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ABSTRACT
We demonstrate a method for collaborative ranking of future
events. Previous work on recommender systems typically re-
lies on feedback on a particular item, such as a movie, and
generalizes this to other items or other people. In contrast,
we examine a setting where no feedback exists on the partic-
ular item. Because direct feedback does not exist for events
that have not taken place, we recommend them based on
individuals’ preferences for past events, combined collabo-
ratively with other peoples’ likes and dislikes. We examine
the topic of unseen item recommendation through a user
study of academic (scientific) talk recommendation, where
we aim to correctly estimate a ranking function for each user,
predicting which talks would be of most interest to them.
Then by decomposing user parameters into shared and in-
dividual dimensions, we induce a similarity metric between
users based on the degree to which they share these dimen-
sions. We show that the collaborative ranking predictions
of future events are more effective than pure content-based
recommendation. Finally, to further reduce the need for ex-
plicit user feedback, we suggest an active learning approach
for eliciting feedback and a method for incorporating avail-
able implicit user cues.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; I.5.3 [Pattern Recognition]: Clustering—Algo-
rithms

∗A major part of this work has been conducted while affili-
ated with Nokia Research, Cambridge MA.
†A major part of this work has been conducted while affil-
iated with MIT CSAIL, and during an internship at Nokia
Research, Cambridge MA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

General Terms
Algorithms, Experimentation

Keywords
Recommendation Systems, Collaborative Filtering

1. INTRODUCTION
Recommender systems aim to present items that are likely

to be of interest to users. Such systems are widely imple-
mented in industrial settings, including in e-commerce sys-
tems where the goal is to recommend products to users based
on their purchase, viewing, or rating history. For example,
the Netflix challenge [4] was introduced to test recommen-
dation methods based on historical movie ratings provided
by customers.

The general recommendation setting consists of a pool of
items and a pool of users, where user feedback such as rat-
ings are available for varying subsets of items. The goal
is to use the partial rating history to predict ratings for
the remaining items that the users have yet to experience.
Methods used to solve this problem can be roughly cat-
egorized into content-based and collaborative filtering ap-
proaches. Content-based approaches leverage feature de-
scriptions of items and seek to relate user preferences to
those features. Collaborative filtering methods, in contrast,
rely solely on the historical record of user ratings and simi-
larities across users in order to fill-in ratings for the remain-
ing items. The problem is often cast as a matrix completion
problem and solved using matrix factorization methods [18].
The two approaches are largely complementary.

In this paper, we consider a recommendation system in
which the information items are events. Event recommenda-
tion has various potential applications. Consider a location-
tracking system, which records the user’s whereabouts within
a geographical region, or inside a building [16]. Given loca-
tion coordinates, it is desirable to provide users with per-
sonalized location-based services. In this framework, event
recommendation can bring to the user’s attention relevant
events that take place nearby. Another motivation is assist-
ing event organizers; if historical preferences about poten-
tial attendees (the users) are available, recommender sys-
tems can be used to predict the overall interest in the event.
Such predictions can be used to guide resource management
as well as to identify potential conflicts between simultane-
ous events.



Our contributions are:

• We present a content-based approach to recommend-
ing events to users based on users’ past selections and
feature descriptions of the events.

• We propose a collaborative extension of the basic ap-
proach, LowRank , by decomposing user parameters
into shared and individual components.

• We evaluate our approaches through a user study in-
volving about 90 users and 15 weeks worth of talk an-
nouncements.

• We provide a framework for actively eliciting relevant
information from users so as to minimize the amount of
explicit feedback needed to make accurate predictions.

The paper proceeds as follows. Section 1.1 defines event
recommendation as a ranking problem, and describes its
modeling using a pure content-based approach. In Section 2
we outline our collaborative method for event recommenda-
tion. Sections 3 and 4 describe the user study and event de-
scriptions, respectively. We evaluate LowRank as compared
to RankSVM in Section 5. Section 6 outlines an active learn-
ing method for eliciting relevant feedback from users that
could further speed up LowRank . We review related work
in Section 7. In Section 8, we conclude and discuss future
work.

1.1 Event Recommendation
Informally, an event is an information item that is only

valid for a short period of time. By the time one can expect
user feedback on a specific event, that event is no longer
relevant: an event recommendation system therefore has
to recommend items for which no explicit feedback exists.
This distinguishes events from other information items, like
movies, for which some user feedback is directly available
and continues to be useful. In general, one can approach
event recommendation using existing content-based meth-
ods, relating event descriptions to user preferences. How-
ever, the quality of content-based recommendation is often
highly dependent on the amount of user feedback available.
We expect feedback about events to be relatively scarce;
events are often topically diverse and new events may have
low similarity to prior events. Modeling user preferences
collaboratively may alleviate this data sparsity problem, by
pooling together feedback from users with similar prefer-
ences.
In this paper, we present a collaborative approach to event

recommendation. Each user has a parameter vector that re-
lates their preferences to event descriptions. This is neces-
sary in order to be able to recommend yet unseen events.
However, in our case, we first map event descriptions to
a low-dimensional “perceptual space”. Intuitively, the low-
dimensional representation of events captures how events
vary perceptually to users and are shared across users. The
user parameters are then associated with these coordinates
rather than the original feature descriptions of events. The
number of parameters required to capture individual user
preferences is therefore considerably smaller than in a regu-
lar content-based approach.
We expect our approach, LowRank , to work best in a sce-

nario where the available feedback about past events varies
across users. For example, different subsets of users may

have rated different past events. Such experience would
help uncover the relations between the events, their low di-
mensional feature representations, and the associated user
preferences.

In order to evaluate our approach, we have carried out
an empirical user study of event recommendation. Specif-
ically, the user study, conducted at the Massachusetts In-
stitute of Technology (MIT) and at Carnegie Mellon Uni-
versity (CMU), concerns the recommendation of scientific
talks1 to users within their universities. The MIT group
includes thirty users, who are mostly graduate students, re-
search affiliates and faculty members at the Computer Sci-
ence and Artificial Intelligence Laboratory (CSAIL). The
CMU group includes graduate students of the computer sci-
ence school. The study was designed to simulate a realistic
setting, where user feedback becomes available after events
take place and the task is to recommend upcoming events.
We consider a ranking setting, where, in the beginning of
every week, the talks scheduled for that week are ranked
according to each user’s preferences. The data used in the
study involves real seminar announcements, following their
original temporal distribution.

In our experiments, we evaluate recommendation perfor-
mance for several sets of future talks, given varying amounts
of feedback on past talks. We evaluate content-based rec-
ommendation methods using RankSVM [12]. Several sets of
features are considered, including a traditional word-based
model, as well as representing each talk in terms of its topic
usage (see Section 4). We subsequently compare the perfor-
mance of content-based ranking with our proposed LowRank

method that supports collaborative ranking. The collabora-
tive approach is shown to give superior performance.

Overall, our results show that it is possible to achieve good
results on the task of scientific talk recommendation, which
may be sufficient for practical applications. These results
may be improved further by means of feature engineering.

Finally, we are interested in further reducing the amount
of feedback required from each user. To this end, we sug-
gest an active learning approach to this problem. While we
do not give full results for active learning, our preliminary
results are encouraging.

In summary, the main contribution of this paper is a
framework for collaborative event recommendation. The ac-
tive learning method provides a natural extension to this
framework. In addition, based on the user study, we gener-
ate a new dataset for event prediction.

2. RANKING PROBLEM
We consider a ranking problem, where, given a set of users

U and known user feedback on a set of past events EP , the
goal is to generate rankings of a set of future events EF ,
adapted to each of the users’ preferences.

We assume that user feedback is available in the form of
pairwise preferences. In practice, events compete with each
other on user resources, where a small subset of events can
be usually attended in a given time frame. For instance,
on a particular week, one may be able to attend up to two
talks, due to a busy schedule; this means that in deciding
which events to attend, the user should compare between
alternative events taking place on that week, selecting those
that agree most with his or her tastes. In order to model

1We will use the words talk and seminar interchangeably.



one’s individual ranking function, we therefore consider user
inter-item preferences. Specifically, a preference pair is of
the form (ej , ek) ∈ R(u), implying that event ej is preferred
to event ek by user u.
User feedback in the form of preference pairs can be elicited

explicitly, by collecting user input on pairs of events: the
user indicates which of the events is closer to his or her
interests. Alternatively, if it is known that the user has at-
tended (or, has been interested in attending) a subset of the
events within a given time frame, then it is reasonable to
conclude that those events are preferred by the user over
the other events in the same time frame. More formally, we
will associate every past event ej ∈ EP with a time stamp
tj , denoting the time in which the event took place. We
can split the time span in which past events EP have oc-
curred into distinct reference time frames, where every time
stamp tj maps to a single reference frame Ti. It is assumed
that all the events that take place in the same time frame
Ti are evaluated against each other. Let E+

P (Ti, u) denote
the subset of events that the user u liked (or attended) in
time period Ti, and E−

P (Ti, u) be the complimentary subset
that user u is known not to have liked. Then, this type of
feedback can be decomposed into a set of pairs with the ex-
pectation that (ej , ek) ∈ R(u) whenever ej ∈ E+

P (Ti, u) and
ek ∈ E−

P (Ti, u). Future events are handled similarly, where
the stream of incoming events is discretized into reference
time frames.
This setting is similar to processing user click logs in in-

formation retrieval [12], where the user is provided with a
ranked list and clicks on items of interest. While, in the
user click setting, users may scan only the top few items of
a ranked list, we infer pairwise preference relations exhaus-
tively: because the number of talks each user can pick from
is relatively small (see Figure 1), we assume that all the dis-
played events are observable. In general, if positive feedback
corresponds to actual attendance, then the derived prefer-
ences may be noisy as schedule constraints may prevent users
from attending events they like. Calendar constraints can
be potentially detected by dedicated applications. This is
beyond the scope of this work.
Since no feedback is available for future events, recommen-

dations must be based on event descriptions. Each event ej
is represented as a vector of m features, xj . User feedback
in the form of preference pairs (ej , ek) ∈ R(u) means that
announcement feature vector xj is preferred over xk. Our
goal is to assign a real valued evaluation function for each
future event ej ∈ EF and user u. Then, given the evaluated
scores, we can generate a ranked list of items per user.

2.1 Content-based recommendations
We consider linear ranking functions where each event fea-

ture vector xj is mapped to a score θ ·xj . The goal is to find
parameters θ such that the ranking function best captures
past feedback from the user. In order to solve this problem
for each user u individually, we can apply the RankSVM

formulation [12] as follows:

minimize
1

2
||θu||

2 + C
∑

jk

ξjk (1)

subject to θu · xj ≥ θu · xk + 1 − ξjk for all j and k such

that ej ∈ E+

P (Ti, u) and ek ∈ E−

P (Ti, u) for some past time
frame Ti. The slack variables ξjk ≥ 0 turn the ranking
constraints into soft constraints, effectively permitting us

to make errors on some pairs that are difficult to capture
with a linear ranking function. C is a trade-off parameter
specifying how strongly we should try to respect all training
constraints that can be set through cross-validation.

2.2 Collaborative recommendations
The RankSVM approach described above requires us to

estimate an m−dimensional parameter vector θu separately
for each user regardless of potential similarities across users.
We hypothesize that most users base their decisions about
events on a smaller number of latent “perceptual” features
about the events. In order to uncover these latent feature
dimensions, we introduce a k × m parameter matrix V ,
shared across all users. We use this matrix to map event
descriptions xj into a k−dimensional subspace x′

j = V xj ,
where k � m. Each user u will subsequently estimate their
k−dimensional parameter vector θ′u to work well as part of

the transformed event descriptions θ′u
T
·x′

j = θ′u
T
V xj . Note

that users may hold diametrically opposing views about how
to use the latent feature dimensions. We merely impose the
constraint that they agree on what these dimensions repre-
sent.

The number of parameters we need to estimate across
users is now considerably smaller. If N denotes the num-
ber of users, then we are estimating N k + km parame-
ters instead of N m. The difference is substantial when
k � m. In fact, our method can be seen as imposing a
rank k constraint on the collective parameter choices. If we
stack m−dimensional row vectors θTu , u = 1, . . . , N , into a
N ×m parameter matrix Θ, then we impose the constraint
that this matrix has a rank k decomposition Θ = U V , where
the rows of N × k parameter matrix U correspond to new
k−dimensional user parameters θ′u, u = 1, . . . , N .

The estimation problem can be defined analogously to
the RankSVM formulation. The main difference is that
the transformation parameters V are estimated across users.
More formally, we find U and V that

minimize
1

2
‖U‖2F +

1

2
‖V ‖2F + C

∑

ujk

ξujk (2)

subject to [UV xj ]u ≥ [UV xk]u + 1 − ξujk for all j, k, and

user u such that ej ∈ E+

P (Ti, u) and ek ∈ E−

P (Ti, u) for some
past time frame Ti. Here ‖ · ‖2F denotes the squared Frobe-
nius norm of the matrix (sum of squared entries). From
the point of view of each user, for a fixed transformation
parameters V , the estimation problem can be solved with
RankSVM as before. Similarly, for a fixed U , we could es-
timate V with RankSVM across users. Our implementation
(details omitted) is slightly more efficient than this alternat-
ing minimization approach by instead iteratively estimating
rank 1 components of U V (one column of U , one row of V ).

We note that if event descriptions xj are merely binary
indicator vectors for event identities, i.e., having exactly
one non-zero component, then our collaborative approach
reduces to the typical matrix factorization approach to col-
laborative filtering with the exception that the error is mea-
sured in terms of ranking constraints rather than mean squared
rating error.

3. USER STUDY
We conducted a user study to collect user preferences on

a sequence of scientific talks. Ideally, we are interested in a



Figure 1: User interface for collecting forced-choice
seminar preferences.

scenario where a localization system tracks a person’s loca-
tion indoors [16]; if information about ongoing events (e.g.,
talks), including event time and room, is maintained, then
this type of location-based system can automatically detect
a person’s presence at events over time. In the current study,
however, we elicited explicit feedback from users. We exam-
ined a realistic scenario: scientific seminars are announced at
MIT CSAIL as well as in other institutions via a dedicated
email list on a weekly basis. Similarly, in our user study,
participants were presented with a list of seminars known
to have taken place during a single calendar week. As illus-
trated in Figure 1, the list contained the talk titles, where
the content of each announcement could be displayed by
clicking on its title line. An example seminar announcement
is displayed in Figure 2. The list of titles for a particular
week was ordered randomly so as to remove any overt biases
due to display order. The participants were requested to se-
lect which of the seminars included in the list they would be
interested in attending. In the online form, interest in a sem-
inar was indicated by marking a checkbox next to its title,
and the labels for the whole list were delivered by pressing
a submit button. We required that at least one talk is se-
lected as relevant. In cases where the users felt they were
forced to make a choice, i.e., they would prefer not to attend
any of the talks, they could indicate this with a checkbox
presented at the top of the screen. However, we will assume
that their selection still carries information about relative
ranking of the alternatives. In order to mimic time flow,
and to assure that the reference time frame is weekly, the
study participants were not allowed to make changes to pre-
viously submitted feedback.
We collected user feedback for two sets of 15 consecutive

weeks of seminar announcements using this procedure. Both
sets have been originally published on the CSAIL seminar
email list, where the first week sequence starts at the first
week of September 2007, and the second starts at the sixth
week of year 2009. The announcements included all the talks
published, where duplicate announcements, as well as any
posts that do not correspond to a scientific seminar, were
excluded. Thirty CSAIL participants completed the study
using the first dataset of seminar announcements, including
mostly graduate students and research associates. In addi-
tion, 56 graduate students of the computer science school at
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Speaker Affiliation: Carnegie Mellon HCI Institute

Host: Rob Miller

Host Affiliation: MIT CSAIL
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Figure 2: An example email seminar announcement.
We drew LDA topic models from seven years worth
of similar announcements.

Carnegie Mellon University completed the study, using the
second sequence of seminar announcements. Therefore, in
both cases, the participants belonged to the target audience
of the seminar announcements.

Table 1 shows relevant weekly statistics about the sem-
inar announcements presented and the corresponding user
feedback. The frequency of talks varies widely throughout
each 15 week period, ranging from 2 to 21 talks on a given
week. The table also includes the average number of talks
judged as relevant across users per week, and the number of
derived preference pairs. Overall, 8.6% of weekly responses
were marked as “forced” selections, where the user found no
talk as relevant to their interests. Interestingly, participants
often selected approximately two talks to attend, regardless
of the number shown, mirroring typical real-life attendance.

4. EVENT FEATURES
Each seminar announcement can be viewed as a document

(see Figure 2). There are many ways of turning documents
into fixed-length feature vectors xj . Typically, each coordi-
nate of the feature vector would correspond to a word oc-
currence such as term-frequency inverse document frequency
(TF-IDF) weighted word count [15, 19]. The intuition be-
hind this approach is that topics that users are interested in
may be associated with specific terminology and therefore
particular coordinates of xj . We use TF-IDF weighted word
counts as a baseline feature representation.

An alternative and potentially better feature representa-
tion can be obtained by identifying topics from the seminar
announcements. For example, users may decide whether
to attend a seminar based on the degree of overlap between
their research areas and the focus of the talk. Such inferences
rely on topics rather than individual words. While identi-
fying topics that reflect human judgement is difficult, topic
distributions inferred by methods such as Latent Dirichlet
Allocation (LDA) [5] may be sufficient for recommendation
purposes.



Week No. talks No. relevant No. pairs

Survey-1 1 8 2.0 (0.8) 11.2 (3.3)
(at MIT, 2 8 1.9 (0.9) 10.9 (3.5)
30 users) 3 7 1.4 (0.7) 7.2 (2.1)

4 3 1.3 (0.5) 2.0 (0)
5 20 2.7 (1.7) 43.7 (22.7)
6 12 1.8 (1.1) 17.0 (7.7)
7 5 1.1 (0.3) 4.1 (0.5)
8 12 1.9 (1.0) 18.2 (7.3)
9 21 2.3 (2.0) 39.7 (26.2)
10 17 2.4 (1.4) 33.1 (14.3)
11 7 1.9 (1.0) 8.8 (2.4)
12 7 1.7 (1.0) 8.0 (2.4)
13 5 1.2 (0.6) 4.3 (0.7)
14 21 2.7 (1.8) 45.6 (23.9)
15 5 1.2 (0.5) 4.4 (0.8)

Survey-2 1 11 2.5 (1.3) 19.5 (7.2)
(at CMU, 2 8 1.4 (0.6) 8.6 (2.8)
56 users) 3 7 1.6 (0.7) 8.2 (2.4)

4 11 1.4 (0.8) 12.9 (5.1)
5 11 1.6 (0.8) 14.3 (5.6)
6 11 1.7 (1.2) 14.5 (6.6)
7 11 1.8 (1.2) 15.0 (6.5)
8 2 1.0 (0.1) 1.0 (0.1)
9 14 2.3 (1.6) 14.9 (12.0)
10 13 1.7 (1.1) 17.7 (7.9)
11 11 1.9 (1.2) 15.7 (7.0)
12 7 1.2 (0.7) 6.4 (1.2)
13 17 2.0 (1.5) 27.6 (15.1)
14 12 1.4 (1.0) 14.1 (6.0)
15 17 2.6 (2.5) 31.2 (15.9)

Table 1: User study statistics using two different sets
of 15 consecutive weeks: number of talk announce-
ments per week, average number and standard de-
viation (in brackets) of talks considered relevant per
week, and the corresponding number and standard
deviation of derived preference pairs.

LDA is a generative model over documents. The key as-
sumption in the model is that each document is composed of
some subset of K possible topics. The words are generated
in a manner that reflects the topic composition. Specifically,
to generate a document d from this model, we first draw a
sample that determines the topics used in the document.
The resulting sample is a distribution over topics P (z|d),
z = 1, . . . , n. Subsequently, for each word, we first draw a
topic from P (z|d) that the word is associated with, and then
the actual word from the topic-dependent model P (w|z).
Conversely, given a document, and the model parameters,
we can infer the overall frequency of each topic used in gen-
erating the words in the document. We use these topic usage
frequencies as the feature vector. In other words, each coor-
dinate of xj now corresponds to a frequency that a particular
topic was used in generating the seminar announcement.
Learning an LDA model involves estimating the parame-

ters that govern the generation of topic compositions as well
as the topic-dependent word distributions from a collection
of documents. For this purpose, we employ a large corpus,
which includes all MIT CSAIL seminar announcement from
May 2002 to July 2009. Overall, this reference corpus in-
cludes about 5,000 seminar announcements. We use Gibbs
sampling method [10] for learning and inference in the LDA
model. (The same corpus is used to derive word and inverse
document frequencies for the word-based representation de-
scribed above.)
In addition to the information contained in the seminar

announcements, it is possible to consider other relevant in-
formation sources. For example, we could search for ab-
stracts of previous publications by the seminar speaker. Since

the seminar description is limited, the summaries of related
publications or talk summaries may better narrow down the
topics covered in the talk. Moreover, related documents
would also help in case users’ interests stem partly from the
speaker’s expertise or background. Once inferred from rele-
vant abstracts or documents, speaker features can be simply
appended to the feature vector.

In general, there are various other representation schemes
that could be considered. For example, semi-structured
meta-data, specifying details such as the speaker’s name and
affiliation, or host details (see Figure 2), could be modeled
explicitly. One could also model the user’s areas of interest,
affiliation or social group. In this paper, however, we per-
form limited feature exploration as our focus is on applying
and evaluating the effect of collaborative recommendation.
Others may wish to extend the model through these or other
methods with their own examination of the talk and user
feedback dataset.

5. EVALUATION
As mentioned above, the user study was designed to mir-

ror a realistic setting, where user responses to ongoing events,
whether collected explicitly or implicitly by sensors, is accu-
mulated over time. There are several questions that we are
interested in addressing in our evaluation of the user study:

• A primary goal of the evaluation is to examine the
conjecture that the proposed collaborative LowRank

method can improve prediction performance of an event
recommendation system. Towards this end, we com-
pare LowRank against the RankSVMmethod [12], where
a separate model is learned for each individual user.

• We consider several feature sets and information sources,
evaluating their contribution to performance, and their
interaction with the learning methods evaluated.

• We are interested in estimating the “learning curve”
of a seminar events’ recommendation system: as the
pool of user feedback increases, what is the level of
performance one can expect, and its rate of change
over time?

• Finally, another part of our evaluation concerns the
variance in performance of the recommendation sys-
tem across the individual users.

In the experiments, we divide the data collected into train
and a test sets. The train set includes the first 10 weeks
for which we obtained user feedback (in both user surveys).
This labeled data is used as input to the prediction models,
where we simulate varying lengths of the learning period
by considering increasing number of weeks for which user
feedback is available. The testing set includes the seminar
announcements for weeks 11-15 (in both surveys), represent-
ing future events. In testing, we apply the models learned
to generate a ranked list for every user and for each week
in the test set. The results are then evaluated against the
user feedback collected. Tuning of the learning methods’
parameters is performed using the train set.

All the methods applied generate a ranked list of event
entities. We evaluate performance in terms of Mean Aver-
age Precision (MAP), which is a widely accepted evaluation
measure in Information Retrieval [14]. To define MAP, we
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Figure 3: A comparison of RankSVM and LowRank

with increasing training data. MAP is averaged
across all users for all testing weeks.

first define the precision at rank k, prec(k), to be the num-
ber of correct entries up to rank k, divided by k—i.e., the
precision of the list up to rank k. The non-interpolated av-
erage precision of the ranking is the average of prec(k) for
each position ki that holds a correct entry:

AveragePrecision =
1

n

n
∑

i=1

prec(ki)

For example, consider a ranked list of items, where the items
at ranks 1,2,5 are known to be correct answers, and those at
ranks 3,4 are not; the non-interpolated average precision of
this ranked list is (1 + 1 + 0.6)/3 = 0.87. The Mean Aver-
age Precision (MAP) is the average of the non-interpolated
precision scores, over multiple rankings (i.e., over multiple
queries).
The MAP measure is strongly correlated with query diffi-

culty, reflected by the length of the ranked list and the size
of the correct item set. For example, a list of two items
overall, including one correct item, will have a MAP of 0.5
in the worst case; ranking a list of N items with one correct
item, however, may reach a lower MAP of 1/N , etc. For this
reason, we evaluate the various methods in terms of MAP
on the same set of test queries.
In our knowledge, this work is the first to present and

evaluate event prediction via a user study.2

5.1 Accuracy vs. amount of feedback
We first evaluate the performance of learning individual

models per user using RankSVM , considering several event
representation schemes. Specifically, an event is represented
as a topic distribution, where the number of topics K is set
to 100.3 An alternative representation considered is a TF-
IDF weighted word vector. In our experiments, word in-
verse document frequency (IDF) counts were obtained from

2The underlying dataset is available on the first author’s
homepage.
3In tuning experiments, we explored setting the number of
latent topics to K = 10, 25, 50, 100, 200. While K = 10 led
to inferior prediction results, the other value selections were
found to be comparable.
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Figure 4: Performance of LowRank with increasing
training data using two sets of parameter choices.
MAP is averaged across all users for all testing
weeks.

Figure 5: LowRank with three weeks of training
as compared to random seminar recommendations.
Data shows Mean Average Precision for the full five
testing weeks and individual users.

the full corpus of seminar announcements available (Section
4). We apply simple feature selection, where words that ap-
pear fewer than three times in the corpus are eliminated.
Overall, this results in roughly 10,000 word features. Tong
and Koller [19] have previously found a similar word-based
representation to be effective for text classification tasks.

One of the goals of our evaluation is to gauge the impact
of train set size on performance. We therefore conduct a
set of experiments, where an increasing number of weeks
(out of the train set available to us) are used for training.
Specifically, we train recommendation models based on n
weeks worth of data per user, where n ranges from one week
of labeled feedback per user, to the full ten weeks worth of
feedback per user available in the full train set.

In a real recommendation system, the set of users is dy-
namic; in particular, users join the recommendation service
at different points in time. It is also possible that only a sub-
set of the existing users provide feedback during any given
period (a user may be inactive. e.g., away). In the exper-
iments, we therefore allow the known feedback per user to
vary in time: if it is assumed that n < 10 weeks worth of
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Figure 6: Each pair in the histogram shows a user’s
MAP for using LowRank with both TF-IDF and
LDA feature sets. The data show a strong correla-
tion between predictability using either feature set.

feedback are available per user, then n weeks are selected
randomly for each user out of the ten weeks included in the
train set. For every value of n, we train recommendation
models based on a subset of the training set constructed in
the described fashion. In order to eliminate sampling bias,
every experiment is repeated 10 times overall. The learned
models are then evaluated using the fixed test set, where we
report average performance across the 10 trials.
Figure 3 shows global MAP performance over the whole

test set, averaged across all users and across trials, for RankSVM

using TFIDF and topic feature vectors. The figure displays
the results for increasing volume of feedback, starting at one
week’s worth of user feedback and up to considering feed-
back for the full ten weeks available. As a naive baseline, the
figure includes the results of random ordering of the talks in
the test set.
There are several trends observed in the results. First,

learning is effective, as it is consistently yields results su-
perior to random ordering. As one may expect, learning
performance improves over time, as more user feedback on
past events becomes available. However, the improvement
ratio is relatively modest. We conjecture that new addi-
tional topics are introduced in the seminars included in the
test set, where this limits the performance of the content-
based models that are learned based on past experience.
With respect to the feature scheme, we find that applying

RankSVM using the topic and TFIDF representation vectors
yields comparable performance. Elsewhere, small improve-
ments have been obtained using topic features on the task
of text classification [2].

5.2 Collaborative prediction vs baseline
Figure 3 shows the results of applying the LowRank col-

laborative approximation method for increasing volume of
training data, using TFIDF and topic feature representa-
tions. We fixed the regularization term to C = 2, and the
rank of the parameter matrix V to k = 12. As shown,
LowRank using TFIDF features yields superior performance
across the full range of inspected train set size. In addi-
tion, the learning curve in this case is steeper, where perfor-
mance given three weeks of training data exceeds the best
performance observed with the RankSVMmodels using eight
weeks worth of training data. A shorter learning time trans-

lates to an improved user experience, and overall better sys-
tem utility, as new users join the system over time.

Applying LowRank using the topic features gives compa-
rable performance to RankSVM . LowRank gives preferable
results to RankSVM if TFIDF vectors are used. Since the
TFIDF representation is much more sparse, LowRank has
more direct control in this case over the useful subspace to
use.

We found that a matrix rank of at least k = 8 is needed to
reach good performance in the experiments. A small vari-
ance was observed for higher values of k. Figure 4 shows
the performance curve of LowRank setting the rank to k =
10, 12 and the regularization term to C = 1, 2. As shown,
the sensitivity to parameter values in this range is small.

5.3 Individual users’ performance
While results have been discussed so far in a global fash-

ion, a question of interest is what variance can be expected
among individual users’ performance. In the experiments,
we found this variance to be relatively large. Figure 5 presents
the results of RankSVM using topic and TFIDF feature sets
and (10 samples of) three weeks worth of user feedback for
training. The figure shows the cumulative rate of MAP per-
formance for an individual user for each level of MAP per-
formance observed. According to the figure, for about 50%
of the users, average MAP across runs was 0.55 or higher
using LowRank with TFIDF features. If topic features are
used, average MAP performance for about 50% of the users
is 0.47 or more. Random recommendation yields lower MAP
of 0.35 and above for about 50% of users. As mentioned ear-
lier, MAP can vary between users due to variance of the rele-
vant item set size (Table 1); in general, accuracy is expected
to be higher for users who are interested in a larger number
of talks. Similarly, differences in performance between users
may correspond to the extent to which the user is interested
in general areas, versus specialized sub-topics. In the lat-
ter case, data scarcity is expected to be more pronounced.
Predictions for a user who has wide interest areas are also
likely to include more relevant items on average than for a
user whose interest areas are narrow.

Finally, Figure 6 gives another view of the results using
LowRank with topic and TFIDF features on the full test
set, for individual users. In addition to detailing perfor-
mance level per user, this figure shows a strong correlation
in individual user performance between the models trained
with the different feature sets.

6. EXTENSIONS: ACTIVE ELICITATION
There are two problems we hope to remedy by actively

eliciting feedback from users. The first problem is general
data sparsity. In a working system, we expect to highlight
only about 5% of all the announcements that the user re-
ceives (say, in the course of one month). The goal is therefore
to properly rank the top 5% amongst themselves as well as
separate this set from the remaining announcements. How-
ever, realistically, a single user is unlikely to provide explicit
feedback for more than a few weeks worth of announcements.
As a result, many of their top choices may not appear in the
training data. In order to avoid this problem, it seems nec-
essary to quickly focus the announcements presented to the
user to be mostly in the top 5% of their ranking. For ex-
ample, based on initial information from the user, an active
selection approach could present to the user some predicted



top 5% announcements from the overall pool of announce-
ments, some 5-10% percentile announcements so as to learn
to separate them from the top, and some randomly chosen
announcements (or according to the normal weekly sched-
ule) in order to avoid missing major areas. The quality of
these predicted rankings, and therefore queries themselves,
would improve with the user feedback.
The second and related issue is coverage across areas of

interests. In part, this is achieved by adopting the collabora-
tive formulation described earlier. We only need to identify
user interests by selecting a parameter vector (direction) in
the low dimensional (shared) perceptual coordinate space.
The perceptual feature coordinates can be thought as repre-
senting weighted subsets of topics and therefore resist spec-
ifying user interests too narrowly.
Consider a fixed mapping V to the lower dimensional per-

ceptual space. This mapping, shared across users, can be
estimated robustly based on limited initial feedback from
users. For each user u, we represent the uncertainty in their
parameters θ′u with a distribution P (θ′u), a discrete distribu-
tion over a set of alternative parameters. This distribution
is updated based on user feedback. We assume that the user
responds to a pair of announcements in a manner that re-
flects some θ′u but also allowing flipping noise. The score
for a candidate pair (xi, xj) is evaluated as follows. Let
yij ∈ {−1, 1} represent the user response if they are pre-
sented with (xi, xj). We model P (yij |xi, xj ; θ

′

u) as follows:

P (yij = 1|xi, xj ; θ
′

u) =

{

(1− ε), if θ′u · (V xi) > θ′u · (V xj)
ε, otherwise

where ε is a small flipping probability. The expected re-
sponse, P (yij |xi, xj), is obtained by averaging relative to

the current belief about θ′u, i.e., with respect to P (θ′u). The
score for a candidate pair of announcements to be presented
to the user for feedback is then the expected information
gain: the entropy of the parameter choices prior to feed-
back, −

∫

P (θ′u) logP (θ′u)dθ
′

u, minus the expected entropy
after the feedback

−
∑

yij

∫

P (θ′u)P (yij |xi, xj ; θ
′

u) log
P (yij |xi, xj ; θ

′

u)P (θ′u)

P (yij |xi, xj)
dθ′u

The integrals are tractable since, by assumption, P (θ′u) has
mass only on a set of discrete alternatives over the k− di-
mensional unit ball (predictions are invariant to scale). The
active learning method successively selects pairs with the
highest information gain, updating P (θ′u) based on each re-
sponse.
In order to evaluate the active learning approach in an ac-

curate fashion, we would like to conduct another user study,
where users are asked to provide pairwise feedback for pref-
erence pairs, selected based on their previous feedback, in
an online procedure. So far, we have conducted preliminary
experiments in a simulated mode, based on feedback already
acquired. As before, we used the first 10 weeks of seminar
announcements as possible data for training. The active
learning method was initialized with 2-4 weeks of data us-
ing the collaborative approach. The purpose of this step is
to identify the initial shared coordinate dimensions. Subse-
quently, we selected pairs of announcements from the train-
ing data, separately for each user. The selections are re-
stricted to pairs that are informative (user selected one but

not the other). The selection of pairs was based on reducing
uncertainty about the k−dimensional user parameters θ′u.

We do not report full results in this paper. As a single
example, we found that if the data of the first three weeks
is considered, then three active learning pairs give better
performance than training on full data individually in some
cases. These are encouraging results, and we intend to in-
vestigate them further.

7. RELATED WORK
The main focus of this work is on the general problem

of event recommendation. The user study conducted, how-
ever, concerns the specific application of event recommen-
dation to scientific talks. Previously, researchers have con-
sidered a related task of automatically recommending sci-
entific papers to reviewing committee members. In most
works, this problem has been approached using a content-
based methods [3, 9, 20]. Dumais and Nielsen [9] compute
paper-reviewer similarity, based on paper abstracts and ti-
tles on one hand and relevant abstracts supplied by the re-
viewers on the other hand, using latent semantic indexing
(LSI). Their results are up to 40% better than a random
baseline in terms of accuracy at rank 10. Interestingly, they
indicate that reviewers are unable to judge their own in-
terests with perfect consistency; also, the performance of
the automated system was found similar to that of human
judges. Basu et-al [3] evaluate the contribution of various
information sources to the task of recommending papers to
reviewers. They use WHIRL, a query language that accom-
modates similarity metrics. In addition, they experiment
with collaborative filtering, where feedback is fed by review-
ers in an online fashion, and recommendations are generated
based on the feedback stream using methods like KNN. Ac-
cording to their results, content-based approaches yield bet-
ter results than pure collaborative filtering on this task. An-
other work [7] considers collaborative filtering given reviewer
‘bids’, expressing interest or disinterest of reviewers in spe-
cific papers, as available feedback. While these previous
works apply collaborative filtering in “traditional” settings,
based on common pools of items and users, we study a dif-
ferent problem, where the sets of known items and the items
for which recommendation takes place are distinct.

The problem of collaborative filtering for event recommen-
dation has not received much attention, in our knowledge.
A recent work proposes a hybrid content and collaborative
filtering approach for event recommendation, within a fuzzy
relational framework [8]. Their rationale is similar to ours,
where the underlying goal is recommending future events if
they are similar to past events that similar users have liked.
The approach proposed is not evaluated empirically. In con-
trast, in this paper we extend a more popular recommenda-
tion framework to fit the settings of event recommendation;
we also present a relevant user study, and make it available
for the research community.

The LowRank method suggested in this paper follows a
well-established matrix factorization framework for collabo-
rative recommendation (see, e.g., [11,13,17]). In particular,
our approach can be seen as an extension of [17] to event
recommendation where, in contrast to the more common
user-item rating scenario, we seek to rank future events on
the basis of their word content. As a result, our problem
formulation is closely related to the low-rank document re-
trieval method of [1]. In order to rank documents based



on their similarity to a query, the authors estimate a rank-
ing function over pairs of documents based on word counts.
The word-to-word parameter matrix in the ranking function
is assumed to be low rank. In our case, the users are rep-
resented only by their identities (user id is used as a query)
while the events to be ranked are viewed as documents sim-
ilarly to [1]. A number of other methods are also available
for exploiting feature descriptions of items in a collaborative
setting (see, e.g., [6]).

8. CONCLUSION
We discussed the problem of recommending items for which

no previous feedback exists, focusing on the problem of fu-
ture event recommendation. We introduced a low rank col-
laborative approach in this setting. A user study was con-
ducted to simulate a recommendation of scientific seminars
on a weekly basis. Our empirical results based on this user
study show that the proposed collaborative method outper-
forms content-based recommendation on this problem. Since
the collaborative method approach uses explicit feedback,
we proposed an active learning extension to the approach
that is aimed at reducing the amount of explicit feedback
required from the user. We plan to evaluate this method
using a dedicated user study in the future. In addition,
we believe that as outdoor and indoor localization systems
evolve, it will become possible to track users’ interests in
items such as events directly by detecting their attendance
at known events.
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