
Cogn Comput manuscript No.
(will be inserted by the editor)

The Importance of Pen Motion Pattern Groups for Semi-Automatic
Classification of Handwriting into Mental Workload Classes

Murad Badarna · Ilan Shimshoni · Gil Luria · Sara Rosenblum

Received: date / Accepted: date

Abstract – Background: In this paper we introduce the
pen motion pattern groups (PMPGs) and their contri-
bution to the classification of handwriting into cogni-
tive mental workload classes. We demonstrate the im-
portance of PMPGs by providing an efficient semi-automatic
machine learning based classification framework that dis-
tinguishes between handwritten texts written by the same
person under different mental workloads. Our evaluation
framework is non-language-dependent since we used stroke
features, which are not language-specific, and it takes
into account the variability in behavioral biometrics be-
tween different writers.

– Methods: The handwritten text data was collected us-
ing the Computerized Penmanship Evaluation Tool. This
digitizer provided accurate temporal measures through-
out the writing. As a first stage, the participants were
asked to write a given text in the Hebrew language. Then,
as a second stage, the participants’ cognitive workload
was manipulated by asking them to hold a number in
their memory during the entire writing task.

– Results: In our experiments we show that incorporating
the PMPGs into the classification process yielded an av-
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erage cognitive load discrimination accuracy of 92.16%,
which decreased to 72.90% when the PMPGs were not
considered.

– Conclusions: The separation of handwritten strokes into
PMPGs allows us to account for the fact that the strokes
are affected differently under different cognitive men-
tal workloads. This novel distinction between PMPGs is
important since the handwriting process in each PMPG
is different from a perceptual motor and brain-hand con-
trol point of view.
Moreover, most of the features that are influenced by
cognitive workload are those that cannot be discerned by
an expert when looking at a handwritten text on paper,
such as azimuth, tilt, velocity, acceleration and pressure.

Keywords Handwriting · Classification · Computerized
measures · Mental workload · Digitizer

Introduction

The human cognitive system is of interest to researchers
developing computational applications for various purposes
in multidisciplinary fields [47, 58, 53, 3, 14, 55, 27, 38].
For more than three decades researchers have attempted to
understand human cognitive abilities. However, despite ini-
tial promise, there has been little advance towards profound
comprehension [27]. More specifically, research is still needed
with regard to relationships between the cognitive system
and actual activity performance characteristics. Currently,
data are obtained mainly through sensors [58]. The present
study is concerned with obtaining information about hand-
writing activity by capturing visual-motor parameters and
producing from them a spatio-temporal sequence [48, 26]
via an electronic tablet (digitizer). The digitizer is a nonin-
vasive, unobtrusive tool that detects behavioral biometrics of
perceptual-motor task performance [8]. Such insights may
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be valuable for developing computational medical evalua-
tions as well as for a variety of human–computer interac-
tions involving cognitive abilities [46].

Multiple studies have demonstrated the advantages of
computerized, objective, spatial, temporal, and pressure mea-
sures supplied by the digitizer, for capturing the handwrit-
ing process (e.g., [15, 21, 10]). These studies fall into two
categories. The first category of studies provided good indi-
cators of clinical and applied conditions (e.g., mild cogni-
tive impairment or Alzheimer’s disease [56], and depression
[42]). The second category of studies provided evidence that
the computerized measures are sensitive to the mental cog-
nitive workload of healthy individuals. For instance, Luria
and Rosenblum [25, 24, 40, 38] have shown that the com-
puterized measures of writing under certain workload con-
ditions significantly differ from those obtained when writing
under other mental workloads. Moreover, studies (e.g., [33])
have shown that the non-language-dependent measures re-
flect individual handwriting uniqueness and low/high cogni-
tive load [23].

The overall body of research on computerized handwrit-
ing analysis offers evidence that physical, cognitive, clinical,
psychological, and situational characteristics of individuals
can be captured through these computerized outcome mea-
sures. Spatial, temporal, and pressure measures that reflect
attributes of writing are sometimes visibly evident on the
written page (such as legibility, letter size). The interesting
point is that these measures also capture behavior that oc-
curs above the page (in the air, between strokes, tilt velocity,
azimuth velocity, etc.) and has no visible outcome on the
written page [1, 43, 25].

In order to analyze handwriting automatically, many re-
searchers used stroke features to extract valuable informa-
tion about individual handwriting uniqueness and to pro-
vide indicators of clinical and applied conditions (e.g., an-
alyze behavior organization of children with developmen-
tal coordination disorders [35] and analyze handwriting of
people with developmental coordination disorders [34, 37,
40]). Some previous works offered evidence of statistical
differences between handwritten texts written under differ-
ent mental workloads of the same writer ([24, 25, 23]). How-
ever, all these authors analyzed all strokes similarly without
the ability to differentiate between different strokes. Some of
these authors even mentioned the problem as a technologi-
cal limitation of their research [24, 25]. Our study aims to fill
this gap using a semi-automatic classification algorithm. We
used stroke features in order to build a classification frame-
work for cognitive mental workloads.

There is also considerable variability in the behavioral
biometrics between different writers in relation to handwrit-
ing. The handwriting strokes have unique characteristics for
each writer; therefore, using a single classifier over all writ-

ers would not be useful to classify strokes into their related
mental workload class.

Fig. 1 The handwriting analysis framework

In our study, we separate the analysis of handwriting into
pen motion pattern groups (PMPGs). We solve the problem
of variability in handwriting by using a separate classifier
for each writer, which is trained on his or her own handwrit-
ing strokes in order to classify the PMPGs (see Fig. 1). Next,
as a second phase, given the output of each writer’s classi-
fier, we trained another classifier that uses these PMPGs to
classify each writer’s stroke into its related mental workload
class. This classification task is quite challenging. We can,
however, exploit the fact that the entire handwritten text was
performed under a single mental workload class. Therefore,
we use the output of the latter classifier as input to a single
classifier that attempts to classify the entire handwritten text
segment into a single mental workload class.

The proposed handwriting analysis framework is gen-
eral in the sense that it can be used to classify handwritten
text into any two different mental classes A and B. In this
paper we show how our framework can be used to distin-
guish between a given text written under a low mental work-
load (class A), where the writer is simply asked to write the
text, and under a high mental workload (class B), where the
writer is asked to write the text while trying to remember a
number.

There are several applications of our semi-automatic clas-
sification framework in the clinical field [24, 42]. The de-
tection of cognitive load in handwriting has been proven a
valid measure of illness (such as Parkinson’s disease [5],
Alzheimer’s disease [56] and [36]) and even as a valid mea-
sure for the detection of deception regarding health [23].
Our study takes these existing tools a step further to yield a
better and more valid detector of these conditions.
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Our proposed classification framework is non-language-
dependent since we used stroke features, which are not lan-
guage specific, as multiple studies have shown [33, 25, 24,
40]. Each PMPG is different from a perceptual motor, brain-
hand control point of view. Although the proportion of each
PMPG may vary between languages, our classification frame-
work is not affected since this information is not considered
by our analysis.

Our study distinguishes itself from previous studies in
the literature in the following manner:

– To the best of our knowledge, none of the previous stud-
ies provided a technique for semi-automatic classifica-
tion of handwriting under different cognitive mental work-
loads. Most previous works presented evidence only of
statistical differences [25, 23, 24, 40]. In contrast, in
this study, we propose an efficient technique for semi-
automatic handwriting analysis using a machine learn-
ing based classification framework [18].

– Several studies have proposed machine learning based
techniques that successfully extracted valuable informa-
tion from handwritten text (e.g., gender classification [44],
diagnosis of Parkinson’s disease [17, 4, 5], signs of aging
[7, 6], on-line signature verification [11, 9], automatic
diagnosis of Alzheimer’s disease [22], analysis of neu-
rological disorders [45], analysis of child development
on the basis of handwritten performance [52], recogni-
tion of extraversion [12], and classification of emotional
states [19]). However, all these methods distinguish be-
tween texts written by two groups of writers (users);
none has tried to distinguish between two states of the
same writer (user). The classification between handwrit-
ten strokes of the same writer in two mental workload
states is difficult because the differences in the same
writer’s handwritten strokes are small. Therefore, we need
additional knowledge such as the PMPGs in order to
successfully classify these mental workload states.

– To the best of our knowledge, no previous studies in the
literature distinguish between PMPGs, as we do here for
the first time. This distinction is important. For instance,
a line stroke is produced by motion of the wrist, with no
need for precise control of left-to-right or top-to-bottom
motion (or vice versa). On the other hand, producing a
loop stroke requires good control of well-synchronized,
precise finger movements for pen control while utilizing
cognitive resources [54, 29]. Therefore, for each PMPG,
the handwriting changes in a different manner. In the ex-
periments, we show that when incorporating the PMPGs
into the classification process, the average accuracy was
92.16%, as opposed to 72.90% when the PMPGs were
not included.

The insights revealed in this study may be the first step
toward achieving automatic activity recognition [58, 26]. They
may also further the acquisition of information about the

learning and reasoning processes related to individual visual-
motor parameters [30].

The remainder of this paper is organized as follows. The
Methods section describes the experiments performed on
human subjects in order to collect the data. The Background
section describes the stroke features, the PMPGs, and a brief
summary of the Random Forest classifier, which is used in
our system. Building on this description, we introduce our
classification framework in the Handwriting Analysis Frame-
work section. Next, a discussion of the main results and the
evaluation of our framework are given in the Experiments
section. Finally, conclusions and future work are given in
the Future Work section.

Methods

Participants

The participants were 88 healthy students, 54 females and 34
males, aged 20–35 (mean age 25.51, SD=3.41), who were
recruited at the University of Haifa in northern Israel. 70%
of the participants were born in Israel, while 27% were born
in the former Soviet Union and 3% in the rest of Europe.
The majority (85%) of the participants had right-hand dom-
inance, and 15% were left-handed.

The criteria for inclusion were: residence in Israel for
at least 20 years; normal or corrected-to-normal vision and
hearing ability; at least 13 years of education; and a min-
imum of three sentences in Hebrew written at least three
times a week. Anyone suffering from any form of neurologi-
cal/emotional disorder or physical disability was not eligible
to participate in the study.

Computerized Measures of Handwriting

The handwritten text data was collected using the Computer-
ized Penmanship Evaluation Tool (ComPET)[39]. All writ-
ing was on A4 lined paper affixed to the surface of a WA-
COM Intuos 2 (Model GD 0912-12X18) xy digitizing tablet,
using a wireless electronic pen with a pressure-sensitive tip
(Model GP-110). The x and y location and angle of the pen
tip were sampled on the digitizer at 100 Hz by means of a
1300-MHz Pentium (R) M laptop computer. The digitizer
provided accurate temporal measures throughout the writ-
ing, both when the pen was touching the tablet (on-paper
time) and when it was raised (in-air time). It also provided
accurate spatial measures when the pen was touching the
tablet and/or when it was lifted above the digitizer (up to 6
mm). Beyond 6 mm, spatial measurement was not reliable.

The handwriting evaluation system does not recognize
letters, words, or sentences. It only analyzes segments, that
is, the curves created by the movement of the pen-tip on the
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paper, which are represented on an x-, y-coordinate system
[28]. That is, the computerized analysis recognizes points
when the pen is in contact with and/or leaves the paper.
Strokes were measured from when pen pressure rose above
50 (non-scaled units) at the beginning of a stroke to when
the pen returned to 50 at the end of the stroke and was raised
from the paper.

In conclusion, the pen collects the following raw mea-
sures:

– (x,y) coordinates: the position of the pen on the tablet.
– Pressure (non-scaled units 0–1024): the pressure on the

pen.
– Tilt (from 0 – 90): the angle between the pen and its

projection on the tablet.
– Azimuth (from 0 – 359): the angle of the pen barrel pro-

jected on the x-y tablet plane.
– Timestamp: the time that the sample was taken.

Procedure

Signed informed consent was obtained from the participants
following approval by the Ethical Committee of the Uni-
versity of Haifa. Advertisements at the university were used
to recruit students to participate in the study. The socio-
demographic questionnaire included gender, age and num-
ber of years of education.

As a first stage, the participants were asked by the ex-
perts to write a given text in the Hebrew language (see Fig. 2).
Here, the cognitive mental workload is low since the partic-
ipant is only required to write the given text. We henceforth
refer to this mental workload level as class A. Then, as a
second stage, the participants’ cognitive workload was ma-
nipulated by asking them to hold the number 5968732 in
their memory during the entire writing task (see Fig. 3). In
this task the cognitive mental workload level is high and we
henceforth refer to this mental workload level as class B.
The participants were then asked to report the number at the
end of the experiment as well as answer several hypothesis
awareness questions.

Research assistants ensured that the participants had no
chance of writing down the number before being requested
to recall it. The overall experimental procedure was super-
vised by experts from the Laboratory of Complex Human
Activity and Participation (CHAP) at the University of Haifa.

(a) On Surface strokes

(b) In Air strokes

(c) On Surface and In Air strokes

Fig. 2 Low mental workload (class A)

In this experiment, the cognitive workload level was in-
creased using a memory trigger task based on numbers. Num-
bers give better tuning control of the manipulated cognitive
workload level than images and words. This specific cogni-
tive load manipulation procedure was adopted in a number
of previous studies (e.g., [13, 16, 32, 50]).

Each participant wrote two identical texts. The first text
was written under low cognitive mental work load (marked
as class A) and the second was written under high cogni-
tive mental workload (marked as class B). However, as can
be seen from both Figures 2 and 3, it would be difficult
even for an expert to distinguish between class A and class
B when looking at the handwritten text on paper. A classifi-
cation algorithm that takes into account the perceptual mo-
tor and brain-hand control features of the handwriting task
is required for this purpose.
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(a) On Surface strokes

(b) In Air strokes

(c) On Surface and In Air strokes

Fig. 3 High mental workload (class B)

Background

In this section, we first describe the stroke features and the
PMPGs. Next, we briefly describe the Random Forest clas-
sifier that we used.

Stroke Features

We used several features to analyze handwriting behavior,
which were computed based on the raw measures collected
for each stroke:

– Spatial: Width, height, displacement, curve length (all
measurements were in millimeters):
– Stroke curve length: the total path length from the

starting point to the finishing point for each written
stroke.

– Stroke height (on the y-axis): the direct distance from
the lowest point of the stroke to the highest point.

– Stroke width (on the x-axis): the direct distance from
the left side of the stroke to the right side.

– Displacement: the direct distance between the start-
ing point of stroke and its finishing point.

– Kinematic: Velocity (mean, median and, standard devi-
ation (std)) and acceleration (mean, median and, std):

– Velocity is the speed of writing the stroke, measured
in millimeters per second.

– Acceleration is the rate of change of velocity.
– Duration time is the time it takes the writer to write

the stroke. Stroke duration in air (while the pen is not
in contact with the writing surface) and on paper, both
reported in seconds.

– Pressure: mean, median, standard deviation, skewness,
kurtosis, velocity (mean, median and, std) and accelera-
tion (mean, median and, std).

– Angles- tilt, azimuth and, directional angle (the direction
angle of writing the stroke): mean, median, std, skew-
ness, kurtosis, velocity (mean, median and, std) and ac-
celeration (mean, median and, std).

The Stroke Pen Motion Pattern Groups (PMPGs)

The strokes were divided into seven PMPGs by an expert
(see Fig. 4). These groups take into account the complex-
ity level of the perceptual motor and brain-hand control re-
quired to produce the stroke. Strokes with similar complex-
ity levels are clustered together in the same PMPG group.
Strokes within the same PMPG share common properties,
as follows:

Curved

Lined

Loop

Combined

In Air
Between

Lines

In Air
Between

Words

In Air
Between
Strokes

Fig. 4 The Stroke PMPGs



6 Murad Badarna et al.

In air PMPGs

– In Air between strokes: the transition of the pen in air
from one stroke to another (see Fig. 5(a)).

– In Air between words: the transition of the pen in air
from one word to another (see Fig. 5(b)).

– In Air between Lines: the transition of the pen from
one line of words to the next one. Note that the digitizer
detects the actual motion only below a height of 6 mm
above the tablet surface (see Fig. 5(c)).

(a) In Air between strokes

(b) In Air between words

(c) In Air between lines

Fig. 5 In Air strokes.

On surface PMPGs

– Lined: the stroke consists of straight lines (see Fig. 6(a)).

– Curved: the stroke consists of one curve or more (see
Fig. 6(b)).

– Loop: the stroke consists of a loop (see Fig. 6(c)).
– Combined: the strokes consists of two or more different

parts - loop and line, curve and loop, or loop and line
(see Fig. 6(d)).

(a) Lined

(b) Curved

(c) Loop

(d) Combined

Fig. 6 On surface strokes.
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The Random Forest Classifier

In our handwriting analysis framework, we used the Ran-
dom Forest classifier [2]. The Random Forest grows many
classification decision trees. To classify a new object from
an input vector, the input vector is traversed down each of
the trees in the forest. The forest chooses the classification
having the most votes over all the trees in the forest.

We selected the Random Forest classifier for three rea-
sons. First, it has the unique characteristic of being able to
automatically select features, which is the automatic selec-
tion of attributes in the data that are most relevant to the pre-
dictive modeling problem [2, 20]. In the Experiments sec-
tion we show the importance of this step in improving clas-
sification accuracy. Second, the Random Forest provides a
natural way for understanding how each PMPG is affected
under different mental workloads, as shown in The Rele-
vance of Stroke Features section. Third, the computational
complexity of the training phase of a Random Forest is quite
low and its run time is relatively fast.

Handwriting Analysis Framework

The architecture of our classification framework is summa-
rized in Fig. 1. It consists of three phases. In the first phase,
we use a classifier that aims to classify each handwriting
stroke to its appropriate PMPG. In our initial experiments,
we tried to use one classifier for all writers but with little
success because of the variability in the behavioral biomet-
rics between them. In order to overcome this problem, we
used a separate classifier for each writer.

Here, we manually labeled the PMPG of each stroke
written under class A. Then, a Random Forest classifier was
trained over these strokes. Using this classifier, we automati-
cally classified the strokes of the same writer that were writ-
ten under class B. In other words, a Random Forest clas-
sifier was trained on each writer’s own strokes written un-
der class A. Then, it was used to classify the same writer’s
strokes written under class B. We found that such a classifier
succeeded to classify each stroke to its PMPG of the same
writer within an acceptable error rate. However, we will see
in the Experiments section that automatic classification of
the PMPGs alone is insufficient and should be augmented
with manual classification for more accurate overall perfor-
mance.

The second phase of our framework classifies each stroke
into its mental workload class. In this way, we can identify
how the features of such a stroke are affected under each
class and hence improve the results. A Random Forest clas-
sifier was used here as well. Again, because of the variabil-
ity in behavioral biometrics, we used a separate classifier for
each writer. The inputs for this classifier are the handwriting
stroke feature vectors and the relevant PMPG. A separate

classifier is created for each PMPG. This step is important
to our classification scheme, since each PMPG is influenced
differently by the writer’s mental workload. In this way, each
writer has a unique classifier which would classify his/her
strokes into the suitable mental workload class.

Fig. 7 describes a decision tree as a part of the Random
Forest classifier that reasons whether or not a given stroke is
written under a particular mental workload. Given this clas-
sifier, the user can predict the mental workload under which
the stroke was written and understand the behavioral char-
acteristics of all the strokes in a particular PMPG under this
mental workload.

The output of the second phase is two vectors for each
writer: the first vector represents the text that was written un-
der class A and the second vector represents the text that was
written under class B. The structure of each of these vectors
is the same and it contains, for each PMPG, the number of
predictions that a stroke is written under class A and the
number of predictions that a stroke is written under class B.
We cannot expect the accuracy of the classifier to be very
high since classifying a single stroke as belonging to class
A or B is very challenging. We are able, however, to exploit
the fact that the entire text segment was written under a sin-
gle mental workload class, which is a reasonable assumption
made in the experiment.

Loop

Combined
Curved

Lined

On Air 

between 

Lines

AZIMUTH

<= 150> 150

TILTPRESSURE

CURVE_LENGTH DIRECTION_ANGLEWIDTHDURATION TIME

>= 60< 60< 500 >= 500

>= 70>= 120>= 300< 300>= 15< 15 < 120 <70

Class BClass AClass AClass AClass A Class BClass BClass B

PMPGs

On Air 

between 

strokes

On Air 

between 

words

Fig. 7 An illustration for one of the decision trees that was built as a
part of a Random Forest classifier.

Thus, the third phase classifies the entire handwritten
text of the writer into a single mental workload class. The
output of the second phase is used as the input of this phase.
A Random Forest classifier was also used to classify these
vectors. Here, we run a 10-fold cross-validation and accu-
mulate the results. The output of this phase is the classifica-
tion accuracy for each mental workload class.
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The proposed handwriting analysis framework is gen-
eral in the sense that it can be used to classify handwritten
text into any two different mental classes A and B. In this
paper we show how our framework can be used to distin-
guish between a given text written under a low mental work-
load (class A), where the writer is simply asked to write the
text, and under a high mental workload (class B), where the
writer is asked to write the text while trying to remember a
number.

Experiments

We carried out several experiments to demonstrate the per-
formance of our handwriting analysis framework. We ran
each experiment over 88 writers to validate our claim that
PMPGs are an important factor in the correct classification
of mental workloads and we tested several performance vari-
ants of our classification framework. We also show how our
classification framework can be used to characterize the in-
fluence of mental workload classes on each PMPG.

The Relevance of PMPGs

We ran our analysis framework using several performance
variants in order to test how the PMPGs can be used to ef-
fectively classify class A and B. As a baseline, we use only
the stroke features and ignore the stroke PMPGs. The second
variant includes only the on-surface PMPGs. The third test
includes only the in-air PMPGs. The full system includes all
the PMPGs (i.e., both the on-surface and the in-air PMPGs).

When the classification framework ignores the stroke
PMPGs in the analysis, the classification accuracy for class
A is 75.73% and the classification accuracy for class B is
70.07% (see Table 1). In contrast, when the PMPGs are con-
sidered, the results improve significantly. The classification
accuracy for class A when including only the on-surface
PMPGs is 95.23% and the classification accuracy for class
B is 85.80%. When including only in-air PMPGs, the clas-
sification accuracy for class A is 92.16% and 89.77% for
class B. When all the PMPGs were included, the classifica-
tion accuracy is 94.66% for class A and 89.66% for class
B. Therefore, the classification accuracy when including all
PMPGs outperforms the other variants on average.

Table 1 The classification accuracy percent results

Classification
accuracy

Without
using

PMPGs

On
surface
PMPGs

only

In Air
PMPGs

only

All
PMPGs

Class A - low
workload

75.73% 95.23% 92.61% 94.66%

Class B - high
workload

70.07% 85.80% 89.77% 89.66%

Average 72.90% 90.52% 91.19% 92.16%

One reasonable explanation for the decrease in classi-
fication accuracy when the PMPGs are not considered is
that each PMPG is influenced by the writer’s mental work-
load in a different way. For instance, from a perceptual mo-
tor, brain-hand control point of view, producing a line is
less demanding than producing a loop. Lines are produced
while the hand makes motions from left to right or from up
to down or vice versa. Such motions are mainly done by
the wrist with no need for precise control and coordination
in space and time of the intrinsic muscles of the hand. On
the other hand, producing loops requires good control of
well-synchronized, precise finger movements for pen con-
trol while utilizing cognitive resources. Thus, separating the
strokes into their PMPG categories improves the classifica-
tion accuracy.

The disadvantage of automatic labeling of PMPGs

As mentioned in the Handwriting Analysis Framework sec-
tion, we manually labeled the PMPGs of the strokes in class
A and automatically labeled them for the strokes in class B.
The reason for this choice was the time and cost involved
in manual labeling, but automatic labeling did negatively af-
fect the class B results. We can improve the results of class
B by manually labeling the PMPGs. Table 2 shows the re-
sult vectors for a certain writer after a manual labeling pro-
cess. As can be seen, the number of correct predictions that
a stroke is written under a certain workload class was much
improved. For instance, in the automatic labeling process,
there are 813 correct predictions that a curved stroke is writ-
ten under class B as opposed to 1414 in the manual labeling
process: 601 more correct predictions. We found that this
manual labeling improved the results in phase III.

Why we use the Random Forest classifier in the third phase

One might claim that a simple aggregation such as averaging
over the values of the feature vector of the text in the third
phase is sufficient to classify the text to the correct mental
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Table 2 The resulting vectors for the writer after a manual labeling
process

Combined Lined Loop Curved
In Air
Between
Words

In Air
Between
Stokes

In Air
Between
Lines

#A #B #A #B #A #B #A #B #A #B #A #B #A #B

Automatic
Labeling 284 416 548 742 165 274 727 813 338 442 1663 1897 31 59

Manual
Labeling 102 598 134 1156 62 377 126 1414 71 689 253 3307 8 82

Difference -182 182 -414 414 -103 103 -601 601 -267 267 -1414 1414 -23 23

workload. We tested this idea by replacing the Random For-
est classifier in the third phase with the Linear SVM classi-
fier, which is a type of weighted averaging based classifier.
As a result, the classification accuracy of class A when all
PMPGs were included decreased to 89.32% while the clas-
sification accuracy of class B decreased to 86.25%.

The Relevance of Stroke Features

Here we investigate the relevance of the stroke features un-
der each one of the PMPGs. The depth of a feature that is
used as a decision node in a decision tree can be used to as-
sess the relative relevance of that feature with respect to the
predictability of the target variable. Features used at the top
of the decision tree contribute to the final prediction deci-
sion of a larger fraction of the input samples and therefore
contribute more than other features to the final classifica-
tion accuracy [2]. The expected fraction of the samples they
contribute to can thus be used as an estimate of the relative
relevance of the features. Therefore, the relevance score of a
feature is computed as 1

2depth . In the Random Forest classi-
fier, there are several decision trees. Therefore, the relative
relevance of feature k is the aggregated score over all of the
decision trees for all the writers, computed as

AggregatedScore( f eaturek)=
Writers

∑
i=1

(
DecisionTrees

∑
j=1

1
2depth(i, j,k)

)
.(1)

Figs. 8 and 9 show the aggregated score versus stroke
features for each PMPG. As can be seen from the results,
each PMPG is influenced by cognitive workload in a dif-
ferent way. A higher aggregated score means greater impor-
tance of the feature. Furthermore, most of the features influ-
enced by cognitive workload cannot be discerned by the hu-
man eye. The most affected features are those related to az-
imuth, tilt, velocity, acceleration and pressure these features
are affected differently according to the pen stroke type. For
instance, the three most affected features for the line PMPG
are those related to azimuth and tilt while for the combined
PMPG they are those related to azimuth, pressure and veloc-
ity. Moreover, for the in-air strokes between lines PMPG,
the most affected features are those related to width, dis-
placement and height, which cannot be seen at all because

the strokes occur in the air. As was demonstrated above, us-
ing only the in-air stroke types yields accurate classification
results.
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Fig. 8 The aggregated score versus stroke features for each In Air
PMPG
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Fig. 9 The aggregated score versus stroke features for each on surface
PMPG

These differences in the affected features for each PMPG
may be explained by differences in the mechanical move-
ments of the hand during the writing process under each
PMPG. When producing straight lines, the motion is mainly
performed by the wrist and almost no changes occur at the
finger level; thus, in this case the Azimuth and tilt reflect
the writer’s control of the pen in space while creating up
and down and right left motions. However, in order to pro-
duce circles, a very accurate sequence and timing is required
from inner small hand muscles such as the lumbricales and
interossei. Thus, in higher cognitive load situations, the pro-
duction velocity and pen pressure towards the paper were
also influenced, in addition to azimuth and tilt, because they
express dexterous in-hand manipulations [57, 49, 51].

Table 3 The three most important features for each PMPG.

PMPG Feature 1 Feature 2 Feature 3

In Air between
strokes

AZIMUTH
MEAN

TILT MEAN AZIMUTH
SKEW-
NESS

In Air between
words

AZIMUTH
MEAN

AZIMUTH
MEDIAN

WIDTH

In Air between
lines

WIDTH DISPLACEMENT HEIGHT

Lined AZIMUTH
MEAN

TILT MEAN AZIMUTH
MEDIAN

Curved AZIMUTH
MEAN

TILT MEAN AZIMUTH
MEDIAN

Loop AZIMUTH
MEAN

TILT MEAN AZIMUTH
MEDIAN

Combined AZIMUTH
MEAN

PRESSURE
MEAN

LOCATION
VELOC-

ITY
MEAN

As we can see from Table 3, for the in air between
strokes and words PMPGs, the most affected features are
those related to the mechanical movement of the writers
hand, such as azimuth and tilt. However, when the level of
the cognitive workload is high, such as for the in air between
lines PMPG, the complexity of the cognitive workload de-
mands is reflected in other features, such as displacement
and height of the strokes. For on surface PMPGs, the level
of the cognitive workload demands for producing the lined,
curved and loop PMPGs is consistent since for these PMPGs
the cognitive workload level is low. Therefore, the affected
features are only those related to the mechanical movement
of the writer’s hand, such as azimuth and tilt. However, when
the process of producing the PMPG strokes is complex, such
as for the ’combined’ PMPG (see Fig. 4), the high cogni-
tive workload demand is reflected in other features, such as
pressure and velocity. In conclusion, there is a mutual rela-
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tionship between motor control and the cognitive demands
of each kind of written stroke. For a high level of cognitive
workload, the affected features are those related to motor
control, such as azimuth and tilt, in addition to pressure and
velocity.

As a whole, those results support previous results that
pen tilt, pen pressure and velocity were all influenced by
cognitive decline among elderly people [41], those with min-
imal cognitive impairment or Alzheimer’s disease [56], and
among people with depression [42].

Limitations

In this study, all participants were university students with a
small variability and range of ages. Rosenblum et al. [42,
41] have shown that the performance changes significantly
in the elderly population, possibly limiting the study’s re-
sults. Future research should include a sample with older
participants. However, it is important to note that the rela-
tionships between the classification performance and vari-
ables such as age, gender and, hand dominance were ex-
amined in the first stage of this study. We found that these
variables had no effect on the results.

Future Work

In this study we proposed a classification framework that is
general in that it can be used to distinguish between men-
tal workload classes. Given handwritten texts written under
different mental workload classes, our classifier is able to
distinguish between these texts. There are several directions
for future work:

– In this study, we manually labeled the PMPGs of the
strokes of the class A text. Then, a classifier was trained
over these strokes and used to classify the class B text.
As has been shown in the experiments, the performance
of our framework was affected by this process. To over-
come this problem, we intend to improve the classifier
by manually labeling the PMPGs of a small set of se-
lected strokes from class B. The aim of this step is to
modify the current classifier to work better for class B
strokes. Hence, the questions are how to choose these
strokes and how many strokes are needed. The answers
to these questions can be obtained using methods from
the field of transfer learning [31].

– An interesting extension that we would like to test is how
to classify the handwritten text of a new person (X) who
was not included in our previous analyzed data set. First,
we plan to find the most similar person (S) from the cog-
nitive mental workload point of view to person (X) out of

the people we already analyzed. Then, we plan to mod-
ify the classifier that was built for person (S) in order to
work better for person (X).

– Currently, our classification framework is able to dis-
tinguish between two mental workload classes. How-
ever, in many fields, e.g., mild cognitive impairment or
Alzheimer’s disease [56] and depression [42], evaluating
the effects of mental workload on handwriting behavior
under different stages of the disease is also important.
For a disease such as Alzheimer’s, we would like to be
able to discriminate between handwritten texts written
under different stages of the disease. We plan to use a
regression based classifier for this purpose.

Compliance with Ethical Standards

All the authors of this study declare that they have no con-
flict of interest. All procedures performed in studies involv-
ing human participants were in accordance with the ethical
standards of the institutional research committee. Informed
consent was obtained from all individual participants included
in the study.
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