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Visitors to museums and other cultural heritage sites
encounter a wealth of exhibits in a variety of subject
areas, but can explore only a small number of them.
Moreover, there typically exists rich complementary
information that can be delivered to the visitor about
exhibits of interest, but only a fraction of this informa-
tion can be consumed during the limited time of the vis-
it. Recommender systems may help visitors to cope
with this information overload. Ideally, the recommender
system of choice should model user preferences, as
well as background knowledge about the museum’s
environment, considering aspects of physical and the-
matic relevancy. We propose a personalized graph-
based recommender framework, representing rating his-
tory and background multi-facet information jointly as a
relational graph. A random walk measure is applied to
rank available complementary multimedia presentations
by their relevancy to a visitor’s profile, integrating the
various dimensions. We report the results of experi-
ments conducted using authentic data collected at the
Hecht museum.1 An evaluation of multiple graph var-
iants, compared with several popular and state-of-the-
art recommendation methods, indicates on advantages
of the graph-based approach.

Introduction

Visitors to museums and other cultural heritage (CH)

sites can be overwhelmed by the richness and diversity of

the information items that these sites offer (Davey, 2005).

Visitors therefore need assistance in getting the best experi-

ence from their visit. Obviously, visitors differ in their pref-

erences, and expectations. CH recommender systems aim at

generating personalized recommendations that fit the visi-

tors’ individual preferences and needs. Such personalized

services can be implemented using dedicated mobile appli-

cations (Ardissono, Kuflik, & Petrelli, 2012).

At present, mobile devices are typically available at CH

sites, offering complementary information about exhibits of

interest, albeit not in a personalized manner. Importantly,

personalized information can be both delivered and collected

as part of the interaction with the mobile device, having

feedback on viewed items collected explicitly, or in a non-

intrusive manner. For example, it is possible to track the

user’s behavior by analyzing signals transmitted by her

mobile device (Dim & Kuflik, 2015; Kuflik, Kay, & Kum-

merfeld, 2012).

Nevertheless, making personalized recommendations at

the museum is a challenging problem. Crucially, the collect-

ed feedback information is sparse: every user gets to view

and provide feedback for a small number of items, and in

the majority of cases, the visitor is introduced to the museum

for the first time (Biran, Poria, & Oren, 2011). The recom-

mender system thus operates in continuous cold start condi-

tions. Further, the recommended items are not standalone

artifacts—they are directly associated with some exhibit in

the museum, which in turn is located in a specific room. In

order for recommendations to be effective, the system must

consider this location context. Additional useful background
knowledge may map the museum’s environment and items

into a semantic space, for example, associating exhibits with
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specific themes. Semantic modeling is especially important

considering the sparsity of historical ratings. In order to inte-

grate visitor’s feedback with physical and semantic contexts,

the recommender system must effectively consolidate such

heterogeneous information.

We outline and evaluate a graph-based recommendation

approach that handles these challenges gracefully. Multi-

source information is represented using a heterogeneous

graph scheme, in which typed nodes denote entities, and

directed and typed edges denote inter-entity relations. Con-

cretely, the graph nodes denote users and multimedia pre-
sentation2, as well as physical positions and semantic

themes. The graph edges denote structured relations, for

example, located-in (between presentation items and the

positions in which they are offered) or viewed relations

(between users and the presentations that they rated). Edges

further denote elicited relations, such as similarity between

presentations induced based on their content.

The graph-based recommendation process involves infer-

ence of node relevancy with respect to a query, defined as a

distribution over the graph nodes. We apply the Personalized

Page Rank (PPR) algorithm (Haveliwala, 2002) to rank pre-
sentations by their relatedness to a user profile represented

as the set of presentations already viewed and liked by the

user. PPR applies a random walk procedure, assessing inter-

node relatedness from a global perspective, thus alleviating

the sparsity problem that challenges recommender systems.

The article reports the results of a case study using

authentic data obtained at the Hecht Museum, located at the

University of Haifa. Following the deployment of a mobile

visitors guide system at the museum, data have been collect-

ed in the form of visit logs for research purposes (Kuflik,

Wecker, Lanir, & Stock, 2014). Given user feedback on

viewed multimedia presentations, yet unviewed presenta-
tions are ranked according to the user’s interests. We report

a set of comparative experiments, showing superiority of

graph-based recommendation over popular and state-of-the-

art recommendation approaches.

There are several main contributions of this work:

• We show that the graph-based framework delivers accurate

recommendations in the challenging CH domain. Unlike

alternative methods, this approach models historical ratings

jointly with diverse background knowledge, including con-

textual physical proximity and semantic aspects.
• Relatively few works employed graph based similarity in

general, and the PPR measure in particular, for recommen-

dation purposes. We report the results of a comprehensive

set of comparative experiments, demonstrating the advan-

tages of the graph-based approach over alternative methods

in contextual recommendation setting.
• We evaluate and discuss issues related to graph design, as

well as the impact of tuning parametric edge weights on

recommendation performance.

Background and Related Work

Let us formally define the recommendation problem.

Recommender systems estimate the relevancy of yet unseen

items for individual users. We denote the set of users by U,

and the finite set of items by I. Let Iu represent the subset of

items that have been viewed and rated by an individual user

u 2 U. The rating assigned by user u to item i 2 Iu is

denoted by rui. This information corresponds to a sparsely

populated matrix, with known users and items as the matrix

dimensions, and historical ratings as values. The set of avail-

able feedback scores for a given user, frui; i 2 Iug, repre-

sents her preferences. Given this rating history, it is desired

to predict ratings for the remaining items that the user has

yet to experience, fI2Iug.
Classical recommendation approaches are roughly cate-

gorized into content-based (CB) and collaborative filtering

(CF) (Adomavicius & Tuzhilin, 2005, 2011). These

approaches face the “cold start” problem, handling new

items (both approaches) and new users (CF), for which little

rating history exists, as well as general rating sparsity.

Unfortunately, classical approaches do not support easy inte-

gration of context information into the recommendation

model (Konstas, Stathopoulos, & Jose, 2009). In order to

model background information about the user, a CF method

based on Tensor Factorization has been proposed (Karatzo-

glou, Amatriain, Baltrunas, & Oliver, 2010), which models

the ratings data as a user-item-context N-dimensional tensor.

Such modeling comes with the cost of increased sparsity–as

it considers a multidimensional space instead of the (already

sparse) two dimensional one. Others suggested to partition

the user-item rating matrix into groups of ratings with simi-

lar contexts (Liu & Aberer, 2013). None of these extensions

readily accommodates complex, relational background

information, such as the information modeled in this work.

Graph-Based Recommendation

Multiple studies have previously explored graph-based

methods for recommendation. Early works used homoge-

nous graphs, in which nodes denoted items and edges repre-

sented inter-item similarity, for example, (Gori & Pucci,

2007). Other works modeled bipartite graphs, in which

edges connected user nodes to nodes denoting items that

they rated (Baluja et al., 2008; Fouss, Pirotte, Renders, &

Saeren, 2007).

More recently, researchers have started to explore hetero-

geneous graph representations that consist of multiple node

and edge types for context-aware recommendation (Bagci &

Karagoz, 2016; Bu et al., 2010; Noulas, Scellato, Lathia, &

Mascolo, 2012; Pham, Li, Cong, & Zhang, 2015; Shang,

Kulkarni, Cuff, & Hui, 2012; Tiroshi et al., 2014; Wang,

Terrovitis, & Mamoulis, 2013). In addition to user-item rat-

ings, the constructed graphs typically include social relations

between users and link users to social tags extracted from

domain-specific social networks. Here, we show that the

graph-based approach can effectively model diverse

2Henceforth, we use the terms multimedia presentations and presen-

tations interchangeably
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relational background knowledge, also representing aspects

such as physical and thematic relatedness.

Several previous works used the PPR measure to generate

a ranked list of items, having the user’s preferences repre-

sented as a distribution of interest over the graph nodes.

Some of these works compared PPR with alternative recom-

mendation methods. Specifically, Konstas et al. (2009) con-

sidered recommending music tracks using a graph that

included social annotations and friendship relations, and

showed improvements using PPR over a user-based kNN

method. Yao, He, Huang, Cao, and Zhang (2015) proposed

a multilayer graph representation for contextual recommen-

dation, and also showed superiority of PPR over a user-

based kNN approach. Noulas et al. (2012) targeted location

recommendation, modeling historical user-location visits

and user friendships in the graph. The distribution of visits

across locations was reported to be very skewed, having the

PPR measure be the only method to beat a strong

popularity-based baseline.

Nevertheless, we find that to date, a comprehensive com-

parison against classical recommendation approaches, which

have been developed over the course of several decades, is

still at need. A main contribution of this study is empirical

comparison of PPR graph-based recommendation with mul-

tiple classical and state-of-the-art recommendation methods.

Consequently, we provide stronger evidence about the

advantages and applicability of PPR and similar methods for

the recommendation task.

Interestingly, none of the aforementioned works exam-

ined graph adaptation by means of edge weight tuning (e.g.,

Minkov & Cohen, 2010). We show that tuning parametric

task-specific edge weights substantially affects the global

similarity measure, leading to performance gains.

Recommendation Systems for Museum Visitors

Several recommendation techniques and systems have

been designed to enhance the museum visit experience. The

overlay model (Stock et al., 2007) “overlays” the user pref-

erences over a domain ontology, and propagates node rat-

ings over the ontology to other exhibits of interest. Grieser,

Baldwin, and Bird (2007) aimed at predicting which exhibit

a visitor would visit next based on her visit history using a

Naive Bayes learning model, taking into consideration

exhibit proximity, textual description of the exhibit, and

exhibit popularity. The approach proposed here is more

comprehensive, as it models collaborative user history joint-

ly with content-based and physical proximity aspects. We

believe that the graph-based approach is advantageous to

statistical learning in conditions of data sparsity.

The “Geckommender” system (Bohnert, Zukerman, &

Laures, 2012) uses a nearest-neighbor CB approach to

predict exhibit ratings and generate theme/tour recommen-

dations. Geckommender was only evaluated with respect to

different display modes of the predictions. Another work

(Bohnert & Zukerman, 2014) targets the prediction of exhib-

it viewing times using the Spatial Process Model, a

collaborative model based on the theory of spatial processes.

They model the correlation between observed viewing times

in terms of exhibit conceptual distance, encoded in a covari-

ance matrix. Several types of distances are evaluated, includ-

ing viewing-time similarity, semantic similarity and walking

distance. The results, evaluated using 157 visitor histories at

the Melbourne Museum, indicate that physical distances

yield the best predictions of viewing times. The graph-based

approach described here is complementary to this model–

one may generate multifacet correlation scores using the

global graph-based measure.

Finally, Bartolini et al. (2014) target the recommendation

of diverse multimedia materials across cultural heritage

sites. They use a graph to represent item similarity, based on

semantic annotations and “visiting patterns,” indicating the

frequency in which two items were consumed consecutively

by the same visitor. While they organize the recommended

items into paths, the physical aspect as well as historical rat-

ings are not integrated in the graph. Their evaluation focuses

on assessing visitor satisfaction in field conditions, whereas

we focus on comparing multi-facet graph-based recommen-

dation with classical approaches.

Graph-Based Recommendation at the Museum

In this section, we first formulize the graph representation

schema, and describe how it is applied to the case study of

item recommendation to museum visitors. We then outline

the PPR algorithm, and provide intuitions on why using PPR

is beneficial in our contextual recommendation settings.

The Museum as a Graph

A graph G5 < V;E > consists of a set of nodes V, and a

set of labeled and directed edges E. We denote nodes by

lower-case letters such as x, y, or z. Every node x has a type,

denoted sðxÞ. The set of possible types is pre-determined

and fixed. An edge from x to y is typed with relation ‘,
denoted as x!‘ y. Typically, for every edge in the graph,

there exists an edge going in the other direction, denoting an

inverse relation. This implies that the graph is cyclic and

highly connected.

We describe the museum’s environment using the follow-

ing classes of entities, represented using distinct node types:

• Positions. Physical points of interest (POIs), in which mul-

timedia information is available about exhibits nearby. The

POIs are spread in the museum environment over multiple

rooms and floors.
• Presentations. Multimedia presentations are offered for

viewing on the visitor’s mobile device. Presentations are

associated with concrete exhibits. Once the user is tracked

at some POI, she is offered to view presentations about

exhibits associated with that position.
• Themes. The multimedia presentations in Hecht Museum

have been associated with specific themes, for example,

Religions, or Art symbols and Maritime (Katz et al., 2006).

We represent each of these themes as a node in the graph.
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• Visitors. These nodes represent individual visitors.

Although the other node types describe static aspects of the

museum, historical information about visitors is dynamic,

being accumulated over time.

The graph edge types are detailed in Table 1, and illus-

trated schematically in Figure 1. We directly link each pre-
sentation with the position with which it is associated over

an edge of type located-in. Has-theme edges link each pre-
sentation with the respective theme node. Both of these rela-

tion types are functional, having each presentation map to a

single position and theme. In order to maintain high connec-

tivity in the graph, edges are added in the opposite direction

between the respective node pairs, denoting the inverse rela-

tions located-in–1 and has-theme–1.

We further model aspects of inter-entity similarity in the

museum’s environment. Positions that reside in high physi-

cal proximity are linked over nearby edges. In addition,

presentations that exhibit high content similarity are inter-

linked over the similar-to relation, and similar-theme edges

connect semantically related themes. Details about the com-

putation of inter-item similarity and derivation of the respec-

tive edges are given in Impact of Graph Tuning.

It is straightforward to incorporate historical ratings in

the graph. Each visitor is represented by a dedicated visitor
node, linked to presentation nodes over directed viewed
edges. One may link a visitor to all of the presentations that

she viewed, or, only to presentations that she is known to

have liked. We follow the first option in this work, in light

of data sparsity. Node pairs linked over the viewed relation,

are linked also over inverse edges of the type viewed–1.

Recommendation with Personalized PageRank

We wish to recommend presentations to a user based on

her historical feedback. This task corresponds to the follow-

ing objective: given a distribution over the graph nodes that

represents the user’s preferences, presentation nodes are to

be ranked by their relatedness to that distribution. Various

measures exist that evaluate node relatedness in graphs

(Fouss et al., 2007). We employ the popular PPR random

walk metric (Page, Brin, Motwani, & Winograd, 1998;

Richardson & Domingos, 2002), sometimes referred to as

Random Walk with Restart (RWR) (Tong, Faloutsos, &

Pan, 2006).

PPR applies a Markovian random walk process that fol-

lows the well-known non-personalized PageRank algorithm

(Page et al., 1998). Given that the walker is at node i, with

probability a the walker follows an outgoing link from i, and

with probability (12a) the walker resets randomly to some

graph node. The probability distribution of finding the walk-

er at each of the graph nodes at time d, Vd, is defined recur-

sively as:

Vd115ð12aÞVu1aMVd (1)

where the total number of nodes is N, and the transition

matrix M encodes the probability that the walker moves to

page j from page i following an outgoing edge. As default,

M distributes a node’s probability uniformly among the

pages it links to. Importantly, PPR preserves an association

between node rankings and user preferences, or a “query,”

having Vu denote the query distribution. That is, PPR limits

the reset operation to the query nodes.

This random walk process is guaranteed to converge to a

unique stationary distribution. The resultant node scores

reflect their structural similarity, or relevancy, with respect

to the query Vu. It has been shown that the PPR score for a

target node z and a query node x equals a summation over

all the paths between x and z, weighted by path traversal

probabilities (Jeh & Widom, 2003). Because of the reset

operation, the paths between x and z are weighted exponen-

tially lower as their length increases. This means that items

that are connected over short paths to the query nodes are

considered more relevant by the PPR method; similarly,

items reached over multiple paths from the query nodes are

also considered more relevant.

In our work, the query distribution Vu spans over the set

of presentation nodes that the visitor is known to have liked,

weighted by the respective visitor’s feedback scores. The

computed PPR scores reflect structural relatedness (or,

FIG. 1. A schematic view of the relation types in the museum graph.

The different node shapes denote entity types, including: Presentations

(P), positions (L), themes (T), and visitors (V). Dashed lines denote

inverse edges. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1. Relation types in the museum graph.

Source node type Edge type Target node type

presentation (309) located-in (1:1) position
has-theme (1:1) theme
similar-to (1:*) presentation

viewed– 1 (1:*) visitor
position (49) nearby (1:*) position

located-in– 1 (1:*) presentation

theme (9) has-theme– 1 (1:*) presentation
similar-theme (1:*) theme

visitor (287) viewed (1:*) presentation

Note: The table includes the total number of nodes of each type in

our experimental data set, as well as relation cardinality (1:1 denotes a

functional relation, and 1:* implies that the source node may be con-

nected to any number of nodes over that relation.) we bound relation

cardinality as part of graph design, as described in Data.

4 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2017

DOI: 10.1002/asi

http://wileyonlinelibrary.com


similarity) of the graph nodes to this visitor’s profile. We

present a list of presentation nodes ranked by their estimated

relevancy to the user. Likewise, one may generate rankings

of other entity types, for example, positions.

Edge weight tuning. The graph walk process is deter-

mined by the graph’s topology, captured by the transition

matrix M. It is reasonable to assume that specific edges

reflect more meaningful relations. We will assume that edge

importance is derived from its type (Minkov & Cohen,

2010; Shang et al., 2012). Concretely, a set of edge weight

parameters H determines for every edge of type ‘ in the

graph, a fixed weight h‘ 2 H. The transition probability

from node x to node y over a single time step, Mx;y, is

defined accordingly as:

Mx;y5
h‘P

y02chðxÞ h‘0
(2)

where ch(x) denotes the set of children of x (the nodes reach-

able from x in one time step), h‘ is the weight of the outgo-

ing edge from x to y, and similarly h‘0 is the weight of any

outgoing edge of type ‘0 leading from x to a child node y0. In

words, the probability of reaching node y from x is defined

as the proportion of the edge weight from x to y out of the

total outgoing weight from the parent x.

The edge weights H can be set manually, according to

prior beliefs; tuned empirically; or, learned from labeled

examples (Minkov & Cohen, 2010). Here, we empirically

tune the edge weights using exhaustive search. We leave the

exploration of edge weight learning, as well as path-based

node ranking schemes (Lao, Minkov, & Cohen, 2015) for

future work.

Discussion. The graph walk process naturally integrates

multiple types of evidence. Initiating at some presentation x
that is included in the user’s profile Vu, it will reach a related

presentation z via a shared theme node, or directly, because

of the modeling of text-based similarity edges, over the fol-

lowing paths: x ������!has2theme
y ������!has2theme1

z, and x �����!similar2to
z.

Importantly, the PPR measure is transitive—as the random

walk continues, similarity propagates between pairs of relat-

ed presentations continuously. Accordingly, immediate

physical proximity (same position) is expressed via the fol-

lowing 2-hop path: x ������!located2in
y ������!located2in1

z; and extended

physical proximity corresponds to a 3-hop path x ������!located2in

y ���!nearby
s ������!located2in1

z., or 4-hop path x ������!located2in
y ���!nearby

s ���!nearby
t ������!located2in1

z., etc.

We note that in case that one is interested in biasing node

rankings in favor of the current location of the visitor, this

can be achieved by including the respective position node in

the query, or, by weighting the queried presentation nodes

by recency, assigning higher weight to the presentation(s)
associated with the position visited last.

In addition, collaborative aspects are modeled through

the path: x �����!viewed21

y ���!viewed
z. Collaborative and content-

based similarities are naturally integrated by mixed paths

like x �����!viewed21

y �����!similar2to
s ���!viewed

z.

Performing the random walk for a sufficient number of

steps propagates and accumulates similarity along these

paths, integrating content-based, collaborative and location-

based similarities. Due to the exponential decay over path

length, infinite graph walk probabilities can be approximat-

ed by limiting the graph walk to a finite number of steps k
(Minkov & Cohen, 2010).

Experimental Setup

This section introduces our experimental data and defines

the evaluation methodology.

Data

Collection procedure. We experiment with authentic data

collected during visits to the Hecht Museum, a small size

museum located on the campus of the University of Haifa

(http://mushecht.haifa.ac.il/). The museum presents both

archeological and art exhibits, as described in more detail

elsewhere (Kuflik et al., 2014).

A location-aware mobile device is provided to the muse-

um visitors. As the visitor tours the museum and is detected

at some point of interest, she is prompted to select an exhibit

out of the nearby exhibits using a graphical interface. A list

of all relevant presentations is then listed on the mobile

screen. This procedure is illustrated in Figure 2. As shown

in the middle part of the figure, the presentations are intro-

duced by title, typically phrased as a question, for example,

“What are the characteristics of Egyptian anthropoids?”

Once the visitor selected a title of interest, the respective

multimedia presentation is displayed (see the right part of

Figure 2). All of the offered presentations are 1 to 2 minutes

long. The user can quit browsing a multimedia representa-

tion at any time, and can view multiple presentations for a

selected exhibit. (See also Kuflik, Stock, et al., 2011; Kuflik

et al., 2014).

The mobile device is designed to present and receive user

feedback. Colored smiley emoticons may appear next to

some of the offered presentations, reflecting high average

rating received for those presentations by past visitors.

(Emoticons were presented for 72% of the presentations at

the time of this research; they are not included in the screen-

shots in Figure 2.) Having viewed a presentation, the user is

requested to provide her own feedback.

Our data set consists of visit logs collected over a period

of several months. The logs include the POIs that the visitor

passed through, the exhibits selected, and the feedback
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scores (ratings) assigned to the presentations viewed. Pre-

sentations that were terminated early by the user and presen-

tations for which no feedback was provided were excluded

from the data set.

Data statistics. Overall, more than 300 presentations are

available for viewing at the Hecht museum that correspond

to 76 exhibits, displayed at 49 positions, across multiple

rooms and two floors.

Figure 3(a) details the number of presentations offered

per exhibit. As shown, for nearly half of the exhibits, five or

more presentations are offered. Figure 3(b) further describes

the number of presentations viewed in the discourse of a sin-

gle visit.3 As shown, the median number of presentations

viewed is 10, where visitors most often viewed between five

and nine presentations during their visit. (Log files of visits

in which a single presentation has been viewed were exclud-

ed from the data set.) This means that a typical visitor only

views (and provides feedback) for a small fraction of the

multimedia presentations available.

The distribution of collected feedback is highly skewed.

About 1% of the presentations were viewed by about a third

of the visitors in our data sets; most of these presentations

are associated with exhibits located near the museum

entrance. On the other hand, approximately 17% of the pre-

sentations were viewed by a single visitor, or none. For a

given exhibit, there is further bias in favor of certain presen-

tations. It has been previously shown that visitors tend to

favor general-themed presentations over aspect-specific

ones (Kuflik et al., 2014). In the Hecht museum, general

introductory presentations are offered for about a third of the

exhibits. In addition, it is known that whenever presented

with a list of items, human users tend to focus on the top-

most ranked items. During data collection, presentations

were arbitrarily ordered by their IDs, that is, their ordering

was random but fixed. While some of these biases may be

softened with proper experimental design and targeted data

collection, we believe that our data set captures authentic

visitor behavior, reflecting real-world challenges such as

data sparsity and unbalanced data distributions.

Pre-processing. The visit logs that constitute our data set

were obtained at several different points in time, and there-

fore exhibit some variance with respect to rating scales.

Some of the feedback is binary (like, dislike), but the majori-

ty of feedback is given in 3-point or 5-point scale. We con-

verted the different feedbacks to a uniform 5-point scale:

binary feedbacks were converted to integer values of {1,5},

and scores on a 3-point scale were represented using the val-

ues {1,3,5}.

Figure 3(c) shows the distribution of the processed feed-

back scores. As shown, the ratings tend to be positive–about

65% of the feedback scores are very high (score of 5), and

very few ratings are low. In order to alleviate sparsity, we

include in the user profile all of the presentations for which

she assigned feedback scores in the range 3–5, weighted by

their normalized feedback score.

Graph design. The proposed graph schema directly links

similar presentation node pairs, as well as similar theme
node pairs. The presentations are generally short; most of

them correspond to a textual description of between 100–

200 words. We consider the full textual content of the pre-

sentations, including title and transcript of the spoken com-

mentary, in assessing pairwise similarities. We used WEKA

(Hall et al., 2009) to compute cosine similarity between the

respective TF-IDF weighted term vectors, having stop words

removed, content words stemmed and lower-cased, and

word weights normalized by document length. Theme nodes

are represented as the centroid of vectors of the presenta-
tions associated with each theme. The centroids were com-

puted using Euclidean distance, with inter-theme relatedness

evaluated using cosine similarity.

It is generally desired to avoid the modeling of weak

associations as graph edges–weak links are uninformative,

and can increase the cost involved in computing the PPR

measure. We therefore selectively link only those entity

pairs for which the computed similarity score exceeds some

manually tuned threshold. The threshold values for the

FIG. 2. Mobile visitors guide screenshots. [Color figure can be viewed at wileyonlinelibrary.com]

3Please note that in this section, and in the rest of the paper, we

only refer to viewed presentations for which feedback was provided.
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similar-to and similar-theme edge types were set based on

the training data to 0.2 and 0.4, respectively. Consequently,

presentation nodes are linked over similar-to edges to 2.9

other presentation nodes on average; and, most of the theme
nodes are connected over the similar-theme relation to three

to four other theme nodes. Similarly, we link each position
node to its three nearest positions in terms of walking dis-

tance (and up to six positions in case of a tie). Note that the

resulting similarity-based edges are asymmetric, for exam-

ple, node x may point to node y over a similar-theme edge,

whereas y may not be point to x.

In summary, the experimental data set is sparse. The

resulting graph is small–it consists of several hundreds of

nodes (see Table 1) and less than 10K directed edges. The

respective user-item matrix includes about 4% populated

cells. Only a small number of feedbacks is available for indi-

vidual visitors. Recommendation at the museum must there-

fore address constant “cold start” conditions.

Experimental Design

We perform a set of prediction experiments using the vis-

it logs collected at the Hecht museum. Given the set of rat-

ings provided by user u, we target in each experiment one of

the rated presentations, i� 2 Iu, having the remaining presen-

tations fIu2i�g serve as the user’s profile Vu. In case that

user u positively appreciated item i�, we expect to find it

among the top items of the generated ranked list of presenta-
tion nodes. This experimental setting is imperfect, mainly,

other highly ranked presentations may be of interest to the

user, for which we do not possess relevancy judgements.

Yet, such a setting is often applied for the purpose of com-

paring the performance of multiple ranking methods; impor-

tantly, it is unbiased as all systems are assessed under the

same conditions (Baluja et al., 2008).

We dedicate a held-out portion of the example set for

tuning of the graph edge weights. We selected all of the

queries generated per 10% of the users (32 complete visit

logs) for this purpose. The examples derived from the

remaining 287 (90%) visit logs serve for evaluation using

the leave-one-out procedure.

Two modes of recommendation are considered in our

experiments:

• General Recommendation: We are interested in assisting

the visitor in choosing multimedia presentations of inter-

est while touring the museum. All presentations (except

those already viewed by the user) are considered as candi-

date items in this setting. Ideally, the museum’s physical

layout should be taken into account in this mode. Physical

distances are modeled in the graph, and affect the generat-

ed rankings.
• Per-Exhibit Recommendation: In this setting, we consider

only presentations that are associated with an attended

exhibit as candidate items for recommendation. (Technical-

ly, per-exhibit differs from the general recommendation

mode in the final ranking step, having presentations that

are not associated with the current exhibit filtered out.) As

indicated in Figure 2(a), about fifth of the exhibits are asso-

ciated with a single presentation. We omit queries pertain-

ing to these exhibits from the evaluation data set in the per-

exhibit evaluation mode, as single-choice recommendation

is trivial.

Evaluation Measures

All of the recommendation methods considered in this

paper generate scores for candidate items, which are then

processed into a ranked list to be presented on the mobile

screen. We accordingly assess performance using measures

used for the evaluation of ranked lists. Notably, each evaluated

query has a single known correct answer in our experiments.

Recall-at-k. This measure estimates the probability of

retrieving the correct answer within the top k ranks (Minkov

& Cohen, 2010). For example, recall@3 5 0.7 means that

FIG. 3. Data set statistics. (a) Distribution of the number of presenta-

tions available per exhibit. (b) Number of presentations viewed (and rat-

ed) per visit. (c) Distribution of the feedback scores.
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for 70% of the queries, the correct answer appears among the

top three ranks of the retrieved lists.4 The screen of handheld

devices is limited in size, and it expected that the highest-

ranking items will receive most of the user’s attention. For

this reason, we report recall@k5½125� in the general recom-

mendation setting, and k5½123� in the per-exhibit mode. In

the latter case, the number of candidate items is small, so that

the added value of recommendation is in pointing out the

very few items that are of highest interest to the user.

Mean reciprocal rank (MRR). The reciprocal rank of a

response to a single query is defined as the multiplicative

inverse of the rank of the correct answer: 1
ki

, and the mean

reciprocal rank is the average of the reciprocal ranks for all

of the test queries.5

Ratio of failed tests (RFT). Occasionally, a recommenda-

tion method may fail to predict scores for the target presen-

tation. In such cases, we assign this presentation a de-facto

score of zero, appending it to the bottom of the output

ranked list. This means that impaired coverage affects

recall-at-N and MRR performances. For completeness, we

also report the ratio of failed tests, in which the test presenta-

tion failed to receive a score.

Experiments

This section includes a description and implementation

details of the evaluated recommendation methods.

Graph-based recommendation. In order to assess the utili-

ty of combining historical ratings with background knowl-

edge, we experiment with several graph variants illustrated

in Figure 4:
1. The Museum graph (G:M). This graph describes back-

ground knowledge about the museum, modeling thematic

and physical similarities. Specifically, it includes presenta-

tions, themes and positions nodes, connected over the edge

types similar-to, similar-theme, nearby, has-theme, located-

in, and the respective inverse edges.

2. Visitors graph (G:V). This bi-partite graph variant repre-

sents ratings history, including presentations and users as

entities, linked over viewed and viewed–1 edges.

3. Unified graph (G:U). The museum and visitors graphs con-

tain complementary information. The unified graph forms

the union of the two graphs, as demonstrated in Figure 4(c).

4. Combined graphs (G:MV). This approach integrates the

scores produced by the visitors and museum graphs using a

linear combination of the scores:

r̂ uiðvu;G : MVÞ5ð12bÞ � r̂ uiðvu;G : MÞ1b � r̂ uiðvu;G : VÞ (3)

The weighting coefficient b was tuned empirically in our

experiments using grid search over the range [0.1,0.9] with

step size 0.1, optimizing performance on the held-out exam-

ples. The graph edge weight parameters H were similarly

tuned using the held-out examples (see Impact of Graph

Tuning). We set the damping factor of the random walk pro-

cess (Equation [1]) to a5.85 following previous work (Min-

kov & Cohen, 2010).6

userSimðu; vÞ5
P

i2Iuv
ðrui2�ruÞðrvi2�rvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2Iuv
ðrui2�ruÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2Iuv
ðrvi2�rvÞ2

q (4)

r̂ui5�ru1

P
v2NiðuÞ userSimðu; vÞ3ðrvi2�rvÞP

v2NiðuÞ juserSimðu; vÞj (5)

itemSimði; jÞ5
P

v2Uij
ðrvi2�rvÞðrvj2�rvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

v2Uij
ðrvi2�rvÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
v2Uij
ðrvj2�rvÞ2

q (6)

r̂ui5�ri1

P
j2NuðiÞ itemSimði; jÞ3ðruj2�rjÞP

j2NuðiÞ jitemSimði; jÞj (7)

We approximate PPR scores using finite random walk

repeated for six iterations. As discussed earlier, the impact

of additional steps on the generated rankings is negligible.

Content-based recommendation (CB). We experiment

with a version of the Rocchio algorithm (Lops, de Gemmis,

& Semeraro, 2011; Salton, 1971). This method computes a

“prototype” vector for user u by averaging vectors of docu-

ments known to be of interest to u, and subtracting away the

weighted fraction of vectors of uninteresting documents.

We represent each candidate presentation as a vector of

TF-IDF weighted terms, describing its textual contents.

Since in this study, only a small fraction of ratings are below

the median score, we only model positive feedback. We also

weight the individual presentation vectors included in the

user’s profile by the respective feedback scores so that high-

ly liked presentations contribute more to the profile. Item

relevancy is estimated using cosine similarity in this vector

space.

User-based k-nearest neighbor (CF:U-kNN). We follow

closely on Desrosiers and Karypis (2011) in our implemen-

tation of this well-known CF method. This method generates

a rating prediction r̂ui based on the ratings for item i by a set

of k users most similar to the target user u. The similarity

between users u and v, userSim(u, v), is computed as the

Pearson’s correlation bewteen their historical ratings, as

defined in Equation (4), where Iuv denotes the set of items

co-rated by users u and v, and �ru and �rv denote the average

4We consider the effective rank of the target item, which may be a

real number, for example, if the 5th and 6th ranked items are assigned

identical scores, the rank of both items is 5.5, computed as (5 1 6)/2. In

our experiments, item scores are often on par using random recommen-

dation, and to a lesser extent, using CF kNN and some graphs variants.

The evaluation is strict, having ranks rounded up in evaluating recall;

for example, rank 5.5 contributes to recall@6 and downwards.
5In computing the MRR measure, half ranks were maintained.

6The produced PPR rankings are generally insensitive to a value, for

example, (Minkov & Cohen, 2010).
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ratings of users u and v, respectively. This formula applies

mean-normalization of rating scores per user, so as to

account for variance in rating scales across individuals.

Once the set of neighbors NiðuÞ is identified, the predicted

rating is computed according to Equation (5), weighting the

contribution of each neighbor by its similarity to u.

Item-based kNN (CF:I-kNN). This method evaluates the

recommendation score by analyzing the ratings of similar

items (Desrosiers & Karypis, 2011). As defined in Equation

(6), the similarity between items I and j, itemSim(i, j), is

determined by the extent to which other users assigned simi-

lar ratings to the two items, where Uij denotes the set of

users who have rated both items i and j. The predicted rating

r̂ ui is computed as a weighted average of the ratings

assigned by user u to NuðiÞ, a set of up to k items that are

found to be most similar to item i using Pearson correlation,

as defined in Equation (7).

In our experiments with both kNN methods, we tune the

neighborhood size k. We apply the common practice of neg-
ative filtering, discarding neighbors with a negative correla-

tion score (Herlocker, Konstan, Borchers, & Riedl, 1999).

Several additional threshold types were evaluated in order to

identify a high-quality set of neighbors: discarding neighbors

for which the correlation score is below a minimum similari-

ty value, or below a minimal number of common ratings.

The various combinations of threshold values and types, as

well as the neighborhood size, were evaluated exhaustively.

We report results using the best parameters per setting.

Matrix factorization (CF:MF). Given a user-item ratings

matrix M5ðruiÞ, matrix factorization maps the users and

items into a joint latent factor space of dimensionality k,

having every item i and user u represented as vectors

qi; pu 2 Rk. The rating r̂ ui is approximated by the dot prod-

uct of the item and user vectors, capturing the user’s overall

interest in the item’s characteristics. We experiment with a

state-of-the-art MF formulation outlined by Koren, Bell, and

Volinsky (2009), as implemented in the GraphLab software

package7 (Low et al., 2012) using alternating least squares

optimization for minimizing the cost function. We tuned the

algorithm parameters using grid search, setting the number

of latent factors to 110 in the general recommendation

mode, and to 100 in the per-exhibit mode. The regularization

coefficient was set to k 5 1, and the number of iterations to

convergence was set to a maximum of 1,000. Stochastic

optimization is prone to converge to a local optimum. We

therefore report average results of five runs with randomized

initialization.

Hybrid recommendation (Hyb). Hybrid systems combine

multiple techniques, ideally compensating for the weakness

of the individual methods (Berkovsky, Heckmann, & Kuflik,

2009). We experiment with a combination of two methods:

content-based (CB) and item-based kNN (CF:I-kNN).8 Con-

cretely, we first re-scale the scores produced by the two

methods, and then compute a weighted average of the nor-

malized item scores. The weighting coefficient was tuned

using grid search over the range [0.1,0.9] with step of 0.1.

The selected weights values were (0.3, 0.7) in the general

recommendation scenario, and (0.1, 0.9) in the per-exhibit

scenario, assigning in both cases a higher weight to the

item-based kNN method.

Random (B:R). This naive nonpersonalized baseline

selects one of the candidate presentations uniformly at ran-

dom. Comparing against this baseline demonstrates the con-

tribution of informed recommendation systems over mere

chance.

FIG. 4. Illustration of the structure of several graph variants. (a) The

museum graph (G:M). (b) A visitors’ graph (G:V). (c) A unified graph

(G:U). [Color figure can be viewed at wileyonlinelibrary.com]

7http://graphlab.org/
8As discussed later, item-based kNN performed best among the CF

methods in our experiments.
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Proximity (B:PR). This is a stricter version of random rec-

ommendation, which limits the set of candidate presenta-

tions in terms of distance from the user’s whereabouts.

Given Vu, we obtain the list of presentations associated with

already visited positions; that is, those that can be reached

from any presentation x 2 Vu over the path x ������!located2in
y

�������!located2in21

z. We also include presentations relevant for

nearby positions, reached over the path: x ������!located2in
y

���!nearby
q �������!located2in21

z.

Popularity (B:P). The popularity baseline ranks the candi-

date presentations according to their popularity score, com-

puted as the number of users who viewed each presentation.

This method is nonpersonalized yet informed and often

hard-to-beat (Lucchese, Perego, Silvestri, Vahabi, & Ventur-

ini, 2012). A challenge of any personalized recommendation

is to outperform this one-fits-all approach.

Main Results

This section reports our results using the different meth-

ods. We remind the reader that the parameters of the graph-

based methods were tuned using held-out examples; in con-

trast, all other methods have been optimized directly on the

test data. Despite the comparison being strict in this fashion,

graph-based recommendation is shown to give preferable

results.

General Recommendation

Table 2 includes MRR and RFT results for the general

recommendation scenario, and Figure 5(a) shows the respec-

tive recall-at-rank performances. As shown, the graph var-

iants G:U and G:MV, which model ratings history together

with background knowledge, yield the best overall perfor-

mance with respect to all measures. MRR results using G:U

and G:MV are 0.151 and 0.152, respectively. In terms of

recall, G:MV gives slightly better performance, yielding

recall of 0.063 at the topmost rank, and 0.220 recall at

rank 5.

It is informative to contrast these results with the predic-

tion quality of the non-personalized baselines. As one might

expect, the popularity-based method (B:P) shows strong per-

formance, yielding MRR score of 0.140. The more naive

baselines—random and proximity based recommendation—

result in very low MRR performance, as well as negligible

recall at the top levels. The evident strength of popularity-

based recommendation correlates with our data set statistics.

As discussed earlier, the data set is characterized with a large

number of candidates, for which the distribution of available

feedbacks is highly skewed.

The evaluated CF methods show relatively weak perfor-

mance in our experiments, all failing to beat the popularity-

based baseline. Item-based kNN recommendation achieved

MRR of 0.084, MF—0.065, and user-based kNN—a low

0.028. The weakness of these methods can be attributed in

part to data sparsity. As shown in Table 2, RFT is very high

using the kNN CF methods. We found that in many cases,

there were no relevant “neighbors” identified due to rating

sparsity. In fact, many visitors in our data set (30%) assigned

the same feedback score to all of the presentations that they

have viewed, and therefore did not contribute to the recom-

mendation process (see Equations [4] and [6]). MF is gener-

ally more robust to sparsity issues, but deliver mediocre

results here. It is likely that its performance would improve

should a larger set of ratings be provided.

Interestingly, recommendation using the graph variant

G:V, which similarly to the CF methods, models ratings his-

tory only, delivers strong performance and outperforms the

popularity baseline. This suggests that the transitive graph

relatedness measure is advantageous in conditions of sparsi-

ty. Another factor that may positively affect the graph-based

recommendation is that random walk measures like PPR

exhibit bias towards highly connected nodes (Tong &

Faloutsos, 2006), thus implicitly modeling item popularity

information.

Finally, CB recommendation performance falls behind its

graph counterpart, G:M, which models background informa-

tion (0.048 vs 0.110 in MRR). The hybrid method (Hyb)

improves upon each of its component systems, but still falls

short of graph-based recommendation. Again, we conjecture

that the graph-based techniques are preferable in conditions

of sparse data. Also, the graph method integrates physical

proximity aspects, which are missing from either the CF or

CB approaches.

Per-exhibit recommendation

Since the set of candidate items for recommendation in

the per-exhibit setting is highly limited (Figure 3[a]), ran-

dom recommendation achieves high recall levels at the top

TABLE 2. MRR and RFT performance of the various recommendation

methods.

General Per-exhibit

MRR RFT MRR RFT

G:M .110� .002 .627� .001

G:V .143 .009 .788 .001

G:U .151 .002 .788 .001

G:MV .152 .002 .789 .001

CB .048� .002 .585� .001

CF:U-kNN .028� .508 .600� .399

CF:I-kNN .084� .874 .648� .293

CF:MF .065� .000 .658� .000

Hyb .104� .002 .659� .001

B:PR .018� .117 - -

B:P .140 .000 .801 .000

B:R .007� .000 .506� .000

Note: An asterisk denotes statistically significant difference in

MRR compared with G:MV, the best performing graph-based method

(p-val <0.005).

10 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2017

DOI: 10.1002/asi



three ranks (0.12, 0.47 and 0.91) (Figure 5[b]), and a high

MRR score of 0.506 (Table 2). The popularity baseline

achieves the strongest performance overall in this setting–

yielding MRR of.801. We find that this result correlates

with user bias towards presentations displayed at the top of

the mobile screen during data collection. As previously

shown, the mobile guide screen accommodates about four

presentation titles (Figure 2), and for about half of the exhib-

its five or more presentations are offered (Figure 3[a]). As

users tend to view (and like) the first presentation on the list,

and generally focus on the top listed items, simply ranking

the presentations by their popularity is somewhat trivially

successful.9 We believe that given a larger number of candi-

date presentations per exhibit, and interaction with users that

encourages them to follow their own interests, the effect of

personalization will be more noticed.

We now turn to discuss the personalized recommendation

methods, which ideally, would increase visitor satisfaction

beyond the one-fits-all rankings.

Consistently with the previous findings, the best-

performing approaches are the integrative graph-based

methods, G:U and G:MV, yielding MRR of 0.788 and

0.789, respectively. The visitors graph G:V gives roughly

equal performance (MRR of 0.788). The contribution of

background knowledge seems negligible in this case.

Indeed, physical proximity is irrelevant in the per-exhibit

setting.

FIG. 5. Recall-at-rank performance of the evaluated methods: graph-based recommendation using the museum graph (G:M), the visitors ratings graph

(G:V), hybrid unified graph (G:U) and integrated variant scores (G:MV); item-based and user-based collaborative filtering (CF:I-KNN, CF:U-KNN),

matrix factorization (CF:MF), content-based recommendation (CB), a hybrid combination of CB and CF:I-KNN (HYB), popularity-based baseline

(B:P) and random recommendation baseline (B:R). (a) General recommendation mode. (b) Per-exhibit recommendation mode. [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE 3. Evaluation of graph variants.

General Per-exhibit

MRRU MRR MRRU MRR

G:M .058 .110ð189:6%Þ .582 .627ð17:7%Þ

G:V - .143 - .788

G:U .150 .151ð14:9%Þ .754 .788ð14:5%Þ

G:MV .150 .152ð11:3%Þ .735 .789ð17:3%Þ

9As noted by Kuflik et al. (2014), the second presentation viewed

matched the user profile, while the first one was a popular, generic one.
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Again, CF methods yield inferior results. MF yields

MRR of 0.658 compared with 0.788 using G:V, the graph

variant which models equivalent information. Likewise, the

results using CB are inferior to the counterpart G:M. The

hybrid method gives a comparable result to CF:MF (0.659),

and lower performance compared with any graph method

that considers the historical ratings.

Impact of Graph Tuning

Representing data as a graph involves some design

choices (see Data). Here we discuss the impact of

the edge weight parameters H on recommendation

performance.

We empirically tuned H using grid search, optimizing

recommendation performance on the held-out examples,

considering all combinations of edge weight values in the

range [0,1] with step 0.1.10 The viewed edges form an excep-

tion—these edge weights were set according to the feedback

scores assigned by the visitor to each presentation. In order

to avoid dominance of the viewed edges over other edge

types, the rating scores were transformed into decimal frac-

tions (0.1–0.5). We assigned these bi-directional edge types

(e.g., viewed and viewed21) identical weights, so as to

reduce the cost of edge weight tuning.

Table 3 shows MRR performance of the different graph

variants using uniform edge weight parameters (MRRU)

versus the final tuned weights. Figure 6 demonstrates recall-

at-rank-k results, prior to and post parameter tuning.

Because the graph G:V includes a single relation type, it

was not affected by weight tuning. Equal coefficients

FIG. 6. Impact of tuning parameters in affected graph variants, in terms of recall at the top ranks, in the general recommendation (left) and the per-

exhibit (right) recommendation modes. (a) G:M. (b) G:U. (c) G:MV. [Color figure can be viewed at wileyonlinelibrary.com]

10Parameters were tuned separately for the general recommendation

and the per exhibit scenarios.
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(a5:5) were used in the pretuned version of the G:MV

variant.

As shown, edge weight tuning was highly effective for

the museum graph, increasing its MRR result by roughly

90% in the general recommendation setting, and by about

8% in the perexhibit setting. MRR results using G:U and

G:MV were improved by means of weight tuning by 1.3–

7.3%, reaching the best result overall. Similar trends are

observed with respect to recall@k performance.

We found that low weights were assigned to the similar-
to and similar-theme edge types, possibly reflecting ineffec-

tive modeling of content-based similarity due to text sparsi-

ty. In contrast, the structural has-theme edges were assigned

high weights. The weight of the nearby edge type was set to

a high value in the general setting; unsurprisingly, in the

per-exhibit setting in which all candidate items are associat-

ed with a single exhibit, its weight was low. Overall, this

demonstrates the flexibility of the graph approach: the very

same graph is effectively optimized per recommendation

task by tuning its parameters.

Conclusions

We described a graph-based framework for generating

personalized recommendation to museum visitors. As visits

at museums are often a one-time experience and are limited

in time, recommendation must be performed in constant

“cold start” conditions. The lack of sufficient rating history

may be compensated by modeling of useful background

knowledge. Another aspect that must be modeled at the

museum is its layout—adjacent museum exhibits are typi-

cally semantically related, and items associated with exhibits

nearby are likely to be visited by the user.

In an extensive set of experiments, we have showed

that graph-based recommendation using the PPR measure

significantly outperforms a set of classical collaborative

and content-based recommendation methods. There are

several main reasons for the superiority of the graph-

based approach. First, the graph approach naturally mod-

els and integrates collaborative ratings together with

physical layout and content aspects. Further, the struc-

tured random walk similarity measure is transitive, thus

alleviating data sparsity. Moreover, the graph measure

can be tuned per the specific recommendation task; we

have shown that controlling the probability flow in the

graph by means of edge weight tuning improves perfor-

mance substantially. Finally, the random walk process

favors highly connected nodes, thus implicitly modelling

a bias towards popular items.

In the future, we would like to enrich the limited textu-

al content modeled in this work using the web (Grieser,

Baldwin, Bohnert, & Sonenberg, 2011) or linguistic

resources (Bohnert & Zukerman, 2014). In addition to

recommending multimedia presentations, it is possible to

advise the visitor on the next position to visit using the

described framework, and then organize these predictions

into path recommendations. Finally, in future work we

hope to extend our reach to additional museums and to

replicate the experiments in real-time settings, providing

recommendations and gathering feedback as the visitors

are touring in the museum.
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