
HOW INTUITIVE IS
OBJECT-ORIENTED DESIGN?

By Irit Hadar and Uri Leron

Intuition is a powerful tool that helps us navigate through life,
but it can get in the way of more formal processes.

T
he object-oriented programming paradigm was created partly to deal
with the ever-increasing complexity of software systems. The idea was to
exploit the human mind’s natural capabilities for thinking about the
world in terms of objects and classes, thus recruiting our intuitive pow-
ers for building formal software systems. Indeed, it has commonly been
assumed that the intuitive and formal systems of objects and classes are
similar and that fluency in the former helps one deal efficiently with the
latter. However, recent studies show that object-oriented programming is

quite difficult to learn and practice [1, 3, 7]. In this article, we document several such dif-
ficulties in the context of experts participating in workshops on object-oriented design
(OOD). We use recent research from cognitive psychology to trace the sources of these
difficulties to a clash between the intuitive and analytical modes of thinking.

COMMUNICATIONS OF THE ACM May 2008/Vol. 51, No. 5 41

Hadar_ lo:Intro_ lo 4/28/08 3:05 PM Page 41

42 May 2008/Vol. 51, No. 5 COMMUNICATIONS OF THE ACM

Recent research in cognitive
psychology shows that peo-
ple consistently make mis-
takes on simple everyday
tasks, even when the subjects
are knowledgeable, intelli-
gent people, who undoubt-
edly possess the necessary

knowledge and skills to perform correctly on those
tasks. The source of these mistakes is often shown to
be the insuppressible influence of intuitive thinking.
This research, the heuristics and biases program, has
been carried out by Kahneman and Tversky and oth-

ers during the last 30 years, and has led to Kahne-
man’s receiving the 2002 Nobel Prize in economics.1

In his Nobel Prize lecture, Kahneman opened with
the following story:

A baseball bat and ball cost together one dollar and
10 cents. The bat costs one dollar more than the ball.
How much does the ball cost?

Almost everyone reports an initial tendency to
answer “10 cents” because the sum $1.10 separates
naturally into $1 and 10 cents, and 10 cents is about
the right magnitude. Indeed, many intelligent people
yield to this immediate impulse: 50% (47/93) of
Princeton students and 56% (164/293) of students at
the University of Michigan gave the wrong answer [2,
4].

What are our mind’s mechanisms that may
account for these empirical findings? One current
influential model in cognitive psychology is Dual-
Process Theory [4, 10, 11]. According to this theory,
our cognition and behavior operate in parallel in two
quite different modes, called System 1 (S1) and Sys-
tem 2 (S2), roughly corresponding to our common
sense notions of intuitive and analytical thinking.

These modes operate in different ways, are acti-
vated by different parts of the brain, and have differ-
ent evolutionary origins (S2 being evolutionarily

more recent and, in fact, largely reflecting cultural
evolution). S1 processes are characterized as being
fast, automatic, effortless, unconscious, and inflexible
(difficult to change or overcome). In contrast, S2
processes are slow, conscious, effortful and relatively
flexible. In addition, S2 serves as monitor and critic of
the fast automatic responses of S1, with the “author-
ity” to override them when necessary. In many situa-
tions, S1 and S2 work in concert, but there are
situations (such as the ones concocted in the heuris-
tics and biases research) in which S1 produces quick
automatic non-normative responses, while S2 may or
may not intervene in its role as monitor and critic.

A brief analysis of the bat-and-ball data can
demonstrate the usefulness of dual-process theory for
the interpretation of empirical data. According to this

theory, we may think of this phenomenon as a “cog-
nitive illusion” analogous to the famous optical illu-
sions from cognitive psychology. The surface features
of the problem cause S1 to jump immediately with
the answer of 10 cents, since the numbers one dollar
and 10 cents are salient, and since the orders of mag-
nitude are roughly appropriate. The roughly 50% of
students who answer 10 cents simply accept S1’s
response uncritically. For the rest, S1 also jumps
immediately with this answer, but in the next stage,
S2 interferes critically and makes the necessary adjust-
ments to give the correct answer (five cents).

Recently, a similar phenomenon has been found in
advanced mathematical thinking, with college stu-
dents learning abstract algebra [6]. While it seems
natural that people in everyday situations prefer
(however unconsciously) quick approximate
responses that come easily to mind over careful sys-
tematic rule-bound reasoning, students solving math-
ematical problems during a university course would
be expected to consciously train their methodological
thinking to check, and override if necessary, their
immediate intuitive responses. From these findings
we may understand the strong influence intuition,
especially its tendency to be influenced by surface
clues, has on our thinking. In this article we demon-
strate that a similar phenomenon—and a similar
explanation—may also hold for OOD tasks carried
out by experts in industry.

A note on terminology: We follow Kahneman and

While people in everyday situations prefer responses over careful
systemic reasoning, students solving mathematical problems would be expected to consciously train
their methodical thinking to check, and override if necessary, their immediate intuitive responses.
From these findings we may understand the strong influence intuition.

1Tversky unfortunately died several years earlier.

Hadar_ lo:Intro_ lo 4/28/08 3:05 PM Page 42

other cognitive psychologists in using “intuition” in
its folk meaning of everyday thinking. This meaning
is elaborated in the description of System 1, and is
mainly used in contradistinction to analytical think-
ing or to reasoning. The title of this article should
thus be understood as an inquiry into the nature of
the gap between the everyday “natural” meaning of
objects and categories vs. their formal meaning in
OOD. It should further be noted that intuition may
have different meanings in different contexts. For
example, our use of the term is quite different from
the way a mathematician might use it when he or she
says: “I had the intuitive idea of the proof long before
I was able to complete the formal proof.”

INTUITIVE THINKING IN OOD
OOD is a complex domain, requiring formal train-
ing and effortful thinking, which is just the kind of
process System 2 would be expected to appropriate.
However, our research indi-
cates that here too the auto-
matic, quick, and effortless
operation of System 1 may
hijack software developers’
attention and lead them to
decisions that are not ade-
quate and may even clash
with their own knowledge.

We discuss several exam-
ples of this phenomenon exhibited by experienced
software developers in industry while practicing
design activities, and explain them in light of the dual-
process theory. We invoke this theory in the domain
of OOD in an attempt to understand the relatively
elementary mistakes we observed in the responses of
intelligent capable professionals, even in cases when
they have the necessary knowledge to avoid such mis-
takes.

Our observations took place within advanced
UML workshops [8] conducted in the industry. Dur-
ing these workshops the participants were asked on
several occasions to analyze simple design tasks. The
participants worked on these tasks either individually
or in small groups and their solutions were subse-
quently discussed within the whole group. Our data
includes the written solutions of the participants in
the workshops, documentations of their group discus-
sions as observed and documented by the researchers,
and transcripts of class discussions. The research pop-
ulation included 41 software developers with experi-
ence of 2–12 years in OO development. Because our
objective was to describe a complex situation in its
natural settings and its full complexity, we have used
the qualitative research paradigm [12], which focuses

on case studies for obtaining specific insights rather
than on large populations, simplified experiments,
and statistical methods for discovering universal laws.
(This is analogous to the methods used by anthropol-
ogists studying unfamiliar cultures.) During the
research we documented, videotaped, and analyzed
many relevant incidents and processes. The data
analysis included coding the data obtained, and char-
acterizing and classifying it to emerging categories.
The full research findings and evidence will be
described elsewhere. Here, we provide a selection of
examples to demonstrate our findings.

Confusing the direction of inheritance. A design task
concerning a hotel reservation system was presented
for a discussion to a group of experienced engineers
participating in a UML workshop. The instructor
suggested using three classes (email, fax, and phone),
to represent the three corresponding modes of enter-
ing reservations. The possibility then arose of using

inheritance relations
between concrete classes
to exploit shared func-
tionality and features,
such as checking the
availability of a room.

For example, the class
fax could inherit from the

class email, since a fax object requires more handling
(such as scanning and digitizing), hence has more
functionality, than an email object.

Instructor: Under the restriction that for now we
only use these three classes, can any of these
classes inherit from another class? Can we use the
fact that they have many things in common?

[The participants hesitate]…
Instructor: For example, fax is like email, only with

a few more tests.
Dan: Email inherits from fax, because email is the

same as fax, only with fewer tests.
Instructor: So, email has less functionality than…
Dan [hastily]: Oh, right, it should be the other way

around.

In view of this and similar observations, we pre-
sented a group of 10 software developers with a sim-
ilar question in order to check this phenomenon
more directly. The answers were divided 5:5 between
the two possible directions of inheritance. Signifi-
cantly, as in the bat-and-ball and in Dan’s case, the
participants who chose the wrong direction required
only a small nudge (with no informational or
explanatory content) to quickly change their mind.

Analysis: All the participants in the research have

COMMUNICATIONS OF THE ACM May 2008/Vol. 51, No. 5 43

Client

Name

Login
Register

Server

ValidateUser
InsertNewUser

A design of authorization
system.

Hadar_ lo:Intro_ lo 4/28/08 3:05 PM Page 43

several years of experience in OO software develop-
ment. Why do intelligent and experienced profes-
sionals have difficulties with such an elementary
issue? We propose that the same mechanism used by
Kahneman to explain the bat-and-ball phenomenon
is also in operation here. Specifically, S1 with its quick
and effortless operation “hijacks” the thinking process
and produces a response that seems roughly appropri-

ate, while the slow and effortful S2 remains dormant.
This analysis gets additional support from the obser-
vation that the small cue offered by the instructor did-
n’t teach the participant anything new, only served to
wake up S2; the necessary knowledge was there all
along, but the dual system analysis is needed to
explain why it was not mobilized.

W
hy would S1 and S2 clash
about the meaning of
inheritance? In people’s
everyday intuition (S1),
inheritance is about trans-
ferring “stuff ” (such as
property or money), and
the direction is usually

from the person who has more to the one who has
less. For example, in an informal poll we asked stu-
dents, in the context of OOD, what is the relation
between a doctor and a paramedic in an ambulance?
A typical reaction was, “paramedic inherits from the
doctor because the doctor has more qualifications.”
Similarly, we predict that most people would say that
a student “inherits” from the professor (because the
professor has more knowledge) and not vice versa.
But in the OOD formalism (S2), the reverse is true:
the class with more functionally inherits from the one
with less.

Difficulties in identifying objects. One of the first
tasks in OOD is “carving a given scenario at its joints”
in terms of objects and classes. In one of the work-
shops the participants were asked to design an autho-
rization system that will route users as follows:

• An existing user will login into the system.
• A new user will register and receive authorization.

A typical design would look like the accompanying

figure. The following discussion took place while
the participants were working in pairs on the task.

Ron: Let’s define login and register as objects.
Sharon: Do login and register seem like objects to

you?
Ron: Why not?
Sharon: An object is a client, for example.

Ron: Client is also an object. Login and register are
activated and operate within the system; therefore
they can be defined as objects.

Sharon: I’ve never seen an object login.
Ron: Don’t worry, it will be okay. You’ll see how I

design the system; it will be just fine.
Sharon [hesitates, at last reluctantly giving in]:

Okay, fine, although it doesn’t sound good.

Analysis: Ron’s decision is a typical S1 behavior, simi-
lar to that observed in the bat-and-ball task. In search-
ing for objects he is influenced by the surface features
of the task (the salience of the terms login and regis-
ter in the task description) rather than its essential
(though implicit) components. Unlike the bat-and-
ball phenomenon, Ron requires more than a nudge to
change his mind, which seems to imply that his S2
knowledge in this regard is not too firm either.

Sharon, in contrast, seems to have a firmer sense of
the right objects, but this too is S1 knowledge, in the
sense that she cannot explain her choice. Her attempts
at convincing Ron involve expressions like “I’ve never
seen an object login,” and “it doesn’t sound good,”
which show that she relies on her vast past experience
(S1) rather than on analytical rule-based reasoning
(S2). Sharon’s example, in contrast to the other exam-
ples presented in this article, demonstrates how using
intuition may in fact contribute positively, even in sit-
uations of formal problem solving.

CONCRETIZING ABSTRACT CLASS
Confusing characteristics of abstract and concrete classes.
Abstract class is a class with at least one virtual func-
tion. Thus one can’t instantiate concrete objects
directly from an abstract class, but only through a
(concrete) inheriting class. In this example, Rebecca
chose to define an abstract class car and the following
discussion ensued.

44 May 2008/Vol. 51, No. 5 COMMUNICATIONS OF THE ACM

Under the demands of abstraction, formalization, and executability, the formal
OO paradigm has come to sometimes clash with the very institutions that produced it.

Hadar_ lo:Intro_ lo 4/28/08 3:05 PM Page 44

Rebecca: Let’s say car is an abstract class. Then, in
one design I can inherit from it Chevrolet and
Rolls-Royce, and in another design I will instanti-
ate an object car with manufacturer value
Chevrolet.

Instructor: Is car an abstract class?
Rebecca: No, yes, that’s not the point...

In a subsequent interview with Rebecca, the
researcher probed the matter further.

Researcher: Rebecca, what did you mean by the car
example?

Rebecca: I just tried to show that there are two
design possibilities using an abstract class, but I
got mixed up.

Researcher: What was the problem?
Rebecca: I wanted to show that you can instantiate

objects with parameters instead of using inheri-
tance tree… but it didn’t work out.

Researcher: Why?
Rebecca: Because the moment I instantiate objects, I

cannot define the class as abstract.

We note that this was not an isolated case. While it
seems that the participants in this study recognize
the distinction between abstract and concrete classes
in theory, several cases were observed where they
referred to abstract classes as if they had the charac-
teristics of concrete classes. Even in some written
solutions, we found cases where an abstract class was
defined but was subsequently used as a concrete
class.

Analysis: Rebecca knows the difference between
concrete and abstract classes, but this is S2 knowledge.
Our interpretation of how S1 worked in this example
follows from the dual nature of the relationship
between the natural and the formal conceptual frame-
work concerning categories and objects. On the one
hand, OOD builds on the intuitions of the natural
concepts, but on the other hand, the natural system
sometimes clashes with the formal one. We propose
that this is what happened in Rebecca’s case. Specifi-
cally, in the natural categorization system [5], there is
no parallel for the formal OOD concept of abstract
class (a class from which no concrete objects can be
instantiated). Hence, when Rebecca’s S2 was not on
guard, her S1 took over and slipped from abstract to
concrete class. As before, a small nudge was enough to
wake up S2 and lead Rebecca to make the necessary
distinction.

Identifying software development with coding. Cod-
ing is an important software development activity, but
other no less important activities contribute to soft-

ware development, such as requirements analysis,
design, and testing. We observed participants under-
weighting these other activities, to the extent of iden-
tifying software development with coding.2 The
following discussion occurred in an interview regard-
ing time invested in different activities:

Ann: Most of the time I was occupied with devel-
opment.

Researcher: What do you mean development?
Ann: You know, writing the code. For me coding

and developing are the same thing, even though I
know this is not correct.

Analysis: Ann’s first automatic response, that devel-
oping is the same as coding, is an S1 response. S1
consists of what is most accessible and what comes
most easily to mind; here the view of development as
coding comes to mind, presumably because the code
is the final and most tangible product of the whole
process, while the other components (such as design
and requirement analysis) are less conspicuous. The
interviewer’s question served as a nudge that woke
up S2, hence the utterance: “though I know it is not
correct.” In fact, her second pronouncement is a
good demonstration of an actual clash between the
two systems: S1 expressing the view that “coding and
developing are the same thing,” but simultaneously,
S2 objecting that “I know it is not correct.”

HOW INTUITIVE IS OO DESIGN?
So, how intuitive is OOD? Well, in a certain sense it
indeed is intuitive: our cognitive system certainly
makes extensive use of objects and categories, on
which this paradigm is built. However, as often hap-
pens in the evolution of formal systems, this rela-
tionship has a flip side [9]. Under the demands of
abstraction, formalization, and executability, the for-
mal OO paradigm has come to sometimes clash with
the very intuitions that produced it. Thus, while
objects, classes, and inheritance certainly have an
intuitive flavor, their formal version in OOD is dif-
ferent in important ways from their intuitive origins.

Dual-process theory, imported from contemporary
cognitive psychology, highlights the underlying mech-
anism of those situations where our intuitions clash
with our more disciplined knowledge and reasoning.
Or, put in Kahneman’s words [4]: “Highly accessible
features will influence decisions, while features of low
accessibility will be largely ignored. Unfortunately,
there is no reason to believe that the most accessible
features are also the most relevant to a good decision.”

COMMUNICATIONS OF THE ACM May 2008/Vol. 51, No. 5 45

2This observation was obtained in a joint study with Peleg Yiftachel.

Hadar_ lo:Intro_ lo 4/28/08 3:05 PM Page 45

Indeed, we have seen that, under the force of these
general cognitive mechanisms, deciding on appropri-
ate objects, classes, and relations is sometimes influ-
enced by irrelevant surface clues or everyday
meanings of these concepts, thus leading to inappro-
priate choices. Intuition is a powerful tool, which
helps us navigate successfully through most everyday
tasks, but may at times get in the way of more formal
processes. We hope this article may contribute to bet-
ter understanding of this problem, and point the way
to thinking about its resolution.

REFERENCES
1. Armstrong, D.J. The quarks of object-oriented development. Com-

mun. ACM 49, 2 (Feb. 2006), 123–128.
2. Gilovich, T., Griffin, D., and Kahneman, D., Eds. Heuristics and

Biases: The Psychology of Intuitive Judgment. Cambridge University
Press, 2002.

3. Holmboe, C. A cognitive framework for knowledge in informatics:
The case of object-orientation. ITiCSE’99 Conference Proceedings,
(June 1999), 17–20.

4. Kahneman, D. (Nobel Prize Lecture). Maps of bounded rationality: A
perspective on intuitive judgment and choice. In Les Prix Nobel, T.
Frangsmyr, Ed. (2002), 416-499;
www.nobel.se/economics/laureates/2002/kahnemann-lecture.pdf.

5. Lakoff, G. Women, Fire, and Dangerous Things. What Categories Reveal
about the Mind. The University of Chicago, 1987.

6. Leron, U. and Hazzan, O. The rationality debate: Application of cog-
nitive psychology to mathematics education. Educational Studies in
Mathematics 62, 2 (2006), 105–126.

7. Morris, M.G., Speier, C., and Hoffer, J.A. An examination of proce-

dural and object-oriented systems analysis methods: Does prior experi-
ence help or hinder performance? Decision Sciences 30, 1 (Winter
1999), 107–136.

8. OMG Object Management Group. UML Notation Guide. Version 1.3,
1999.

9. Paz, T. and Leron, U. The slippery road from actions on objects to
functions and variables. Journal of Research in Mathematics Education;
http://edu.technion.ac.il/Faculty/uril/papers/Paz_Leron_Actions_vs_
Functions.pdf.

10. Stanovich, K.E. and West, R.F. Individual differences in reasoning:
Implications for the rationality Debate. Behavioural and Brain Sciences
23 (2000), 645–726.

11. Stanovich, K.E. and West, R.F. Evolutionary versus instrumental goals:
How evolutionary psychology misconceives human rationality. Psy-
chology Press, 2003, 171–230.

12. Strauss, A. and Corbin, J. Basics of Qualitative Research: Grounded The-
ory Procedures and Techniques. Sage, Newbury Park, 1990.

Irit Hadar (hadari@mis.haifa.ac.il) is a lecturer at the
Department of MIS, University of Haifa, Israel.
Uri Leron (uril@technion.ac.il) is a Churchill Family Professor
(Emeritus) of Science and Technology Education at the Technion—
Israel Institute of Technology, Haifa, Israel.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2008 ACM 0001-0782/08/0500 $5.00

DOI: 10.1145/1342327.1342336

c

46 May 2008/Vol. 51, No. 5 COMMUNICATIONS OF THE ACM

Hadar_ lo:Intro_ lo 4/28/08 3:05 PM Page 46

