faucets that drain water

from the tank and to filling faucets that inject water into the tank. The ADOM-UML model

of the WLC application appears in Appendix C.

Although different, both applications use the knowledge captured in the PCS domain

model and preserve its constraints. In particular, they both maintain the five rules

exemplified in Section 3.2. Note that these rules may not explicitly appear in the requirement

specification of a particular application, as they may be common property of the domain.

Therefore, the designer is responsible for keeping the model complete and correct with

respect to these rules. Explicitly specifying these rules in the form of domain models may

contribute and help the designer to better perform his/her tasks.

THE EXPERIMENT

In order to verify the usefulness of the ADOM approach for enhancing UML application

models, we conducted an experiment, whose hypotheses, settings, and results are reported

below.

Experiment Hypotheses

In the experiment we aimed at checking the following three hypotheses.

Hypothesis #1: Application models are more completely developed when a domain

model is available. This hypothesis is derived from the observation that domain models may

include relevant elements and constraints that do not explicitly appear in the requirements of

each application in the domain. Furthermore, "best practices" can be incorporated into the

domain models as optional elements (i.e., elements whose minimal multiplicity indicator is

0), helping the designer not to miss information.

Hypothesis #2: Application models are more correctly developed when a domain

model is available. Here, again, wrong interpretation of requirements may be avoided by the

domain artifacts and knowledge.

Hypothesis #3: The comprehension of application models remains unchanged when

the relevant domain model and elements are added. The reason for this hypothesis

originates from the observation that domain and application models belong to two different

abstraction levels. When answering concrete questions about the applications, the more

abstract domain elements might generalize the needed information, blurring the sought

answer. However, the existence of these domain elements may help answer questions which

relate to generalized application information.

Experiment Settings

The subjects of the experiment were third year students in a four-year engineering B.Sc.

program at Ben-Gurion University of the Negev, Israel, who took the course “Object-

Oriented Analysis and Design” at the winter semester of the 2004-5 academic year. All of

them were students of the Information Systems Engineering program and had no previous

knowledge or experience in system modeling and specification. During the course, the

students studied mainly UML and its applicability to software analysis and design, while the

last lecture was devoted to ADOM.

The experiment took place during the final three-hour examination of the course. The

examination contained two tasks, one of which was related to the reported experiment. In

this task the students were asked to respond to nine true/false comprehension questions about

the HCC application and to build a model of a WLC application. The students were told that

both applications belong to the same PCS domain. The comprehension questions are listed

along with their expected answers in Appendix D, which also includes the modeling question

that refers to the WLC application. An acceptable model to this application is given in

Appendix C.

The students were divided arbitrarily into two groups of 34 and 36 students. Each group

got a different test form type, ADOM-UML and "regular" UML, respectively. The "regular"

UML test form included a UML model of the HCC application, as given in Appendix B

without the stereotypes. The ADOM-UML test form included the PCS domain model and

the HCC application model as given in Appendices A and B, respectively. The students were

provided with alternating form types according to their seating positions, so this arbitrary

division into the two experimental groups closely approximated random division. Executing

a t-test on the average grades of the students in their studies, we indeed found that no

significant difference exists between the two groups (t = 0.32, p ~ 0.75).

In order to validate the correctness and completeness of the models that participate in the

experiment, as well as to check that the comprehension questions can be accurately answered

and the WLC application can be accurately modeled in both form types, four UML design

experts examined them carefully. Only after reaching an agreement on all the

aforementioned issues, the experiment was conducted.

We also addressed ethical concerns that may rise using the author’s students as

participants (Singer & Vinson, 2002). In particular, the students were notified at the

beginning of the semester about the exam being used as an experiment; the students had the

opportunity of getting a grade in the course without participating in the experiment (by

taking term B of the exam); the grades of the two test forms were normalized; and

confidentiality was kept throughout the entire data grading and analysis processes, so no

identification of the subjects can be done.

Experiment Results

The comprehension and modeling questions were checked according to a pre-defined

detailed grading policy, which included potential errors along with the number of points that

should be reduced in case of error occurrences. Each comprehension question could score a

maximum of 2 points (18 points in total), while the modeling question could score as much

as 32 points. Incomplete answers, or incorrect answers, scored less according to the detailed

grading policy.

 Table 1 summarizes the average scores of the comprehension, modeling, and overall

grades. A t-test, which was used to analyze these results, showed that although the average

comprehension score of the ADOM-UML group was higher than that of the "regular" UML

group, it was not found as statistically significant (p<0.094). This outcome can be considered

as in-line with our third hypothesis, as we claimed that domain models sometimes help find

generalized answers (i.e., answers that are relevant to several applications in the domain or

to several specializations of the same domain element) and sometimes blur the sought

answers (for questions that are individual to the specific application). Since the questions in

the experiment belong to both categories, no significant differences were found.

Table 1. Results of the comprehension, modeling, and overall grades

Average score

ADOM-UML Regular UML t p-value

Comprehension 76.31% 68.98% 1.698 <0.094

Modeling 89.11% 77.73% 3.605 <0.001

Overall 84.50% 74.58% 3.214 <0.002

However, the statistical analysis shows that the availability of the domain model was very

important for modeling a new application in the domain. This is especially true, since the

students that participated in the experiment were non-experts (in the domain, the modeling

language, and the development task).

In order to carry out an in-depth analysis of the domain model influence on both

correctness and completeness of application models, we further checked the average amount

of points reduced due to incompleteness and incorrectness, whereas incompleteness referred

to missing elements and correctness was measured in terms of redundancy, incorrect facts,

and inconsistency among the diagrams. Note that some of the points were reduced due to

miscellaneous defects (Shull et al., 2000) and, thus, they are omitted from the calculations

regarding correctness and completeness.

 Table 2 presents the average amount of points reduced due to incompleteness and

incorrectness. As claimed in hypothesis #1, the results clearly show that ADOM-UML

helped gain a more complete model. We believe that the main reason for this outcome is

using the ADOM-UML domain model as guidelines (or an analogy) for building the

application model, rather than starting from scratch or from a similar application. These

guidelines were applied properly as the students had another application from the same

domain (the HCC model) that applied the same guidelines.

Regarding correctness, Table 2 shows that the students had fewer errors when using the

ADOM-UML. However, this was not found as statistically significant (p<0.062). The main

differences between the two groups were that students who used the "regular" UML test

forms had significantly less errors related to the class diagram, while students who used the

ADOM-UML test forms had significantly less errors related to messages in the sequence

diagram and to states and their transitions in the state diagram. We believe that the reason for

the statistical insignificance of these results was the similarity between the two applications:

the given HCC model and the requested WLC model. Our belief relies on the observation

that the students who got "regular" UML test forms consider the HCC model as a reference

for modeling the WLC system. This could be done since the particular applications are very

similar. However, in the general case, only the domain model can serve as a template to

guide the developer in the development of new domain-specific applications.

Table 2. The average percentages of points reduced due to completeness and correctness errors

p-value t Regular UML ADOM-UML Inspected aspect

<0.002 -3.324 10.84% 5.59% Completeness

<0.062 -1.904 7.66& 5.34% Correctness

SUMMARY AND FUTURE WORK

In this paper we suggest utilizing domain models for improving application model quality in

terms of correctness and completeness. We use a specific domain analysis method, called

Application-based DOmain Modeling (ADOM), that enables specifying both domain and

application models with similar software engineering techniques and languages and creating

analogy among them. When developing a particular application in the domain, the domain

model is used as a reference and the application model can be validated against the relevant

domain model in order to detect completeness and correctness errors.

We empirically validated our approach on undergraduate students, i.e., inexperienced

users who need additional tools and techniques in order to develop qualitative application

models. The results presented in this paper suggest that the availability of the domain model

help develop better application models, mainly with respect to their completeness, without

affecting their comprehension. When developing totally new applications inexperienced

designers tend to create erroneous models, but even experienced ones cannot anticipate the

implication of a change on an overall model (Sunye et al, 2001). Indeed, Lange et al. (2006)

showed that model defects often remain undetected, even if practitioners check the model

attentively. These results may advocate and justify the costs and efforts required in

developing complete and correct domain models for mature, stable, economically viable

domains, as these domain models can be used for guiding the development of high quality

applications in these domains.

Similarly to other domain analysis approaches, ADOM can be criticized as inhibiting

creativity, and its applicability for domains where consensus cannot be reached by domain

experts may be questioned. However, from the creativity point of view, Kolle (2005) states

that basing on existing solutions not necessarily decrease creativity, as it may give rise to

creativity related to the specific problem at hand. Regarding scalability, domain models in

ADOM capture not only the commonality, but also the variability allowed among

applications in a specific domain, so that consensus does not have to be reached before

modeling the domain. Furthermore, although examined on a small and relatively simple

example, ADOM has the expressiveness to support the specification of more complex

domain rules and constraints. Indeed, we are currently in the process of checking the

expressiveness of ADOM in different modeling languages and contexts. We have already

adopted ADOM for business process modeling with UML activity diagrams (Reinhartz-

Berger et al., 2005) and EPC (Soffer et al., 2007), for requirement and design modeling with

OPM (Sturm et al., 2006), and for web site development with Tersus (Tersus, 2006).

In the future, we plan to continuously evaluate the effectiveness of using ADOM (by

novice and experienced designers) to support the construction of consistent, correct, and

complete application models in various modeling languages. In addition, we work on

developing a formal and accurate process for instantiating and utilizing domain models. We

believe that this process, which will be supported by a CASE tool, will help improve the

accuracy, correctness, and completeness of the resultant application models.

REFERENCES

Baresi, L. & Pezze, M. (2001). On Formalizing UML with High-Level Petri Nets. Concurrent Object-

Oriented Programming and Petri Nets, 276-304.

Bodeveix, J.P., Millan, T., Percebois, C., Le Camus, C., Bazex, P., Feraud, L. & Sobek, R. (2002).

Extending OCL for Verifying UML Models Consistency, Workshop on Consistency Problems in

UML-based Software Development, 5th International Conference on the Unified Modeling

Language- the Language and its applications (UML'2002), Dresden, Germany, 75-90.

Bowman, H., Steen, M., Boiten, E.A. & Derrick, J. (2002). A Formal Framework for Viewpoint

Consistency, Formal Methods in System Design, 21 (2), 111-166.

Champeaux, D. de, Lea, D. & Faure, P. (1993). Object-Oriented System Development, Addison Wesley.

Chiorean, D., Pasca, M., Carcu, A., Botiza, C. & Moldovan, S. (2003). Ensuring UML models

consistency using the OCL Environment. Workshop on OCL 2.0 - Industry standard or scientific

playground?, 6th International Conference on the Unified Modeling Language - the Language and its

applications (UML'2003), San Francisco (2003).

Dori, D. (2001). Object-process methodology applied to modeling credit card transactions. Journal of

Database Management, 12 (1), 4-14.

Duffy, D. J. (2004). Domain Architectures: Models and Architectures for UML Applications. John Wiley

& Sons.

Engels, G., Hausmann, J.H., Heckel, R. & Sauer, S. (2002). Testing the Consistency of Dynamic UML

Diagrams. Proc. 6th International Conference on Integrated Design and Process Technology (IDPT

2002), Pasadena CA, http://www.uni-paderborn.de/cs/ag-engels/Papers/2002/EngelsHHS-

IDPT02.pdf.

Fettke, P. & Loos, P. (2003). Classification of Reference Models - A Methodology and its Application,

Information Systems and e-Business Management, 1 (1), 35-53.

Gomaa, E. & Kerschberg, L. (1995). Domain Modeling for Software Reuse and Evolution, Proceedings of

Computer Assisted Software Engineering Workshop (CASE 95).

Gomaa, H. (2004). Designing Software Product Lines with UML: From Use Cases to Pattern-based

Software Architectures, The Addison-Wesley Object Technology Series.

Gomaa, H. & Eonsuk-Shin, M. (2002). Multiple-View Meta-Modeling of Software Product Lines,

Proceedings of the Eighth IEEE International Conference on Engineering of Complex Computer

Systems.

Große-Rhode, M. (2001). Integrating Semantics for Object-Oriented System Models, 28th International

Colloquium on Automata, Languages and Programming (ICALP 2001), Crete, Greece, Lecture

Notes in Computer Science 2076, 40-60.

http://i11www.ira.uka.de/~baar/oclworkshopUml03/papers/06_ensuring_uml_model_consistency.pd

f

Holyoak, K.J. (1984). Analogical thinking and human intelligence. Advances in the Psychology of Human

Intelligence. Ed: R. J. Sternberg. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 199-230.

Kabeli, J. & Shoval, P. (2001). FOOM: functional- and object-oriented analysis & design of information

systems - an integrated methodology, Journal of Database Management, 12 (1), 15-25.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E. & Huh M. (1998). FORM: A feature-oriented reuse

method with domain-specific reference architectures, Annals of Software Engineering, 5 (1), 143-

168.

Kang, K., Cohen, S., Hess, J., Novak, W. & Peterson, A. (1990). Feature-Oriented Domain Analysis

(FODA) Feasibility Study, CMU/SEI-90-TR-021 ADA235785.

Kolle, A. G. (2005). Analogical problem-solving in design, Evaluating the feasibility and benefits of the

methodical use of biological analogies in solving design problems, Technical report,

http://design.ntnu.no/forskning/artikler/2005/artikkel_Audun_Kolle.pdf.

Lange, C.F.J., Chaudron, M.R.V. & Muskens J. (2006). In Practice: UML Software Architecture and

Design Description. IEEE Software, 23 (2), 40-46.

Maiden, N. & Sutcliffe, A. (1992). Exploiting reusable specifications through analogy. Communication of

the ACM, 35(4), 55-64.

Major, M. & McGregor, J. (1999). Using Guided Inspection to Validate UML Models, the 24th Annual

IEEE/NASA Software Engineering Workshop.

Mapelsden D, Hosking, J. & Grundy, J. (2002). Design Pattern Modeling and Instantiation using DPML,

TOOLS Pacific 2002, 3-11.

Meekel, J., Horton, T. B., France, R. B., Mellone, C. & Dalvi, S. (1997). From domain models to

architecture frameworks, Proceedings of the 1997 symposium on Software reusability, 75-80.

Mens, T., Van Der Straeten, R. & Simmonds, J. (2003). Maintaining Consistency between UML Models

Using Description Logic. Workshop on Consistency Problems in UML-based Software Development

II, 6th International Conference on the Unified Modeling Language – the Language and its

applications (UML'2003), San Francisco, 71-77.

Neal, S. & Linington, P. (2001), Tool Support for Development using Patterns, International Enterprise

Distributed Object Computing, 237-248.

Neighbors, J. (1989). Draco: A Method for Engineering Reusable Software Systems, in T. Biggerstaff &

A. Perlis. Software Reusability. Volume I: Concepts and Models. ACM Press, Frontier Series,

Addison-Wesley, Reading, 295-319.

Nentwich, C., Emmerich, W., Finkelstein, A. & Ellmer, E. (2003). Flexible consistency checking, ACM

Transactions on Software Engineering and Methodologies, 12 (1), 28-63.

Nordstrom, G., Sztipanovits, J., Karsai, G. & Ledeczi, A. (1999). Metamodeling - Rapid Design and

Evolution of Domain-Specific Modeling Environments, Proceedings of the IEEE Sixth Symposium

on Engineering Computer-Based Systems (ECBS), 68-74.

OMG-MOF (2003). Meta-Object Facility (MOF™), version 1.4.

OMG-UML (2003). The Unified Modeling Language (UML™), version 1.5.

OMG-UML (2006). UML 2.0 Superstructure, 2006.

Peleg, M. & Dori, D. (2000). The Model Multiplicity Problem: Experimenting with Real-Time

Specification Methods. IEEE Transaction on Software Engineering, 26 (8), 742-759.

Rasch, H. & Wehrheim, H. (2002). Consistency Between UML Classes and Associated State Machines.

Workshop on Consistency Problems in UML-based Software Development, 5th International

Conference on the Unified Modeling Language- the Language and its applications (UML'2002),

Dresden, Germany, 46-60.

Reinhartz-Berger, I. (2005). Conceptual Modeling of Structure and Behavior with UML – The Top Level

Object-Oriented Framework (TLOOF) Approach, the 24th International Conference on Conceptual

Modeling (ER'2005), Lecture Notes in Computer Science 3716, 1-15.

Reinhartz-Berger, I. & Dori, D. (2005). OPM vs. UML – Experimenting Comprehension and

Construction of Web Application Models. Empirical Software Engineering (EMSE), 10 (1), 57-80.

Reinhartz-Berger, I., Soffer, P., & Sturm, A. (2005). A Domain Engineering Approach to Specifying and

Applying Reference Models, Proceedings of Enterprise Modeling Information Systems Architecture

(EMISA’05), pp. 50-63.

Reinhartz-Berger, I. & Sturm, A. (2004). Behavioral Domain Analysis – The Application-based Domain

Modeling Approach, the 7th International Conference on the Unified Modeling Language

(UML'2004), Lecture Notes in Computer Science 3273, 410-424.

Schleicher, A. & Westfechtel, B. (2001). Beyond Stereotyping: Metamodeling Approaches for the UML,

Proceedings of the 34th Annual Hawaii International Conference on System Sciences, 1243-1252.

Schuette, R., & Rotthowe, T. (1998). The Guidelines of Modeling – an Approach to Enhance the Quality

in Information Models, Proceedings of the 17th International Conference on Conceptual Modeling

(ER'98), Lecture Notes In Computer Science 1507, Springer-Verlag, Berlin, 240-254.

Shull, F., Rus, I. & Basili V, (2000). How Perspective-Based Reading Can Improve Requirements

Inspections, IEEE Computer, 33 (7), 73-79.

Siau, K. & Cao, Q. (2001). Unified Modeling Language: A Complexity Analysis, Journal of Database

Management, 12 (1), 26-34.

Singer, J. & Vinson, N. G., (2002). Ethical Issues in Empirical Studies of Software Engineering, IEEE

Transaction on Software Engineering, 28 (12), 1171-1180.

Soffer, P., Reinhartz-Berger, I,, and Sturm, A (2007), Facilitating Reuse by Specialization of Reference

Models for Business Process Design, Accepted to the 8th Workshop on Business Process Modeling,

Development, and Support (BPMDS'07), in conjunction with CAiSE’07.

Sturm, A., Dori, D., & Shehory, O. (2006). Domain Modeling with Object-Process Methodology,

Proceedings of the Eighth International Conference on Enterprise Information Systems, ICEIS (3),

144-151.

Sturm, A. & Reinhartz-Berger, I. (2004). Applying the Application-based Domain Modeling Approach to

UML Structural Views, the 23rd International Conference on Conceptual Modeling (ER'2004),

Lecture Notes in Computer Science 3288, 766-779.

Sunye, G., Pollet, D., Le Taraon, Y. & Jezkel J.-M. (2001). Refactoring UML models. In Proceedings of

UML 2001, Lecture Notes In Computer Science 2185, 134-148.

Tersus, www.tersus.com, 2006.

Thomas, O. (2005). Understanding the Term Reference Model in Information Systems Research: History,

Literature Analysis and Explanation, Proceedings of First International Workshop on Business

Process Reference Models, Nancy, France, 16-28.

Tilley, S. & Huang, S. (2003). A qualitative assessment of the efficacy of UML diagrams as a form of

graphical documentation in aiding program understanding, Proceedings of the 21st annual

international conference on Documentation, San Francisco, CA, 184-191.

Valerio, A., Giancarlo, S. & Massimo, F. (1997). Domain analysis and framework-based software

development, ACM SIGAPP Applied Computing Review, 5 (2), 4-15.

Whittle, J. (2000). Formal approaches to systems analysis using UML: An overview. Journal of Database

Management, 11(4), 4-13.

Yanowitz, K. L. (2001). Transfer of structure-related and arbitrary information in analogical reasoning.

The Psychological Record.

APPENDIX A: THE ADOM-UML MODEL OF THE PCS DOMAIN

<<1..n>>

Sensor
Checking
<<1..n>>

System Settings
<<1..n>>

Monitoring&Acting
<<1..n>>

<<include>>

Operator

Controlled Device
System Activation

<<1..n>>

<<include>>

<<1..n>>

<<1..n>>

Figure 1. The PCS domain model in ADOM-UML: a use case diagram.

Figure 2. The PCS domain model in ADOM-UML: a class diagram.

 : Controller : Controlled
Element

 : Controlled Value : Sensor Info : Controlled Device Info : Controlled Device

*[i:1..n]monitorAndAct()

<<1..n>> getPossibleRange()

<<1..n>> getMeasuredValue()

act
action

checkCondition()

Check Condition: <<1..n>>

Take action: <<1..n>>

Figure 3. The PCS domain model in ADOM-UML: a sequence diagram of monitoring & acting.

Figure 4. The PCS domain model in ADOM-UML: a statechart diagram of a controlled device.

APPENDIX B: THE ADOM-UML MODEL OF THE HCC APPLICATION

Humidity GaugeEnvironment Measurement
<<Checking>>

Thermometer

<<Operator>>

<<Sensor>>

<<Sensor>><<Controlled Device>>

Heating/Cooling
<<Monitoring&Acting>>

<<include>>

SetDesiredTeperature
AndHumidity

<<System Settings>>

AirConditioner

Home User Turn Off
<<System Activation>>

Turn On
<<System Activation>>

Spraying
<<Monitoring&Acting>>

WaterSprayer

<<include>>

<<Controlled Device>>

<<include>>

<<include>>

Figure 5. The HCC application model in ADOM-UML: a use case diagram.

DesiredTemperature
<<rangeConstraint>> MinimalTemperature : double
<<rangeConstraint>> MaximalTemperature : double

<<getPossibleRange>> getDesiredTemperatureRange() : double[]

<<controlledValue>>

DesiredHumidity
<<rangeConstraint>> optimalHumidity : double
<<rangeConstraint>> possibleMistake : int

<<getPossibleRange>> getDesiredHumidityRange() : double[]

<<controlledValue>>

Air Conditioner Info
<<cdIdentity>> airconditionerID : int
<<cdStatus>> airconditionerStatus : {off, on}
<<cdStatus>> airconditionerMode : {heat, cool, idle}
airconditionerCompany : String
serviceCompany : String

<<action>> heat() : boolean
<<action>> cool() : boolean
<<action>> pause() : boolean
<<action>> resume() : boolean
<<action>> stop() : boolean

<<Controlled Device Info>>

Thermometer Info
<<sensorIdentity>> thermometerID : int
<<measuredValue>> roomTemperature : double

<<getMeasuredValue>> getRoomTemperature() : double

<<Sensor Info>>

Climate Controller

<<monitorAndAct>> openAirconditioner()
<<monitorAndAct>> closeAirconditioner()
<<monitorAndAct>> sprayWater()

<<Controller>>

Humidity Gauge Info
<<sensorIdentity>> humiditygaugeID : int
<<measuredValue>> roomHumidity : double

<<getMeasuredValue>> getRoomHumidity() : double

<<Sensor Info>>

Room
<<controlledElementIdentity>> roomNumber : int
<<controlledElementIdentity>> buildingName : String
<<controlledElementStatus>> roomOccupied : boolean
roomSize : double

<<checkCondition>> IsTemperatureReachingMinimal() : boolean
<<checkCondition>> IsTemperatureReachingMaximal() : boolean
<<checkCondition>> IsHumidityReachingMinimal() : boolean
<<checkCondition>> IsHumidityReachingMaximal() : boolean
<<monitorAndAct>> HeatOrCool()
<<monitorAndAct>> Spray()

<<Controlled Eelement>>

0..*0..*

0..*0..*

0..*0..*

Water Sprayer Info
<<cdIdentity>> sprayerCode : String
<<cdStatus>> sprayerStatus : {idle, spraying}

<<action>> spray() : boolean

<<Controlled Device Info>>

Figure 6. The HCC application model in ADOM-UML: a class diagram.

 : Climate
Controller

 : Room : DesiredTemperature : Thermometer Info : Air Conditioner
Info : AirConditioner

1: *[i:1..n] HeatOrCool()

 11: DT = getDesiredTemperatureRange()

3: DT = getDesiredTemperatureRange()

4: RT = getRoomTemperature()

12: RT = getRoomTemperature()

5: AM=getAirConditionerMode()

6: AS=getAirconditionerStatus()

8: setAirConditionerMode("heat")

13: AM=getAirConditionerMode()

14: AS=getAirconditionerStatus()

16: setAirConditionerMode("cool")

9: heat

17: cool

2: IsTemperatureReachingMinimal()

7: [AS=on and AM != "heat"and RT<DT[0]] heat

10: IsTemperatureReachingMaximal()

15: [AS=on and AM != "cool"and RT>DT[1]] cool

Check Condition:

Check Condition:

Take Action:

Take Action:

Figure 7. The HCC application model in ADOM-UML: a sequence diagram of heating/cooling.

idle
<<Off>> spraying

<<on>>

entry/ Spray Water Into Airspray

Figure 8. The HCC application model in ADOM-UML: a statechart diagram of a water sprayer.

Turned On
<<on>>

Idle

Work

Heat

Cool

H

Turned Off
<<Off>>

Idle

Work

Heat

Cool

H

Heat

heat

Cool

cool

pause

H

resume
stop

Figure 9. The HCC application model in ADOM-UML: a statechart diagram of an air-conditioner.

APPENDIX C: THE ADOM-UML MODEL OF THE WLC APPLICATION

<<Controlled Device>>

<<Operator>>

<<Sensor>>
BoundaryStick

WaterLevel Examining
<<checking>>

<<Controlled Device>>

Filling
<<Monitoring & Acting>> Filling Water

Faucet

Emptying
<<Monitoring & Acting>> Emptying Water

Faucet

Set Boundry Levels
<<System Settings>>

User

Turn on
<<System Activation>>

<<include>>

<<include>>

<<include>>

<<include>>

Figure 10. The WLC application model in ADOM-UML: a use case diagram.

«ControlledValue»
DesiredWaterLevel

«rangeConstraint» lowerBound : double
«rangeConstraint» upperBound : double

«getPossibleRange» getDesiredWaterLevelRange () : double[]

«SensorInfo»
BoundaryStickItem

«sensorIdentity» BoundaryStickID : int
«measuredValue» waterHeight : double

«getMeasuredValue» getWaterHeight () : double

«ControlledDeviceInfo»
FaucetItem

«cdIdentity» faucetID : int
faucetType : {emptying, filling}
«cdStatus» faucetStatus : {opened, closed}

«action» open () : boolean
«action» close () : boolean

«ControlledElement»
Tank

«controlledElementIdentity» tankID : int
«controlledElementStatus» active : boolean

«monitorAndAct» checkHeightAndAct ()
«checkCondition» needToFill () : boolean
«checkCondition» needToStopFilling () : boolean
«checkCondition» needToEmpty () : boolean
«checkCondition» needToStopEmptying () : boolean

«Controller»
WaterController

«monitorAndAct» checkHeightAndAct ()

*

2..*

*

Figure 11. The WLC application model in ADOM-UML: a class diagram.

 : WaterController : Tank : DesiredWaterLevel : BoundaryStickItem FillingFaucet :
FaucetItem : Filling Water

Faucet

*[i:1..n] checkHeightAndAct()

DWL=getDesiredWaterLevelRange()

WH=getWaterHeight()

FS=getFaucetStatus()

[WH<DWH[0] and FS="closed"] open()

open

[WH>DWH[1] and FS="opened"] close()

close

needToFill()

needToStopFilling()

DWL=getDesiredWaterLevelRange()

WH=getWaterHeight()

FS=getFaucetStatus()

Check Condition:

Check Condition:

Take Action:

Take Action:

Figure 12. The WLC application model in ADOM-UML: a sequence diagram of filling/emptying.

closed
<<off>>

 opened
<<on>>

open

close

Figure 13. The WLC application model in ADOM-UML: a statechart diagram of a faucet.

APPENDIX D. THE EXPERIMENT QUESTIONS

Part 1: The HCC comprehension questions and expected answers
For each statement, state weather it is true or false and shortly explain why.

1. There are two types of devices that are controlled by the system.
True – air-conditioners and water sprayers.

2. The system checks its sensor data, the thermometer and the humidity gauge, only through the
Heating/Cooling use case.
False – also from spraying.

3. The only possibility for the home user to activate the system is by turning it on, in addition to setting
the desired temperature and humidity.
False – also turning off.

4. According to the model, it can certainly be determined that a room is uniquely identified by its room
number.
False – there is no evidence for it in the model.

5. There are three controlled values that are controlled by the system.
False – only temperature and humidity.

6. There can be a situation in which the water sprayer is working and the air-conditioner is not.
True – there is no contradiction to any specification.

7. In each situation when the air-conditioner is on and the room temperature is lower than the lowest
bound of the desired temperature, the heating operation of the air-conditioner is activated.
False – only if the air-conditioner did not heat before.

8. In case that the air-conditioner is on, it cools or heats.
False – it can be idle.

9. There are at least two sensors in each room.
True – one thermometer and one humidity gauge.

Part 2: The WLS modeling question (abbreviated summary)
The Water Level Control (WLC) application, similarly to the HCC system, belongs to a
domain of Process Control Systems (PCS). Its purpose is to monitor and control the water
levels in tanks in order to ensure that the actual water level is always in the closed range
[Lowest Limit, Highest Limit]. The values of the lowest and highest limits are defined per
water tank and are configurable. In each tank, a boundary stick which measures the actual
height of the water in the tank is installed. The tank is also coupled to filling and emptying
faucets which respectively inject and drain water when the water height in the tank reaches
its lowest or highest desirable limits.
You are requested to provide the following four diagrams for the WLC application:

(1) The system use case diagram
(2) The system class diagram
(3) A sequence diagram of tank filling
(4) A statechart of a water faucet

Iris Reinhartz-Berger received her B.Sc. degree in Applied Mathematics and Computer
Science from the Technion, Israel Institute of Technology in 1994. She obtained a M.Sc.
degree in 1999 and a PhD in 2003 in Information Management Engineering from the
Technion, Israel Institute of Technology. Her M.Sc. and PhD dissertations dealt with
improving various development phases, mainly design and implementation, in Object-
Process Methodology (OPM). She is currently a faculty member at the Department of
Management Information Systems, Haifa University, Israel. Her research interests include
conceptual modeling, modeling languages and techniques for analysis and design, domain
analysis, development processes, and methodologies. Her work has been published in
journals and international conferences.

Arnon Sturm is a faculty member within the department of Information Systems
Engineering at Ben-Gurion University. He obtained a M.Sc. degree in 1999 and a PhD in
2004 in Information Management Engineering from the Technion, Israel Institute of
Technology. His dissertations dealt with applying the Object-Process Methodology (OPM)
for generating database schemata, modeling multi-agent systems, and supporting domain
modeling. His research concentrates on software engineering and in particular domain
engineering and software development methods. Arnon has 10 years of teaching experience,
including software engineering courses. Prior to his studies, Arnon has gained extensive
experience in developing software systems in the industry. He also served as a member of a
software engineering team that addressed problems of software development.

