Enhancing UML Models: A Domain Analysis Approach
Iris Reinhartz-Berger

Address: Department of Management Information Systems,
University of Haifa, Haifa 31905, Israel

Tel: 972-4-8288502

Fax: 972-4-8288522

e-mail: iris@mis.haifa.ac.il

Arnon Sturm

Address: Department of Information Systems Engineering,

Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
Tel: 972-8-6479337
Fax: 972-8-6479337

e-mail: sturm@bgu.ac.il

Enhancing UML Models: A Domain Analysis Approach

Abstract. UML has been largely adopted as a standard modeling language. The emergence of
UML from different modeling languages that refer to various system aspects causes a wide
variety of completeness and correctness problems in UML models. Several methods have been
proposed for dealing with correctness issues, mainly providing internal consistency rules but
ignoring correctness and completeness with respect to the system requirements and the domain
constraints. In this paper, we propose addressing both completeness and correctness problems of
UML models by adopting a domain analysis approach called Application-based DOmain
Modeling (ADOM). We present experimental results from our study which checks the quality of
application models when utilizing ADOM on UML. The results advocate that the availability of
the domain model helps achieve more complete models without reducing the comprehension of

these models.

Keywords: UML, Domain Analysis, Model Correctness, Model Completeness

INTRODUCTION

Conceptual modeling is fundamental to any area where one has to cope with complex real
world systems. The most popular, de-facto modeling language today is UML, which is used
for specifying, visualizing, constructing, and documenting the artifacts of software systems,
as well as for business modeling and other non-software systems (OMG-UML, 2003; OMG-
UML, 2006). Although UML provides convenient, standard mechanisms for software
engineers to represent high-level system designs as well as low-level implementation details
(Tilley & Huang, 2003), it also introduces a variety of correctness and completeness
problems. According to Major and McGregor (1999), correctness is measured as how
accurately the model represents the information specified within the requirements. For

defining the correctness of a model, a source that is assumed to be (nearly) infallible is

identified. This source, termed a “test oracle”, is usually a human expert whose personal
knowledge is judged to be sufficiently reliable to be used as a reference. The accuracy of the
model representation is measured relatively to the results expected by the oracle.
Completeness, on the other hand, deals with the necessity and usefulness of the model to
represent the real life application, as well as the lack of required elements within the model
(Major & McGregor, 1999). In other words, completeness is judged as to whether the
information being modeled is described in sufficient details for the established goals. This
judgment is based on the model’s ability to represent the required situations, as well as on
the knowledge of experts.

Different studies concluded that it is difficult to model a correct and consistent application
using UML and even to understand such a specification (Kabeli & Shoval, 2001; Peleg &
Dori, 2000; Dori, 2001; Reinhartz-Berger & Dori, 2005; Siau & Cao; 2001). Several
methods have been suggested for checking the correctness of UML models. However, these
mainly deal with syntactic issues directly derived from the modeling language metamodel,
neglecting the correctness and completeness of the models with respect to the domain
constraints and the system requirements.

In this research we utilize the Application-based DOmain Modeling (ADOM) approach
(Reinhartz-Berger & Sturm, 2004; Sturm & Reinhartz-Berger, 2004), whose roots are in the
area of domain engineering, for enhancing UML models. ADOM enables specifying and
modeling domain artifacts that capture the common knowledge and the allowed variability in
specific areas, guiding the development of particular applications in the area, and validating
the correctness and completeness of applications with respect to their relevant domains.
ADOM does these with regular application and software engineering techniques and
languages, bridging the gap between the different abstraction levels at which application and

domain models reside and reducing learning and training times. We present initial results

from our study which checks the comprehension and quality of UML models when applying
ADOM.

Following the introduction we review relevant works from related areas and briefly
introduce the ADOM approach, emphasizing its usage for developing correct and complete
UML models. We then elaborate on the experiment we conducted, its hypotheses, settings,
and results. Finally, we summarize the advantages and limitations of the proposed approach,

raising topics for future research.

LITERATURE REVIEW

Shull et al. (2000) defined six types of software defects that can be found in object-oriented
designs: missing information, incorrect facts, inconsistent information, ambiguous
information, extraneous information, and miscellaneous defects. Incorrect facts, inconsistent
information, ambiguous information, and extraneous information refer to the model
correctness, while missing information refers to completeness.

Several solutions have been proposed over the years for handling these defects, mainly
concerning consistency and integration problems. These solutions can be roughly divided
into translation and verification approaches. Translation approaches, such as Bowman et al.
(2002), Rasch & Wehrheim (2002), Mens et al. (2003), GroRe-Rhode (2001), and Baresi &
Pezze (2001), translate multi-view models into formal languages that can be analyzed by
model checkers. After detecting inconsistencies or mistakes a backward process should be
applied, translating the locations where the defects were found back to the multi-view
models in order to enable the developers to fix them. Whittle (2000) surveyed some of the
attempts to formalize the semantics of UML by applying formal methods for analyzing UML
models. His main conclusion was that UML semantics is largely informal and, hence, more

effort should be directed towards making the semantics precise. Verification approaches, on

the other hand, such as Chiorean et al. (2003), Bodeveix et al. (2002), Engels et al. (2002),
and Nentwich et al. (2003), present testing or validation algorithms which check
inconsistencies and contradictions between various views. They require sophisticated
environments which include test drivers, interpreters, controllers, etc. Reinhartz-Berger
(2005) suggests a top-level approach that glues the different UML views into one coherent
system throughout the entire development process life-cycle. However, all these works refer
to the syntax of the models only. Moreover, none of them deals with completeness issues
and errors that originate from the constraints imposed by the application domain.

Examining common knowledge and utilizing it for developing applications may help
construct better applications in less time and efforts. Indeed, pattern-based modeling
approaches, such as Neal and Linington (2001) and Mapelsden et al. (2002), aim at helping
produce better design and implementation of applications by reusing solutions for recurring
design problems. However, these are usually too abstract to be used directly, refer mainly to
the common features of the solutions in the different contexts, and require further expertise
in order to correctly apply the patterns.

Domain analysis refers to the commonality and variability of sets or families of
applications, defined as domains (Valerio et al., 1997). It specifies the basic elements of the
domain, organizes an understanding of the relationships among these elements, and
represents this understanding in a useful way (Champeaux et al., 1993). Three main groups
of domain analysis techniques are architectural-based, feature-oriented, and metamodeling.
Architectural-based methods (e.g., Neighbors, 1989; Meekel et al., 1997) define the domain
knowledge in components, libraries, or architectures, which may be reused in an application
as they are, but can be also modified to support the particular requirements at hand. Feature-
oriented methods (e.g., Gomaa & Kerschberg, 1995; Kang et al., 1990; Kang et al., 1998;

Gomaa, 2004) suggest that a system specification will be derived by tailoring the domain

model according to the features desired in a specific system. Metamodeling techniques (e.qg.,
Schleicher & Westfechtel, 2001; Gomaa and Eonsuk-Shin, 2002; Nordstrom et al., 1999)
enable definition of domains as metamodels that serve both for capturing domain knowledge
and validating particular applications in the domain.

Similarly to the software engineering field, the area of business process design and
management also promote domain analysis in the form of reference models, which are
models used for supporting the construction of other models. Reference models were
originally suggested as a vehicle for enhancing the development of information systems
(Schuette & Rotthowe, 1998; Fettke & Loos, 2003; Thomas, 2005), but they also provide
generic knowledge about business processes in order to assist in their design in specific
enterprises.

We decided to use a specific domain analysis approach, called Application-based DOmain
Modeling (ADOM), which can serve as a method for guiding and validating the
development of more complete and correct application models in a specific domain. ADOM
has already presented in (Reinhartz-Berger & Sturm, 2004; Sturm & Reinhartz-Berger,
2004; Reinhartz-Berger et al., 2005; and Soffer et al., 2007). In this research, we focus on the
ability of ADOM to enhance the correctness and completeness of UML models in given
domains. Furthermore, we provide empirical evidence for the support of ADOM for these

issues, somehow justifying the costs and efforts required for developing domain models.

THE APPLICATION-BASED DOMAIN MODELING (ADOM) APPROACH

The ADOM approach is based on a three layered architecture: application, domain, and
(modeling) language. Being influenced from the classical framework for metamodeling
presented in OMG-MOF (2003), the application layer, which is equivalent to the model layer

(M1), consists of models of particular applications, including their structure (scheme) and

behavior. The language layer, which is equivalent to the metamodel layer (M2), includes
metamodels of modeling languages. The intermediate domain layer consists of specifications
of various domains, such as web applications, multi agent systems, and process control
systems.

ADOM is a general approach which can be used in conjunction with different modeling
languages, but when adopting ADOM with a specific modeling language, this language is
used for both application and domain layers, easing the task of application design and
validation by employing the same terminology in both layers. The only requirement from the
modeling language used in conjunction with ADOM is that it will have a classification
mechanism that enables categorizing groups of elements. The stereotype and profile
mechanisms in UML are examples of such mechanism.

A domain model in ADOM captures generic knowledge (know-how), in terms of common
elements and the allowed variability among them. In particular, the classification mechanism
is used in the domain layer in order to denote the multiplicity indicators of the different
domain model elements, where a multiplicity indicator specifies a range for the number of
specializations of a specific domain element that may be included in an application model in
that domain.

An application model can be constructed on the basis of the knowledge captured in the
domain model. In this case, we refer to the application model as an instantiation of the
domain model. Instantiation can be mainly achieved by configuration or specialization
operations, performed at design time (when the application model is created). Configuration
is the selection of a subset of existing elements from a domain model for the purpose of
specifying a lawful specific application model. Specialization, on the other hand, is the result
of concretization of a domain model element into a specific application model element. The

generic (domain) elements can be specialized through operations of refinement, sub-typing,

and contextual adoption, so that one generic element may be specialized into more than one
element in the specific application model (Soffer et al., 2007). The relations between a
generic element and its instantiations are maintained by the classification mechanism of the
modeling language. In addition, some generic elements may be omitted and some new
specific elements may be inserted to the specific (application) model. Nevertheless, the

domain knowledge embedded in the generic model must be maintained in the specific one.

The Theoretical Foundations of ADOM

ADOM advocates the application of two main cognitive theory principles: analogical
problem solving and analogical reasoning. These principles promote the usage of existing
knowledge for solving new problems. Analogy was found as a powerful tool for
understanding new situations and finding appropriate solutions for them (Yanowitz, 2001).
From the early 90's, its possible usage for requirements analysis was introduced and
discussed (e.g., Maiden & Sutcliffe, 1992). According to Holyoak (1984), analogical
problem solving is performed in four steps: (1) forming a mental representation of both the
reference and target, (2) generating the relevant analogy, (3) mapping across the features,
and (4) generating the solution based on the analogy. In ADOM, the domain model is
constructed according to the knowledge gained with previous applications and literature
review. Having a domain model, it is used as a reference for developing the target
application model. Both generating the analogy and mapping across features are done by the
customization and specialization operations and the classification mechanism of the used
modeling language. Finally, the ADOM approach supports additions to the application
models in order to generate complete solutions that are based on the analogy.

In this paper we use ADOM-UML, in which UML version 1.5 is used as the underlying

modeling language for specifying both applications and domains and the analogy between

them. We chose ADOM for enhancing UML models because of the following main reasons.
First, ADOM treats domains similarly to applications, enabling the usage of the same
techniques to both application and domain levels. Hence, it is more accessible to software
engineers and enables the specification of both behavioral and structural constraints. Second,
ADOM supports the construction of legal application models throughout the entire
development process and does not execute model checking or validation algorithms at
certain development stages. Thus, it helps avoid and handle model incorrectness and
incompleteness at early development stages. In what follows we elaborate on representing

domain models in ADOM-UML and specifying correct and complete application models.

ADOM-UML Domain Layer

In the language layer of ADOM-UML, a new <<multiplicity>> stereotype is defined in order
to represent the multiplicity indicators. We use the stereotype mechanism for defining
multiplicity constraints since UML multiplicity mechanism is applicable only for
associations and attributes and we wish to express multiplicity constraints on all model
elements. Furthermore, we apply the stereotype mechanism also in cases where the
multiplicity mechanism is applicable in order to preserve uniformity and avoid confusion
between the meaning of multiplicity in the application and domain models.

The <<multiplicity>> stereotype has two associated tagged values, min and max, which
define the lowest and upper most multiplicity boundaries, respectively. For simplicity
purposes, we shorten the notation <<multiplicity min=m max=n>> to <<m..n>> and define
<<1..1>> as the default (i.e., this stereotype may not explicitly appear). These multiplicity
stereotypes are used in the domain layer, where the main concepts of the domain and the
relations among them are specified. This type of stereotypes constrains the number of the

specializations of a domain model element in the application models to be built. This way a

variety of correctness and completeness rules (constraints) can be defined at the domain
level, enforcing their validation in all applications in the domain. Examples of such rules,
which are specified in the process control systems (PCS) domain model that appears in
Appendix A, are given below. Note that applications in the PCS domain monitor and control
the values of certain variables through a set of components that work together to achieve a
common objective or purpose (Duffy, 2004). However, as will be demonstrated latter, their
purposes and implementations may be quite different.

Rule 1 (from the UC diagram): An application in the PCS domain interacts with three
types of actors, Operator, Sensor, and Controlled Device, each of which must be
specialized at least once in any application in this domain.

Rule 2 (from the UC diagram): Each application in the domain has at least one use case
in the following categories: System Settings, System Activation, Monitoring & Acting,
and Checking.

Rule 3 (from the class diagram): Each application in the domain has exactly one class
classified as Controller and at least one class in each of the following categories:
Sensorlinfo, ControlledDevicelnfo, ControlledElement, and ControlledValue.

Note that the domain model also provides additional knowledge on the structure of each
concept, including its attributes, operations, and relations to other concepts. Each
ControlledElement class, for example, has at least one attribute classified as
controlledElementldentity, at least one operation classified as monitorAndAct, and at
least one operation classified as checkCondition (each of which returns a Boolean value). In
addition, ControlledElement may have enumerated attributes classified as
controlledElementStatus.

Rule 4 (from the sequence diagram): Each application in the domain deals with

monitoring and acting in the following way. The Controller activates (in a loop) a

monitorAndAct operation on the ControlledElements. This operation acts in two stages: in
the first stage the condition is checked, while in the second stage the action takes place. The
activation part of the sequence is embedded within the condition checking part and each one
of them can be repeated several times.

Rule 5 (from the statechart diagram): Each ControlledDevice has exactly one "off" state
and at least one "on" state. The transition between "off" and "on" states is done by an action,
while no additional information is provided in the domain level about the transitions between

"on" and "off" states.

3.3 ADOM-UML Application Layer

An application model may use a domain model as guidelines (or analogy) for creation and as
a validation template for checking that all the constraints enforced by the domain model are
actually fulfilled by the application at hand. For these purposes, elements in the application
model are classified according to the elements declared in the domain model using the UML
stereotype mechanism. A model element in an application model is required to preserve the
constraints of its stereotypes in the relevant domain model.

Returning to our PCS example, we describe in this section two applications in the domain:
a Home Climate Control (HCC) application and a Water Level Control (WLC) system. The
HCC application ensures that the temperature in the rooms of a house remains in the closed
range [TL, TH] and the humidity in these rooms remains in the closed range [HL, HH]. Each
room has its own limit values (TL, TH, HH, and HL) which are configurable. The actual
levels of temperature and humidity are measured by thermometers and humidity gauges,
respectively. An air conditioner and a water sprayer are installed in each room, enabling
changing the temperature and humidity at will. The ADOM-UML model of the HCC

application appears in Appendix B.

The purpose of the WLC application is to monitor and control the water levels in tanks,
ensuring that the actual water level is always in the closed range [Lowest Limit, Highest
Limit]. The values of the lowest and highest limits are configurable. The actual level is
measured by a boundary stick. The tank is also coupled to emptying faucets that drain water
from the tank and to filling faucets that inject water into the tank. The ADOM-UML model
of the WLC application appears in Appendix C.

Although different, both applications use the knowledge captured in the PCS domain
model and preserve its constraints. In particular, they both maintain the five rules
exemplified in Section 3.2. Note that these rules may not explicitly appear in the requirement
specification of a particular application, as they may be common property of the domain.
Therefore, the designer is responsible for keeping the model complete and correct with
respect to these rules. Explicitly specifying these rules in the form of domain models may

contribute and help the designer to better perform his/her tasks.

THE EXPERIMENT

In order to verify the usefulness of the ADOM approach for enhancing UML application
models, we conducted an experiment, whose hypotheses, settings, and results are reported

below.

Experiment Hypotheses

In the experiment we aimed at checking the following three hypotheses.

Hypothesis #1: Application models are more completely developed when a domain
model is available. This hypothesis is derived from the observation that domain models may
include relevant elements and constraints that do not explicitly appear in the requirements of

each application in the domain. Furthermore, "best practices” can be incorporated into the

domain models as optional elements (i.e., elements whose minimal multiplicity indicator is
0), helping the designer not to miss information.

Hypothesis #2: Application models are more correctly developed when a domain
model is available. Here, again, wrong interpretation of requirements may be avoided by the
domain artifacts and knowledge.

Hypothesis #3: The comprehension of application models remains unchanged when
the relevant domain model and elements are added. The reason for this hypothesis
originates from the observation that domain and application models belong to two different
abstraction levels. When answering concrete questions about the applications, the more
abstract domain elements might generalize the needed information, blurring the sought
answer. However, the existence of these domain elements may help answer questions which

relate to generalized application information.

Experiment Settings

The subjects of the experiment were third year students in a four-year engineering B.Sc.
program at Ben-Gurion University of the Negev, Israel, who took the course “Object-
Oriented Analysis and Design” at the winter semester of the 2004-5 academic year. All of
them were students of the Information Systems Engineering program and had no previous
knowledge or experience in system modeling and specification. During the course, the
students studied mainly UML and its applicability to software analysis and design, while the
last lecture was devoted to ADOM.

The experiment took place during the final three-hour examination of the course. The
examination contained two tasks, one of which was related to the reported experiment. In
this task the students were asked to respond to nine true/false comprehension questions about

the HCC application and to build a model of a WLC application. The students were told that

both applications belong to the same PCS domain. The comprehension questions are listed
along with their expected answers in Appendix D, which also includes the modeling question
that refers to the WLC application. An acceptable model to this application is given in
Appendix C.

The students were divided arbitrarily into two groups of 34 and 36 students. Each group
got a different test form type, ADOM-UML and "regular" UML, respectively. The "regular"
UML test form included a UML model of the HCC application, as given in Appendix B
without the stereotypes. The ADOM-UML test form included the PCS domain model and
the HCC application model as given in Appendices A and B, respectively. The students were
provided with alternating form types according to their seating positions, so this arbitrary
division into the two experimental groups closely approximated random division. Executing
a t-test on the average grades of the students in their studies, we indeed found that no
significant difference exists between the two groups (t = 0.32, p ~ 0.75).

In order to validate the correctness and completeness of the models that participate in the
experiment, as well as to check that the comprehension questions can be accurately answered
and the WLC application can be accurately modeled in both form types, four UML design
experts examined them carefully. Only after reaching an agreement on all the
aforementioned issues, the experiment was conducted.

We also addressed ethical concerns that may rise using the author’s students as
participants (Singer & Vinson, 2002). In particular, the students were notified at the
beginning of the semester about the exam being used as an experiment; the students had the
opportunity of getting a grade in the course without participating in the experiment (by
taking term B of the exam); the grades of the two test forms were normalized; and
confidentiality was kept throughout the entire data grading and analysis processes, so no

identification of the subjects can be done.

Experiment Results

The comprehension and modeling questions were checked according to a pre-defined
detailed grading policy, which included potential errors along with the number of points that
should be reduced in case of error occurrences. Each comprehension question could score a
maximum of 2 points (18 points in total), while the modeling question could score as much
as 32 points. Incomplete answers, or incorrect answers, scored less according to the detailed
grading policy.

Table 1 summarizes the average scores of the comprehension, modeling, and overall
grades. A t-test, which was used to analyze these results, showed that although the average
comprehension score of the ADOM-UML group was higher than that of the "regular* UML
group, it was not found as statistically significant (p<0.094). This outcome can be considered
as in-line with our third hypothesis, as we claimed that domain models sometimes help find
generalized answers (i.e., answers that are relevant to several applications in the domain or
to several specializations of the same domain element) and sometimes blur the sought
answers (for questions that are individual to the specific application). Since the questions in

the experiment belong to both categories, no significant differences were found.

Table 1. Results of the comprehension, modeling, and overall grades

Average score
ADOM-UML Regular UML t p-value
Comprehension 76.31% 68.98% 1.698 <0.094
Modeling 89.11% 77.73% 3.605 <0.001
Overall 84.50% 74.58% 3.214 <0.002

However, the statistical analysis shows that the availability of the domain model was very

important for modeling a new application in the domain. This is especially true, since the

students that participated in the experiment were non-experts (in the domain, the modeling
language, and the development task).

In order to carry out an in-depth analysis of the domain model influence on both
correctness and completeness of application models, we further checked the average amount
of points reduced due to incompleteness and incorrectness, whereas incompleteness referred
to missing elements and correctness was measured in terms of redundancy, incorrect facts,
and inconsistency among the diagrams. Note that some of the points were reduced due to
miscellaneous defects (Shull et al., 2000) and, thus, they are omitted from the calculations
regarding correctness and completeness.

Table 2 presents the average amount of points reduced due to incompleteness and
incorrectness. As claimed in hypothesis #1, the results clearly show that ADOM-UML
helped gain a more complete model. We believe that the main reason for this outcome is
using the ADOM-UML domain model as guidelines (or an analogy) for building the
application model, rather than starting from scratch or from a similar application. These
guidelines were applied properly as the students had another application from the same
domain (the HCC model) that applied the same guidelines.

Regarding correctness, Table 2 shows that the students had fewer errors when using the
ADOM-UML. However, this was not found as statistically significant (p<0.062). The main
differences between the two groups were that students who used the "regular" UML test
forms had significantly less errors related to the class diagram, while students who used the
ADOM-UML test forms had significantly less errors related to messages in the sequence
diagram and to states and their transitions in the state diagram. We believe that the reason for
the statistical insignificance of these results was the similarity between the two applications:
the given HCC model and the requested WLC model. Our belief relies on the observation

that the students who got "regular" UML test forms consider the HCC model as a reference

for modeling the WLC system. This could be done since the particular applications are very
similar. However, in the general case, only the domain model can serve as a template to

guide the developer in the development of new domain-specific applications.

Table 2. The average percentages of points reduced due to completeness and correctness errors

Inspected aspect ADOM-UML Regular UML t p-value
Completeness 5.59% 10.84% -3.324 <0.002
Correctness 5.34% 7.66& -1.904 <0.062

SUMMARY AND FUTURE WORK

In this paper we suggest utilizing domain models for improving application model quality in
terms of correctness and completeness. We use a specific domain analysis method, called
Application-based DOmain Modeling (ADOM), that enables specifying both domain and
application models with similar software engineering techniques and languages and creating
analogy among them. When developing a particular application in the domain, the domain
model is used as a reference and the application model can be validated against the relevant
domain model in order to detect completeness and correctness errors.

We empirically validated our approach on undergraduate students, i.e., inexperienced
users who need additional tools and techniques in order to develop qualitative application
models. The results presented in this paper suggest that the availability of the domain model
help develop better application models, mainly with respect to their completeness, without
affecting their comprehension. When developing totally new applications inexperienced
designers tend to create erroneous models, but even experienced ones cannot anticipate the
implication of a change on an overall model (Sunye et al, 2001). Indeed, Lange et al. (2006)
showed that model defects often remain undetected, even if practitioners check the model

attentively. These results may advocate and justify the costs and efforts required in

developing complete and correct domain models for mature, stable, economically viable
domains, as these domain models can be used for guiding the development of high quality
applications in these domains.

Similarly to other domain analysis approaches, ADOM can be criticized as inhibiting
creativity, and its applicability for domains where consensus cannot be reached by domain
experts may be questioned. However, from the creativity point of view, Kolle (2005) states
that basing on existing solutions not necessarily decrease creativity, as it may give rise to
creativity related to the specific problem at hand. Regarding scalability, domain models in
ADOM capture not only the commonality, but also the variability allowed among
applications in a specific domain, so that consensus does not have to be reached before
modeling the domain. Furthermore, although examined on a small and relatively simple
example, ADOM has the expressiveness to support the specification of more complex
domain rules and constraints. Indeed, we are currently in the process of checking the
expressiveness of ADOM in different modeling languages and contexts. We have already
adopted ADOM for business process modeling with UML activity diagrams (Reinhartz-
Berger et al., 2005) and EPC (Soffer et al., 2007), for requirement and design modeling with
OPM (Sturm et al., 2006), and for web site development with Tersus (Tersus, 2006).

In the future, we plan to continuously evaluate the effectiveness of using ADOM (by
novice and experienced designers) to support the construction of consistent, correct, and
complete application models in various modeling languages. In addition, we work on
developing a formal and accurate process for instantiating and utilizing domain models. We
believe that this process, which will be supported by a CASE tool, will help improve the

accuracy, correctness, and completeness of the resultant application models.

REFERENCES

Baresi, L. & Pezze, M. (2001). On Formalizing UML with High-Level Petri Nets. Concurrent Object-
Oriented Programming and Petri Nets, 276-304.

Bodeveix, J.P., Millan, T., Percebois, C., Le Camus, C., Bazex, P., Feraud, L. & Sobek, R. (2002).
Extending OCL for Verifying UML Models Consistency, Workshop on Consistency Problems in
UML-based Software Development, 5" International Conference on the Unified Modeling
Language- the Language and its applications (UML'2002), Dresden, Germany, 75-90.

Bowman, H., Steen, M., Boiten, E.A. & Derrick, J. (2002). A Formal Framework for Viewpoint
Consistency, Formal Methods in System Design, 21 (2), 111-166.

Champeaux, D. de, Lea, D. & Faure, P. (1993). Object-Oriented System Development, Addison Wesley.

Chiorean, D., Pasca, M., Carcu, A., Botiza, C. & Moldovan, S. (2003). Ensuring UML maodels
consistency using the OCL Environment. Workshop on OCL 2.0 - Industry standard or scientific
playground?, 6" International Conference on the Unified Modeling Language - the Language and its
applications (UML'2003), San Francisco (2003).

Dori, D. (2001). Object-process methodology applied to modeling credit card transactions. Journal of
Database Management, 12 (1), 4-14.

Duffy, D. J. (2004). Domain Architectures: Models and Architectures for UML Applications. John Wiley
& Sons.

Engels, G., Hausmann, J.H., Heckel, R. & Sauer, S. (2002). Testing the Consistency of Dynamic UML
Diagrams. Proc. 6th International Conference on Integrated Design and Process Technology (IDPT
2002), Pasadena CA, http://www.uni-paderborn.de/cs/ag-engels/Papers/2002/EngelsHHS-
IDPTO2.pdf.

Fettke, P. & Loos, P. (2003). Classification of Reference Models - A Methodology and its Application,
Information Systems and e-Business Management, 1 (1), 35-53.

Gomaa, E. & Kerschberg, L. (1995). Domain Modeling for Software Reuse and Evolution, Proceedings of
Computer Assisted Software Engineering Workshop (CASE 95).

Gomaa, H. (2004). Designing Software Product Lines with UML: From Use Cases to Pattern-based

Software Architectures, The Addison-Wesley Object Technology Series.

Gomaa, H. & Eonsuk-Shin, M. (2002). Multiple-View Meta-Modeling of Software Product Lines,
Proceedings of the Eighth IEEE International Conference on Engineering of Complex Computer
Systems.

GroRe-Rhode, M. (2001). Integrating Semantics for Object-Oriented System Models, 28th International
Colloquium on Automata, Languages and Programming (ICALP 2001), Crete, Greece, Lecture
Notes in Computer Science 2076, 40-60.
http://il1lwww.ira.uka.de/~baar/oclworkshopUmI03/papers/06_ensuring_uml_model_consistency.pd
f

Holyoak, K.J. (1984). Analogical thinking and human intelligence. Advances in the Psychology of Human
Intelligence. Ed: R. J. Sternberg. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 199-230.

Kabeli, J. & Shoval, P. (2001). FOOM: functional- and object-oriented analysis & design of information
systems - an integrated methodology, Journal of Database Management, 12 (1), 15-25.

Kang, K. C.,Kim, S,, Lee, J,, Kim, K., Shin, E. & Huh M. (1998). FORM: A feature-oriented reuse
method with domain-specific reference architectures, Annals of Software Engineering, 5 (1), 143-
168.

Kang, K., Cohen, S., Hess, J., Novak, W. & Peterson, A. (1990). Feature-Oriented Domain Analysis
(FODA) Feasibility Study, CMU/SEI-90-TR-021 ADA235785.

Kolle, A. G. (2005). Analogical problem-solving in design, Evaluating the feasibility and benefits of the
methodical use of biological analogies in solving design problems, Technical report,
http://design.ntnu.no/forskning/artikler/2005/artikkel_Audun_Kaolle.pdf.

Lange, C.F.J., Chaudron, M.R.V. & Muskens J. (2006). In Practice: UML Software Architecture and
Design Description. IEEE Software, 23 (2), 40-46.

Maiden, N. & Sutcliffe, A. (1992). Exploiting reusable specifications through analogy. Communication of
the ACM, 35(4), 55-64.

Major, M. & McGregor, J. (1999). Using Guided Inspection to Validate UML Models, the 24™ Annual
IEEE/NASA Software Engineering Workshop.

Mapelsden D, Hosking, J. & Grundy, J. (2002). Design Pattern Modeling and Instantiation using DPML,

TOOLS Pacific 2002, 3-11.

Meekel, J., Horton, T. B., France, R. B., Mellone, C. & Dalvi, S. (1997). From domain models to
architecture frameworks, Proceedings of the 1997 symposium on Software reusability, 75-80.

Mens, T., Van Der Straeten, R. & Simmonds, J. (2003). Maintaining Consistency between UML Models
Using Description Logic. Workshop on Consistency Problems in UML-based Software Development
I, 6" International Conference on the Unified Modeling Language — the Language and its
applications (UML'2003), San Francisco, 71-77.

Neal, S. & Linington, P. (2001), Tool Support for Development using Patterns, International Enterprise
Distributed Object Computing, 237-248.

Neighbors, J. (1989). Draco: A Method for Engineering Reusable Software Systems, in T. Biggerstaff &
A. Perlis. Software Reusability. Volume I: Concepts and Models. ACM Press, Frontier Series,
Addison-Wesley, Reading, 295-319.

Nentwich, C., Emmerich, W., Finkelstein, A. & Ellmer, E. (2003). Flexible consistency checking, ACM
Transactions on Software Engineering and Methodologies, 12 (1), 28-63.

Nordstrom, G., Sztipanovits, J., Karsai, G. & Ledeczi, A. (1999). Metamodeling - Rapid Design and
Evolution of Domain-Specific Modeling Environments, Proceedings of the IEEE Sixth Symposium
on Engineering Computer-Based Systems (ECBS), 68-74.

OMG-MOF (2003). Meta-Object Facility (MOF™), version 1.4.

OMG-UML (2003). The Unified Modeling Language (UML™), version 1.5.

OMG-UML (2006). UML 2.0 Superstructure, 2006.

Peleg, M. & Dori, D. (2000). The Model Multiplicity Problem: Experimenting with Real-Time
Specification Methods. IEEE Transaction on Software Engineering, 26 (8), 742-759.

Rasch, H. & Wehrheim, H. (2002). Consistency Between UML Classes and Associated State Machines.
Workshop on Consistency Problems in UML-based Software Development, 5" International
Conference on the Unified Modeling Language- the Language and its applications (UML'2002),
Dresden, Germany, 46-60.

Reinhartz-Berger, I. (2005). Conceptual Modeling of Structure and Behavior with UML — The Top Level
Object-Oriented Framework (TLOOF) Approach, the 24" International Conference on Conceptual

Modeling (ER'2005), Lecture Notes in Computer Science 3716, 1-15.

Reinhartz-Berger, I. & Dori, D. (2005). OPM vs. UML - Experimenting Comprehension and
Construction of Web Application Models. Empirical Software Engineering (EMSE), 10 (1), 57-80.

Reinhartz-Berger, I., Soffer, P., & Sturm, A. (2005). A Domain Engineering Approach to Specifying and
Applying Reference Models, Proceedings of Enterprise Modeling Information Systems Architecture
(EMISA’05), pp. 50-63.

Reinhartz-Berger, I. & Sturm, A. (2004). Behavioral Domain Analysis — The Application-based Domain
Modeling Approach, the 7™ International Conference on the Unified Modeling Language
(UML'2004), Lecture Notes in Computer Science 3273, 410-424.

Schleicher, A. & Westfechtel, B. (2001). Beyond Stereotyping: Metamodeling Approaches for the UML,
Proceedings of the 34™ Annual Hawaii International Conference on System Sciences, 1243-1252.
Schuette, R., & Rotthowe, T. (1998). The Guidelines of Modeling — an Approach to Enhance the Quality
in Information Models, Proceedings of the 17" International Conference on Conceptual Modeling

(ER'98), Lecture Notes In Computer Science 1507, Springer-Verlag, Berlin, 240-254.

Shull, F., Rus, I. & Basili V, (2000). How Perspective-Based Reading Can Improve Requirements
Inspections, IEEE Computer, 33 (7), 73-79.

Siau, K. & Cao, Q. (2001). Unified Modeling Language: A Complexity Analysis, Journal of Database
Management, 12 (1), 26-34.

Singer, J. & Vinson, N. G., (2002). Ethical Issues in Empirical Studies of Software Engineering, IEEE
Transaction on Software Engineering, 28 (12), 1171-1180.

Soffer, P., Reinhartz-Berger, I,, and Sturm, A (2007), Facilitating Reuse by Specialization of Reference
Models for Business Process Design, Accepted to the 8" Workshop on Business Process Modeling,
Development, and Support (BPMDS'07), in conjunction with CAiISE’07.

Sturm, A., Dori, D., & Shehory, O. (2006). Domain Modeling with Object-Process Methodology,
Proceedings of the Eighth International Conference on Enterprise Information Systems, ICEIS (3),
144-151.

Sturm, A. & Reinhartz-Berger, 1. (2004). Applying the Application-based Domain Modeling Approach to
UML Structural Views, the 23" International Conference on Conceptual Modeling (ER'2004),

Lecture Notes in Computer Science 3288, 766-779.

Sunye, G., Pollet, D., Le Taraon, Y. & Jezkel J.-M. (2001). Refactoring UML models. In Proceedings of
UML 2001, Lecture Notes In Computer Science 2185, 134-148.

Tersus, www.tersus.com, 2006.

Thomas, O. (2005). Understanding the Term Reference Model in Information Systems Research: History,
Literature Analysis and Explanation, Proceedings of First International Workshop on Business
Process Reference Models, Nancy, France, 16-28.

Tilley, S. & Huang, S. (2003). A qualitative assessment of the efficacy of UML diagrams as a form of
graphical documentation in aiding program understanding, Proceedings of the 21% annual
international conference on Documentation, San Francisco, CA, 184-191.

Valerio, A., Giancarlo, S. & Massimo, F. (1997). Domain analysis and framework-based software
development, ACM SIGAPP Applied Computing Review, 5 (2), 4-15.

Whittle, J. (2000). Formal approaches to systems analysis using UML: An overview. Journal of Database
Management, 11(4), 4-13.

Yanowitz, K. L. (2001). Transfer of structure-related and arbitrary information in analogical reasoning.

The Psychological Record.

APPENDIX A: THE ADOM-UML MODEL OF THE PCS DOMAIN
/ <<lin>>
System Settings

<<1l..n>
Operator CH

<<1..n>>

<<l.n>> Controlled Device

System Activation

<<include>> ‘

v

- <<include>> —
COo—=—=COo——
o N <<1..n>
<<1..n>> <<1..n>> Sensor
Monitoring&Acting Checking

Figure 1. The PCS domain model in ADOM-UML.: a use case diagram.

==l M=
Controlled Value
=<2 N==TangeConsraint

Controller
==l N== dAnonitor&nd Ac)

==1l.N=> +getPossibleRanged

==l Ne=
R s R s
==l N==
Controlled E lement
==l M==-controlledElement de ntity
=<0 N==-controlledElementStatus . Enumeration
<<l N== dnonitorfnd Adg
==l N== +chedk Condition) . boolean
=gl Mee kxl. Nes
B B <l Mas
el M sl M
Sensor Info Controlled DevicelInfo
==1.N>=-sensofdentity ==1.n==-cdldentity
<<l M==-measuredyalus <=l M= -cdStatus
<<l N== +getMeasuredalued <=l n== +actiond . boolean

Figure 2. The PCS domain model in ADOM-UML.: a class diagram.

X

. Controlled Device

. Controller : Controlled : Controlled Value : Sensor Info : Controlled Device Info
Element

*[i:1..n)JmonitorAndAct() ‘
.
Ll

Check Condition: <<1.. AN

checkCondition()

« \

<<l.n>> getPossible?ange()

<<l..n>> getMeasureJVaIue()

h>>

N

Take action: <<1..n>>

T
|
‘ action
\

|
|
|
|
|
|
|
gi
|

T \ \ \

Figure 3. The PCS domain model in ADOM-UML.: a sequence diagram of monitoring & acting.

Figure 4. The PCS domain model in ADOM-UML.: a statechart diagram of a controlled device.

APPENDIX B: THE ADOM-UML MODEL OF THE HCC APPLICATION

-,
<<System Settings>>

SetDesiredTeperature
/ AndHumidity

C)

N S T
<<Operator>> <<System Activation>>
Home User Turn Off

<<Controlled De\ice>>
WaterSprayer

<<System Actimtion»iinclude»

Tum On A /7\
| /

i <<Monitoring&Acting>>
i <<include>>
<1C_:o tr?;!e_ Device>> Spraying AN
irConditioner
‘ <<|nclude> hermometer

m'dﬁ

<<Monitoring&Acting>> <<Checking>>
Heating/Cooling Environment Measurement

<<Sensor>>
Humidity Gauge

Figure 5. The HCC application model in ADOM-UML: a use case diagram.

<<Controller>> <<controlledValue>>
Climate Controller DesiredTemperature
{&<<rangeConstraint>> Minimal Temperature : double
[®<<monitorAndAct>> openAirconditioner() {BJ<<rangeConstraint>> MaximalTemperature : double
[<<monitorAndAct>> closeAirconditioner()
[®<<monitorAndAct>> sprayWater() [®<<getPossibleRange>> getDesiredTemperatureRange() : double[]
0.* 0.2

<<Controlled Eelement>>
Room

[E5<<controlledElementidentity>> roomNumber : int
<<controlledElementldentity>> buildingName : String <<controlledValue>>
gz<<controlledElementStatus>> roomOccupied : boolean DesiredHumidity

sroomsSize : double = <<rangeConstraint>> optimalHumidity : double
{&}<<rangeConstraint>> possibleMistake : int

[®<<checkCondition>> IsTemperatureReachingMinimal() : boolean
[®<<checkCondition>> IsTemperatureReachingMaximal() : boolean ¥ <<getPossibleRange>> getDesiredHumidityRange() : double(]

[®<<checkCondition>> IsHumidityReachingMinimal() : boolean
[®<<checkCondition>> IsHumidityReachingMaximal() : boolean
[®<<monitorAndAct>> HeatOrCool()

[®<<monitorAndAct>> Spray()

<<Controlled Device Info>>

Air Conditioner Info
2z<<cdldentity>> airconditioneriD : int
Zz<<cdStatus>> airconditionerStatus : {off, on}
{&j<<cdstatus>> airconditionerMode : {heat, cool, idle}
{E¥airconditionerCompany : String
{&jseniceCompany : String

<<Sensor Info>>

Thermometer Info
{E<<sensorldentity>> thermometerlD : int
<<measuredValue>> roomTemperature : double

[®<<getMeasuredValue>> getRoomTemperature() : double

[®<<action>> heat() : boolean

[®<<action>> cool() : boolean
<<Sensor Info>> [®i<<action>> pause() : boolean

Humidity Gauge Info [®<<action>> resume() : boolean

= . — . <<action>> stop() : boolean
<<sensorldentity>> humiditygaugelD : int n PO

Zi<<measuredValue>> roomHumidity : double

- <<Controlled Device Info>>
[®<<getMeasuredValue>> getRoomHumidity() : double Water Sprayer Info
{Ej<<cdidentity>> sprayerCode : String
&<<cdsStatus>> sprayerStatus : {idle, spraying}

[®<<action>> spray() : boolean

Figure 6. The HCC application model in ADOM-UML.: a class diagram.

X

: Climate : Room : DesiredTemperature : Thermometer Info : Air Conditioner | . ,. -
: AirConditioner
Controller Info
1: *[i:1..n] HeatOrCool() ‘
.
Check Condition: ‘ AN
2: IsTemperatureReach?ngMinimal()
3: DT = getDesiredTemperatureRange()
‘ >
5: ‘AMzgetAirC0nditionerMode
P
4: AS=getAirconditionerStatus() D
|-
el |
Take Action: U

7 [AS:Jn and AM = "heat"and RT<DT[O]] heat

h 4

8: setAirConditionerMode("heat")

<«

‘ 9: heat
|

Check Condition: ‘
10: IsTemperatureReachingMaximal()

«

11: DT = getDesiredTemperatureRange()

12: RT = getRoomTemperature()

>
13: AM:getAi}ConditionerModeO H

14: AS:getAirconditionerStatus()
T

Take Action: ‘
15: [AS=or1 and AM = "cool"and RT>DT[1]] cool

g

16: setAirConditionerMode("cool")

17: cool

Figure 7. The HCC application model in ADOM-UML_: a sequence diagram of heating/cooling.

\ <<on>>

<<Off>> .
idle spraying

spray.

entry/ Spray Water Into Air

Figure 8. The HCC application model in ADOM-UML: a statechart diagram of a water sprayer.

<on>>

. .\ Tumed On

<<Off>> stop
Tumed Off |« | pause/v ‘ resume
heat
Work é
cool | .

Figure 9. The HCC application model in ADOM-UML.: a statechart diagram of an air-conditioner.

APPENDIX C: THE ADOM-UML MODEL OF THE WLC APPLICATION

<<System Settings>> ()7

Set Boundry Lewels <<Monitoring & Acting>>

7 Filling
- <include>>
\(j $<<include>>
<<Operator>>

<<Controlled Device>>
Filling Water
Faucet

User
<<System Activation>>

Tum on —
\ <<checking>>

WaterLeveI Examining

<<inc|ude>>\

<

<<Monitoring & Acting>>

Emptying

<<Sensor>>
BoundaryStick

N
<<include>>

<<Contfolled Device>>
Emptying Water
Faucet

Figure 10. The WLC application model in ADOM-UML.: a use case diagram.

«Controller»

«ControlledValue»
DesiredWaterLevel

WaterController

$ «monitorAndAct» checkHeightAndAct ()

g/ «rangeConstraint» lowerBound : double
g «rangeConstraint» upperBound : double

% «getPossibleRange» getDesiredWaterLevelRange () : double[]

* *

«ControlledElement»
Tank

g «controlledElementidentity» tankID : int
g «controlledElementStatus» active : boolean

$ «monitorAndAct» checkHeightAndAct ()

$ «checkCondition» needToFill () : boolean

$ «checkCondition» needToStopFilling () : boolean

$ «checkCondition» needToEmpty () : boolean

$ «checkCondition» needToStopEmptying () : boolean

«ControlledDevicelnfo»
Faucetltem

g «cdidentity» faucetID : int
g faucetType : {emptying, filling}
g/ «cdStatus» faucetStatus : {opened, closed}

$ «action» open () : boolean
$ «action» close () : boolean

«Sensorlnfo»
BoundaryStickltem

g «sensorldentity» BoundaryStickID : int
g «measuredValue» waterHeight : double

S «getMeasuredValue» getWaterHeight () : double

Figure 11. The WLC application model in ADOM-UML.: a class diagram.

A

- WaterController : Tank : DesiredWaterlLewel : BoundaryStickitem FillingFaucet : R
: Filling Water
Faucetltem
Faucet
*i:1..n] checkHeightAn%Act() ‘ ‘
Check Condition: AN
needToFill() ‘ ‘
DWL=getDesiredWaterLevelRange() ‘
| >
‘ FS=getFaucetStatus()
\ \ >H
| |
Take Action: J ‘ N
[WH<DWHI0] and FS="closed"]'open()
‘ ‘ open
\ \ -
Check Condition: AN
needToStopFilling() ‘
-«
DWL=getDesiredWaterLewelRange() ‘
e E—]
WH=getWaterHeight(
|]
FS:getFaucetStatu?O l
Take Action: J ‘
[WH>DWH[1] and FS="opened"] close()
‘ ‘ close
| |
T T T
\ \

L

Figure 12. The WLC application model in ADOM-UML.: a sequence diagram of filling/emptying.

close pr—

open opened

<<off>>
closed

Figure 13. The WLC application model in ADOM-UML: a statechart diagram of a faucet.

APPENDIX D. THE EXPERIMENT QUESTIONS

Part 1: The HCC comprehension questions and expected answers
For each statement, state weather it is true or false and shortly explain why.

1.

There are two types of devices that are controlled by the system.

True — air-conditioners and water sprayers.

The system checks its sensor data, the thermometer and the humidity gauge, only through the
Heating/Cooling use case.

False — also from spraying.

The only possibility for the home user to activate the system is by turning it on, in addition to setting
the desired temperature and humidity.

False — also turning off.

According to the model, it can certainly be determined that a room is uniquely identified by its room
number.

False — there is no evidence for it in the model.

There are three controlled values that are controlled by the system.

False — only temperature and humidity.

There can be a situation in which the water sprayer is working and the air-conditioner is not.

True — there is no contradiction to any specification.

In each situation when the air-conditioner is on and the room temperature is lower than the lowest
bound of the desired temperature, the heating operation of the air-conditioner is activated.

False — only if the air-conditioner did not heat before.

In case that the air-conditioner is on, it cools or heats.

False — it can be idle.

There are at least two sensors in each room.

True — one thermometer and one humidity gauge.

Part 2: The WLS modeling question (abbreviated summary)
The Water Level Control (WLC) application, similarly to the HCC system, belongs to a
domain of Process Control Systems (PCS). Its purpose is to monitor and control the water
levels in tanks in order to ensure that the actual water level is always in the closed range
[Lowest Limit, Highest Limit]. The values of the lowest and highest limits are defined per
water tank and are configurable. In each tank, a boundary stick which measures the actual
height of the water in the tank is installed. The tank is also coupled to filling and emptying
faucets which respectively inject and drain water when the water height in the tank reaches
its lowest or highest desirable limits.
You are requested to provide the following four diagrams for the WLC application:

(1) The system use case diagram

(2) The system class diagram

(3) A sequence diagram of tank filling

(4) A statechart of a water faucet

Iris Reinhartz-Berger received her B.Sc. degree in Applied Mathematics and Computer
Science from the Technion, Israel Institute of Technology in 1994. She obtained a M.Sc.
degree in 1999 and a PhD in 2003 in Information Management Engineering from the
Technion, Israel Institute of Technology. Her M.Sc. and PhD dissertations dealt with
improving various development phases, mainly design and implementation, in Object-
Process Methodology (OPM). She is currently a faculty member at the Department of
Management Information Systems, Haifa University, Israel. Her research interests include
conceptual modeling, modeling languages and techniques for analysis and design, domain
analysis, development processes, and methodologies. Her work has been published in
journals and international conferences.

Arnon Sturm is a faculty member within the department of Information Systems
Engineering at Ben-Gurion University. He obtained a M.Sc. degree in 1999 and a PhD in
2004 in Information Management Engineering from the Technion, Israel Institute of
Technology. His dissertations dealt with applying the Object-Process Methodology (OPM)
for generating database schemata, modeling multi-agent systems, and supporting domain
modeling. His research concentrates on software engineering and in particular domain
engineering and software development methods. Arnon has 10 years of teaching experience,
including software engineering courses. Prior to his studies, Arnon has gained extensive
experience in developing software systems in the industry. He also served as a member of a
software engineering team that addressed problems of software development.

