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Abstract

Visitors to museums and other cultural heritage sites emeowa wealth
of items in a variety of subject areas, but can explore onlyreority of these
items. Recommender Systems may help visitors cope withrtfasmation
overload. Ideally, the recommender system of choice shooldel user pref-
erences, as well as background knowledge about the musenwirsnment,
as items are located in a physical space and they may havengerirgks
between them. We propose a personalized graph-based regatanframe-
work, representing diverse multi-source information irekational graph. A
random walk measure is applied to rank items of interest &y televancy to
a visitor profile, integrating the various dimensions. Wegoam the results of
extensive experiments conducted using authentic datected at the Hecht
museumt An evaluation of multiple graph variants, compared withesal/
popular and state-of-the-art recommendation methodg;dtes clear supe-
riority of the graph-based approach.

http://mushecht.haifa.ac.il/



1 Introduction

Visitors to museums and other cultural heritage (CH) sites can be overwhelmed
by the richness and diversity of the information items that these sites offer. |
many museums, there exist numerous exhibits, which are associated withda bro
range of topics and are physically spread over large spaces, making #sinlgcto

view all exhibits in one visit (Davey, 2005). Visitors may therefore neststmnce

in getting the best experience from their visit. Obviously, visitors differ inrthe
preferences, knowledge and expectations, as they come to the museuttneivith
individual ‘identity’ (Falk, 2009). CH recommender systems aim at gdimgra
personalized recommendation that fit the visitors specific preferencesesmus.
Such personalized services can be implemented using dedicated mobile-applica
tions (Ardissono, Kuflik, & Petrelli, 2012).

Mobile devices are typically available at CH sites nowadays, offering cemple
mentary information about exhibits of interest, albeit not in a personalizedenan
Importantly, personalized information can be both delivered and collestpdra
of the interaction with the mobile device—feedback on viewed items may be col-
lected explicitly, or in a non-intrusive manner (Stock et al., 2007). Fomge, it
is possible to track the users’ behavior over time, across locations ancctidaara
contexts by analyzing signals transmitted by the visitor's mobile device (Kuflik,
Kay, & Kummerfeld, 2012; Dim & Kuflik, 2014).

Nevertheless, making personalized recommendations at the museum is a chal-
lenging problem in several respects. Crucially, the collected feedb&wkriation
is sparse: every user gets to view and provide feedback for a smaif getms
out of the plethora of items available, where in the majority of cases, the visitor is
introduced to the museum for the first time (Biran, Poria, & Oren, 2011; &rsijd
2014). The recommender system thus operates in contimabdistartconditions.
Further, the recommended items are not standalone artifacts—they aty disec
sociated with some exhibit in the museum, which in turn is located in a specific
room. In order for recommendations to be effective, the system musdeortisis
location context; ideally, it would prioritize exhibits residing in high proximity to
those previously visited by the user. It is therefore desired to muaiekground
knowledgeabout the museum environment. In addition to physical layout infor-
mation, relevant background knowledge may map the museum’s environntent a
items into a semantic space; for example, exhibits are often associated with spe-
cific themes. The modeling of semantic aspects is especially important congiderin
the sparsity of historical ratings. In order to integrate visitors feedbaitkphys-
ical and semantic contexts, the recommender system must be able to dffective
consolidate such heterogenous information.

In this work, we describe an adaptive system designed to presentdindiv



ual museum visitors with personalized recommendations on their mobile device.
Concretely, we target the recommendatiomufitimedia presentationsvhich are
available for viewing on the mobile device, providing complementary material to
the museum’s exhibits. Assuming that some feedback is available for présesita
already viewed, our goal is to recommend the visitor on additional presantatio
items of interest.

We outline and evaluate a graph-based recommendation approach that han
dles the above-mentioned challenges gracefully. Multi-source informatieprie-
sented using a heterogeneous graph scheme, in which typed nodés efites,
and directed and typed edges denote inter-entity relations. Concretety;able
nodes denotesersandmultimedia presentatioitems, as well as physicpbsitions
and semantithemes The graph edges denote structured relations, le@ated-in
(betweerpresentatioritems and theositionsin which they are offered) oriewed
relations (betweensersand thepresentationshat they rated). Edges further de-
note elicited relations, such as similarity betwgeasentationsnduced based on
their textual descriptions. In this fashion, past visits history and informatmut
the museum’s physical and thematic environment are encoded in a joint graph

The graph-based recommendation process involves inference of nuelti-fa
node relevancy with respect tajaery, defined as a distribution of interest over the
graph nodes. We apply the Personalized Page Rank (PPR) algoritiwali(irtda,
2002; Tong, Faloutsos, & Pan, 2006) to ramkiltimedia presentationky their
relatedness to a user profile, corresponding to the set items alreadydvéewle
liked by the user. PPR applies a random walk procedure, which captansstive
associations between entities, thus assessing inter-node relatednessdiabal
perspective. Consequently, graph-based recommendation alleviatepattsity
problem.

This paper reports the results of a case study using authentic data olatined
the Hecht Museum, located at the University of Haifa. Following the deployme
of a visitors guide system at the museum, data has been collected in the form of
visit logs for research purposes (Kuflik, Wecker, Lanir, & StocKl 40 Given user
feedback on viewedhultimedia presentation®ur goal is to rank the remaining
presentation items according to the user’s tastes. We report a set of retinga
experiments, showing that the graph-based recommendation appragi@ibaigly
outperforms popular content based and collaborative filtering recomatienchp-
proaches, including a state-of-the-art matrix factorization method.

There are several main contributions of this work:

e We show that the graph-based framework delivers accurate recoramend
tions in the challenging cultural heritage domain. Compared with alternative
methods, this approach models historical ratings jointly with diverse back-



ground knowledge, including contextual physical proximity and semantic
aspects. The proposed approach can be readily applied to othermsoble
with similar characteristics.

e There exist relatively few works that employed graph based similarity in
general, and the Personalized PageRank measure in particular, dar-rec
mendation purposes. We report the results of a comprehensive sahef ¢
parative experiments, demonstrating the potential of graph-basedaappro
and its superiority over alternative, popular and state-of-the-art, meihod
a contextual recommendation setting.

e We empirically evaluate and discuss in detail issues related to graph design,
considering several plausible graph variants, as well as evaluate thetimpa
of tuning parametric edge weights on recommendation performance.

The remainder of the paper is organized as follows. Section 2 provides ne

essary background, and is followed by a review of related researShkdtion 3.

The graph-based recommendation framework and the proposed greghaare
described in Section 4. Section 5 describes our experimental data anelscibie
experimental setup. In Section 6, we outline the various recommendation raethod
evaluated in this work. Our main set of results is presented in Section 7. Sec-
tion 8 further discusses issues related to graph design, including the infgalge
weight tuning. Section 9 concludes this paper, and discusses direatiofusure
research.

2 Background

Recommender systems estimate the relevancy of yet uritsgesfor individual
users We denote the set of users by, and the finite set of items by. Let I,
represent the subset of items that have been viewed and rated by\aduatiuser
u € U. The rating assigned by useto item: < I, is denoted by.,;. Ratings may
be given in multiple forms, such as numerical scores, g.gi], or binary indica-
tions, e.g.{like, dislike}. This information corresponds to a sparsely populated
matrix, with known users and items as the matrix dimensions, and historical rat-
ings as values. The set of available feedback scores for a giveltgei € I, },
serves to represent her tastes. Given the rating history, it is desirestiictgatings
for the remaining items that the user has yet to experiefice, I, }.

The main methods used to solve the recommendation problem can be
roughly categorized into content-based (CB) and collaborative filtefi) ap-
proaches (Adomavicius & Tuzhilin, 2011Eontent-basedethods rely on avail-



able descriptions of items, representing them in a pre-defined featue; $pain-
stance, given textual descriptions, items may be represented as a Yegtayltted
term counts, or topics. Aser profileis constructed in this paradigm as the aggre-
gation of the vectors of items that user is known to have liked (or dislikedg Th
constructed user profile is compared with candidate items in the joint featage sp
to generate recommendations.

There are several drawbacks of content based methods. Thegraigve to
content sparsity; in particular, textual descriptions are often shorsparcse. It
is further claimed that content-based models tend to over-specialize, aarthey
inherently biased to favor items similar to the historical ones, whereas in @ractic
different items may be highly useful to the user. In this work, we experinvéht
a variant of the Rocchio algorithm (Salton, 1971; Lops, de Gemmis, & Semera
2011), representingiultimedia presentatioitems based on their textual content.

Collaborative filteringmethods rely solely on the historical record of item rat-
ings by users. These methods model user preferences collaboratetelgting rat-
ing patterns across users and items. Accordingly, CF can make cnossegeout-
side the box’ recommendations. Primary CF approaches include neigloderho
based methods and latent factor models (Adomavicius & Tuzhilin, 2005)lathe
ter approach projects the users and items matrix into a smaller dimensional space
thereby clustering similar users and items. The latent factors representdase-
acteristics of the users and items in the system, where high correspotddéween
item and user factors leads to a recommendation. These methods have become
popular in recent years due to good scalability and high predictive acgukVe
experiment in this work with neighborhood-based CF methods, as well asawith
state-of-the-art matrix factorization method (Koren, Bell, & Volinsky, 2009)

A well-known weakness of both CF and CB systems is the "cold start’ problem,
handling new users (both approaches) and new items (CF), for whihithigtle
rating history available. In addition, rating sparsity is a significant knowblem,
as in general there are many items available and the odds are that usesisaralg
small number of rated items. This problem is somewhat alleviated by model-based
approaches such as matrix factorization (Koren et al., 2009). Finallyyditkeling
of additional dimensions, such as physical proximity or other contextyeicis,
in the recommendation process is non-trivial. For a more detailed discudsion o
recommendation techniques and their pros and cons, see for instamke, (3202)
and (Adomavicius & Tuzhilin, 2005).



3 Related Work

3.1 Context aware recommendation

There has been rising interest recently in context aware recommenstemsy
(CARS) (Adomavicius & Tuzhilin, 2011; Panniello, Tuzhilin, & Gorgoglione,
2014) that adapt recommendations to the specific situation in which items are con
sumed. Ideally, context information should be integrated directly into theweco
mendation model. However, state-of-the-art CF approaches suchtexs Fctor-
ization do not provide a straightforward way of doing so (Konstas, Spailios, &
Jose, 2009). In order to model contextual information, a CF method bastehe
sor Factorization has been proposed (Karatzoglou, Amatriain, Baltr&r@kver,
2010), which models the ratings data as a user-item-context N-dimensiosat te
instead of the traditional two-dimensional user-item matrix. Their model tthescr
context information, such as user age and gender, using categeatalds. This
approach comes with the cost of increased sparsity—as now informatipreeds
over a multidimensional space instead of the classical (already sparséinen-
sional one. Others have suggested to handle context information by péntitibe
original user-item rating matrix, such that ratings with similar contexts arepgau
together (Liu & Aberer, 2013). None of these extensions howevelilyeaccom-
modates complex, structured and semi-structured, relational backgirdonua-
tion, which we model here using the graph-based representation.

3.2 Graph-based recommendation

Several studies have previously explored related graph-based radtngdcom-
mendation. Early works used homogenous graphs, in which nodes deéteutes
and edges represented inter-item similarity (Gori & Pucci, 2007; Yildirim &K+
namoorthy, 2008). Other works modeled bipartite graphs, consistingevéand
items having edges represent ratings assigned by users to viewed itersa/€lra
& Szummer, 2007; Fouss, Pirotte, Renders, & Saeren, 2007; Baluia 20@8).
Recent studies have already started to explore the potential of grafgseata-
tion and reasoning techniques for context-aware recommendation. Noeke
construct heterogeneous graphs, consisting of multiple node and guigge tin
addition to user-item ratings, the heterogeneous graph structure hasidgezto
model social context, drawn from location-based and event-basé&d setworks
(Konstas et al., 2009; Bu et al., 2010; Noulas, Scellato, Lathia, & Mas20lb2;
Shang, Kulkarni, Cuff, & Hui, 2012; Wang, Terrovitis, & Mamoulis, 2QT#&oshi,
Berkovsky, Kaafar, Chen, & Kuflik, 2013; Tiroshi et al., 2014; PhamCong, &
Zhang, 2015; Bagci & Karagoz, 2015).



Several works have applied the Personalized PageRank measurdatanper
item ranking in contextual graphs, reporting superior performance aassical
recommendation methods. Konsttsal. (Konstas et al., 2009) targeted the rec-
ommendation of music tracks to users, modeling social friendships and tags in th
graph; in their experiments, PPR outperformed a user-based kNN metina.
work by Noulaset al. (Noulas et al., 2012) targeted location recommendation—the
graph in this case included users and venues as nodes, having edgésustor-
ical user-location visits and user friendships. Recommendation experiosnts
the PPR measure showed it to be preferable to a set of alternative elpgsoan-
cluding collaborative filtering methods. Due to skewed distribution of visitssacro
venues, simply recommending venues by popularity was shown to perfetin w
having the graph-based PPR be the only method to beat this popularity baselin
More recently, Bagci and Karagoz (Bagci & Karagoz, 2015) use® For rec-
ommending locations to visit to users, based on popularity and past ‘chgck-
of friends. They too report that the PPR algorithm outperforms claseszal
ommendation approaches. Yao et al. (Yao et al., 2015) proposed a a meiti-la
graph-based recommendation framework, incorporating a variety of imptini
textual information into the recommendation process, and showed contERRal
schemes to perform best out of a set of alternative approaches.

Our work corroborates these previous findings. While the previouksifor
cused on the modeling of social information, we show that the graph agproa
can effectively leverage relational background knowledge, reptag) aspects
such as physical and thematic relatedness. Interestingly, none of thenado-
tioned works has examined graph adaptations by means of edge weighg tunin
(e.g., (Minkov & Cohen, 2011)) for recommendation purposes. We duigshow
that tuning parametric task-specific edge weights substantially affects thal glo
similarity measure, leading to performance gains; as a result, in contrastraith p
vious findings (Konstas et al., 2009), recommendation performancentoeke-
grade but rather benefits from expanding the graph with additional diorens
A main contribution of this study is in providing a comprehensive comparison of
graph-based recommendation with a variety of alternative popular metthacs,
providing strong evidence about the advantages and applicability ofi-draged
contextual recommendation.

3.3 Recommendation systems for museum visitors

This paper investigates graph-based recommendation to enhance themviseu
experience. There exist several research works that consaenneender systems
for museum visitors. Stockt al. (Stock et al., 2007) proposed an overlay user
model, having the user model first ‘overlaid’ over a domain ontology, ratartsp



of the ontology according to the user’s preferences, and then patpgdhese rat-
ings over the ontology network to recommend other exhibits of interest. Gaese
al. (Grieser et al., 2007) aimed at predicting the exhibit that a visitor would visit
next based on available visit history. They applied a Naive Bayes leamatel,
considering exhibit proximity, textual description of the exhibit, and exhibjyp
larity. In their experiments, the baseline of exhibit prediction based onlacgu
was found to be most successful. The graph-based approactsptbpere is more
comprehensive than these works, as it models collaborative user Histomna-
tion jointly with content-based and physical proximity aspects. We believe that th
graph based approach is generally advantageous compared with std¢iatitiag

in conditions of data sparsity.

Bohnertet al. (Bohnert et al., 2012) suggested ‘Gecko mmender’, a system
that takes as input visitors’ explicit ratings of exhibits, and uses a reaeaghbor
CB approach to predict ratings for unvisited exhibits. These ratings fioerbasis
for theme/tour recommendations. Gecko mmender was evaluated in a field study
at Melbourne Museum (Melbourne, Australia), focusing mainly on assgslif-
ferent display modes of the predicted ratings. In a recent work by &bbhal.
(Bohnert & Zukerman, 2014), they target the prediction of museum vésitiew-
ing times of exhibits. They experiment with Spatial Process Model (SPM)l-a ¢
laborative model based on the theory of spatial processes. SPMeapseisitors
viewing-times as Gaussian random vectors. It is assumed that the corrddatio
tween observations increases with decreasing exhibit conceptualdistantoded
in a covariance matrix. The method is claimed to alleviate the cold-start new-user
problem through the modeling of correlation between the exhibit areas dibye
the visitor and the other exhibit areas. Several types of exhibit distaneevalu-
ated, including viewing-time similarity, semantic similarity and walking distance.
The results, evaluated using a dataset of 157 visitor histories at the Meébou
Museum, indicate that physical distance correlations yield the best predicifo
viewing times. The graph-based approach described here is in faciaoemp
tary to the SPM model-one may generate multi-facet correlation scores using th
global graph-based relatedness measure, and use them for viewingeitietipn
and related problems.

Finally, another recent work by Bartolirgt al. (Bartolini et al., 2014) ad-
dresses recommendation of diverse multimedia materials across culturafj@erita
sites. They use a graph representation to propagate semantic similarity ietwee
items, based on available semantic annotations and visiting ‘patterns’, indicating
the frequency in which two items were consumed consecutively by the saitoe vis
While they organize the recommended items into paths, the physical aspesit as w
as historical ratings are not integrated in the graph. Their evaluationdscumsthe
assessment of visitor satisfaction using the system in field conditions, agheee

8



focus in the evaluation of the quality of multi-facet graph-based recomntienda
compared with alternative recommendation approaches.

4 Graph-based recommendation

We represent background knowledge alongside historical ratingnafiton in a
joint graph. The graph is heterogeneous, consisting of typed nodegitted
and typed edges, and can therefore accommodate knowledge in a rélationa
Dedicated graph-based measures may be employed to rank the graplyntaksr
similarity, or relevancy, to gueryof interest, represented as a distribution over the
graph nodes. We construct queries that correspond to a usefite pirecluding
items (nultimedia presentatiofghat she is known to have liked, having items
ranked by their relevancy to this profile. Following previous works, weleynp
the Personalized PageRank random walk algorithm to assess interimldety

in the graph. We further exploit the relational structure of the graph,tane
parametric edge weights to optimize performance.

In this section, we first formulize the graph representation schema, aodluke
how it is applied to our case study of item recommendation to museum visitors. We
then outline the Personalized PageRank algorithm, and provide intuitionsyon wh
using PPR is beneficial in this setting.

4.1 The museum as a graph

Let us first define the underlying graph representation. A g@pa< V, E >
consists of a set of nodés, and a set of labeled directed eddgesWe will denote
nodes by lower-case letters suchmgy, or z. Every nodex has a type, denoted
7(z). The set of possible types is pre-determined and fixed. An edgefittor is

typed with relatior¢?, denoted as: LN y. Typically, for every edge in the graph,
there exists an edge going in the other direction, denoting an inverse relBticn
implies that the graph is cyclic and highly connected.

We now turn to describe the museum'’s environment in the form of such a re-
lational graph. We distinguish between the following entity classes, refiiege
them as distinct node types:

e Positions A position is apoint of interest{POI), a physical point in which
multimedia information is available about exhibits nearby. The POls are
spread in the museum environment over multiple rooms and floors.

e Presentations These nodes represent multimedia presentations offered for
viewing on the visitor's mobile device. Presentations are associated with



source type  edge type target type

presentation located-in position
has-theme theme
similar-to presentation
viewed! visitor
position nearby position
located-im? presentation
theme has-theme!  presentation
similar-theme theme
visitor viewed presentation

Table 1: Relation types in the museum graph

concrete exhibits. As of today, once the user is tracked at some point of
interest, she is offered to view the presentations pertaining to the exhibits
associated with that position.

e Themes The multimedia presentations in Hecht Museum have been asso-
ciated with a set of nine specific themes, e.g. Religions, Art symbols and
Maritime, following the process described in Kadizal (Katz et al., 2006).

We represent each of these themes as a node in the graph.

¢ Visitors These nodes represent individual visitors to the museum. While the
other node types describe static aspects of the museum’s layout, historical
visit information is dynamic, being accumulated over time. Visgorswill
be associated with the museum entities through dedicated edges that describe
their visit experience.

The full set of graph edge types is detailed in Table 1. As mentioned hefore
multimedia presentatiorare offered per specific museum exhibits. Thematically
related exhibits are grouped together physically in separate phpsissions We
therefore directly link eaclpresentationwith the positionwith which it is asso-
ciated over an edge of tydecated-in Has-themeadges further associate each
presentatiorwith the respectivéhemenode. Both of these relation types are func-
tional, having each presentation map to a single position and theme. In order to
maintain high connectivity in the graph, edges are added in the oppositéatirec
between the respective node pairs, denoting the inverse semantic relatiaes-
in—! andhas-theme!.

We further model a set of edges describing various aspects of irtigr-&m-
ilarity in the museum’s environmeng®ositionsthat reside in high physical prox-
imity are linked ovemearbyedges. Physical proximity was measured in terms of
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Figure 1: An illustration of the museum grapmultimedia presentatioitems are
inter-linked via common physicalositionsand annotated semantitemes

walking steps for this purpose. In additigeresentationshat exhibit high content
similarity are inter-linked over theimilar-torelation. We compute term-based con-
tent similarity: having eachresentatiorrepresented as a TF-IDF term-weighted
vector, cosine similarity is computed between evergsentatiornode pair. Fi-
nally, similar-themeedges connect semantically relatbhgémes Each theme is
represented for this purpose as the centroid of the TF-IDF vectore girdisen-
tationsassociated with that theme, having cosine similarity computed between the
theme centroids. More details about the representation of inter-item similarity as
edges are provided in Section 8.

The graph schema described thus far represealimedia presentatioredong-
side location and themeentities, linking these objects over relations that denote
thematic relations and physical proximity. Figure 1 illustrates the resulting graph
for a subset of our experimental data.

It is straightforward to further incorporate historical ratings in the graje
represent individual visitors by dedicatetitor nodes, linking everyisitor to
presentatiomodes over directediewededges. One may link a visitor node to all
of the presentations that she viewed; or, it is possible to link the visitor nolge o
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to presentations that she is known to have liked. As described in Sectiondst,

of the feedback scores in the visit logs in our datasets are positive. iEoeéson,
and considering data sparsity, we follow the first option in this work. Naesp
linked over theview relation, are linked over edges of the inverse semantic type,
viewed !, pointing in the opposite direction. In this fashion, the graph models
presentationsindvisitorsassociation patterns based on available ratings history.

4.2 Recommendation with Personalized PageRank

We are interested in recommending presentations to a user based on her histo
cal feedbacks. This corresponds to the following objective: giverstilalition

over the graph nodes that represents the user’s tgses®ntatiomodes are to be
ranked by their relatedness to that distribution. Various measures exisi/tia-

ate structural node relatedness in graphs (Fouss et al., 2007). Weydmapothe
popular Personalized PageRank (PPR) random walk metric, sometimesdete

as Random Walk with Restart (RWR) (Tong et al., 2006).

PPR is often described as a variant of the well-known PageRank algorithm
(Page, Brin, Motwani, & Winograd, 1998), originally designed to meatheeel-
ative importance of individual Web pages. Consider the Web graph,ichvalodes
denote Webpages and directed edges denote hyperlinks. The rsomgléered
PageRank algorithm models the behavior of a Web surfer, who at aeg tiwe,
chooses either to follow a hyperlink to a related Webpage, or “resetdbraly to
one of the pages on the Web. Formally, given that the surfer is at nede )X
with probability o the surfer is expected to move to noflfollowing an outgoing
link from 4, and with probability { — «) the user resets randomly to some page.
The probability distribution of finding the surfer at each of the graph aat¢éime
d, Vg, is defined recursively as:

Vi = (1= 0) [y + oMV, )

where the total number of nodes (pagesyisand the transition matrixI encodes
the probability that the surfer moves to pagfrom pagei following a hyperlink.
As default,M distributes a node’s probability uniformly among the pages it links
to, i.e.

[ch(D)]

0 otherwise

—L_ iftherei dge fromto j
Mij:{ if there is an edge fromto j B

wherech(i) is the set of nodes that can be reached over an outgoing link from
(the ‘children’ of7).

Due to the reset operation, the unified matrix is stochastic and irreducikike. Th
guarantees that the random walk process converges to a unique stadistigbu-

12



tion, V*. ThePageRank scoref nodej, pj, is its probability in the stationary state
V*, giving a measure of document centrality in the network.

The PageRank algorithm computes ‘universal’ node importance sdgres,
noring user preferences. The Personalized PageRank variayg ¢Pal., 1998;
Richardson & Domingos, 2002) preserves an association betweerraikdags
and user preferences, or a ‘query’. Rather than assume that this eggally in-
terested in, and would reset to, any graph node uniformly at randomnkizmeed
random walk scheme limits the reset operation to the query nodes, as follows:

Vi = (1 - OZ)VU + aMV;y 3)

whereV,, denotes the query distribution, including nodes that are known to be of
interest to user.. The Personalized PageRank scores are derived from the corre-
sponding stationary state distribution.

The generated PPR scores reflect structural similarity, or relevartbog graph
nodes with respect to the quéry. It has been shown that the PPR score for a target
nodez and a query node equals a summation over all the paths betweemd
z (including cyclic paths, and paths that crassultiple times), weighted by path
traversal probabilities (Jeh & Widom, 2003; FogaraacR Csalogny, & Sarbs,
2005). Importantly, due to the reset probability— «), the paths between and
a destination node are weighted exponentially lower as their length increases.
Intuitively, this means that items that are connected over short paths to ¢he qu
nodes are considered more relevant by the PPR method; similarly, itemsithat ca
be reached over multiple paths from the query nodes are also considered
relevant.

Edge weightsThe graph walk process is determined by the graph’s topology,
captured by the transition matM. If edges are assumed equal importance, then
M distributes evenly the transition probabilities across all of the outgoing edges
from nodei (Eq. (2)). It is reasonable to assume however that the random surfer
is inclined to traverse specific edges, which reflect a stronger, or masinggul,
semantic relations. In this work, we will assume that edge importance is derive
from its type (Minkov & Cohen, 2011; Shang et al., 2012). Concretebgteof
edge weight paramete@&determines for every edge of tygén the graph, a fixed
weightf, € ©. The transition probability from nodeto nodey over a single time
step,M,, ,, is defined as:

O

M,y =
! Zy’ECh(a:) O

(4)

whered, is the weight of the outgoing edge framto y. In words, the probability
of reaching node from z is defined as the proportion of the edge weight fream
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to y out of the total outgoing weight from the parent The edge weight® thus
directly affect the probability flow in the graph.

The graph edge weigh& can be set manually, according to prior beliefs; tuned
empirically; or, learned from labeled examples (Minkov & Cohen, 2014 )this
work, we empirically tune the edge weights using exhaustive search. Wetlea
exploration of edge weight learning, as well as path-based node tpa&iremes
(Lao & Cohen, 2010; Lao, Minkov, & Cohen, 2015) for future work.

4.3 Recommendation at the museum

We use Personalized PageRank to generate recommendations for iadiigiu
tors. A user profile is constructed based on available feedback stleeguery
distributionV,, spans over the set afultimedia presentationodes that the visitor
is known to have seen and liked, weighting them by the respective fdedbaies.
Applying PPR yields a score distribution over the graph nodes, reflectagghg
based relatedness (or, similarity) to the visitor’s profile. It is straight-fodato
filter this distribution by node type, and present a lispofsentatioritems ranked
by their estimated relevancy to the user. Likewise, one may generate rargfing
other entity types, e.gpositions

An advantage of the graph walk is that it integrates multiple types of evidence.
A random walk process that is initiated at sopresentationz of interest will
reach a relateghresentationz by passing via a sharettitemenode, or directly,
due to the modeling of text-based similarity edges, over the following paths:

has—theme has—theme! similar—to
—

—" z ,and x ""— " z. Importantly, the PPR measure is
transitive—as the random walk continues, similarity propagates betweengbair
relatedpresentationgontinuously.

The graph walk further models physical proximity, giving preferenceré p
sentations of exhibits that are located nearby. Immediate physical proximaite(s

ocated—in _ located—in

position) is expressed via the 2-hop path™— "y “"— ' z, presentations
of exhibits at nearby positions are reached via the 3-hop p&tf:<d "y neardy o
locatedin 7 Presentations at yet further positions are reached over longer paths,

located—in . nearby _nearby , located—in'

e.g., x — y —’'s —t — Z.

Collaborative aspects are modeled through the pafﬁ?“’—‘”fl y "%t 7. Col-
laborative and content-based similaritiea are naturally integrated by mixesl path
I|ke X 'uiew_ed>_1 y simili;fto Svieﬂ;d

Performing the random walk for a sufficient number of steps propagaies
accumulates similarity along these paths, integrating content-based, cdilabora
and location-based similarities. Due to the exponential decay over path,larigth
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nite graph walk probabilities can be effectively approximated by limiting thetgrap
walk to a finite number of stepls (Toutanova, Manning, & Ng, 2004; Fogaras et
al., 2005; Minkov & Cohen, 2011).

5 Experimental Setup

This section first introduces our experimental data. It then defines theatea
methodology, presenting two variants of the recommendation tasks and the eva
ation measures used in this work.

5.1 Data

We experiment with authentic data collected during visits to the Hecht Museum.
A mobile device is provided to the museum visitors, on which they are offered to
view relevant multimedia presentations at each POI visited (for details sei& Kufl
et al (Kuflik et al., 2011; Kuflik, Wecker, joel Lanir, & Stock, 2014)). The hiu
media presentations include limited textual content; most of them contain between
100-200 words, corresponding to a paragraph or two. Overall, mane3®0 pre-
sentations are available that correspond to 76 exhibits, displayed atsé®ps,
spread across multiple rooms and two floors. The mobile device is designed to
present and receive user feedback. Colored smiley emoticons appedo some

of the offered presentations, reflecting high average rating recévetose pre-
sentations by past visitors. (Emoticons were presented for 72% of therjiation

at the time of this research.) Once viewed a presentation, the user istegljtees
provide her own feedback.

The dataset used in the experiments is composed of 319 visit logs. Thegdco
information includes the POls that the visitor passed through, presenteigoved
and the feedback scores (ratings) assigned to these presentatigfiided of visits
in which a single presentation has been viewed are not included in ouetatas
visit logs are anonymous, as we do not have access to personal detaitstlze
visitors. We will assume that each visit log was generated by a different as
the ratio of repeated visits at the Hecht Museum is generally low.

Figure 2 presents various dataset statistics. Specifically, Fig. 2(ajlesthe
number of presentations viewed per visit. As shown, the median numberssrpr
tations viewed is 10, where visitors most often viewed between 5-9 préisesta
during their visit. Considering the limited number of viewed items, it is desired to
direct the visitors to those items that are most interesting for them. At the same
time, it is challenging to make recommendation as little is known about the visitor.

The visit logs that constitute our dataset were obtained at severalediffer
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points in time, and therefore exhibit some variance with respect to ratingsscale
Some of the feedbacks are binaliké, dislikg, but the majority of feedbacks are
given in 3-point or 5-point scale. We converted the different feekib&o a uni-
form 5-point scale: binary feedbacks were converted to integer valtigl,5},

and scores on a 3-point scale were represented using the Yal3e5}.

Fig. 2(b) shows the distribution of the processed feedback scoreshaven,
the ratings tend to be positive—about 65% of the feedback scores rdiga
(score of '5’), and very few ratings are negative. In order to altevéparsity, we
choose to model all of the presentations viewed by a visitor, for which gabick
scores are positive (in the range 3-5), as her user profile, weighéritpeths in the
profile by their normalized feedback score.

Fig. 2(c) presents statistics about the number of presentations available pe
exhibit. There is a single relevant presentation for 18% of the exhibitsalbaut
half of the exhibits, 5 or more presentations are available. As discus$ad be
(Sec. 5.2), we evaluate in our experiments a setting in which the set ohpatsas
available for a given exhibit are ranked by their relevancy to the indalidisitor.

We find that the ‘popularity’ of the various presentations, estimated in terms of
the number of times viewed, varies greatly. About 1% of the presentatiores we
viewed in 100-119 visits; these presentations are associated with exhilzsitedoc
near the museum entrance. On the other hand, approximately 17% of se@pre
tations were viewed by a single visitor, or none. There are about 1bdekd
available per each viewed presentation item on average in our dataset.

In summary, the experimental dataset is sparse. The respective usenatex
includes about 4% populated cells. Only a small number of feedbacksilialdga
for individual visitors. Recommendation at the museum must thereforeessidr
constant ‘cold start’ conditions. Content-wise, the textual descriptiortargét
items are short and sparse.

5.2 Experimental design

We perform a set gbredictionexperiments using the authentic visit logs collected
at the Hecht museum.

Given the set of ratings provided by userwe consider in each experiment
one of the rated presentation itenis¢ I,,, having the remaining itemi/,, — i*}
serve as the user’s profiké,. In case that use positively appreciated itent,
we expect to find it among the top items of the generated ranked list of recom-
mendedpresentatioritems. This experimental setting is imperfect, mainly, other
highly ranked items may be of high interest to the user as well, for which we do
not possess relevancy judgements. Yet, such a setting is often applibeé four-
pose of comparing the performance of multiple ranking methods; importantly, it
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is unbiased as all systems are assessed under the same conditions (Ballja e
2008).

Since the experimental dataset is limited in size, we perform exhaustive leave
one-out prediction experiments—for every usen the dataset, up t{,, | labeled
example queries are generated. Since we are interested in predicting itéms tha
the visitor is known to have liked, presentations for whichssigned low ratings
are excluded from the example pool. (Specifically, we discarded pedaTs for
which the feedback score was below the median score of 3, constitutingd.7%
all user feedbacks.)

We dedicate &aeld-outportion of the resultant example set for parameter tuning
purposes, mainly, for tuning of the graph edge weights. We selected #ikof
queries generated per 10% of the users (32 complete visit logs) for thiesed
The examples derived from the remaining 287 (90%) visit logs servevédnation
using the leave-one-out procedure.

Finally, we consider two modes in which personalized recommendatioiof
timedia presentationsan enhance the museum visit experience:

e General RecommendatioWe are interested in assisting the visitor in choos-
ing items of interest while touring the museum. All of thelltimedia pre-
sentationgexcept those already viewed by the user) are considered as can-
didates for recommendation in this setting. Ideally, the museums physical
layout should be taken into account in this mode. Physical distances are
modeled in the graph via theearbyedges, connecting adjacqmsitions
and thus affect the generated rankings. The explicit design of a rizuteqy
module is out of scope of this work however.

e Per-Exhibit Recommendatiois visitors are moving in the museum space,
they may be most interested in presentations about exhibits in their vicinity.
The set of relevant multimedia presentations may be small, however the size
of the mobile screen is limited, and the top listed items draw most of the at-
tention of a human user. We therefore wish to rank the relevant presestatio
according to the visitor's personal preferences. In this case,rBenta-
tionsthat are associated with an attended exhibit are the candidate items for
recommendation.

5.3 Evaluation measures

All of the recommendation methods considered in this paper generate $oores
candidate items given the profile of target ugsehese scores are then processed

2As indicated previously by Minkov and Cohen (Minkov & Cohen, 20118,dghaph edge weights
parameters can be effectively tuned using a small number of examples
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into a ranked list, to be presented on the mobile screen. We accordinggsasse
performance using measures used for the evaluation of ranked listdlyye@ch
evaluated query has a single known correct answer in our experiments.

Recall-atk. This measure estimates the probability of retrieving the correct
answer within the tog ranks. Formally, the non-interpolated recall at ran&f
a given list is defined to be 0 for each rahk= 0, ..., k;_1, wherek; is the the
rank that holds the item that should be predicted, and 1 for réanks k;. The
(mean) recall@k averages the recall scores at eachkrahknultiple queries. For
example, recall@3=0.7, means that for 70% of the queries, the corresean
appears among the top 3 ranks of the retrieved fists.

Given the limited size of the screen of handheld devices, only a limited num-
ber of items can be presented at a time. It is further expected that the thighes
ranking items will receive most of the user’s attention. For this reason,ewe r
port recall@Fk for the topmost ranksk =[1-5] for the general recommendation
setting, andk =[1-3] in the per-exhibit mode. In the latter case, the number of
candidate items is small to begin with, so that the added value of recommendation
is in pointing out the very few items that are of highest interest to the user.

Mean reciprocal rank (MRR)'his measure considers the full ranked lists gen-
erated. The reciprocal rank of a response to a single query is definthé multi-
plicative inverse of the rank of the correct answér: The mean reciprocal rank is
the average of the reciprocal ranks for all of the test quéries.

Ratio of failed tests (RFTYccasionally, a recommendation method may fail
to predict scores for some items, possibly including the target item. In ssels,ca
we assign these items a de-facto score of zero, appending them to the bbttom
the output ranked list. Impaired coverage therefore directly affectdlvaeN and
MRR performances. For completeness, we also repontatie of failed testsin
which the test presentation failed to receive a score.

6 Experiments

We compare the graph-based approach against a set of populamnecalation
methods, including content-based, memory-based nearest-neighbdocatize
filtering (CF) algorithms, and state-of-the-art matrix factorization. In adulitio

3We consider theffectiverank of the target item, which may be a real number, e.g., if the 5th and
6th ranked items are assigned identical scores, the rank of both itents mlputed as (5+6)/2.
In our experiments, item scores are often on par using random reeodation, and to a lesser
extent, using CF kNN and some graphs variants. The evaluation is stxigtglranks rounded up in
evaluating recall; e.g., rank 5.5 contributes to recall@6 and downwards

“In computing the MRR measure, half ranks were maintained.
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Figure 3: lllustration of the structure of several graph variants

several baselines are evaluated that are either naive or well-infosmetd as rec-
ommending items by their popularity. This section includes a description of the
evaluated approaches and implementation details.

6.1 Graph variants

In order to assess the utility of combining historical ratings with backgroaod/k
edge, we experiment with several graph variants, modeling these askgien-
dently and in combination. Figure 3 illustrates the structure of these graiaimtgar

1. The Museum graph (G:M)This graph describes background knowledge
about the museum’s environment. It models thematic and physical simi-
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larities. Specifically, the graph includgsesentation themeand position
entities, connected over the relatigimilar-to, similar-themenearby has-
theme located-inand the respective inverse edges.

2. Visitors graph (G:V).This graph variant represents ratings history. The
graph is bi-partite—it includgsresentationgandusersas entities, linked over
viewedandviewed ! edges.

3. Unified graph (G:U).The museunandyvisitors graphs contain complemen-
tary information. Theunifiedgraph forms the union of the two graphs, as
demonstrated in Figure 3(c).

4. Combined graphs (G:MV)Another approach for combining the two infor-
mation sources is to integrate the scores produced usingdit@sandmu-
seumgraph variants. We experiment with a linear combination of the scores:

?m(’l}u,G : MV) = (1 — ,3) . ?m(vu,G : M) + ,3 . '?m(vu, G V) (5)

The weighting coefficient was tuned empirically in our experiments using grid
search over the range [0.1,0.9] with step size 0.1, optimizing performantteeon
held-out examples. The graph edge weight paraméievgere similarly tuned
using the held-out examples, as described in detail in Section 8.

We set the damping factor of the random walk process (Eq. (3)) te.85
following previous works (Page et al., 1998; Minkov & Cohen, 201 \\e ap-
proximate PPR scores using finite random walk repeated for 6 iterationdisAs
cussed in Section 4.2, the impact of additional steps on the generatedgsigkin
negligible.

6.2 Content-based Recommendation (CB)

We experiment with a version of the Rocchio algorithm (Salton, 1971; Razza
& Billsus, 1997; Lops et al., 2011). This method computes a ‘prototypetovec
for useru by averaging vectors of documents known to be of interest, tand
subtracting away the weighted fraction of vectors of uninteresting doctgmiésm
relevancy is then estimated using cosine similarity in this vector space.

We represent each candidatelltimedia presentationas a vector of TF-IDF
weighted terms, describing its textual contents. Since in this study, only a small
fraction of item ratings are below the median score, we only model positide fee
backs. In computing the user profile vector, we weight the individuaer&tion
vectors by the respective feedback scores. In this fashion, hightypilessentation

5The produced PPR rankings are generally insensitivevalue, e.g., (Minkov & Cohen, 2011).
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contribute more to the user profile compared with a presentation that waset$sig
lower scores.

6.3 Collaborative filtering methods

We experiment with two well-known variants of neighborhood-based CF-meth
ods, namelyser-basedand item-basedk-nearest-neighbor (kNN) recommenda-
tion. We follow closely on Desrosiers and Karypis (Desrosiers & Karyd.1)

in our implementation of these methods. We further experiment with a state-of-
the-art matrix factorization algorithm (Koren et al., 2009), as detailed below

User-based kNN (CF:U-kNN) This method generates a rating prediction
based on the ratings for iteinby a set oft users most similar to the target user
u. The similarity between usersandv, userSim(u,v), is computed based on
their historical ratings. Here, inter-user similarity is evaluated using Pearsor-
relation as defined in Eq. (6), whefg, denotes the set of items co-rated by users
v andv, and7, and7, denote the average ratings of userandv, respectively.
This formula applies mean-normalization of rating scores per user, SO @Siord

for variance in rating scales across individuals. Once the set of raig(u)

is identified, the predicted rating is computed according to Eq. (7), weightag th
contribution of each neighbor by its similarity to

Iltem-based KNN (CF:I-kNN)  This method evaluated the recommendation score
by analyzing the ratings of similar items. As defined in Eq. (8), the similarity
between itemsg andj, itemSim(i, j), is determined by the extent to which other
users assigned similar ratings to the two items, wiigfedenotes the set of users
who have rated both itemsand j. The predicted rating,,; is computed as a
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weighted average of the ratings assigned by ugerN,,(:), a set of up td: items
that are found to be most similar to itenusing Pearson correlation, as defined in
Eqg. (9).

In our experiments, we tune the neighborhood size parameteras to opti-
mize performance. We apphegative filtering discarding neighbors with a neg-
ative correlation score, as negative Pearson correlation has lpesddo be un-
useful for recommendation (Herlocker, Konstan, Borchers, & Rieg®9). Sev-
eral additional threshold types were evaluated in order to identify a higlitg
set of neighbors. The first discards neighbors for which the coiwalacore is
lower than aminimum similaritythreshold value. Another threshold type requires
some minimal number of common ratings to establish neighborhood relationship:
in user-based kNN, a neighbor must have at |¢#asems co-rated with the test
user; using item-based kNN, neighbor items are required to bavesers who
co-rated itemg andj. The various combinations of threshold values and types,
as well as the neighborhood size, were evaluated exhaustively. \W# repults
using the best joint parameter assignments per setting.

Matrix factorization (CF:MF)  We experiment with a matrix factorization for-
mulation outlined by Koreet al (Koren et al., 2009). In general, given a user-item
ratings matrixM = (r,;), matrix factorization maps the users and items into a
joint latent factor space of dimensionality having every iteni and usen repre-
sented as vectokg, p, € R*. The ratingr,; is approximated by the dot product
of the item and user vectors, capturing the user’s overall interest in th&s ibhar-
acteristics. The factor vectors are learned by minimizing the regularizestestju
error on the set of known ratings:

min Y (rui — ¢ pu)* + Alall* + Ipull?) (10)
(u,i)ed

Here,d is the set of théu, i) pairs for whichr,,; is known. The constant controls
the extent of regularization.

We report MF results using the implementation included in the GraphLab soft-
ware packade(Low et al., 2012), applying alternating least squares optimization
for minimizing the cost function. We tuned the algorithm parameters using grid
search, setting the number of latent factors to 110 in the general recorativend
mode, and to 100 in the per-exhibit mode. The regularization coefficiasnbéean
set to\ = 1, and the number of iterations to convergence was set to a maximum
of 1,000. Stochastic optimization is prone to converge to a local optimum. We
therefore report average results of five runs with randomized initialization

Shttp://graphlab.org/
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6.4 Hybrid method (Hyb)

Hybrid recommender system combine multiple techniques, ideally compensating
for the weakness of the individual methods (Burke, 2002; Berkquskgkmann,

& Kuflik, 2009). We experiment with a combination of two recommendation tech-
niques: content-based (CB) and item-based kNN (CF:I-kNSipncretely, we first
re-scale the scores produced by the two methods, and then compute a daighte
erage of the normalized item scores. The weighting coefficient was tusieg u
grid search over the range [0.1,0.9] with step of 0.1. The selected weiglotssv
were (0.3, 0.7) in the general recommendation scenario, and (0.1, 0.9 peth
exhibit scenario, assigning in both cases a higher weight to the item-baké¢d k
method.

6.5 Baselines

We further consider several baseline approaches:

Random (B:R) This naive non-personalized baseline selects one of the candi-
datepresentationsiniformly at random. Comparing against this baseline, we will
demonstrate the contribution of informed recommendation systems over chance

Proximity (B:PR) This method models the assumption that museum visitors pre-
fer to view presentations for exhibits located nearby. It is implemented asteistr
version of random recommendation, limiting the set of candidate presentations
terms of distance from the user’'s whereabouts. The set of candidetenations

is constructed as follows. Givén,, we obtain the list of items associated with al-
ready visited, i.e.presentationshat can be reached from apyesentation: € V,,

located—in _ located—in~t

over the pathx ““— "y """ =" z. We also consider presentation relevant

nearby _ located—in ™!

for nearby positions, reached over the pagH?cicd i y "eargy g tocatedin== 5

Popularity (B:P) The popularity baseline ranks the candidgigesentationsc-
cording to their popularity score, computed as the number of users whediew
each presentation. This method is non-personalized yet informed amdhaite-
to-beat (Lucchese, Perego, Silvestri, Vahabi, & Venturini, 2012).h&llenge of
any personalized recommendation is whether it can outperform this orsdH-ais-
proach.

"As discussed later, item-based kNN performed best among the CFdséthour experiments.
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General Per-exhibit
MRR RFT| MRR RFT

G:M 110 .002| .627  .001
GV 143 .009| .788  .001
G:U 151 .002| .788  .001
G:MV 152 .002 | .789  .001
CB .048 .002| .585 .001

CF:U-kNN .028 .508| .600  .399
CF:I-kNN  .084  .874| .648  .293

CF:MF .065 .000| .658 .000
Hyb 104 .002| .659 .001
B:PR .018  .117| - -

B:P .140 .000| .801 .000
B:R .007 .000| .506  .000

Table 2: MRR and RFT performance of the various recommendation methnds.
asterisk denotes statistically significant difference compared with the -gpaged
method (p-vak0.0045).

7 Main results

This section reports our results using the different methods. As mentiaierkb
parameter values have been tuned so as to optimize performance. Imppitantly
parameters of the graph-based methods were tuned using the helduoydies; in
contrast, all other methods have been optimized directly onetbtelata. Despite
the comparison being strict in this fashion, graph-based recommendatiuowa s
to give preferable results. In what follows we first describe our figsglim the
general recommendation setting, and then discuss per-exhibit recontinanda

General recommendation Table 2 includes MRR and RFT results for the gen-
eral recommendation scenario, and Figure 4(a) shows the respedtileat-rank
performances. As shown, the graph variants G:U and G:MV, which matiebs
history together with background knowledge, yield the best overalbpadnce
with respect to all measures. MRR results using G:U and G:MV are .151 aad .15
respectively. In terms of recall, G:MV gives slightly better performancddiyig
recall of .063 at the topmost rank, and .220 recall at rank 5.

It is informative to contrast these results with the prediction quality of the non-
personalized baselines. As one might expect, the popularity-based n{gt)d
shows strong performance, yielding MRR score of .140. The other naive n
baselinerandomand proximity based recommendation—result in very low MRR
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Figure 4: Recall-at-rank performance of the evaluated methods in theafjene
recommendation mode (top) and per-exhibit mode (bottom): graph-based re
ommendation using the museum graph (G:M), the visitors ratings graph (G:V),
hybrid unified graph (G:U) and integrated variant scores (G:MV); itesela
and user-based collaborative filtering (CF:I-kNN, CF:U-kNN), matrigtdaiza-

tion (CF:MF), content-based recommendation (CB), a hybrid combinatiorBof C
and CF:I-kNN (Hyb), popularity-based baseline (B:P) and randorametcenda-

tion baseline (B:R).
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performance, as well as negligible recall at the top levels. These resulidate
with our dataset statistics, characterized with a large humber of candifiates,
which the distribution of available feedbacks (‘popularity’) is highly skdwe

The evaluated CF methods show relatively weak performance in our exper-
iments, all failing to beat the popularity-based baseline. Item-based kNdnrec
mendation achieved MRR of .084, matrix factorization—.065, and used xadd—
alow .028. The weakness of these methods can be attributed in part to alatisysp
issues. As shown in Table 2, the ratio of failed tests is very high using iteedbas
and user-based kNN CF approaches (.874 and .508, respectivwgyiound that
in many cases, there were no relevant ‘neighbors’ identified due to istagity.
Moreover, many visitors in our dataset (30%) assigned the same féesltzze to
to all of the presentations that they have viewed, and therefore did ntitnde
to the recommendation process (see Equations (6) and (8)). Matrixifation
techniques are generally more robust to sparsity issues, but deliverareegbsults
here. It is possible that CF:MF performance would improve should a lasgesf
ratings be provided.

Interestingly, recommendation using the graph variant G:V, which similarly to
the CF methods, models ratings history only, delivers strong performadaesuan
performs the popularity baseline. We conclude that the transitive grégitbdaess
measure is advantageous in conditions of sparsity. Another factor thaposay
tively affect the graph-based recommendation is that random walk nesakske
PPR exhibit some bias towards highly connected nodes (Tong & Falo2Gos),
thus implicitly modeling item popularity information.

Finally, performance of content based (CB) recommendation falls behind its
graph counterpart, G:M, which models background information (.048 u€ irL
MRR). The hybrid method (Hyb) improves upon each of its componentsgste
decreasing RFT and yielding a somewhat disappointing MRR of .104. Again,
conjecture that the graph-based techniques are preferable in cosdifisparse
data. The graph method further integrates physical proximity aspectsh atec
missing from either the collaborative or content-based approaches.

Per-exhibit recommendation The set of candidate items for recommendation in
the per-exhibit setting is limited to a small numbermiiltimedia presentations
directly associated with a specific exhibit, which the museum’s visitor is known
to be attending (see Figure 2(c)). Accordingly, random recommendatioeves
high recall levels at the top three ranks (.12,.47 and .91), as shown ireFgiy,

and a high MRR score of .506 (Table 2). TRepularity baseline achieves the
strongest performance overall in this setting—yielding MRR of .801. Thusltre
however may indicate a bias towards the presentations displayed at thett@p of
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mobile screen at the time of data collection, as users tend to view (and like) the top
listed items. We therefore believe that the results using B:P should be ‘taken with
a grain of salt’ in this case.

We now turn to discuss the personalized recommendation methods, which ide-
ally, would increase visitor satisfaction beyond the one-fits-all rankings.

Consistently with the previous findings, the best-performing approacedisea
integrative graph-based methods, G:U and G:MV, yielding MRR of .788 &% .7
respectively. The visitors graph G:V gives roughly equal perforrmgiRR of
.788). The contribution of the modeled background knowledge seemsibégiiy
this case. Indeed, physical proximity, which is modeled in the museum’s gsaph,
irrelevant in the per-exhibit setting.

Also in this setting, the CF methods yield inferior results. The best performing
CF method is .658 in MRR, obtained using MF, compared with .788 using the
variant G:V, which models similar information. Likewise, the results using CB
recommendation are inferior to the counterpart graph-based variantNER®R
results are .585 vs. .627. Thwybrid recommendation approach improves over
its component methods, giving a comparable result to CF:MF (.659), and lowe
performance compared with any graph method that considers the histatingk.

8 Impact of graph tuning

The representation of structured and semi-structured information asigrretation
graph is natural, yet involves some design choices. We discuss in thigsesties
related to graph design, including an evaluation of the impact of the edgétweig
parameter® on recommendation performance.

Graph design.The proposed graph schema directly links simflegsentation
node pairs, as well as similttemenode pairs. As mentioned before, we compute
inter-node similarity based on the textual content associated with the priasesta
and themes for all relevant node pdirs.

It is generally desired to avoid the modeling of weak associations as graph
edges—weak links are uninformative, while increasing the cost involvedrim
puting the PPR measure. We therefore selectively link only those entity pairs f
which the computed similarity scores exceed some tuned threshold. Theoldresh
values for thesimilar-to andsimilar-themeedge types have been set based on the
training data to 0.2 and 0.4, respectively. Consequentiyfimedia presentation
nodes are linked ovesimilar-to edges to 2.9 othgresentatiomodes on average;

8We used WEKA (Hall et al., 2009) to compute cosine similarity between teative TF-IDF
weighted term vectors, having stop words removed, content wordsr&tdrand lower-cased, and
word weights normalized by document length.
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General Per-exhibit
MRRY MRR MRRY MRR
G:M .058 116%95%) | 582 62777
GV - .143 - .788
G:U .150 154H49%) | 754 .78814:5%)
G:MV  .150 152+1:3%) | 735 .78 +7:3%)

Table 3: Evaluation of graph variants

and, most of thehemenodes are connected over thienilar-themerelation to 3-4
otherthemenodes. Similarly, we link eacpositionnode to its 3 nearegtositions

in terms of walking distance (and up to 6 positions in case of a tie). Constiyjuen
the similarity-based edge types are asymmetric, e.g., maday point to nodey
over asimilar-themeedge, whereag may not be point ta:.

Edge weight tuning.The parametric edge weigh® provide another mech-
anism for controlling the probability flow in the graph. We empirically turid
using grid search, optimizing recommendation performance on the helcamt e
ples, considering all combinations of edge weight values in the rangevitii]
step 0.1° The viewededges form an exception—-these edge weights were set ac-
cording to the feedback scores assigned by the visitor to each presensatibat
stronger association is maintained betwesersand presentationghat they are
known to have liked, compared with items that they liked less or were indifferen
to. In order to avoid dominance of tiviewededges over other edge types, the rat-
ing scores were transformed into decimal fractions (0.1-0.5). Finallysaigred
bi-directional edge types (e.gviewedandviewed ') identical weights, so as to
reduce the cost of edge weight tuning.

It is informative to examine the effect of parameter tuning on recommenda-
tion performance. Table 3 shows MRR performance of the differetrgvariants
using uniform pre-tuned edge weight parameters (MR&jainst the final perfor-
mance figures achieved using the tuned weights. Figure 5 further deatesstr
recall-at-rank-k results, prior to and post parameter tuning. Notablyititers
graph G:V only includesiewedrelations, and was not affected in the tuning pro-
cess. Equal coefficients.(= .5) were used in the pre-tuned version of the G:MV
graph variant.

As shown, edge weight tuning was highly effective for theseungraph, in-
creasing its MRR result by roughly 90%, from low .058 to .110 in the gemecal
ommendation setting, and by about 8% in the per-exhibit setting. The perfoema
of the G:U and G:MV variants was relatively high in their pre-tuned versipes;

“Parameters were tuned separately for the general recommendatitivegrer exhibit scenarios.
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Figure 5: Impact of tuning parameters in affected graph variants, in tefrresall
at the top ranks, in the general recommendation (left) and the per-extidit)
recommendation modes.
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edge weight tuning improved results further, increasing MRR by 1.3-713095,
obtaining the best result overall. Similar trends are observed with reBpeet
call@k performance.

We observed that low weights were assigned to the text-based similarity rela-
tions, namelysimilar-to andsimilar-themeedge types. We attribute the ineffective
modeling of content-based similarity to text sparsity. In contrast, the strlictura
association betwegmresentationand theirthemesover thehas-themedges was
assigned high weights. The weight of thearbyedge type was set to a high value
in the general setting; in the per-exhibit setting, however, its weight wastkosv
settles with the fact that physical proximity is irrelevant when all candidate items
are associated with a single exhibit. Overall, this demonstrates the flexibility of the
graph approach: the very same graph is effectively optimized per recodatien
task by tuning its parameters.

9 Conclusion

We have described a graph-based framework for personalizeshneendation of
multimedia presentations to museum visitors. As visits at museums are often a
one-time experience and are limited in time, recommendation must be performed
in constant ‘cold start’ conditions. The lack of sufficient rating history rbay
compensated by modeling of useful background knowledge; for exameleon-

sider here available expert annotations of the multimedia presentations withfa se
perspectives, which may characterize the user’s interests. Anotretdksat must

be modeled at the museum is its layout information—adjacent museum exhibits are
typically semantically related, and items associated with exhibits nearby are likely
to be preferred by the user.

It has been demonstrated that the graph framework can readily repreke
evant background knowledge, including layout information, alongsigi®rical
ratings in a joint graph. In an extensive set of experiments, we hawveeshthat
graph-based recommendation using the Personalized PageRank nwgsifire
cantly outperforms a set of popular collaborative and content-basethreenda-
tion methods. In fact, the graph approach is the only one to outperforntrimgs
one-fit-all popularity-based recommendation method.

We find that there are several main reasons for the superiority of tiph-gra
based approach. First, the graph models collaborative ratings togéthéraation
information and content aspects, whereas the alternative methods oobnatar
some subset of these aspects. Further, the structured random walkitinmikze-
sure is transitive, thus alleviating data sparsity. Moreover, the graphumeeazn
be tuned per the specific recommendation task; we have shown that cogttiodlin
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probability flow in the graph by means of edge weight tuning substantiallgtaffe
performance. Finally, the random walk process favors highly condettees,
thus implicitly modelling a bias towards popular items.

This study corroborates previous findings about the superiority of thehg
approach in integrating multiple sources of information. This work may be first
to represent structured relational background knowledge togetheusétiratings
using this framework. While we consider the museums domain, we believe that
incorporating background knowledge using the graph-based agipcaa be ben-
eficial also in other domains, especially those that operate in cold start setting

There are several directions for future work that we would like to pirsu
The limited textual content modeled in this work may be enriched using the Web
(Grieser, Baldwin, Bohnert, & Sonenberg, 2011) or linguistic reseai(Bohnert &
Zukerman, 2014) to support better inter-item similarity assessment. An tadean
of the graph framework is its flexibility, enabling multiple forms of recommenda-
tion. In addition to recommendingultimedia presentatioitems, one can use the
random walk algorithm for advising the visitor on the npgkitionto visit. These
predictions can be further organized into path recommendations.
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