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Abstract—Stroke is one of the most common adult injuries,
with 6.5 million stroke survivors in the US alone. We use a novel
motion capture system together with machine learning tools to
evaluate the standard stroke rehabilitation scale, the Fugl-Meyer
Assessment (FMA). FMA involves the patient performing specific
motor actions. A medical professional rates the performance and
provides an FMA score. We have developed a multi depth-camera
system using off the shelf consumer depth cameras. Its novelty
is in its ability to perform synchronization, data integration and
most importantly, calibration on the fly automatically without the
need of a professional operator. The camera system tracks the
subject’s body and outputs a stream of skeleton representations,
which allows to evaluate the patients’s motor performance. Using
a multi camera system rather than a single camera allows
capturing motion on all sides of the patient body, as required by
the FMA. The system was evaluated in a pilot study at a major
hospital. Applying machine learning techniques on the skeleton
streams, the system was able to correctly asses FMA scores on
2 of the standard motions with close to 100% success rate. This
serves as a proof of concept for the feasibility of creating a full
FMA home based assessment tool.

I. INTRODUCTION

Stroke is a serious medical condition which occurs when
the blood flow to an area in the brain is cut off. If a stroke is
not detected early enough, permanent brain damage or death
may occur. Around 800,000 people a year in the US incur
a stroke and there are 6.5 million stroke survivors in the
US. Stroke accounts for 1 of every 20 deaths in the US and
amounts to nearly 133,000 people a year [1]. Rehabilitation
of stroke patients is a long and slow process. The level of
rehabilitation of a patient is typically evaluated using the Fugl-
Meyer Assessment (FMA) [2]. This test involves the patient
performing specific motor actions. A physician or skilled
medical professional rates the performance on the FMA scale
and a score is derived. Thus, this score is subjective and
lacks a high degree of objectivity, impartiality and sensitiv-
ity. The Fugl-Meyer Assessment (FMA) is a stroke-specific,
performance-based impairment index. It is designed to assess
motor functioning, balance, sensation and joint functioning in

patients with post-stroke hemiplegia, (a weakness of one entire
side of the body). FMA is applied clinically and is used to
determine disease severity, describe motor recovery, and to
plan and assess treatment.

Since stroke is a debilitating disorder, patients often find
it difficult to travel to stroke rehabilitation centers for testing
and thus do not receive optimal medical care. Recent advances
in information and communication technologies connect spe-
cialists that are centered in urban areas with population in
suburban and rural areas and thus benefit these patients. This
technology, which enables treatment of patients in remote
areas and in nursing homes is termed Tele-Medicine stemming
from the use of telecommunication in order to provide health
care. Under the idea of Tele-Medicine, we propose an auto-
mated system for tracking and evaluating stroke rehabilitation
using a cost-effective home-based system. The system must be
non-invasive, easy to use, inexpensive and can be activated in
a home setting. In order to be consistent with the physician’s
view of the examinee and also to prevent tracking failures,
at least two cameras are necessary for analyzing both sides
of the patient independently. Thus, our multi-camera system
based on 3D cameras is appropriate for this task. In the current
study, Microsoft Kinect V2 was used. This device, released
in 2013, uses IR time-of-flight technology and incorporates
human tracking and skeleton representation [3], [4] (see Figure
1).

Since its release, the Kinect Camera V2 has been
extensively studied for its noise statistics [5], [6], [7], tracking
capabilities [8], [9], and compared with state-of-the-art and
commercial human motion camera systems [8], [10], [11],
[12]. The Kinect has been used in various applications such as
medical applications including Parkinson Tracking [8], [13],
balance disorders [14], rehabilitation [15], elderly monitoring
[9] as well as sport and dance tracking and analysis [16],
[17], and various other computer vision applications (see [18]
for a review).



Fig. 1. Micorosft Kinect Skeleton (left) and Joint Map (right).

Several studies have considered a multi-camera setup
using Kinect cameras [17], [19], [14]. The sensors either
showed interference (Kinect V1) or required special spatial
layout [20], or assisted calibration [14].

Several high-end motion capture systems are available
such as VICON [21], Optotrak[22], Ipi Soft[23] to name
a few, which provide the state-of-the-art in human body
tracking performance. However, these advanced technologies
have several significant limitations:

• Very expensive
• Non-Portable
• Invasive, typically require on-body markers.
• Complex to use, often requiring a professional trained

operator.
• Requires system calibration typically in the form of a

recording session using special dedicated accessories.
• In order to obtain a “skeleton” representation, requires

additional manual measurements of subject’s body parts
as part of the calibration.

• Often requires a large setup area, thus is inappropriate
for home settings.

Only a Few studies attempted to implement automated
FMA (“Fugl-Meyer”) tracking systems. In [24], the feasibility
of automating FMA was tested, but its set up required a
large space and was expensive (e.g., robotic arms, and EMG
sensors), making it unsuitable for clinics and home setups. In
another study [25], accelerometers were used for automated
assessment, but it is limited in its ability to quantify many
of the FMA tests due to the limited data acquired by the
accelerometers [25]. Computerizing the FMA using depth
sensors has previously been explored using a single Kinect
v2 sensor [26] and Kinect v1 sensor [24]. In our system we
use a multi-Kinect setup, which we show to be more reliable
for FMA since this test requires evaluation of the patient body
movement from both sides and a single Kinect is limited in the
sense that occlusion and non-frontality significantly reduces
body tracking capability and skeleton formation.

II. METHODS AND PROCEDURES

In a coupled study, a human motion capture system was
developed [27]. This system, that will be briefly presented
here, is inexpensive, portable, markerless (non-invasive), re-
quires no calibration equipment and performs at accuracy rates
on par with the competitive motion tracking systems. The
developed system is targeted for easy home use and tele-
medicine applications, as well as serving other applications
including security, object tracking, and more. The system
performs run time merging of data, resulting in a more reliable
and stable skeleton representation and as an added bonus,
allows alignment and merging of the 3D point clouds to form
a full 3D body representation.

A. The 3D multi-camera system

The multi-camera tracking system, is non-invasive (no
markers), inexpensive, portable and easy to use. It outputs a
reliable skeleton and a merged point cloud. As in any multi-
camera system, several necessary challenges must be dealt
with:

• Temporal Synchronization - ensures frames from different
cameras are temporally aligned prior to merging their
data. For our system, we developed a unique solution
for handling several computers connected to multiple
Kinects simultaneously. The temporal synchronization
between recordings is obtained using an NTP server. All
data required for calibration and merging is transmitted
to the server that runs the system algorithms. Since
this requires only the skeleton data stream, which is of
narrow bandwidth, the system runs in real-time over a
LAN communication network producing a single fused
skeleton stream (Figure 2).

Fig. 2. Two Kinects during real-time network streaming.

• Inter-camera calibration (camera pose estimation) - mul-
tiple camera setups require scene to camera calibration
as well as pose estimation between cameras in order
to merge their synchronized frames. Intra-camera cali-
bration involves mapping scene coordinates to camera
coordinates. In our system, this is inherently given by
the 3D cameras. However, the pose estimation or inter-
camera calibration must still be calculated. There are
several techniques for calibrating multiple cameras using
accessories such as a 3D board [23], a checkerboard [28],
a flashlight [23], and markers [21] (Figure 3). However,
running calibration sessions, and using special calibration



Fig. 3. Camera calibration. Using a checker board (top) and using our novel
skeleton calibration (bottom).

equipment is inappropriate in our case where simplicity
of activation is necessary especially for home use of the
system. We propose a novel method for calibration by
robustly matching skeleton joints which are generated by
the camera software [3]. It can be run on-the-fly and
requires no special calibration session. Rather, it relies
on the body of the subject being captured in the scene.

• Data Merging - Following the calibration and the pose
estimation, all the acquired data from all cameras must
be aligned in a common coordinate frame. The data must
then be merged into a single coherent representation. In
our system, this is efficiently and reliably performed with
both the body-skeleton stream and the 3D cloud points
(see figures 4 and 5).

Additional details on the system can be found in [27].

B. Medical experiment

We implement the multi-camera motion capture system
in a medical setting for automating the FMA assessment
procedure [2] in a home-setting. Our FMA application uses a
two camera setup (Figure 6), ensuring each side of the patient’s

Fig. 4. Aligned and merged cloud points from 2-Cameras.

Fig. 5. Aligned and merged body skeletons from 2-Cameras. Top: camera
outputs. Bottom: aligned skeleton (left) and merged (right).

body is properly viewed, and producing a reliable data to be
used in analysis. We conducted an Helsinki-approved study
in a major public hospital using our multi-camera tracking
system. 22 participants were filmed during their Fugl-Meyer
assessments. The participants were twelve stroke patients and
ten control healthy subjects. The subjects performed the Fugl-
Meyer assessment in the hospital testing room under the
guidance of a medical professional, one of the authors, who
also provided the FMA rating and FMA score for the patients
and the healthy subjects. The subject performed the FMA
motions with the hand on the affected side as well as the hand
on the unaffected side (termed- healthy hand). Each motion
was repeated several times.

The two Kinect cameras were set up in the testing room
so that they did not interfere with the testing yet obtained
unobstructed views of the subject. The cameras were posi-
tioned at 45 degrees angle to the subject’s front view, at a
distance of approximately 1.5-2 meters (see Figure 6). The two
cameras recorded the body skeleton of the subject performing
the motor task. In our experiment we focused on two key
motor movements from the Fugl-Meyer scale protocol, the
“Salute” and “Hand lift” (90 degrees) tests (see Figure 7).

An analysis application was developed for extracting mea-

Fig. 6. The 2-camera Kinect setup [23]



Fig. 7. Fugl-Meyer Salute and Hand Lift tests.

surements from the tracked body skeleton recordings as shown
in Figure 8, and these measurements were then used to detect
correlations with the physician’s diagnosis. Measurements
were extracted from each frame of the acquired skeleton
sequence, for each of the two FMA movements. Measurements
were derived from the angle defined by three skeleton joints,
the distance between a pair of joints or the height moved by
a single joint. The list of measurements is given in Table I.
From these measurements per frame, a list of features was
calculated for the whole skeleton sequence thus, providing a
feature vector for each sequence, per each motion and per each
subject. The extracted features per sequence included:

• Sequence time length
• Minimum, maximum of each measure within the se-

quence.
• Average and variance of each measure within the se-

quence.
• Difference between start and end values of each measure

along the sequence.
• Average speed and acceleration of each measure as it

changes along the sequence.

The feature vectors associated with each skeleton sequence
used in the analysis and the resulting analysis are described
in the following section.

Fig. 8. Analysis of the Fugl-Meyer “Hand Salute” test.

Measurements (participating joints)
Angle (Shoulder - Elbow - Wrist)
Distance (Head - Hand)
Angle (Spine Shoulder - Shoulder - Elbow)
Height (Hand)
Height (Elbow)
Height (Wrist)
Angle (Shoulder - Spine Shoulder - Spine Mid)
Angle (Hip - Shoulder - Elbow)
Distance (Hand - Knee)
Distance (Wrist - Hip)
Angle (Knee - Hip - Spine Mid)
Distance (Head - Elbow)
Distance (Camera to Shoulder)

TABLE I
LIST OF MEASUREMENTS USED IN OUR TESTING

III. RESULTS

In this section we analyze the data collected during the
medical trial. We show that our results concur with the medical
guidelines defined by the medical specialists, including the
known significant movement features, the differences between
patients and healthy subjects behavior and the special case
of motor compensation in stroke patients. We used machine
learning tools to perform classification and feature ranking.
The results are presented in the following three sub sections
and include: classifier results, showing success rate at pre-
dicting FMA scores, feature selection, presenting the most
significant features found by the classifiers, and statistical anal-
ysis for detecting motor compensation in the stroke patients
movement.

A. Classifiers benchmark

Participants in the experiment performed several repetitions
of the “Hand Lift” and “Salute” motions using each of the
hands. Stroke patients typically suffer from weakness of one
entire side of the body (Hemiplegia), but also suffer from a
general cognitive deterioration and reduced motor ability that
influences all body functioning including the “healthy” side
of the body. Thus, in order to distinguish between healthy
subjects and patients, we analyze each side of the subject
separately as well as analyzing the asymmetry of the subject’s
motor performance on both sides. Towards this goal we
performed several classification tests on the collected data:

1) “Raw data” - each repeated movement on each body
side is collected separately as a single sample for clas-
sification. Thus, each subject has numerous samples for
classification for each movement.

2) “Repetition averaging” - repetitions are averaged on each
body side thus, each subject has two samples for classi-
fication for each movement, one for each body side.

3) “Asymmetry measure” - repetitions are averaged on each
body side and then a measure of asymmetry is applied:
‖Right−Left‖
‖Right+Left‖ . Thus, each subject has one sample per
movement for classification.



To test the effect of using our multi camera setup compared to
a single camera setup, we analyzed these three data sets under
4 possible camera setups and data merging methods:

(a) Single camera - one of the two cameras in the setup was
randomly chosen for each subject as the source camera
for data collecting and only data from this camera was
used in the analysis.

(b) Two cameras - following the merging of skeletons as
described in [27], we consider 3 possible analyses:

(i) Averaging - Where the data from both cameras are
averaged.

(ii) Best choice - Where the best camera data is selected.
In this case the data is that which is acquired by the
closest camera to the skeleton joint (subject’s hand).

(iii) All samples - Where the data from both cameras
are not merged and used as sperate samples in the
classification.

In order to classify between patients and healthy subjects,
we ran several classifications based on the 3 types of data
and the 4 types of camera acquisitions. The features used per
sample were those detailed in Table I, and the class label of
each sample was the FMA score provided by the physician
(in our case score of 0-1 vs score of 2-3).

To build the classifiers, we used SVM [29], Single Decision
Tree (C4.5) [30] and the Random Forest [31] which uses
a forest of decision trees and often achieves better results.
In preliminary tests, while analysing several setups and data
types, SVM did not achieve better classification results than
random forests. For example for the “all samples” setup for the
“raw” data type for both salute and hand lift movements, SVM
achieved 87.63% success rate while Random Forest achieved
90.9%. Another goal we have in the classification process
is to validate the medical guidelines that were considered in
feature extraction so their final ranking in classifier is very

Camera setup Data used Samples C4.5 R-F
All samples Raw data 214 78.50 82.71
Best choice Raw data 134 69.40 82.08

Single camera Raw data 130 64.61 77.69
Averaging Repetitions average 44 77.27 79.54

Best choice Repetitions average 44 88.63 79.54
Single camera Repetitions average 45 66.66 82.22

Averaging Asymmetry measure 22 36.36 77.27
Best choice Asymmetry measure 22 81.81 90.90

TABLE II
CLASSIFIERS BENCHMARK SUMMARY - HAND LIFT

Camera setup Data used Samples C4.5 R-F
All samples Raw data 149 90.60 97.31
Best choice Raw data 95 88.42 96.84

Single camera Raw data 87 82.75 98.85
Averaging Repetitions average 44 93.18 97.72

Best choice Repetitions average 44 97.72 100
Single camera Repetitions average 43 97.67 100

Averaging Asymmetry measure 22 77.27 63.63
Best choice Asymmetry measure 22 45.45 59.09

TABLE III
CLASSIFIERS BENCHMARK SUMMARY - SALUTE

Camera setup Data used Samples C4.5 R-F
All samples Raw data 363 77.95 90.90
Best choice Raw data 229 84.71 89.95
Single camera Raw data 217 77.88 87.09
Averaging Repetitions average 88 85.22 90.90
Best choice Repetitions average 88 82.95 93.18
Single camera Repetitions average 88 90.90 81.81
Averaging Asymmetry measure 44 70.45 70.45
Best choice Asymmetry measure 44 72.72 75.00

TABLE IV
CLASSIFIERS BENCHMARK SUMMARY - BOTH SALUTE & HAND LIFT

interesting for us. Decision trees are more convenient than
SVM in that matter because of its built-in feature selection and
that is why we focus on these algorithms in our classification
analysis. Furthermore, given the ease of feature ranking using
Random Forest, we report our results using only the decision
tree classification approach.

The decision tree was built using three folds, with batch size
100, and confidence factor 0.25. The Random Forest classifier
used the same parameters and up to 100 trees. A leave-one-out
strategy was used for cross-validation, which entailed leaving
out one subject at each iteration and training on the rest

Tables II and III show classification results for the Hand
Lift and for the Salute motion respectively. Table IV shows
classification results when data of both motions were used
collectively. The tables present the summarized benchmarks
across all subjects comparing the different data formats and
different camera setups.

Analyzing the results shown in the tables, it can be seen
that the Salute movement shows better classification results
than the Hand Lift movement, with correct percentage of 96-
100% (Table III rows 1-6). The success rate for the Hand Lift
motion (Table II) is much lower. This may be explained by the
difficulty and complexity of the Salute movement for patients.
When using all data from both movements (Table IV) good
performance is also achieved at 87-93% success rate.

The results also show that classifying using the asymmetry
measure yields inferior results compared to the other data sets.
This, and the fact that the classifications were run on data
from both the affected and healthy body sides, imply that both
the stroke affected side and the subject’s healthy side provide
distinguishing features enabling separation of patients from
healthy subjects. In the context of the cameras setup, it can
be seen that the 2-camera setup outperforms the single camera
setup in most cases. The average correct percentage of all cases
with a single-camera is 87.5% compared to 90.4% in the two-
camera setup (excluding the asymmetry versions). Advantage
is seen when using the best choice camera over the averaging
method.

B. Feature selection

Classification between healthy subjects and stroke patients
was shown to performed better, when analyzing each side of
the subject independently rather than using the asymmetry
measure. Thus, in this section we focus on these high-
performance classifiers and explore them further by ranking
their features.



We use two feature selection ranking methods:

1) The Information Gain univariate feature ranking
(Kullback-Leibler divergence) [32].

2) Random Forest features ranking [31] which summarizes
the ranks of all selected features according to their
positions in the decision trees.

Tables V and VI show rankings of features from the 6 best
classifiers (Tables IV, II, III) using the info gain ranking and
the random forest ranking respectively. The top 10 features
are listed. It can be seen that the 3 most significant features
across almost every classifier are (marked by colored rows):

1) Total time - Representing the period of time between start
and end of the movement.
Patients are typically slower than healthy subjects so the
significance of this feature is clear.

2) Distance (Head - Elbow) Average speed - Representing
the speed of the “changing distance” between the head
and the elbow while performing the hand lift or salute
movement. These two joints are central to performing
both movements and the speed in which the movement is
performed is reflected in the change in distance between
these joints.

3) Angle (Hip - Shoulder - Elbow) Average speed - This
feature defines the speed of the changes in the “shoulder”
angle (arm to body angle) which is intuitively the signif-
icant angle while estimating the hand lifting or salute
movements.

All these top features represent, in some form, the difference
of “speed” between healthy and patients. The specific skeleton
joints represented in these features are directly related to the
medical guidelines of the FMA and the instructions given by
the specialist to the patient (e.g. for the Hand lift, the patient
is required to lift hand to 90◦ angle between arm and body).

We summarize the experimentation in concluding that FMA
can be automatically scored using the features above, to dis-
tinguish between patients with high severity and low severity
(and healthy) FMA scores.

C. Compensation Statistical analysis

Motor Compensation refers to the alternative strategies
developed by stroke patients in order to compensate for their
difficulty or inability to perform a motor task [33]. In the
context of FMA, this is expressed as increased movement
signals in body parts that are unrelated to the motor task, such
as the movement of the spine or the shoulders during hand
lifting [33]. In the current study, we analyzed the measured
motion and position of stroke patient body parts to uncover
motor compensation in patients during FMA.

Following the medical guidelines [33], we analyzed the
following motion features in order to detect well known com-
pensation strategies used by stroke patients when performing
Hand Lift and Salute motion:

1) Elbow Angle - (Shoulder - Elbow - Wrist) -
Tests if the hand is straight during the movement.

All Samples Raw Data Salute & Hand lift
Top 10 Ranked Features Rank
Total time 0.60
Distance (Head - Elbow) - Average Speed 0.39
Distance (Head - Hand) - Variance value 0.32
Distance (Head - Hand) - Start-Stop Difference Value 0.28
Distance (Head - Elbow) - Variance Value 0.27
Distance (Head - Elbow) - Start-Stop Difference Value 0.26
Angle (Hip - Shoulder - Elbow) - Average Speed 0.26
Distance (Hand - Knee) - Max Acceleration 0.23
Height (Hand) - Min Speed 0.21
Distance (Hand - Knee) - Average Speed 0.21

Best choice Repetitions avg Salute & Hand lift
Top 10 Ranked Features Rank
Total time 0.68
Distance (Head - Elbow) - Average Speed 0.48
Angle (Hip - Shoulder - Elbow) - Average Speed 0.46
Distance (Hand - Knee) - Average Speed 0.45
Angle (Hip - Shoulder - Elbow) - Min Speed 0.40
Distance (Head - Elbow) - Max Speed 0.40
Distance (Hand - Knee) - Max Acceleration 0.33
Distance (Head - Elbow) - Variance value 0.32
Angle (Shoulder-Spine Shoulder-Spine Mid) - Avg Speed 0.31
Distance (Head - Elbow) - Start-Stop Difference value 0.31

All samples Raw data Hand lift
Top 10 Ranked Features Rank
Total time 0.42
Distance (Head - Elbow) - Average Speed 0.29
Angle (Hip - Shoulder - Elbow) - Variance value 0.27
Distance (Head - Hand) - Variance value 0.24
Height (Hand) - Start-Stop Difference value 0.22
Height (Wrist) - Start-Stop Difference value 0.22
Distance (Head - Hand) - Average Speed 0.21
Distance (Head - Elbow) - Start-Stop Difference value 0.20
Distance (Head - Hand) - Start-Stop Difference value 0.20
Height (Hand) - Variance value 0.18

Best choice Repetitions Avg Hand lift
Top 10 Ranked Features Rank
Total time 0.64
Angle (Spine Shoulder - Shoulder - Elbow) - Max Accel. 0.38
Angle (Hip - Shoulder - Elbow) - Start-Stop Difference value 0.34
Angle (Hip - Shoulder - Elbow) - Variance value 0.33
Angle (Hip - Shoulder - Elbow) - Average Speed 0.33
Angle (Shoulder - Elbow - Wrist) - Max Acceleration 0.33
Distance (Head - Elbow) - Average Speed 0.32
Height (Hand) - Variance Acceleration 0.31
Height (Hand) - Max Acceleration 0.31
Distance (Hand - Knee) - Max Acceleration 0.31

All samples Raw data Salute
Top 10 Ranked Features Rank
Total time 0.84
Distance (Head - Elbow) - Average Speed 0.73
Distance (Head - Hand) - Average Speed 0.62
Distance (Hand - Knee) - Average Speed 0.61
Angle (Hip - Shoulder - Elbow) - Average Speed 0.60
Distance (Head - Elbow) - Start-Stop Difference value 0.55
Distance (Wrist - Hip) - Average Speed 0.51
Angle (Shoulder - Spine Shoulder - Spine Mid) - Max Accel. 0.44
Distance (Head - Elbow) - Variance value 0.44
Distance (Head - Hand) - Start-Stop Difference value 0.41

All Samples Raw Data Salute
Top 10 Ranked Features Rank
Total time 0.99
Distance (Head - Elbow) - Average Speed 0.86
Angle (Hip - Shoulder - Elbow) - Average Speed 0.77
Angle (Shoulder - Spine Shoulder - Spine Mid) - Average Speed 0.70
Distance (Head - Elbow) - Start-Stop Difference value 0.68
Angle (Hip - Shoulder - Elbow) - Min Speed 0.64
Distance (Head - Hand) - Average Speed 0.64
Distance (Head - Elbow) - Max Speed 0.58
Distance (Hand - Knee) - Average Speed 0.56
Distance (Wrist - Hip) - Average Speed 0.50

TABLE V
FEATURE SELECTION RESULTS - INFORMATION GAIN



All Samples Raw Data Salute & Hand lift
Top 10 Ranked Features Rank
Total time 25.97
Distance (Head - Elbow) - Variance value 23.37
Distance (Head - Elbow) - Start-Stop Difference value 21.00
Angle (Hip - Shoulder - Elbow) - Average Speed 20.71
Height (Hand) - Start-Stop Difference value 20.63
Distance (Wrist - Hip) - Average Speed 19.43
Angle (Hip - Shoulder - Elbow) - Min Speed 18.90
Distance (Head - Elbow) - Average Speed 18.51
Height (Wrist) - Start-Stop Difference value 17.63
Distance (Wrist - Hip) - Max Acceleration 16.89

Best choice Repetitions avg Salute & Hand lift
Top 10 Ranked Features Rank
Total time 22.50
Angle (Hip - Shoulder - Elbow) - Min Speed 17.75
Distance (Wrist - Hip) - Max Acceleration 16.00
Distance (Head - Elbow) - Variance value 15.62
Distance (Head - Elbow) - Max Speed 14.00
Height (Hand) - Variance Speed 13.12
Distance (Head - Elbow) - Average Speed 12.00
Angle (Shoulder - Elbow - Wrist) - Max Acceleration 11.75
Angle (Shoulder - Spine Shoulder - Spine Mid) - Avg Speed 11.18
Height (Wrist) - Max Acceleration 11.00

All Samples Raw Data Hand lift
Top 10 Ranked Features Rank
Distance (Head - Elbow) - Average Speed 26.14
Total time 24.61
Angle (Hip - Shoulder - Elbow) - Variance value 18.06
Distance (Head - Hand) - Variance value 17.03
Height (Wrist) - Start-Stop Difference value 16.23
Height (Hand) - Start-Stop Difference value 16.04
Height (Hand) - Max Acceleration 16.00
Distance (Head - Elbow) - Variance value 15.42
Height (Hand) - Variance value 14.38
Angle (Hip - Shoulder - Elbow) - Average Speed 13.93

Best choice Repetitions avg Hand lift
Top 10 Ranked Features Rank
Total time 17.50
Angle (Hip - Shoulder - Elbow) - Max Acceleration 16.50
Angle (Hip - Shoulder - Elbow) - Start-Stop Difference value 14.25
Distance (Head - Elbow) - Max Acceleration 13.50
Angle (Hip - Shoulder - Elbow) - Average Speed 10.50
Angle (Shoulder - Elbow - Wrist) - Max Acceleration 9.75
Distance (Hand - Knee) - Max Acceleration 9.50
Distance (Wrist - Hip) - Max Acceleration 8.25
Height (Wrist) - Max Acceleration 7.25
Distance (Wrist - Hip) - Average Speed 7.00

All Samples Raw Data Salute
Top 10 Ranked Features Rank
Total time 27.28
Angle (Shoulder - Elbow - Wrist) - Average Speed 17.25
Distance (Head - Hand) - Average Speed 16.00
Distance (Head - Elbow) - Average Speed 15.75
Height (Elbow) - Average Speed 15.625
Distance (Head - Elbow) - Variance value 14.50
Distance (Head - Elbow) - Start-Stop Difference value 14.00
Height (Hand) - Variance Speed 12.00
Angle (Hip - Shoulder - Elbow) - Average Speed 11.87
Angle (Shoulder - Spine Shoulder - Spine Mid) - Min Speed 11.75

Best choice Repetitions avg Salute
Top 10 Ranked Features Rank
Total time 20.00
Angle (Hip - Shoulder - Elbow) - Average Speed 16.00
Distance (Head - Hand) - Average Speed 15.00
Distance (Head - Elbow) - Average Speed 15.00
Distance (Head - Elbow) - Max Speed 13.00
Angle (Hip - Shoulder - Elbow) - Min Speed 12.00
Distance (Head - Elbow) - Variance value 9.75
Distance (Head - Elbow) - Min value 9.50
Distance (Head - Elbow) - Max Acceleration 8.00
Angle (Shoulder - Spine Shoulder - Spine Mid) - Avg Speed 7.75

TABLE VI
FEATURE SELECTION RESULTS - RANDOM FOREST

2) Spine Angle - (Knee - Hip - Spine Mid) -
Tests if the back is straight during the movement.

3) Shoulder Distance - (Camera to Shoulder) -
Tests if the shoulders are stable during the movement.

Patients should present increased motion signals for these
features when they perform motor compensations, thus, we
focus on the STD values of these features along the time
course of the analyzed movement. We used the T-Test [34],
to evaluate each compensation feature independently. The
results, given in Table VII, show that for the Hand Lift
motion, patients showed increased motion in all cases, with
significant results, at threshold of 0.05, in the spine angle
(t(−2.437) = 42, p = 0.019) and the shoulder distance
(t(−2.105) = 35.5, p = 0.042). For the Salute motion (Table
VIII), we exclude the Elbow angle, since saluting does not
require maintaining a straight arm. In this case, only the spine
angle is significant (t(−2.851) = 35.43, p = 0.007), whereas
shoulder distance shows an insignificant opposite trend.

Elbow Spine Shoulder
Angle Angle Distance

Patient 8.80±.88 3.37±.31 0.03±.004
Healthy 7.96±.68 2.44±.20 0.02±.002
Sig (2-tailed) 0.467 0.019 0.042

TABLE VII
COMPENSATION LEVELS IN STROKE PATIENTS AND HEALTHY SUBJECTS

FOR THE HAND LIFT MOVEMENT

Spine angle Shoulder distance
Patient 2.47±.29 0.071±.01
Healthy 1.53±.16 0.074±.01
Sig (2-tailed) 0.007 0.879

TABLE VIII
COMPENSATION LEVELS IN STROKE PATIENTS AND HEALTHY SUBJECTS

FOR THE HAND SALUTE MOVEMENT

IV. DISCUSSION

In this study, a novel multi-camera tracking system was
applied to evaluating motor movement of stroke patients as
part of our stroke rehabilitation project and with the goal of
allowing home assessment for patients. We showed very high
classification rates between stroke patients and healthy sub-
jects using our Fugl-Meyer analysis application. In addition,
the top-ranking features were found to strongly relate to the
Fugl-Meyer instructions and indicate the significance of speed
of motion in determining the FMA score. Two movements
were tested, both in the category of upper-limb function ability.
The results show that a complex movement such as the Salute
is a much better indicator than a simple movement such
as the Hand Lifting. Our experiment also showed that the
asymmetry between movements in patients’ two hands is not
a distinguishing factor and it is advantageous to analyze each
hand independently.

We also found that patients show higher levels of compen-
sation than healthy individuals. These results show, for the first
time, that compensation can be detected and tracked using a
consumer camera and suggests that in the future, such systems
will be able to track and quantify in depth rehabilitation
processes.



Our system showed consistent results with expensive and
invasive high-end motion capture systems: our analysis showed
that stroke patients move slower and take longer to perform
a motor task compared to healthy subjects. This corresponds
with [35] where infrared light emitting diodes (IREDS) were
used invasively to show this effect. Our findings (Tables VII
and VIII) also show increase in trunk flexion (spine motion)
in patients attempting to move their hand to the target position
compared to healthy subjects. This was found in [36] by
using an optical motion analysis system, where eight infrared
emitting diodes (IREDs) were placed on body landmarks of
the hand, arm and trunk.

The high classification rate between stroke patients and
healthy subject and the consistency with high-end systems
show that, with additional effort, our system is suitable for
stroke rehabilitation quantification from the patients home.
Additional effort is needed in developing a dedicated user
interface for a system operated by unprofessional end users.
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