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Abstract

Visitors to museums and other cultural heritage sites encounter a wealth
of items in a variety of subject areas, but can explore only a minority of these
items. Recommender Systems may help visitors cope with thisinformation
overload. Ideally, the recommender system of choice shouldmodel user pref-
erences, as well as background knowledge about the museum’senvironment,
as items are located in a physical space and they may have semantic links
between them. We propose a personalized graph-based recommender frame-
work, representing diverse multi-source information in a relational graph. A
random walk measure is applied to rank items of interest by their relevancy to
a visitor profile, integrating the various dimensions. We report the results of
extensive experiments conducted using authentic data, collected at the Hecht
museum.1 An evaluation of multiple graph variants, compared with several
popular and state-of-the-art recommendation methods, indicates clear supe-
riority of the graph-based approach.

1http://mushecht.haifa.ac.il/
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1 Introduction

Visitors to museums and other cultural heritage (CH) sites can be overwhelmed
by the richness and diversity of the information items that these sites offer. In
many museums, there exist numerous exhibits, which are associated with a broad
range of topics and are physically spread over large spaces, making it impossible to
view all exhibits in one visit (Davey, 2005). Visitors may therefore need assistance
in getting the best experience from their visit. Obviously, visitors differ in their
preferences, knowledge and expectations, as they come to the museum withtheir
individual ‘identity’ (Falk, 2009). CH recommender systems aim at generating
personalized recommendation that fit the visitors specific preferences and needs.
Such personalized services can be implemented using dedicated mobile applica-
tions (Ardissono, Kuflik, & Petrelli, 2012).

Mobile devices are typically available at CH sites nowadays, offering comple-
mentary information about exhibits of interest, albeit not in a personalized manner.
Importantly, personalized information can be both delivered and collected as part
of the interaction with the mobile device–feedback on viewed items may be col-
lected explicitly, or in a non-intrusive manner (Stock et al., 2007). For example, it
is possible to track the users’ behavior over time, across locations and interaction
contexts by analyzing signals transmitted by the visitor’s mobile device (Kuflik,
Kay, & Kummerfeld, 2012; Dim & Kuflik, 2014).

Nevertheless, making personalized recommendations at the museum is a chal-
lenging problem in several respects. Crucially, the collected feedback information
is sparse: every user gets to view and provide feedback for a small setof items
out of the plethora of items available, where in the majority of cases, the visitor is
introduced to the museum for the first time (Biran, Poria, & Oren, 2011; Snijders,
2014). The recommender system thus operates in continuouscold startconditions.
Further, the recommended items are not standalone artifacts–they are directly as-
sociated with some exhibit in the museum, which in turn is located in a specific
room. In order for recommendations to be effective, the system must consider this
location context; ideally, it would prioritize exhibits residing in high proximity to
those previously visited by the user. It is therefore desired to modelbackground
knowledgeabout the museum environment. In addition to physical layout infor-
mation, relevant background knowledge may map the museum’s environment and
items into a semantic space; for example, exhibits are often associated with spe-
cific themes. The modeling of semantic aspects is especially important considering
the sparsity of historical ratings. In order to integrate visitors feedbackswith phys-
ical and semantic contexts, the recommender system must be able to effectively
consolidate such heterogenous information.

In this work, we describe an adaptive system designed to present individ-
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ual museum visitors with personalized recommendations on their mobile device.
Concretely, we target the recommendation ofmultimedia presentations, which are
available for viewing on the mobile device, providing complementary material to
the museum’s exhibits. Assuming that some feedback is available for presentations
already viewed, our goal is to recommend the visitor on additional presentation
items of interest.

We outline and evaluate a graph-based recommendation approach that han-
dles the above-mentioned challenges gracefully. Multi-source information isrepre-
sented using a heterogeneous graph scheme, in which typed nodes denote entities,
and directed and typed edges denote inter-entity relations. Concretely, thegraph
nodes denoteusersandmultimedia presentationitems, as well as physicalpositions
and semanticthemes. The graph edges denote structured relations, e.g.,located-in
(betweenpresentationitems and thepositionsin which they are offered) orviewed
relations (betweenusersand thepresentationsthat they rated). Edges further de-
note elicited relations, such as similarity betweenpresentationsinduced based on
their textual descriptions. In this fashion, past visits history and informationabout
the museum’s physical and thematic environment are encoded in a joint graph.

The graph-based recommendation process involves inference of multi-facet
node relevancy with respect to aquery, defined as a distribution of interest over the
graph nodes. We apply the Personalized Page Rank (PPR) algorithm (Haveliwala,
2002; Tong, Faloutsos, & Pan, 2006) to rankmultimedia presentationsby their
relatedness to a user profile, corresponding to the set items already viewed and
liked by the user. PPR applies a random walk procedure, which capturestransitive
associations between entities, thus assessing inter-node relatedness from a global
perspective. Consequently, graph-based recommendation alleviates thesparsity
problem.

This paper reports the results of a case study using authentic data obtainedat
the Hecht Museum, located at the University of Haifa. Following the deployment
of a visitors guide system at the museum, data has been collected in the form of
visit logs for research purposes (Kuflik, Wecker, Lanir, & Stock, 2014). Given user
feedback on viewedmultimedia presentations, our goal is to rank the remaining
presentation items according to the user’s tastes. We report a set of comparative
experiments, showing that the graph-based recommendation approach significantly
outperforms popular content based and collaborative filtering recommendation ap-
proaches, including a state-of-the-art matrix factorization method.

There are several main contributions of this work:

• We show that the graph-based framework delivers accurate recommenda-
tions in the challenging cultural heritage domain. Compared with alternative
methods, this approach models historical ratings jointly with diverse back-
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ground knowledge, including contextual physical proximity and semantic
aspects. The proposed approach can be readily applied to other problems
with similar characteristics.

• There exist relatively few works that employed graph based similarity in
general, and the Personalized PageRank measure in particular, for recom-
mendation purposes. We report the results of a comprehensive set of com-
parative experiments, demonstrating the potential of graph-based approach
and its superiority over alternative, popular and state-of-the-art, methods in
a contextual recommendation setting.

• We empirically evaluate and discuss in detail issues related to graph design,
considering several plausible graph variants, as well as evaluate the impact
of tuning parametric edge weights on recommendation performance.

The remainder of the paper is organized as follows. Section 2 provides nec-
essary background, and is followed by a review of related research inSection 3.
The graph-based recommendation framework and the proposed graph schema are
described in Section 4. Section 5 describes our experimental data and defines the
experimental setup. In Section 6, we outline the various recommendation methods
evaluated in this work. Our main set of results is presented in Section 7. Sec-
tion 8 further discusses issues related to graph design, including the impactof edge
weight tuning. Section 9 concludes this paper, and discusses directions for future
research.

2 Background

Recommender systems estimate the relevancy of yet unseenitemsfor individual
users. We denote the set of users byU , and the finite set of items byI. Let Iu
represent the subset of items that have been viewed and rated by an individual user
u ∈ U . The rating assigned by useru to itemi ∈ Iu is denoted byrui. Ratings may
be given in multiple forms, such as numerical scores, e.g.[1, 5], or binary indica-
tions, e.g.,{like, dislike}. This information corresponds to a sparsely populated
matrix, with known users and items as the matrix dimensions, and historical rat-
ings as values. The set of available feedback scores for a given user, {rui, i ∈ Iu},
serves to represent her tastes. Given the rating history, it is desired to predict ratings
for the remaining items that the user has yet to experience,{I − Iu}.

The main methods used to solve the recommendation problem can be
roughly categorized into content-based (CB) and collaborative filtering (CF) ap-
proaches (Adomavicius & Tuzhilin, 2011).Content-basedmethods rely on avail-
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able descriptions of items, representing them in a pre-defined feature space; for in-
stance, given textual descriptions, items may be represented as a vector of weighted
term counts, or topics. Auser profileis constructed in this paradigm as the aggre-
gation of the vectors of items that user is known to have liked (or disliked). The
constructed user profile is compared with candidate items in the joint feature space
to generate recommendations.

There are several drawbacks of content based methods. They are sensitive to
content sparsity; in particular, textual descriptions are often short andsparse. It
is further claimed that content-based models tend to over-specialize, as theyare
inherently biased to favor items similar to the historical ones, whereas in practice,
different items may be highly useful to the user. In this work, we experimentwith
a variant of the Rocchio algorithm (Salton, 1971; Lops, de Gemmis, & Semeraro,
2011), representingmultimedia presentationitems based on their textual content.

Collaborative filteringmethods rely solely on the historical record of item rat-
ings by users. These methods model user preferences collaboratively, detecting rat-
ing patterns across users and items. Accordingly, CF can make cross-genre or ‘out-
side the box’ recommendations. Primary CF approaches include neighborhood-
based methods and latent factor models (Adomavicius & Tuzhilin, 2005). Thelat-
ter approach projects the users and items matrix into a smaller dimensional space,
thereby clustering similar users and items. The latent factors represent latent char-
acteristics of the users and items in the system, where high correspondencebetween
item and user factors leads to a recommendation. These methods have become
popular in recent years due to good scalability and high predictive accuracy. We
experiment in this work with neighborhood-based CF methods, as well as witha
state-of-the-art matrix factorization method (Koren, Bell, & Volinsky, 2009).

A well-known weakness of both CF and CB systems is the ’cold start’ problem,
handling new users (both approaches) and new items (CF), for which there is little
rating history available. In addition, rating sparsity is a significant known problem,
as in general there are many items available and the odds are that users onlyshare a
small number of rated items. This problem is somewhat alleviated by model-based
approaches such as matrix factorization (Koren et al., 2009). Finally, themodeling
of additional dimensions, such as physical proximity or other contextual aspects,
in the recommendation process is non-trivial. For a more detailed discussion of
recommendation techniques and their pros and cons, see for instance (Burke, 2002)
and (Adomavicius & Tuzhilin, 2005).
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3 Related Work

3.1 Context aware recommendation

There has been rising interest recently in context aware recommender systems
(CARS) (Adomavicius & Tuzhilin, 2011; Panniello, Tuzhilin, & Gorgoglione,
2014) that adapt recommendations to the specific situation in which items are con-
sumed. Ideally, context information should be integrated directly into the recom-
mendation model. However, state-of-the-art CF approaches such as Matrix Factor-
ization do not provide a straightforward way of doing so (Konstas, Stathopoulos, &
Jose, 2009). In order to model contextual information, a CF method based on Ten-
sor Factorization has been proposed (Karatzoglou, Amatriain, Baltrunas, & Oliver,
2010), which models the ratings data as a user-item-context N-dimensional tensor
instead of the traditional two-dimensional user-item matrix. Their model describes
context information, such as user age and gender, using categorical features. This
approach comes with the cost of increased sparsity–as now information is spread
over a multidimensional space instead of the classical (already sparse) twodimen-
sional one. Others have suggested to handle context information by partitioning the
original user-item rating matrix, such that ratings with similar contexts are grouped
together (Liu & Aberer, 2013). None of these extensions however readily accom-
modates complex, structured and semi-structured, relational backgroundinforma-
tion, which we model here using the graph-based representation.

3.2 Graph-based recommendation

Several studies have previously explored related graph-based methods for recom-
mendation. Early works used homogenous graphs, in which nodes denoted items
and edges represented inter-item similarity (Gori & Pucci, 2007; Yildirim & Krish-
namoorthy, 2008). Other works modeled bipartite graphs, consisting ofusersand
items, having edges represent ratings assigned by users to viewed items (Craswell
& Szummer, 2007; Fouss, Pirotte, Renders, & Saeren, 2007; Baluja et al., 2008).
Recent studies have already started to explore the potential of graph representa-
tion and reasoning techniques for context-aware recommendation. Theseworks
construct heterogeneous graphs, consisting of multiple node and edge types. In
addition to user-item ratings, the heterogeneous graph structure has been used to
model social context, drawn from location-based and event-based social networks
(Konstas et al., 2009; Bu et al., 2010; Noulas, Scellato, Lathia, & Mascolo, 2012;
Shang, Kulkarni, Cuff, & Hui, 2012; Wang, Terrovitis, & Mamoulis, 2013; Tiroshi,
Berkovsky, Kaafar, Chen, & Kuflik, 2013; Tiroshi et al., 2014; Pham,Li, Cong, &
Zhang, 2015; Bagci & Karagoz, 2015).
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Several works have applied the Personalized PageRank measure to perform
item ranking in contextual graphs, reporting superior performance overclassical
recommendation methods. Konstaset al. (Konstas et al., 2009) targeted the rec-
ommendation of music tracks to users, modeling social friendships and tags in the
graph; in their experiments, PPR outperformed a user-based kNN method.The
work by Noulaset al. (Noulas et al., 2012) targeted location recommendation–the
graph in this case included users and venues as nodes, having edges denote histor-
ical user-location visits and user friendships. Recommendation experimentsusing
the PPR measure showed it to be preferable to a set of alternative approaches, in-
cluding collaborative filtering methods. Due to skewed distribution of visits across
venues, simply recommending venues by popularity was shown to perform well,
having the graph-based PPR be the only method to beat this popularity baseline.
More recently, Bagci and Karagoz (Bagci & Karagoz, 2015) used PPR for rec-
ommending locations to visit to users, based on popularity and past ‘check-ins’
of friends. They too report that the PPR algorithm outperforms classicalrec-
ommendation approaches. Yao et al. (Yao et al., 2015) proposed a a multi-layer
graph-based recommendation framework, incorporating a variety of implicitcon-
textual information into the recommendation process, and showed contextualPPR
schemes to perform best out of a set of alternative approaches.

Our work corroborates these previous findings. While the previous works fo-
cused on the modeling of social information, we show that the graph approach
can effectively leverage relational background knowledge, representing aspects
such as physical and thematic relatedness. Interestingly, none of the abovemen-
tioned works has examined graph adaptations by means of edge weight tuning
(e.g., (Minkov & Cohen, 2011)) for recommendation purposes. We further show
that tuning parametric task-specific edge weights substantially affects the global
similarity measure, leading to performance gains; as a result, in contrast with pre-
vious findings (Konstas et al., 2009), recommendation performance doesnot de-
grade but rather benefits from expanding the graph with additional dimensions.
A main contribution of this study is in providing a comprehensive comparison of
graph-based recommendation with a variety of alternative popular methods,thus
providing strong evidence about the advantages and applicability of graph-based
contextual recommendation.

3.3 Recommendation systems for museum visitors

This paper investigates graph-based recommendation to enhance the museum visit
experience. There exist several research works that consider recommender systems
for museum visitors. Stocket al. (Stock et al., 2007) proposed an overlay user
model, having the user model first ‘overlaid’ over a domain ontology, rating parts
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of the ontology according to the user’s preferences, and then propagating these rat-
ings over the ontology network to recommend other exhibits of interest. Grieser et
al. (Grieser et al., 2007) aimed at predicting the exhibit that a visitor would visit
next based on available visit history. They applied a Naive Bayes learning model,
considering exhibit proximity, textual description of the exhibit, and exhibit popu-
larity. In their experiments, the baseline of exhibit prediction based on popularity
was found to be most successful. The graph-based approach proposed here is more
comprehensive than these works, as it models collaborative user historyinforma-
tion jointly with content-based and physical proximity aspects. We believe that the
graph based approach is generally advantageous compared with statistical learning
in conditions of data sparsity.

Bohnertet al. (Bohnert et al., 2012) suggested ‘Gecko mmender’, a system
that takes as input visitors’ explicit ratings of exhibits, and uses a nearest-neighbor
CB approach to predict ratings for unvisited exhibits. These ratings formthe basis
for theme/tour recommendations. Gecko mmender was evaluated in a field study
at Melbourne Museum (Melbourne, Australia), focusing mainly on assessing dif-
ferent display modes of the predicted ratings. In a recent work by Bohnert et al.
(Bohnert & Zukerman, 2014), they target the prediction of museum visitors view-
ing times of exhibits. They experiment with Spatial Process Model (SPM), a col-
laborative model based on the theory of spatial processes. SPM represents visitors
viewing-times as Gaussian random vectors. It is assumed that the correlation be-
tween observations increases with decreasing exhibit conceptual distance, encoded
in a covariance matrix. The method is claimed to alleviate the cold-start new-user
problem through the modeling of correlation between the exhibit areas viewed by
the visitor and the other exhibit areas. Several types of exhibit distancesare evalu-
ated, including viewing-time similarity, semantic similarity and walking distance.
The results, evaluated using a dataset of 157 visitor histories at the Melbourne
Museum, indicate that physical distance correlations yield the best predictions of
viewing times. The graph-based approach described here is in fact complemen-
tary to the SPM model–one may generate multi-facet correlation scores using the
global graph-based relatedness measure, and use them for viewing time prediction
and related problems.

Finally, another recent work by Bartoliniet al. (Bartolini et al., 2014) ad-
dresses recommendation of diverse multimedia materials across cultural heritage
sites. They use a graph representation to propagate semantic similarity between
items, based on available semantic annotations and visiting ‘patterns’, indicating
the frequency in which two items were consumed consecutively by the same visitor.
While they organize the recommended items into paths, the physical aspect as well
as historical ratings are not integrated in the graph. Their evaluation focuses on the
assessment of visitor satisfaction using the system in field conditions, whereas we
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focus in the evaluation of the quality of multi-facet graph-based recommendation
compared with alternative recommendation approaches.

4 Graph-based recommendation

We represent background knowledge alongside historical rating information in a
joint graph. The graph is heterogeneous, consisting of typed nodes and directed
and typed edges, and can therefore accommodate knowledge in a relational form.
Dedicated graph-based measures may be employed to rank the graph nodes by their
similarity, or relevancy, to aqueryof interest, represented as a distribution over the
graph nodes. We construct queries that correspond to a user’s profile, including
items (multimedia presentations) that she is known to have liked, having items
ranked by their relevancy to this profile. Following previous works, we employ
the Personalized PageRank random walk algorithm to assess inter-node similarity
in the graph. We further exploit the relational structure of the graph, andtune
parametric edge weights to optimize performance.

In this section, we first formulize the graph representation schema, and describe
how it is applied to our case study of item recommendation to museum visitors. We
then outline the Personalized PageRank algorithm, and provide intuitions on why
using PPR is beneficial in this setting.

4.1 The museum as a graph

Let us first define the underlying graph representation. A graphG =< V,E >

consists of a set of nodesV , and a set of labeled directed edgesE. We will denote
nodes by lower-case letters such asx, y, or z. Every nodex has a type, denoted
τ(x). The set of possible types is pre-determined and fixed. An edge fromx to y is

typed with relationℓ, denoted asx
ℓ

−→ y. Typically, for every edge in the graph,
there exists an edge going in the other direction, denoting an inverse relation. This
implies that the graph is cyclic and highly connected.

We now turn to describe the museum’s environment in the form of such a re-
lational graph. We distinguish between the following entity classes, representing
them as distinct node types:

• Positions. A position is apoint of interest(POI), a physical point in which
multimedia information is available about exhibits nearby. The POIs are
spread in the museum environment over multiple rooms and floors.

• Presentations. These nodes represent multimedia presentations offered for
viewing on the visitor’s mobile device. Presentations are associated with
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source type edge type target type
presentation located-in position

has-theme theme
similar-to presentation
viewed−1 visitor

position nearby position
located-in−1 presentation

theme has-theme−1 presentation
similar-theme theme

visitor viewed presentation

Table 1: Relation types in the museum graph

concrete exhibits. As of today, once the user is tracked at some point of
interest, she is offered to view the presentations pertaining to the exhibits
associated with that position.

• Themes. The multimedia presentations in Hecht Museum have been asso-
ciated with a set of nine specific themes, e.g. Religions, Art symbols and
Maritime, following the process described in Katzet al (Katz et al., 2006).
We represent each of these themes as a node in the graph.

• Visitors. These nodes represent individual visitors to the museum. While the
other node types describe static aspects of the museum’s layout, historical
visit information is dynamic, being accumulated over time. Thevisitorswill
be associated with the museum entities through dedicated edges that describe
their visit experience.

The full set of graph edge types is detailed in Table 1. As mentioned before,
multimedia presentationsare offered per specific museum exhibits. Thematically
related exhibits are grouped together physically in separate physicalpositions. We
therefore directly link eachpresentationwith the positionwith which it is asso-
ciated over an edge of typelocated-in. Has-themeedges further associate each
presentationwith the respectivethemenode. Both of these relation types are func-
tional, having each presentation map to a single position and theme. In order to
maintain high connectivity in the graph, edges are added in the opposite direction
between the respective node pairs, denoting the inverse semantic relationslocated-
in−1 andhas-theme−1.

We further model a set of edges describing various aspects of inter-entity sim-
ilarity in the museum’s environment.Positionsthat reside in high physical prox-
imity are linked overnearbyedges. Physical proximity was measured in terms of
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Figure 1: An illustration of the museum graph:multimedia presentationitems are
inter-linked via common physicalpositionsand annotated semanticthemes.

walking steps for this purpose. In addition,presentationsthat exhibit high content
similarity are inter-linked over thesimilar-torelation. We compute term-based con-
tent similarity: having eachpresentationrepresented as a TF-IDF term-weighted
vector, cosine similarity is computed between everypresentationnode pair. Fi-
nally, similar-themeedges connect semantically relatedthemes. Each theme is
represented for this purpose as the centroid of the TF-IDF vectors of the presen-
tationsassociated with that theme, having cosine similarity computed between the
theme centroids. More details about the representation of inter-item similarity as
edges are provided in Section 8.

The graph schema described thus far representsmultimedia presentationsalong-
side location and themeentities, linking these objects over relations that denote
thematic relations and physical proximity. Figure 1 illustrates the resulting graph
for a subset of our experimental data.

It is straightforward to further incorporate historical ratings in the graph. We
represent individual visitors by dedicatedvisitor nodes, linking everyvisitor to
presentationnodes over directedviewededges. One may link a visitor node to all
of the presentations that she viewed; or, it is possible to link the visitor node only
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to presentations that she is known to have liked. As described in Section 5.1,most
of the feedback scores in the visit logs in our datasets are positive. For this reason,
and considering data sparsity, we follow the first option in this work. Node pairs
linked over theview relation, are linked over edges of the inverse semantic type,
viewed−1, pointing in the opposite direction. In this fashion, the graph models
presentationsandvisitorsassociation patterns based on available ratings history.

4.2 Recommendation with Personalized PageRank

We are interested in recommending presentations to a user based on her histori-
cal feedbacks. This corresponds to the following objective: given a distribution
over the graph nodes that represents the user’s tastes,presentationnodes are to be
ranked by their relatedness to that distribution. Various measures exist that evalu-
ate structural node relatedness in graphs (Fouss et al., 2007). We employ here the
popular Personalized PageRank (PPR) random walk metric, sometimes referred to
as Random Walk with Restart (RWR) (Tong et al., 2006).

PPR is often described as a variant of the well-known PageRank algorithm
(Page, Brin, Motwani, & Winograd, 1998), originally designed to measurethe rel-
ative importance of individual Web pages. Consider the Web graph, in which nodes
denote Webpages and directed edges denote hyperlinks. The non-personalized
PageRank algorithm models the behavior of a Web surfer, who at any given time,
chooses either to follow a hyperlink to a related Webpage, or “resets” randomly to
one of the pages on the Web. Formally, given that the surfer is at node (page)i,
with probabilityα the surfer is expected to move to nodej following an outgoing
link from i, and with probability (1 − α) the user resets randomly to some page.
The probability distribution of finding the surfer at each of the graph nodes at time
d, Vd, is defined recursively as:

Vd+1 = (1− α)[
1

N
]1×N + αMVd (1)

where the total number of nodes (pages) isN , and the transition matrixM encodes
the probability that the surfer moves to pagej from pagei following a hyperlink.
As default,M distributes a node’s probability uniformly among the pages it links
to, i.e.

Mij =

{ 1
|ch(i)| if there is an edge fromi to j

0 otherwise
(2)

wherech(i) is the set of nodes that can be reached over an outgoing link fromi

(the ‘children’ ofi).
Due to the reset operation, the unified matrix is stochastic and irreducible. This

guarantees that the random walk process converges to a unique stationary distribu-
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tion,V ∗. ThePageRank scoreof nodej, pj , is its probability in the stationary state
V ∗, giving a measure of document centrality in the network.

The PageRank algorithm computes ‘universal’ node importance scores,ig-
noring user preferences. The Personalized PageRank variant (Page et al., 1998;
Richardson & Domingos, 2002) preserves an association between noderankings
and user preferences, or a ‘query’. Rather than assume that the user is equally in-
terested in, and would reset to, any graph node uniformly at random, the enhanced
random walk scheme limits the reset operation to the query nodes, as follows:

Vd+1 = (1− α)Vu + αMVd (3)

whereVu denotes the query distribution, including nodes that are known to be of
interest to useru. The Personalized PageRank scores are derived from the corre-
sponding stationary state distribution.

The generated PPR scores reflect structural similarity, or relevancy, of the graph
nodes with respect to the queryVu. It has been shown that the PPR score for a target
nodez and a query nodex equals a summation over all the paths betweenx and
z (including cyclic paths, and paths that crossz multiple times), weighted by path
traversal probabilities (Jeh & Widom, 2003; Fogaras, Rácz, Csaloǵany, & Sarĺos,
2005). Importantly, due to the reset probability(1 − α), the paths betweenx and
a destination nodez are weighted exponentially lower as their length increases.
Intuitively, this means that items that are connected over short paths to the query
nodes are considered more relevant by the PPR method; similarly, items that can
be reached over multiple paths from the query nodes are also consideredmore
relevant.

Edge weights.The graph walk process is determined by the graph’s topology,
captured by the transition matrixM. If edges are assumed equal importance, then
M distributes evenly the transition probabilities across all of the outgoing edges
from nodei (Eq. (2)). It is reasonable to assume however that the random surfer
is inclined to traverse specific edges, which reflect a stronger, or more meaningful,
semantic relations. In this work, we will assume that edge importance is derived
from its type (Minkov & Cohen, 2011; Shang et al., 2012). Concretely, aset of
edge weight parametersΘ determines for every edge of typeℓ in the graph, a fixed
weightθℓ ∈ Θ. The transition probability from nodex to nodey over a single time
step,Mx,y, is defined as:

Mx,y =
θℓ∑

y′∈ch(x) θℓ′
(4)

whereθℓ is the weight of the outgoing edge fromx to y. In words, the probability
of reaching nodey from x is defined as the proportion of the edge weight fromx
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to y out of the total outgoing weight from the parentx. The edge weightsΘ thus
directly affect the probability flow in the graph.

The graph edge weightsΘ can be set manually, according to prior beliefs; tuned
empirically; or, learned from labeled examples (Minkov & Cohen, 2011). In this
work, we empirically tune the edge weights using exhaustive search. We leave the
exploration of edge weight learning, as well as path-based node ranking schemes
(Lao & Cohen, 2010; Lao, Minkov, & Cohen, 2015) for future work.

4.3 Recommendation at the museum

We use Personalized PageRank to generate recommendations for individual visi-
tors. A user profile is constructed based on available feedback scores; the query
distributionVu spans over the set ofmultimedia presentationnodes that the visitor
is known to have seen and liked, weighting them by the respective feedback scores.
Applying PPR yields a score distribution over the graph nodes, reflecting graph-
based relatedness (or, similarity) to the visitor’s profile. It is straight-forward to
filter this distribution by node type, and present a list ofpresentationitems ranked
by their estimated relevancy to the user. Likewise, one may generate rankings of
other entity types, e.g.,positions.

An advantage of the graph walk is that it integrates multiple types of evidence.
A random walk process that is initiated at somepresentationx of interest will
reach a relatedpresentationz by passing via a sharedthemenode, or directly,
due to the modeling of text-based similarity edges, over the following paths:x
has−theme

−→ y
has−theme1

−→ z , and x
similar−to

−→ z. Importantly, the PPR measure is
transitive–as the random walk continues, similarity propagates between pairs of
relatedpresentationscontinuously.

The graph walk further models physical proximity, giving preference to pre-
sentations of exhibits that are located nearby. Immediate physical proximity (same

position) is expressed via the 2-hop pathx
located−in

−→ y
located−in1

−→ z; presentations

of exhibits at nearby positions are reached via the 3-hop pathx
located−in

−→ y
nearby
−→ s

located−in1

−→ z. Presentations at yet further positions are reached over longer paths,

e.g., x
located−in

−→ y
nearby
−→ s

nearby
−→ t

located−in1

−→ z.

Collaborative aspects are modeled through the path:x
viewed−1

−→ y
viewed
−→ z. Col-

laborative and content-based similaritiea are naturally integrated by mixed paths

like x
viewed−1

−→ y
similar−to

−→ s
viewed
−→ z.

Performing the random walk for a sufficient number of steps propagatesand
accumulates similarity along these paths, integrating content-based, collaborative
and location-based similarities. Due to the exponential decay over path length, infi-
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nite graph walk probabilities can be effectively approximated by limiting the graph
walk to a finite number of stepsk (Toutanova, Manning, & Ng, 2004; Fogaras et
al., 2005; Minkov & Cohen, 2011).

5 Experimental Setup

This section first introduces our experimental data. It then defines the evaluation
methodology, presenting two variants of the recommendation tasks and the evalu-
ation measures used in this work.

5.1 Data

We experiment with authentic data collected during visits to the Hecht Museum.
A mobile device is provided to the museum visitors, on which they are offered to
view relevant multimedia presentations at each POI visited (for details see Kuflik
et al (Kuflik et al., 2011; Kuflik, Wecker, joel Lanir, & Stock, 2014)). The multi-
media presentations include limited textual content; most of them contain between
100–200 words, corresponding to a paragraph or two. Overall, more than 300 pre-
sentations are available that correspond to 76 exhibits, displayed at 49 positions,
spread across multiple rooms and two floors. The mobile device is designed to
present and receive user feedback. Colored smiley emoticons appearnext to some
of the offered presentations, reflecting high average rating receivedfor those pre-
sentations by past visitors. (Emoticons were presented for 72% of the presentation
at the time of this research.) Once viewed a presentation, the user is requested to
provide her own feedback.

The dataset used in the experiments is composed of 319 visit logs. The recorded
information includes the POIs that the visitor passed through, presentationsviewed
and the feedback scores (ratings) assigned to these presentations. Log files of visits
in which a single presentation has been viewed are not included in our dataset. The
visit logs are anonymous, as we do not have access to personal details about the
visitors. We will assume that each visit log was generated by a different user, as
the ratio of repeated visits at the Hecht Museum is generally low.

Figure 2 presents various dataset statistics. Specifically, Fig. 2(a) describes the
number of presentations viewed per visit. As shown, the median number of presen-
tations viewed is 10, where visitors most often viewed between 5-9 presentations
during their visit. Considering the limited number of viewed items, it is desired to
direct the visitors to those items that are most interesting for them. At the same
time, it is challenging to make recommendation as little is known about the visitor.

The visit logs that constitute our dataset were obtained at several different
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(a)

(b)

(c)

Figure 2: Dataset statistics: (a) Number of presentation viewed per visit; (b) Dis-
tribution of feedback scores; (c) Number of presentations available perexhibit
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points in time, and therefore exhibit some variance with respect to rating scales.
Some of the feedbacks are binary (like, dislike), but the majority of feedbacks are
given in 3-point or 5-point scale. We converted the different feedbacks to a uni-
form 5-point scale: binary feedbacks were converted to integer values of {1,5},
and scores on a 3-point scale were represented using the values{1,3,5}.

Fig. 2(b) shows the distribution of the processed feedback scores. Asshown,
the ratings tend to be positive–about 65% of the feedback scores are very high
(score of ’5’), and very few ratings are negative. In order to alleviate sparsity, we
choose to model all of the presentations viewed by a visitor, for which the feedback
scores are positive (in the range 3–5), as her user profile, weighting the items in the
profile by their normalized feedback score.

Fig. 2(c) presents statistics about the number of presentations available per
exhibit. There is a single relevant presentation for 18% of the exhibits. Forabout
half of the exhibits, 5 or more presentations are available. As discussed below
(Sec. 5.2), we evaluate in our experiments a setting in which the set of presentations
available for a given exhibit are ranked by their relevancy to the individual visitor.

We find that the ‘popularity’ of the various presentations, estimated in terms of
the number of times viewed, varies greatly. About 1% of the presentations were
viewed in 100-119 visits; these presentations are associated with exhibits located
near the museum entrance. On the other hand, approximately 17% of the presen-
tations were viewed by a single visitor, or none. There are about 14 feedbacks
available per each viewed presentation item on average in our dataset.

In summary, the experimental dataset is sparse. The respective user-item matrix
includes about 4% populated cells. Only a small number of feedbacks is available
for individual visitors. Recommendation at the museum must therefore address
constant ‘cold start’ conditions. Content-wise, the textual descriptions oftarget
items are short and sparse.

5.2 Experimental design

We perform a set ofpredictionexperiments using the authentic visit logs collected
at the Hecht museum.

Given the set of ratings provided by useru, we consider in each experiment
one of the rated presentation items,i∗ ∈ Iu, having the remaining items{Iu − i∗}
serve as the user’s profileVu. In case that useru positively appreciated itemi∗,
we expect to find it among the top items of the generated ranked list of recom-
mendedpresentationitems. This experimental setting is imperfect, mainly, other
highly ranked items may be of high interest to the user as well, for which we do
not possess relevancy judgements. Yet, such a setting is often applied forthe pur-
pose of comparing the performance of multiple ranking methods; importantly, it
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is unbiased as all systems are assessed under the same conditions (Baluja et al.,
2008).

Since the experimental dataset is limited in size, we perform exhaustive leave-
one-out prediction experiments–for every useru in the dataset, up to|Iu| labeled
example queries are generated. Since we are interested in predicting items that
the visitor is known to have liked, presentations for whichu assigned low ratings
are excluded from the example pool. (Specifically, we discarded presentations for
which the feedback score was below the median score of 3, constituting 3.7%of
all user feedbacks.)

We dedicate aheld-outportion of the resultant example set for parameter tuning
purposes, mainly, for tuning of the graph edge weights. We selected all ofthe
queries generated per 10% of the users (32 complete visit logs) for this purpose.2

The examples derived from the remaining 287 (90%) visit logs serve for evaluation
using the leave-one-out procedure.

Finally, we consider two modes in which personalized recommendation ofmul-
timedia presentationscan enhance the museum visit experience:

• General Recommendation:We are interested in assisting the visitor in choos-
ing items of interest while touring the museum. All of themultimedia pre-
sentations(except those already viewed by the user) are considered as can-
didates for recommendation in this setting. Ideally, the museums physical
layout should be taken into account in this mode. Physical distances are
modeled in the graph via thenearbyedges, connecting adjacentpositions,
and thus affect the generated rankings. The explicit design of a route planner
module is out of scope of this work however.

• Per-Exhibit Recommendation:As visitors are moving in the museum space,
they may be most interested in presentations about exhibits in their vicinity.
The set of relevant multimedia presentations may be small, however the size
of the mobile screen is limited, and the top listed items draw most of the at-
tention of a human user. We therefore wish to rank the relevant presentations
according to the visitor’s personal preferences. In this case, onlypresenta-
tions that are associated with an attended exhibit are the candidate items for
recommendation.

5.3 Evaluation measures

All of the recommendation methods considered in this paper generate scoresfor
candidate items given the profile of target useru. These scores are then processed

2As indicated previously by Minkov and Cohen (Minkov & Cohen, 2011), the graph edge weights
parameters can be effectively tuned using a small number of examples.
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into a ranked list, to be presented on the mobile screen. We accordingly assess
performance using measures used for the evaluation of ranked lists. Notably, each
evaluated query has a single known correct answer in our experiments.

Recall-at-k. This measure estimates the probability of retrieving the correct
answer within the topk ranks. Formally, the non-interpolated recall at rankk of
a given list is defined to be 0 for each rankk = 0, ..., ki−1, whereki is the the
rank that holds the item that should be predicted, and 1 for ranksk ≥ ki. The
(mean) recall@k averages the recall scores at each rankk of multiple queries. For
example, recall@3=0.7, means that for 70% of the queries, the correct answer
appears among the top 3 ranks of the retrieved lists.3

Given the limited size of the screen of handheld devices, only a limited num-
ber of items can be presented at a time. It is further expected that the highest
ranking items will receive most of the user’s attention. For this reason, we re-
port recall@k for the topmost ranks:k =[1–5] for the general recommendation
setting, andk =[1–3] in the per-exhibit mode. In the latter case, the number of
candidate items is small to begin with, so that the added value of recommendation
is in pointing out the very few items that are of highest interest to the user.

Mean reciprocal rank (MRR).This measure considers the full ranked lists gen-
erated. The reciprocal rank of a response to a single query is definedas the multi-
plicative inverse of the rank of the correct answer:1

ki
. The mean reciprocal rank is

the average of the reciprocal ranks for all of the test queries.4

Ratio of failed tests (RFT).Occasionally, a recommendation method may fail
to predict scores for some items, possibly including the target item. In such cases,
we assign these items a de-facto score of zero, appending them to the bottomof
the output ranked list. Impaired coverage therefore directly affects recall-at-N and
MRR performances. For completeness, we also report theratio of failed tests, in
which the test presentation failed to receive a score.

6 Experiments

We compare the graph-based approach against a set of popular recommendation
methods, including content-based, memory-based nearest-neighbor collaborative
filtering (CF) algorithms, and state-of-the-art matrix factorization. In addition,

3We consider theeffectiverank of the target item, which may be a real number, e.g., if the 5th and
6th ranked items are assigned identical scores, the rank of both items is 5.5, computed as (5+6)/2.
In our experiments, item scores are often on par using random recommendation, and to a lesser
extent, using CF kNN and some graphs variants. The evaluation is strict, having ranks rounded up in
evaluating recall; e.g., rank 5.5 contributes to recall@6 and downwards.

4In computing the MRR measure, half ranks were maintained.
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(a) The musuem graph (G:M)

(b) A visitors’ graph (G:V)

(c) A unified graph (G:U)

Figure 3: Illustration of the structure of several graph variants

several baselines are evaluated that are either naive or well-informed,such as rec-
ommending items by their popularity. This section includes a description of the
evaluated approaches and implementation details.

6.1 Graph variants

In order to assess the utility of combining historical ratings with background knowl-
edge, we experiment with several graph variants, modeling these aspectsindepen-
dently and in combination. Figure 3 illustrates the structure of these graph variants.

1. The Museum graph (G:M). This graph describes background knowledge
about the museum’s environment. It models thematic and physical simi-
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larities. Specifically, the graph includespresentation, themeand position
entities, connected over the relationssimilar-to, similar-theme, nearby, has-
theme, located-inand the respective inverse edges.

2. Visitors graph (G:V).This graph variant represents ratings history. The
graph is bi-partite–it includespresentationsandusersas entities, linked over
viewedandviewed−1 edges.

3. Unified graph (G:U).Themuseumandvisitorsgraphs contain complemen-
tary information. Theunifiedgraph forms the union of the two graphs, as
demonstrated in Figure 3(c).

4. Combined graphs (G:MV).Another approach for combining the two infor-
mation sources is to integrate the scores produced using thevisitorsandmu-
seumgraph variants. We experiment with a linear combination of the scores:

r̂ui(vu, G : MV ) = (1− β) · r̂ui(vu, G : M) + β · r̂ui(vu, G : V ) (5)

The weighting coefficientβ was tuned empirically in our experiments using grid
search over the range [0.1,0.9] with step size 0.1, optimizing performance onthe
held-out examples. The graph edge weight parametersΘ were similarly tuned
using the held-out examples, as described in detail in Section 8.

We set the damping factor of the random walk process (Eq. (3)) toα =.85
following previous works (Page et al., 1998; Minkov & Cohen, 2011).5 We ap-
proximate PPR scores using finite random walk repeated for 6 iterations. Asdis-
cussed in Section 4.2, the impact of additional steps on the generated rankings is
negligible.

6.2 Content-based Recommendation (CB)

We experiment with a version of the Rocchio algorithm (Salton, 1971; Pazzani
& Billsus, 1997; Lops et al., 2011). This method computes a ‘prototype’ vector
for useru by averaging vectors of documents known to be of interest tou, and
subtracting away the weighted fraction of vectors of uninteresting documents. Item
relevancy is then estimated using cosine similarity in this vector space.

We represent each candidatemultimedia presentationsas a vector of TF-IDF
weighted terms, describing its textual contents. Since in this study, only a small
fraction of item ratings are below the median score, we only model positive feed-
backs. In computing the user profile vector, we weight the individual presentation
vectors by the respective feedback scores. In this fashion, highly liked presentation

5The produced PPR rankings are generally insensitive toα value, e.g., (Minkov & Cohen, 2011).
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userSim(u, v) =

∑
i∈Iuv

(rui − ru)(rvi − rv)√∑
i∈Iuv

(rui − ru)2
√∑

i∈Iuv
(rvi − rv)2

(6)

r̂ui = ru +

∑
v∈Ni(u)

userSim(u, v)× (rvi − rv)∑
v∈Ni(u)

| userSim(u, v) |
(7)

itemSim(i, j) =

∑
v∈Uij

(rvi − rv)(rvj − rv)√∑
v∈Uij

(rvi − rv)2
√∑

v∈Uij
(rvj − rv)2

(8)

r̂ui = ri +

∑
j∈Nu(i)

itemSim(i, j)× (ruj − rj)∑
j∈Nu(i)

| itemSim(i, j) |
(9)

contribute more to the user profile compared with a presentation that was assigned
lower scores.

6.3 Collaborative filtering methods

We experiment with two well-known variants of neighborhood-based CF meth-
ods, namelyuser-basedand item-basedk-nearest-neighbor (kNN) recommenda-
tion. We follow closely on Desrosiers and Karypis (Desrosiers & Karypis, 2011)
in our implementation of these methods. We further experiment with a state-of-
the-art matrix factorization algorithm (Koren et al., 2009), as detailed below.

User-based kNN (CF:U-kNN) This method generates a rating predictionr̂ui
based on the ratings for itemi by a set ofk users most similar to the target user
u. The similarity between usersu andv, userSim(u, v), is computed based on
their historical ratings. Here, inter-user similarity is evaluated using Pearson’s cor-
relation as defined in Eq. (6), whereIuv denotes the set of items co-rated by users
u andv, andru andrv denote the average ratings of usersu andv, respectively.
This formula applies mean-normalization of rating scores per user, so as to account
for variance in rating scales across individuals. Once the set of neighborsNi(u)
is identified, the predicted rating is computed according to Eq. (7), weighting the
contribution of each neighbor by its similarity tou.

Item-based kNN (CF:I-kNN) This method evaluated the recommendation score
by analyzing the ratings of similar items. As defined in Eq. (8), the similarity
between itemsi andj, itemSim(i, j), is determined by the extent to which other
users assigned similar ratings to the two items, whereUij denotes the set of users
who have rated both itemsi and j. The predicted ratinĝrui is computed as a
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weighted average of the ratings assigned by useru to Nu(i), a set of up tok items
that are found to be most similar to itemi using Pearson correlation, as defined in
Eq. (9).

In our experiments, we tune the neighborhood size parameterk so as to opti-
mize performance. We applynegative filtering, discarding neighbors with a neg-
ative correlation score, as negative Pearson correlation has been argued to be un-
useful for recommendation (Herlocker, Konstan, Borchers, & Riedl, 1999). Sev-
eral additional threshold types were evaluated in order to identify a high-quality
set of neighbors. The first discards neighbors for which the correlation score is
lower than aminimum similaritythreshold value. Another threshold type requires
some minimal number of common ratings to establish neighborhood relationship:
in user-based kNN, a neighbor must have at leastθi items co-rated with the test
user; using item-based kNN, neighbor items are required to haveθu users who
co-rated itemsi andj. The various combinations of threshold values and types,
as well as the neighborhood size, were evaluated exhaustively. We report results
using the best joint parameter assignments per setting.

Matrix factorization (CF:MF) We experiment with a matrix factorization for-
mulation outlined by Korenet al (Koren et al., 2009). In general, given a user-item
ratings matrixM = (rui), matrix factorization maps the users and items into a
joint latent factor space of dimensionalityk, having every itemi and useru repre-
sented as vectorsqi, pu ∈ R

k. The ratingr̂ui is approximated by the dot product
of the item and user vectors, capturing the user’s overall interest in the item’s char-
acteristics. The factor vectors are learned by minimizing the regularized squared
error on the set of known ratings:

min
∑

(u,i)∈d

(rui − qTi pu)
2 + λ(‖qi‖

2 + ‖pu‖
2) (10)

Here,d is the set of the(u, i) pairs for whichrui is known. The constantλ controls
the extent of regularization.

We report MF results using the implementation included in the GraphLab soft-
ware package6 (Low et al., 2012), applying alternating least squares optimization
for minimizing the cost function. We tuned the algorithm parameters using grid
search, setting the number of latent factors to 110 in the general recommendation
mode, and to 100 in the per-exhibit mode. The regularization coefficient has been
set toλ = 1, and the number of iterations to convergence was set to a maximum
of 1,000. Stochastic optimization is prone to converge to a local optimum. We
therefore report average results of five runs with randomized initialization.

6http://graphlab.org/
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6.4 Hybrid method (Hyb)

Hybrid recommender system combine multiple techniques, ideally compensating
for the weakness of the individual methods (Burke, 2002; Berkovsky, Heckmann,
& Kuflik, 2009). We experiment with a combination of two recommendation tech-
niques: content-based (CB) and item-based kNN (CF:I-kNN).7 Concretely, we first
re-scale the scores produced by the two methods, and then compute a weighted av-
erage of the normalized item scores. The weighting coefficient was tuned using
grid search over the range [0.1,0.9] with step of 0.1. The selected weights values
were (0.3, 0.7) in the general recommendation scenario, and (0.1, 0.9) in the per-
exhibit scenario, assigning in both cases a higher weight to the item-based kNN
method.

6.5 Baselines

We further consider several baseline approaches:

Random (B:R) This naive non-personalized baseline selects one of the candi-
datepresentationsuniformly at random. Comparing against this baseline, we will
demonstrate the contribution of informed recommendation systems over chance.

Proximity (B:PR) This method models the assumption that museum visitors pre-
fer to view presentations for exhibits located nearby. It is implemented as a stricter
version of random recommendation, limiting the set of candidate presentationsin
terms of distance from the user’s whereabouts. The set of candidate presentations
is constructed as follows. GivenVu, we obtain the list of items associated with al-
ready visited, i.e.,presentationsthat can be reached from anypresentationx ∈ Vu

over the pathx
located−in

−→ y
located−in−1

−→ z. We also consider presentation relevant

for nearby positions, reached over the path:x
located−in

−→ y
nearby
−→ q

located−in−1

−→ z.

Popularity (B:P) Thepopularitybaseline ranks the candidatepresentationsac-
cording to their popularity score, computed as the number of users who viewed
each presentation. This method is non-personalized yet informed and often hard-
to-beat (Lucchese, Perego, Silvestri, Vahabi, & Venturini, 2012). A challenge of
any personalized recommendation is whether it can outperform this one-fits-all ap-
proach.

7As discussed later, item-based kNN performed best among the CF methods in our experiments.
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General Per-exhibit
MRR RFT MRR RFT

G:M .110 .002 .627 .001
G:V .143 .009 .788 .001
G:U .151 .002 .788 .001
G:MV .152 .002 .789 .001
CB .048 .002 .585 .001
CF:U-kNN .028 .508 .600 .399
CF:I-kNN .084 .874 .648 .293
CF:MF .065 .000 .658 .000
Hyb .104 .002 .659 .001
B:PR .018 .117 - -
B:P .140 .000 .801 .000
B:R .007 .000 .506 .000

Table 2: MRR and RFT performance of the various recommendation methods.An
asterisk denotes statistically significant difference compared with the graph-based
method (p-val<0.0045).

7 Main results

This section reports our results using the different methods. As mentioned before,
parameter values have been tuned so as to optimize performance. Importantly, the
parameters of the graph-based methods were tuned using the held-out examples; in
contrast, all other methods have been optimized directly on thetestdata. Despite
the comparison being strict in this fashion, graph-based recommendation is shown
to give preferable results. In what follows we first describe our findings in the
general recommendation setting, and then discuss per-exhibit recommendation.

General recommendation Table 2 includes MRR and RFT results for the gen-
eral recommendation scenario, and Figure 4(a) shows the respective recall-at-rank
performances. As shown, the graph variants G:U and G:MV, which model ratings
history together with background knowledge, yield the best overall performance
with respect to all measures. MRR results using G:U and G:MV are .151 and .152,
respectively. In terms of recall, G:MV gives slightly better performance, yielding
recall of .063 at the topmost rank, and .220 recall at rank 5.

It is informative to contrast these results with the prediction quality of the non-
personalized baselines. As one might expect, the popularity-based method(B:P)
shows strong performance, yielding MRR score of .140. The other more naive
baseline–randomandproximity based recommendation–result in very low MRR
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(a)

(b)

Figure 4: Recall-at-rank performance of the evaluated methods in the general
recommendation mode (top) and per-exhibit mode (bottom): graph-based rec-
ommendation using the museum graph (G:M), the visitors ratings graph (G:V),
hybrid unified graph (G:U) and integrated variant scores (G:MV); item-based
and user-based collaborative filtering (CF:I-kNN, CF:U-kNN), matrix factoriza-
tion (CF:MF), content-based recommendation (CB), a hybrid combination of CB
and CF:I-kNN (Hyb), popularity-based baseline (B:P) and random recommenda-
tion baseline (B:R).
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performance, as well as negligible recall at the top levels. These results correlate
with our dataset statistics, characterized with a large number of candidates,for
which the distribution of available feedbacks (‘popularity’) is highly skewed.

The evaluated CF methods show relatively weak performance in our exper-
iments, all failing to beat the popularity-based baseline. Item-based kNN recom-
mendation achieved MRR of .084, matrix factorization–.065, and user-based kNN–
a low .028. The weakness of these methods can be attributed in part to data sparsity
issues. As shown in Table 2, the ratio of failed tests is very high using item-based
and user-based kNN CF approaches (.874 and .508, respectively).We found that
in many cases, there were no relevant ‘neighbors’ identified due to ratingsparsity.
Moreover, many visitors in our dataset (30%) assigned the same feedback score to
to all of the presentations that they have viewed, and therefore did not contribute
to the recommendation process (see Equations (6) and (8)). Matrix factorization
techniques are generally more robust to sparsity issues, but deliver mediocre results
here. It is possible that CF:MF performance would improve should a largerset of
ratings be provided.

Interestingly, recommendation using the graph variant G:V, which similarly to
the CF methods, models ratings history only, delivers strong performance and out-
performs the popularity baseline. We conclude that the transitive graph relatedness
measure is advantageous in conditions of sparsity. Another factor that mayposi-
tively affect the graph-based recommendation is that random walk measures like
PPR exhibit some bias towards highly connected nodes (Tong & Faloutsos,2006),
thus implicitly modeling item popularity information.

Finally, performance of content based (CB) recommendation falls behind its
graph counterpart, G:M, which models background information (.048 vs. .110 in
MRR). The hybrid method (Hyb) improves upon each of its component systems,
decreasing RFT and yielding a somewhat disappointing MRR of .104. Again,we
conjecture that the graph-based techniques are preferable in conditions of sparse
data. The graph method further integrates physical proximity aspects, which are
missing from either the collaborative or content-based approaches.

Per-exhibit recommendation The set of candidate items for recommendation in
the per-exhibit setting is limited to a small number ofmultimedia presentations
directly associated with a specific exhibit, which the museum’s visitor is known
to be attending (see Figure 2(c)). Accordingly, random recommendation achieves
high recall levels at the top three ranks (.12,.47 and .91), as shown in Figure 4(b),
and a high MRR score of .506 (Table 2). ThePopularity baseline achieves the
strongest performance overall in this setting–yielding MRR of .801. This result
however may indicate a bias towards the presentations displayed at the top ofthe
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mobile screen at the time of data collection, as users tend to view (and like) the top
listed items. We therefore believe that the results using B:P should be ‘taken with
a grain of salt’ in this case.

We now turn to discuss the personalized recommendation methods, which ide-
ally, would increase visitor satisfaction beyond the one-fits-all rankings.

Consistently with the previous findings, the best-performing approaches are the
integrative graph-based methods, G:U and G:MV, yielding MRR of .788 and .789,
respectively. The visitors graph G:V gives roughly equal performance (MRR of
.788). The contribution of the modeled background knowledge seems negligible in
this case. Indeed, physical proximity, which is modeled in the museum’s graph,is
irrelevant in the per-exhibit setting.

Also in this setting, the CF methods yield inferior results. The best performing
CF method is .658 in MRR, obtained using MF, compared with .788 using the
variant G:V, which models similar information. Likewise, the results using CB
recommendation are inferior to the counterpart graph-based variant G:M–MRR
results are .585 vs. .627. Thehybrid recommendation approach improves over
its component methods, giving a comparable result to CF:MF (.659), and lower
performance compared with any graph method that considers the historicalratings.

8 Impact of graph tuning

The representation of structured and semi-structured information as an entity-relation
graph is natural, yet involves some design choices. We discuss in this section issues
related to graph design, including an evaluation of the impact of the edge weight
parametersΘ on recommendation performance.

Graph design.The proposed graph schema directly links similarpresentation
node pairs, as well as similarthemenode pairs. As mentioned before, we compute
inter-node similarity based on the textual content associated with the presentations
and themes for all relevant node pairs.8

It is generally desired to avoid the modeling of weak associations as graph
edges–weak links are uninformative, while increasing the cost involved incom-
puting the PPR measure. We therefore selectively link only those entity pairs for
which the computed similarity scores exceed some tuned threshold. The threshold
values for thesimilar-to andsimilar-themeedge types have been set based on the
training data to 0.2 and 0.4, respectively. Consequently,multimedia presentation
nodes are linked oversimilar-to edges to 2.9 otherpresentationnodes on average;

8We used WEKA (Hall et al., 2009) to compute cosine similarity between the respective TF-IDF
weighted term vectors, having stop words removed, content words stemmed and lower-cased, and
word weights normalized by document length.
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General Per-exhibit
MRRU MRR MRRU MRR

G:M .058 .110(+89.6%) .582 .627(+7.7%)

G:V - .143 - .788
G:U .150 .151(+4.9%) .754 .788(+4.5%)

G:MV .150 .152(+1.3%) .735 .789(+7.3%)

Table 3: Evaluation of graph variants

and, most of thethemenodes are connected over thesimilar-themerelation to 3-4
otherthemenodes. Similarly, we link eachpositionnode to its 3 nearestpositions
in terms of walking distance (and up to 6 positions in case of a tie). Consequently,
the similarity-based edge types are asymmetric, e.g., nodex may point to nodey
over asimilar-themeedge, whereasy may not be point tox.

Edge weight tuning.The parametric edge weightsΘ provide another mech-
anism for controlling the probability flow in the graph. We empirically tunedΘ
using grid search, optimizing recommendation performance on the held-out exam-
ples, considering all combinations of edge weight values in the range [0,1]with
step 0.1.9 The viewededges form an exception–these edge weights were set ac-
cording to the feedback scores assigned by the visitor to each presentation, so that
stronger association is maintained betweenusersandpresentationsthat they are
known to have liked, compared with items that they liked less or were indifferent
to. In order to avoid dominance of theviewededges over other edge types, the rat-
ing scores were transformed into decimal fractions (0.1–0.5). Finally, we assigned
bi-directional edge types (e.g.,viewedandviewed−1) identical weights, so as to
reduce the cost of edge weight tuning.

It is informative to examine the effect of parameter tuning on recommenda-
tion performance. Table 3 shows MRR performance of the different graph variants
using uniform pre-tuned edge weight parameters (MRRU ) against the final perfor-
mance figures achieved using the tuned weights. Figure 5 further demonstrates
recall-at-rank-k results, prior to and post parameter tuning. Notably, thevisitors
graph G:V only includesviewedrelations, and was not affected in the tuning pro-
cess. Equal coefficients (α = .5) were used in the pre-tuned version of the G:MV
graph variant.

As shown, edge weight tuning was highly effective for themuseumgraph, in-
creasing its MRR result by roughly 90%, from low .058 to .110 in the generalrec-
ommendation setting, and by about 8% in the per-exhibit setting. The performance
of the G:U and G:MV variants was relatively high in their pre-tuned versions;yet,

9Parameters were tuned separately for the general recommendation and the per exhibit scenarios.
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(a) G:M

(b) G:U

(c) G:MV

Figure 5: Impact of tuning parameters in affected graph variants, in terms of recall
at the top ranks, in the general recommendation (left) and the per-exhibit (right)
recommendation modes.
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edge weight tuning improved results further, increasing MRR by 1.3–7.3%,thus
obtaining the best result overall. Similar trends are observed with respectto re-
call@k performance.

We observed that low weights were assigned to the text-based similarity rela-
tions, namelysimilar-toandsimilar-themeedge types. We attribute the ineffective
modeling of content-based similarity to text sparsity. In contrast, the structural
association betweenpresentationsand theirthemesover thehas-themeedges was
assigned high weights. The weight of thenearbyedge type was set to a high value
in the general setting; in the per-exhibit setting, however, its weight was low; this
settles with the fact that physical proximity is irrelevant when all candidate items
are associated with a single exhibit. Overall, this demonstrates the flexibility of the
graph approach: the very same graph is effectively optimized per recommendation
task by tuning its parameters.

9 Conclusion

We have described a graph-based framework for personalized recommendation of
multimedia presentations to museum visitors. As visits at museums are often a
one-time experience and are limited in time, recommendation must be performed
in constant ‘cold start’ conditions. The lack of sufficient rating history maybe
compensated by modeling of useful background knowledge; for example, we con-
sider here available expert annotations of the multimedia presentations with a set of
perspectives, which may characterize the user’s interests. Another aspect that must
be modeled at the museum is its layout information–adjacent museum exhibits are
typically semantically related, and items associated with exhibits nearby are likely
to be preferred by the user.

It has been demonstrated that the graph framework can readily represent rel-
evant background knowledge, including layout information, alongside historical
ratings in a joint graph. In an extensive set of experiments, we have showed that
graph-based recommendation using the Personalized PageRank measuresignifi-
cantly outperforms a set of popular collaborative and content-based recommenda-
tion methods. In fact, the graph approach is the only one to outperform the strong
one-fit-all popularity-based recommendation method.

We find that there are several main reasons for the superiority of the graph-
based approach. First, the graph models collaborative ratings together with location
information and content aspects, whereas the alternative methods only account for
some subset of these aspects. Further, the structured random walk similarity mea-
sure is transitive, thus alleviating data sparsity. Moreover, the graph measure can
be tuned per the specific recommendation task; we have shown that controlling the

31



probability flow in the graph by means of edge weight tuning substantially affects
performance. Finally, the random walk process favors highly connected nodes,
thus implicitly modelling a bias towards popular items.

This study corroborates previous findings about the superiority of the graph
approach in integrating multiple sources of information. This work may be first
to represent structured relational background knowledge together withuser ratings
using this framework. While we consider the museums domain, we believe that
incorporating background knowledge using the graph-based approach can be ben-
eficial also in other domains, especially those that operate in cold start settings.

There are several directions for future work that we would like to pursue.
The limited textual content modeled in this work may be enriched using the Web
(Grieser, Baldwin, Bohnert, & Sonenberg, 2011) or linguistic resources (Bohnert &
Zukerman, 2014) to support better inter-item similarity assessment. An advantage
of the graph framework is its flexibility, enabling multiple forms of recommenda-
tion. In addition to recommendingmultimedia presentationitems, one can use the
random walk algorithm for advising the visitor on the nextpositionto visit. These
predictions can be further organized into path recommendations.
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