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Abstract

Epipolar geometry estimation is fundamental to many computer vision algorithms. It has therefore attracted a lot

of interest in recent years, yielding high quality estimation algorithms for wide baseline image pairs. Currently

many types of cameras such as smartphones produce geo-tagged images containing pose and internal calibration data.

These include a GPS receiver, which estimates the position, a compass, accelerometers, and gyros, which estimate the

orientation, and the focal length. Exploiting this information as part of an epipolar geometry estimation algorithm may

be useful but not trivial, since the pose measurement may be quite noisy. We introduce SOREPP (Soft Optimization

method for Robust Estimation based on Pose Priors), a novel estimation algorithm designed to exploit pose priors

naturally. It sparsely samples the pose space around the measured pose and for a few promising candidates applies

a robust optimization procedure. It uses all the putative correspondences simultaneously, even though many of them

are outliers, yielding a very efficient algorithm whose runtime is independent of the inlier fraction. SOREPP was

extensively tested on synthetic data and on hundreds of real image pairs taken by smartphones. Its ability to handle

challenging scenarios with extremely low inlier fractions of less than 10% was demonstrated. It outperforms current

state-of-the-art algorithms that do not use pose priors as well as others that do.
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1. INTRODUCTION

Epipolar geometry is the intrinsic projective geom-

etry between two views, and it is encoded in the fun-

damental matrix F [1]. Its estimation is one of the

core problems in computer vision and is used as a ba-

sic component for stereo matching [2], structure from

motion (SfM) [3], vision-based robot navigation [4],

and other applications. The epipolar geometry of two

images is usually estimated by finding corresponding

features in both. This is done first by detecting and

matching invariant features using an algorithm such as

SIFT [5], followed by the application of a robust esti-

mation method from the RANSAC [6] family.

The main weakness of RANSAC is the necessity to

sample a valid set. As the inlier fraction decreases, the

probability to sample a valid set drops rapidly, increas-

ing greatly the required number of iterations.
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In recent years considerable progress has been made

in developing estimation algorithms that tackle these

problems. Such algorithms include LO-RANSAC

(Local-Optimization RANSAC) [7], PROSAC (Pro-

gressive Sample Consensus) [8], MLESAC (Maximum

Likelihood Estimation RANSAC) [9], BEEM (Bal-

anced Exploration Exploitation Model Search) [10],

BLOGS (Balanced LOcal and Global Search) [11], and

recently USAC (Universal RANSAC) [12]. However,

scenarios with wide baseline images or small overlap-

ping regions between the images still challenge even the

current state-of-the-art algorithms due to the low inlier

fractions. Figure 1 shows several such challenging im-

age pairs.

The fundamental matrix F is constructed from the

camera parameters only, independent of the scene. The

intrinsic parameters are mainly the focal lengths of the

cameras and their principal points, and the extrinsic pa-

rameters which describe their relative pose (camera po-

sition and orientation). Focal length data already ap-

pears in the metadata of standard cameras under the

EXIF format. Thus, the internal calibration matrix K
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Figure 1: Wide baseline images for which the epipolar geometry could not be estimated using current algorithms but was successfully estimated

by SOREPP. Left: Open set. Right: Urban set. Top: The reference image with several control points marked. Bottom: The target image after

matching with the control points and their corresponding estimated epipolar lines.

can be estimated using the focal length and by esti-

mating the principal point as the center of the image.

Image distortions even though exist are ignored. Un-

der these assumptions algorithms that use this data ex-

ist [3, 13, 14].

In this case, the fundamental matrix is simplified to

the essential matrix E. Nowadays the pose data is also

becoming available as smartphones with built-in sensors

such as a compass, accelerometers, gyros and a GPS

receiver become popular. Using these sensors, whose

values can be readily measured, the camera pose can

be estimated. There exist applications that place in the

EXIF image header the position and orientation of the

camera [15, 16]. Thus, it is very easy to obtain this in-

formation.

In principle, knowing the pose and the internal cal-

ibration parameters would make vision-based epipo-

lar geometry estimation methods unnecessary, since

the fundamental matrix is computed from these known

quantities. But this is not the case in practice since the

accuracy of these sensors is low. For example, typi-

cal compass azimuth errors can exceed 7◦. Therefore

epipolar geometry estimation contaminated with such

errors can be considered as a search problem in the para-

metric space of the relative pose. Yet, the noisy pose

data is valuable and can be used in order to constrain

the search and focus it.

This paper tackles the following problem: how to ef-

fectively exploit pose priors for epipolar geometry esti-

mation, while taking into account the fact that the pose

priors are noisy or even partly incorrect. The paper fo-

cuses on images taken by Smartphones. The images

may differ greatly from one another, leading to low in-

lier fractions.

To handle these difficulties, we propose a novel es-

timation algorithm called SOREPP (Soft Optimization

method for Robust Estimation based on Pose Priors).

SOREPP optimizes an M-estimator cost function de-

signed for robustness to putative outlier correspon-

dences, while the pose priors are used to initialize the

optimization and regularize the solution. Knowledge of

the expected amount of noise in the pose parameters is

used to limit the search to a part of the parameter space.

Because, in contrast to RANSAC, explicit detection of
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inliers is not required, a solution can be found even in

extreme conditions, typically where the inlier fraction

is around 10%. The algorithm is simple yet effective. It

exhibits fast runtime and does not depend on the inlier

fractions, making it attractive for real-time applications.

SOREPP achieves a notable improvement over the other

methods both in runtime and accuracy for very chal-

lenging image pairs, such as those in Figure 1. It could

be used for example as part of a Structure from Motion

(SfM) application in which a large number of images of

a scene are taken and in the first part of the algorithmic

pipeline are matched. Using SOREPP many more im-

age pairs will be matched correctly and more efficiently.

As a result, the recovered structure and motion are much

more accurate. The implementation of SOREPP and a

Matlab mex wrapper are available at [17].

The paper has three main contributions. First, it ad-

dresses the problem of epipolar geometry estimation

when pose prior data is available. Unlike previous

works we take into account all available pose informa-

tion and especially the expected noise level based on a

physical model. In the paper we apply the method to

smartphone based sensors but it can be easily general-

ized to other sensor types. The second contribution is

the expansion of the robust optimization framework that

is usually used to refine a solution, enabling it to be di-

rectly applied to the raw data with low inlier fractions

and high levels of pose uncertainty. As far as we know

this is the first time that this approach has been taken in

low inlier fraction cases, instead of RANSAC. Finally,

we introduce an extensive experimental setup for test-

ing the algorithm and comparing it to the state-of-the-

art. With a relatively low amount of work on single im-

ages, a large number of image pairs are generated. This

enables us to test and compare different algorithms on

hundreds of image pairs.

The rest of the paper is organized as follows. Sec-

tion 2 reviews the main methods for epipolar geometry

estimation, with or without pose prior data. In Section 3

we give details about how pose is measured by smart-

phones and review epipolar geometry. Section 4 intro-

duces SOREPP, our proposed robust algorithm. Exper-

imental results on synthetic data are described in Sec-

tion 5, while results on real image pairs are presented in

Section 6. Section 7 concludes the paper.

2. RELATED WORK

2.1. Image Based Only Methods

Most robust algorithms are RANSAC based.

PROSAC [8] uses priors on the quality of the puta-

tive correspondences in order to guide the sampling

and increase the chance to sample a valid set. LO-

RANSAC [7] handles the problem that even an

outlier-free set may lead to inaccurate estimation, by

locally improving the estimated model when the best

model so far is found. Recently the USAC [12] was

introduced. It integrates PROSAC and LO-RANSAC

together with SPRT (Sequential Probability Ratio Test)

accelerated hypotheses test. This way an incorrect

RANSAC hypothesis can be discarded without consid-

ering all the putative correspondences. BEEM [10]

uses minimal sets of only two correspondences, by cre-

ating three synthetic points around correspondences in

the two images according to their scale and orientation,

estimated by the SIFT descriptor, and assuming that

they match. Thus, each match yields four matches.

This decreases considerably the number of RANSAC

iterations that are required for epipolar geometry esti-

mation. BLOGS [11] seeks to minimize a soft threshold

cost function, and combines global search that is based

on Joint Feature Distribution, and local search in order

to further improve the current estimation.

The a-contrario method evaluates probabilistically

whether a suggested model is true. This method can be

used as part of a RANSAC algorithm to evaluate sug-

gested solutions. The method was used successfully for

estimating epipolar geometry in [18]. It was extended

for repeated structures [19] and scenes with multiple

moving objects in [20].

Another category of algorithms are the iterative meth-

ods [21], which search for the solution in the parame-

ter space, usually searching in the fundamental matrix

space. Methods that work in the relative pose domain

also exist [14, 22]. In [14] a branch and bound strategy

is used in order to find the optimal solution. The main

drawback of this method is its computational cost, mak-

ing it impractical for real time applications. In [22] an

entropy-based cost function is used to achieve robust-

ness to outliers. This method is built for vision-based

robot navigation, where the images being matched are

successive video frames. Thus, they are similar and

yield a high fraction of inliers.

2.2. RANSAC Methods that Exploit Pose Priors

Much work has been done on exploiting pose priors,

in particular in the robotic and navigation communities.

Some papers integrate vision and an inertial measure-

ment unit (IMU) in order to reduce drift [23], to choose

images [24], or to constrain a structure-from-motion so-

lution [25]. However, not much work has been done re-

garding exploiting pose prior data in order to enhance

the epipolar geometry estimation itself. The existing

methods assume that an IMU is attached to the camera.

3



The method described in [26] uses IMU measure-

ments in order to limit the correspondence search area

to be only at a user defined distance around the corre-

sponding epipolar line. This accelerates the computa-

tion and reduces the number of incorrect matches. The

method works well in low pose noise scenarios. How-

ever, as the noise level increases, so does the width of

the region around the epipolar line where the correct

correspondence lies, covering large portions of the im-

age. This makes filtering impractical in noisy condi-

tions.

Other methods [27, 28] suggest using the known

gravity vector, which is equivalent to two rotation an-

gles, reducing the degrees of freedom of the solution

from five unknowns to only three. RANSAC is ap-

plied with a correspondence set of size three. A similar

method which assumes that the full rotation is known

and uses a minimal set of two correspondences is de-

scribed in [29]. The main limitation of these methods

is that they take the values of the measured orientation

angles as hard constraints, and are therefore sensitive to

noise in them. Moreover, any existing position priors

are ignored.

2.3. Bundle Adjustment

Bundle adjustment (BA) is the gold standard method

for estimating camera poses and the scene from corre-

spondences. It is based on optimizing a cost function

that is built from reprojection errors. Bundle adjustment

has many variants, the important ones in the context of

the paper are variants that apply robustified error mod-

els, use epipolar geometry-based distances instead of

reprojection errors, “structure-less” variants which es-

timate only the camera poses, and enforcement of prior

constraints [30, 31, 32]. BA is commonly used as a final

step, after most of the outliers have been removed and

good values for the camera poses have to be given to

initialize the process [1, 3]. The core of SOREPP may

be considered as a BA-variant, designed solely for two

images, which is structure-less, based on a robustified

cost function of epipolar constraints, applies pose prior

regularization, and initialized by it. However, the gen-

eral framework of SOREPP expands the BA framework

and significantly improves the performance relative to

the core optimization scheme. This, together with the

robustness of the function to be optimized, enables to

apply SOREPP on the raw input, without removing first

the outliers or improving the noisy pose priors.

3. Preliminaries

3.1. Pose Measurements in Smartphones

The pose of a platform is composed of its orienta-

tion and position. We use East-North-Up (ENU) coordi-

nates to define the position. The orientation is described

uniquely by a rotation matrix that can be decomposed

to three Euler angles. A typical smartphone has sev-

eral sensors used to determine these six pose parameters

with the following qualitative accuracy:

The Position is usually calculated using a GPS re-

ceiver. Its typical accuracy under good reception con-

ditions can be accurate to within a few meters. Under

difficult GPS signal visibility conditions, such as in a

dense urban environment, the errors may become sig-

nificantly larger. In the paper we ignore any possible

dependency between the position noise of the two cam-

eras and assume that any such noise is independent.

The Leveling Angles, also known as pitch and roll

angles, define the platform’s orientation relative to the

tangent plane of the earth at its current position. They

can be easily calculated using accelerometers measuring

the gravity vector. The force of gravity ensures quite

accurate results in the order of 1◦ even for cheap, in-

sensitive accelerometers such as the ones used in smart-

phones.

The Azimuth is currently the most challenging pa-

rameter to measure. Azimuth is usually measured by

means of a compass which detects the direction to the

magnetic north, but this method is quite inaccurate. The

magnetic field itself is affected by high-voltage electric

wires and metals in its vicinity. In our experiments we

experienced errors exceeding 7◦.

We used SitisMobile’s “GeoCam” application [15]

in order to record images with the attached pose.

The pose information is recorded in the EXIF image

header. Similar applications such as “GeoCam Free”

from Wazer [16] also exist.

3.2. Epipolar Geometry

This section is based on [1] and reviews the main con-

cepts used in our work. The epipolar constraint is for-

mulated by the following equation:

p̃T
2 E(s)p̃1 = 0, (1)

where E is the essential matrix which is a function of the

relative pose s and p̃1, p̃2 are calibrated corresponding

points in images 1 and 2, respectively. E is constructed

from the relative pose of the cameras as follows:

E = Rr[tr]×, (2)
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where Rr is the relative rotation matrix, tr is the trans-

lation vector, and the symbol [x]× represents the cross-

product matrix. When the pose is measured indepen-

dently for each camera, we define R1, R2 and t1, t2 as

the pose of the cameras in a global coordinate system.

The relative pose is calculated as follows:

Rr = R2RT
1 , tr = R1(t2 − t1). (3)

The Euler angles composing Rr are the azimuth ψr, the

pitch θr, and the roll φr. The representation of the Euler

angles has in general singular points when θr = ±90◦.

Since the relative pitch of two cameras that view the

same scene is mostly smaller, they are safe to use, as

indicated in [30]. We describe the relative translation

vector using polar coordinates, defining α to be the rel-

ative horizontal angle and β to be the relative vertical

angle:

α = arctan 2 (tr(x), tr(y)) , β = arcsin

(

tr(z)

‖tr‖

)

. (4)

We define the vector of unknowns s to be composed

of these five angles, ignoring the distance between the

cameras, which is not represented by the epipolar ge-

ometry:

s ,
(

ψr θr φr α β
)T
. (5)

The input vector s0 is built from the prior values. Note

that the relative pose is asymmetric. Therefore, match-

ing image 2 to image 1 is not identical to matching im-

age 1 to image 2.

The covariance matrix of s0 has a central role in

SOREPP. We assume that the 6 × 6 global pose co-

variance matrices of each camera are known and denote

them as Σ1 and Σ2. One can approximate these matrices

by creating diagonal matrices from the noise approxi-

mated in Section 3.1. Under the independent noise as-

sumption, the 5 × 5 relative pose covariance matrix Σs0

can be linearly approximated from the cameras’ covari-

ance matrices:

Σs0
≈ J1Σ1JT

1 + J2Σ2JT
2 , (6)

where J1 and J2 are the Jacobians, composed of the

derivatives of the relative pose angles by each camera’s

pose parameters. These Jacobians are computed by tak-

ing the derivatives of (3) (4) and the standard function

which computes the Euler angles from a rotation matrix.

Most epipolar geometry estimation algorithms seek

to reduce the distances between points and their corre-

sponding epipolar lines. A common distance function is

the Sampson distance [1], which approximates the ge-

ometric distance. The signed Sampson distance of the

k-th correspondence is defined as follows:

d(k, s) =
p̃2(k)T E(s) p̃1(k)

√

l1,x(k)2 + l1,y(k)2 + l2,x(k)2 + l2,y(k)2
, (7)

where l1,x, l1,y and l2,x, l2,y are the first two components

of the corresponding epipolar lines.

4. OUR ALGORITHM

We will now introduce our proposed algorithm,

SOREPP. SOREPP uses pose priors to focus the search

in the relevant parameter space by initializing a standard

optimization scheme. Thus, global search is avoided.

The cost function being optimized is a differential and

robust version of the standard, number-of-inliers cost

function used by RANSAC. It works on all the puta-

tive correspondences, without detecting the inliers ex-

plicitly, which might be difficult in low inlier fraction

cases. As a result, SOREPP is able to handle low inlier

fractions. To do so, we have to define a robust cost func-

tion that can handle low inlier fractions while having a

large basin of attraction to handle large pose errors.

SOREPP is given as input an estimate of the relative

pose s0 of the two cameras, and its uncertainty is de-

scribed by a covariance matrix Σs0
. A set of putative

correspondences Ωall is given, together with the weight

of each correspondence w(·), which is a rough approx-

imation of the prior probability of being an inlier. Two

of the many options that might be used to define such

weights are described in Section 4.1.

We define the following Gaussian score for every pu-

tative correspondence k:

g(k, s) = exp













−d(k, s)2

2σ2
h













. (8)

This function is a type of an M-estimator. It applies

a soft threshold with a parameter σh on the Sampson

distance associated with each correspondence. For the

true relative pose strue, inliers would receive high scores,

i.e., close to 1, while outliers far away from the model

would receive low scores, i.e., close to 0. These scores

determine the preliminary target function that SOREPP

will seek to minimize:

v =
∑

k∈Ωall

w̃(k) (1 − g(k, s)) , (9)

where w̃(k) are the weights w(k) after they have been

normalized:

w̃(k) =
w(k)

∑

l∈Ωall
w(l)

, (10)
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and v is the score of a specific relative pose s over all the

putative correspondences and is also in the range [0, 1].

This score function has two important characteristics.

Due to the differentiability of the function, inliers affect

the score even when the current estimate of s is far from

the correct one and thus can help the optimization pro-

cess to converge to the correct solution. In addition, the

maximal penalty of an outlier pair is at most 1, enabling

the optimization process to converge even when a large

number of outliers exist in the data. Still, due to the

non-convexity of (9), optimizing this function may be

difficult in noisy conditions. In order to regularize the

solution, we define a measure of the proximity of the so-

lution to the initial pose by the following Mahalanobis

distance:

λ(s) =
1

|s|

√

δsTΣ−1
s0
δs, (11)

where |s| is the size of s and δs , s − s0. We add this

regularization term to (9) in order to define the follow-

ing minimization problem:

ŝ = arg min
s



















c
(
∑

k∈Ωall

w̃(k) (1 − g(k, s))
)

+ (λ(s))2



















,

(12)

where c is a weighting parameter, which is fixed to the

value of 5 in the experiments. This equation combines

the objective to minimize the Sampson distances for as

many putative correspondences as possible while keep-

ing the solution close to the pose prior.

As the function to be optimized is not convex, it will

fail to converge if the solution is beyond the function’s

basin of attraction. To deal with this problem the opti-

mization can be performed starting from several initial

conditions as will be explained in Section 4.2.

The minimization can be done using any standard

optimization method. In our implementation we use

Levenberg-Marquardt [33]. Once the algorithm con-

verges, a hard threshold is applied to select the inliers.

They serve only as an output of the algorithm.

This simple optimization procedure is the heart of

SOREPP algorithm. The algorithm is simple and fast, as

well as robust to low inlier fractions and significant pose

noise. In the next subsections we will delve deeper into

the algorithm, elaborating on its various components.

4.1. Correspondence Weights

The weights w(k) are one of the inputs to SOREPP.

SOREPP can use any probability-like values. Our ba-

sic weights are built from the following simple formula

based on the SIFT ratio test [5]:

w(k) = 1 −
d2

1NN
(k)

d2
2NN

(k)
, (13)

where d1NN(k), d2NN(k) are the distances from the first

and second nearest neighbors of the k-th correspon-

dence.

A different way to define putative correspondences

and weights is to follow BLOGS [11]. The similarity is

calculated by the inner product of the descriptor vectors.

Putative correspondences are the feature pairs that get

the highest similarity score in both directions of match-

ing: a feature from image 1 is compared to all features

in image 2, and vice versa. The weights are calculated

by the following formula [11]:

w(k) =
(

1 − exp−q(k)
)2

(

1 − qr(k)

q(k)

) (

1 − qc(k)

q(k)

)

, (14)

where q(k) is the highest score for the k-th correspon-

dence, qr(k) is the second highest score in one direction

of matching and qc(k) is the second highest score in the

other direction. The first term of (14)is the similarity

based component.

4.2. Pose Region Search

In order to further increase the robustness to noisy

pose measurements, the parameter space around the in-

put pose priors is searched. This is done by evaluating

the energy of (9) at a sample pattern, where each rela-

tive pose parameter is sampled at several values around

the prior value. The result is a small five-dimensional

hypercube with a target function value at each entry. In

that hypercube local peaks are found, creating a set of

initial candidate guesses for the optimization scheme.

The optimization process of (12) is performed for up to

the m best candidates. The user defined parameter m

controls the number of candidates as well as the input

pose and is usually in the range of 0 to 5, where m = 0

means starting only at the pose prior s0. In all these

cases, δs is always defined relative to s0. This compo-

nent is illustrated in Figure 2.

The samples are spread uniformly over the space de-

termined by 2σs0
for every angle. The samples include

only 3 values for θr, φr, and β, 5 values for α, and, 7 val-

ues for ψr. The number of samples per parameter were

set according to its variance since some parameters have

a larger uncertainty than others.

Even though this sampling method is very simple and

sparse, it yields good results, because one of the samples

usually falls into the large basin of attraction of (12).
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Figure 2: Illustration of the Pose Region Search component. The en-

ergy is calculated on a sparse grid based on the input pose and the

expected noise levels. For a few local minima (shown in black cir-

cles) the optimization process is applied. In the figure, only three of

the five relative pose parameters are shown.

Note that the computational cost is low. The cost func-

tion is evaluated several hundred times, but the opti-

mization scheme is applied only up to m + 1 times. In

Section 6.2 the effect on the quality of the results on

choosing different values of m is tested.

4.3. Solution Refinement

One of the main characteristics of SOREPP is that

all the putative correspondences contribute to the solu-

tion. The main advantage of it is the ability to bypass

the need to explicitly find inliers, which may be difficult

when inlier fractions are low. However, this character-

istic is also a main drawback: outliers also participate

in the estimation and skew it. The most harmful out-

liers are those which randomly obtain small Sampson

distances with respect to the current solution. They are

usually further than the inliers, but close enough to have

significant weights g.

To deal with this problem we modify σh by the fol-

lowing procedure, common for M-estimators. For a so-

lution with energy lower than vthreshold of (9), σh is de-

creased and the solution is estimated again by optimiz-

ing (12), starting from the current estimation result ŝ.

This way the weight of the correspondences that are

close to the solution increases at the expense of the out-

liers, which are assumed to be further from the solution.

We use the following values: vthreshold = 0.65 and re-

duceσh by a factor of two. In real experiments the value

of the energy is usually very low or very high. There-

fore the performance of the algorithm does not depend

on the exact value of vthreshold.

4.4. Multiple Possible Poses

The calculations in SOREPP are performed using the

essential matrix E calculated from s. Each such matrix

represents four possible relative poses s, as explained

in [1, Chapter 9.6]. Usually only one of them falls

within the pose priors’ uncertainty region. When how-

ever more than one possible interpretation lies within

the region, the interpretation selected is the one for

which the largest number of reconstructed 3D points lie

in front of both cameras.

5. EXPERIMENTS ON SYNTHETIC DATA

The next two sections describe extensive experimen-

tal evaluations performed in various conditions. In the

experiments described in this section, an analysis of the

sensitivity of SOREPP to pose noise and inlier frac-

tions based on synthetic data is described, as well as

a comparison to some state-of-the-art algorithms. In the

next section three large datasets consisting of 442 im-

age pairs were used to evaluate SOREPP performance

for real life difficult conditions. The comparison with

other methods is naturally unfair, as SOREPP uses data

that is unavailable to some of them. Still, it demon-

strates the advantage of using pose priors, the challenge

that these datasets pose, and the importance of handling

pose noise properly.

5.1. Experimental Setup

Experiments on synthetic data allow to analyze the

results in the pose domain, since the true pose of each

camera is known exactly. It also removes any unmod-

eled effects such as inaccurate intrinsic camera parame-

ters, radial distortions, correlated pose noise and more.

The way the simulations have been performed is de-

scribed below.

5.1.1. Evaluation Setup

Following a similar setup to [27], the set was com-

posed of 400 putative correspondences which were lo-

cated at a depth of 50% of the scene, and the inliers were

contaminated with normally distributed noise with a

standard deviation of 1 pixel. The distance between the

cameras was 10% of the distance to the scene and two

camera configurations were used: side by side and one

in front of the other. The second camera was randomly

rotated around each axis in a way that the world points

were still visible. We simulated a typical smartphone

camera by choosing a field of view of 59.6◦ × 46.3◦ and

resolution of 2048 × 1536 pixels.

We simulated a representative scenario. In this sce-

nario, the cameras were located 100 meters one from the
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other. The pose data of each camera i ∈ {1, 2} was con-

taminated with independent normally distributed noise

(

σψi
σθi

σφi
σxi

σyi
σzi

)T
= (15)

(

5◦ 1◦ 1◦ 5 5 5
)T
.

The weights of the correspondences were randomly

drawn from two distributions, given in [10] for inliers

and outliers. They are based on kernel density estima-

tion for SIFT ratio test values taken from real images.

The analysis was performed for increasing pose noise

levels up to the full noise level of (15), and different in-

lier fractions. For each pose noise level and inlier frac-

tion 100 trials were conducted, each with a random ori-

entation of camera 2, random feature point noises and

random correspondence weights.

5.1.2. Evaluation Method

We evaluated the performance of the different algo-

rithms in two ways: in the relative pose domain, by

comparing the estimated relative pose to the ground

truth, and in the image domain. The comparison in

the relative pose domain was performed by calculating

the angular difference between the estimated translation

vector and orientation to the ground truth. The orien-

tation error was defined by the smallest angle that can

be used in order to bring the estimated orientation to the

true one. When more than one relative pose exists, the

one closest to the ground truth value is chosen.

The comparison in the image domain was performed

as follows. The pure inliers (without the added noise)

served as control points. For each trial, we measured

the distance between these control points on image 2 to

the corresponding epipolar lines, which were calculated

using the control points on image 1 and the estimated

relative pose, and choose the maximal error as a quanti-

tative measure. This is done in order to ensure that the

estimation is accurate over most of the image. If this

value was smaller than 15 pixels, we defined the esti-

mated relative pose as “accurate” or “successful”.

5.1.3. Implementations and Running Parameters

SOREPP was implemented in C++ using OpenCV.

The implementation and a Matlab mex wrapper are

available at [17]. For SOREPP, we set m = 5 accord-

ing to the analysis that will be described in Section 6.2.

The input pose noise parameters were set to the values

of (15). The inlier threshold was set to 6 pixels for all

the algorithms, including σh as the soft inlier thresh-

old of SOREPP. We used USAC [12] in two modes:

the first used the five-point algorithm, where the im-

plementation was taken from [3], and the second mode

used our own implementation of the closed form three-

point algorithm suggested by [28]. In both modes, the

local optimization method was used, applying a non–

linear Levenberg-Marquardt optimization for a few iter-

ations over all the five relative pose parameters. USAC

parameters were adopted to low inlier fractions by re-

ducing the SPRT ǫ parameter to 0.05 and increasing

the iterations limit to 850, 000 for the five-point mode

and 20, 000 for the three-point mode, both are supposed

to be sufficient for very low inlier fractions.

BLOGS and BEEM were not run for the simulated

data since the main goal of these experiments is to test

the performance of algorithms with very different basic

assumptions and since they make similar assumptions as

the five-point USAC they produce similar results. More-

over, BLOGS and BEEM deal with uncalibrated cam-

eras yielding epipolar geometry and not relative pose

directly. Thus, they were only reported for the real im-

age pairs.

Bundle adjustment was initialized by the pose prior.

It used epipolar constraints with a robustified cost func-

tion and pose priors regularization, which is, in fact, the

same inner optimization function as SOREPP (12). It is

referred as “BA-Epi” in the rest of the paper. All ran-

dom algorithm results were naturally averaged by the

large number of trials and additionally averaged over 5

runs. For real images, the focal length was set to the

value in the EXIF header, and the principal point to the

image center. The evaluation was conducted on a Win-

dows 7 64bit, Intel i5 4GB computer, using only a single

core.

5.2. Results

The results for a high inlier fraction of 80% are shown

in Figure 3. As expected the accuracy of the pose prior

data is low, resulting in low success rate in the image do-

main. Among the different algorithms being compared,

SOREPP yields the most accurate relative pose estima-

tion. Bundle adjustment performs well for low pose

noise levels, but is sensitive to increased noise, since

in such cases the initial errors are beyond its basin-of-

attraction. USAC with the three-point algorithm suf-

fers from a similar phenomenon, because it takes the

prior leveling angles as hard constraints. USAC with

the five-point algorithm (followed by a non linear re-

finement) yields the closest results to SOREPP. Both

succeeded to solve the epipolar geometry for most trials,

as seen in (a3) and (b3). However, analyzing the rela-

tive pose domain reveals that the accuracy of SOREPP

is higher even for high noise levels. This is explained by

the fact that there is a small uncertainty region around

the true relative pose, where different relative poses in
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 3: Results on synthetic data, distant cameras, 80% inliers.

Rows: (a): Side-by-side configuration, 80% inliers. (b): One-in-front-

of-the-other configuration, 80% inliers. Columns: (1): Orientation er-

rors. (2): Translation vector errors. (3): Success ratio, based on the

the maximal distance between the control points and the correspond-

ing epipolar lines. All angles are given in degrees.

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 4: Results on synthetic data, distant cameras, 10% inliers.

Rows: (a): Side-by-side configuration. (b): One-in-front-of-the-other

configuration. Columns: (1): Orientation errors. (2): Translation

vector errors. (3): Success ratio, based on the the maximal distance

between the control points and the corresponding epipolar lines. All

angles are given in degrees.

that region all explain the epipolar geometry in the im-

age domain. The advantage of SOREPP is that this re-

gion and the uncertainty region of the pose priors are in

general uncorrelated, therefore their intersection yields

a smaller uncertainty region, where SOREPP’s solution

is found.

The results for a low inlier fraction of 10% are shown

in Figure 4. SOREPP succeeded to estimate the epipo-

lar geometry for most of the trials, when a few failures

occurred in the highest noise level. There is a differ-

ence however in the quality of the estimation of the

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 5: Results of SOREPP on synthetic data, distant cameras, ex-

tremely low inlier fractions. Rows: (a): Side-by-side configuration.

(b): One-in-front-of-the-other configuration. Columns: (1): Orienta-

tion errors. (2): Translation vector errors. (3): Success ratio, based

on the the maximal distance between the control points and the corre-

sponding epipolar lines. All angles are given in degrees.

rotation and translation components in the two experi-

ments. This is due to the fact that in the one-in-front-of-

the-other configuration changes in the pose parameters

have a smaller effect on the epipolar geometry than in

the side-by-side configuration. The increased number

of outliers reduces the size of the basin-of-attraction of

the optimization process. This harms the performance

of BA, as seen clearly by the graphs, but does not af-

fect SOREPP, which overcomes the reduced basin-of-

attraction by the Pose Region Search component. Even

in the worst cases, the accuracy of SOREPP is similar

to the one of USAC with the five-point algorithm. In

side-by-side configurations, the advantage of SOREPP

is significant. USAC with the five-point algorithm per-

forms quite well. Still the recovered pose (translation

and orientation) parameters are less accurate than SOR-

REP for both scenarios. Their values are much more

accurate (twice as accurate). This is especially true for

noise levels below 50%σs.

Due to the weights of the putative correspondences,

USAC usually converged in the first iterations. There-

fore, USAC’s average runtime for the 10% inlier frac-

tion case and the 80% inlier fraction case was 0.5

seconds per image pair. SOREPP’s average runtime

was 0.08 seconds per image pair in all cases.

5.3. Extremely Low Inlier Fractions

The following experiments are intended to analyze

the ability of SOREPP to handle extremely low inlier

fractions, and to find its breakdown point. The results

are shown in Figure 5. For inlier fractions as low as 5%,

SOREPP is still able to estimate the epipolar geome-
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try successfully in most of the cases, including for high

pose data noise levels, in the sense that the epipolar lines

do pass close enough to the corresponding points, as

shown in (a3) and (b3). These results demonstrate the

large basin of attraction of the SOREPP function. The

relative pose estimation reveals that the orientation is

estimated accurately, achieving average errors in the or-

der of 1◦. The translation vector estimation accuracy is

lower, sometimes lower than the noisy pose prior data.

This is an estimation effect, where SOREPP chooses the

parameters that best fit the model of epipolar geometry

and minimize Sampson distances.

For a inlier fraction of 2.5% the ability of SOREPP

to solve the epipolar geometry problem decreases. For

such a low inlier fraction, the signal to noise ratio be-

tween inliers and outliers is too low. The quality of the

estimations of the rotation matrix and the translation

vector and the success rate decrease as the pose noise

increases.

6. EXPERIMENTS ON REAL IMAGES

In this section three large datasets consisting of 442

image pairs were used to evaluate SOREPP perfor-

mance for real life difficult conditions. Since existing

images which were used previously to analyze epipo-

lar geometry estimation algorithms do not contain pose

measurements, new datasets had to be created. The

datasets, including the images, the measured pose of

each camera, the control points, and code that applies

SOREPP on them, are all available at [17]. The last ex-

periment compares the estimated relative pose to ground

truth over a few image pairs.

6.1. Experimental Setup

The setup data for the experiments on real images is

similar to the setup for the experiments on synthetic data

where it is possible. The differences are detailed below.

6.1.1. Evaluation Images

The evaluation data is composed of three datasets col-

lected at different locations. In all cases the SitisMo-

bile’s “GeoCam” application [15] was used supplying

the pose associated with each image. Archi was taken

by a LG G4 smartphone. It presents a relatively easy

scenario, most of the images with many inliers. How-

ever, since the scene is composed of objects located at

variable places, it is not trivial to find the correct solu-

tion which is accurate on all of them. Open and Urban

were taken by a Samsung Galaxy SII smartphone. The

datasets present challenging scenarios with wide base-

line images, small overlapping regions, scale changes,

Dataset Archi Open Urban

Im. Pairs 110 224 108

Cam dist 30 − 530 40 − 440 15 − 200

Camera LG G4 Galaxy SII Galaxy SII

Res 2048 × 1536 2048 × 1536 2048 × 1232

Fov X 54.5◦ 59.6◦ 59.6◦

Az Diff ≤ 17◦ ≤ 25◦ ≤ 70◦

Init Errs ≤ 390 ≤ 375 ≤ 980

τ 15 15 15

Table 1: Characteristics of the different datasets. Im. Pairs are the

image pair quantities, Cam dist are the distances between the cameras

in meters, Fov X are the cameras’ fields-of-view in the x axis, Init

Errs are the maximal errors calculated directly by the pose prior data

in pixel units, and τ is the success threshold.

and nondescript objects that make feature matching dif-

ficult. Under these conditions the inlier fractions de-

crease often to less than 10%. Noisy pose measure-

ments are an additional challenge. The characteristics

of the datasets are given in Table 1 and representative

image pairs are shown in Figures 1,7-9.

6.1.2. Evaluation Method

Since ground truth pose data is unavailable, we eval-

uate the estimated epipolar geometry based on the im-

age domain only. Each dataset consists of several im-

ages of the same scene taken from different locations.

A few control points have been defined in the scene

and manually marked in each image, when visible. We

tried to scatter the points over the images, depending on

the ability to recognize the same locations accurately,

and on the overlap regions between images. The im-

age pairs are created from images taken at two different

locations, automatically generating a set of connected

control points. This way even a small set of images cre-

ates a large set of image pairs to be used in the exper-

iments. The control points were used as described in

Section 5.1.2. The success threshold τ defined for each

dataset is seen in Table 1. An algorithm’s performance

is evaluated mainly by counting the number of success-

ful image pair matches. Due to the asymmetric nature of

the relative pose, we consider an image pair in reverse

order to be a different pair.

6.1.3. Implementations and Running Parameters

All the algorithms used the same features, calculated

by the implementation of SIFT provided by [34] and

adapted to be upright. The algorithms used the same

putative correspondences, which are the 400 best ranked

BLOGS correspondences (using the full set of putative

correspondences decreases the inlier fractions, therefore
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Regularization ×
√

× ×
√ √ √

m 0 0 1 5 1 5 10

Archi 75 64 98 99 90 92 92

Open 105 100 146 153 162 174 174

Urban 24 21 59 53 55 56 59

Table 2: The contribution of the basic SOREPP components: the reg-

ularization term and the Pose Region Search component. The left col-

umn represents the pure optimization of (9), since both components

are disabled. The number of successfully estimated image pairs are

compared. Putative BLOGS correspondences were used in this exper-

iment. See text for discussion.

reduces the quality of the results), besides BEEM which

defines putative correspondences by the SIFT ratio test

and uses it as part of the algorithm. SOREPP was tested

with both putative correspondence types.

The algorithms used the same parameters as in the

experiments of synthetic data. The pose noise standard

deviations were also set to the same values as in the syn-

thetic analysis.

We expanded the analysis to some additional algo-

rithms. One algorithm is a conventional BA that tries to

estimate the structure besides the cameras pose by min-

imizing re-projection errors (referred as “BA-Reproj”

in the paper). We used our own implementation with

a Gaussian M-estimator as a robust function and with

pose priors regularization. Structure points were initial-

ized by intersecting putative correspondences accord-

ing to the pose priors. Two additional algorithms were

BEEM and BLOGS, which estimated the fundamental

matrix without taking into account the intrinsic calibra-

tion data.

6.2. Analyzing SOREPP Components

The contribution of the two basic components of

SOREPP was evaluated first: the regularization term

in (12), and the Pose Region Search component un-

der different numbers of optimization initializations m.

For this experiment we disabled the Solution Refinement

step described in Section 4.3. Note that when the reg-

ularization term of (12) is disabled, then the optimiza-

tion problem degenerates to minimize (9). If addition-

ally m = 0, then SOREPP performs only the pure op-

timization of (9). The combinations where m = 0 are

equivalent to BA with epipolar constraints, with or with-

out pose priors regularization.

The results using BLOGS correspondences are sum-

marized in Table 2. These results reveal that the most

important component is the Pose Region Search. For

example, this component more than doubles the num-

ber of successfully estimated image pairs on the Ur-

Algorithm Archi Open Urban Runtime

BLOGS 76 (69.1%) 76 (33.8%) 43 (39.8%) Matlab

BEEM 97 (88.2%) 103 (46%) 45 (41.9%) 0.76

USAC-5pts 77 (70%) 90 (40.3%) 42 (39.1%) 131

USAC-3pts 53 (48.2%) 95 (42.6%) 48 (44.3%) 6

BA-Reproj 5 (4.5%) 73 (32.6%) 11 (10.2%) Matlab

BA-Epi 64 (58.2%) 100 (44.6%) 21 (19.4%) 0.01

SOREPP-SR 98 (89.1%) 158 (70.5%) 55 (50.9%) 0.09

SOREPP-BL 97 (88.2%) 174 (77.7%) 58 (53.7%) 0.09

Prior Only 2 (1.8%) 44 (19.6%) 2 (1.9%) −

Table 3: Performance comparison for the different algorithms. Ac-

curacy is measured by counting correct image pairs. SOREPP-SR is

based on SIFT ratio putative correspondences and SOREPP-BL uses

BLOGS correspondences. Runtime: Average time in seconds for

C/C++ implementations. Prior Only are reference results in which

F was calculated directly from the measured pose.

ban dataset, compared to pure optimization: from less

than 25 image pairs to more than 50. Its importance

depends on the accuracy of the pose prior data. Usu-

ally choosing only the best candidate in addition to the

input pose is sufficient for accurate estimation. The reg-

ularization term also contributes to the algorithm’s per-

formance. Without regularization the performance de-

creases on the more challenging datasets, while on the

Archi dataset it slightly harms the results, since many

inliers exist anyway and the pose prior is noisy. The

importance of the regularization was also explained in

Section 5.2, where it helped to improve the accuracy of

the estimated relative pose.

6.3. Performance Comparison

The performance of SOREPP is compared to that

of several state-of-the-art algorithms in Table 3. The

datasets represent a greater challenge than the synthetic

data, since in many image pairs the inlier fractions are

even lower than 10%, the inliers may not be scattered

well on the image, the intrinsic camera parameters are

not accurately known, and other real world effects. As

expected, epipolar geometry calculated directly from

the pose prior data is inaccurate and cannot be used

without further image-based processing. For example,

on the Urban dataset the pose prior data is accurate

enough for only 2 image pairs. SOREPP demonstrates

its ability to successfully match real images taken by a

smartphone when the pose measurements are contami-

nated with substantial noise and the inlier fractions are

low. It outperforms algorithms that do not use pose

priors (BLOGS, BEEM and USAC with the five-point

algorithm), thus demonstrating their importance. For

example, on the Open dataset, SOREPP gets the score
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of 174 while the best RANSAC based method gets

only 103. It also performs better than USAC with the

three-point algorithm, achieving only 95 successful es-

timations on this dataset, demonstrating the advantage

of using all the priors and not only the leveling angles.

USAC with the five-point algorithm performed worse

than on the synthetic data. This has several explana-

tions. Some of the failures occurred due the low in-

lier fraction, which were many times lower than 10%.

USAC is based on PROSAC, therefore needs less itera-

tions than RANSAC, but if the weights of the putative

correspondences are not good enough and no solution is

found, it degenerates to RANSAC and needs many iter-

ations. However, taking such a large number of 850, 000

iterations is impractical, all the more so if even more it-

erations are required. Other failures might occur due to

real world conditions such as the scattering of the points

on the image or the limited accuracy of the intrinsic pa-

rameters.

The results emphasize an attribute of pose priors that

was not mentioned yet. In low inlier fraction cases, it

is difficult to distinguish between the true solution and

a false one, since both might have a similar number of

detected inliers. Pose priors, where available and used

by the estimation algorithm, serve also to reject false so-

lutions, which are typically farther from the pose priors

than the true one.

Between the two bundle adjustment variants, the

one which is based on epipolar constraints works bet-

ter, and gives the closest results to SOREPP on aver-

age. It is reasonable, since the core of SOREPP is

the same optimization process that is used in this BA

variant. Yet, both BA variants perform significantly

worse than SOREPP, demonstrating the advantage of

the SOREPP framework and the importance of the Pose

Region Search component in order to overcome large

pose errors.

The Urban dataset is characterized by high pose er-

rors, reducing the advantage of SOREPP. Still, even on

this dataset, better results are obtained when pose prior

data is used. SOREPP achieves the score of 58, in com-

parison to 42 − 48 of all the RANSAC based methods.

SOREPP performs much better than BA, which can not

overcome such high prior noises and has succeeded only

on 21 image pairs.

SOREPP’s performance using BLOGS putative cor-

respondences is better than its performance using corre-

spondences that are based on the SIFT ratio test, having

the biggest advantage on Open dataset, where the score

has improved from 158 to 174.

The runtime column in Table 3 reveals that SOREPP

is fast, having an average runtime of about 0.1 sec-

Figure 6: Algorithm performance compared over all the sets. The

curves represent the number of correct image pairs as a function of τ.

See Table 3 for details about the various algorithms. Best viewed in

color.

onds per image pair. SOREPP’s runtime is not af-

fected by the low inlier fractions, which slows down

all the RANSAC-like algorithms, for example more

than 100 seconds for USAC with the five-point algo-

rithm. RANSAC based methods runtime can be reduced

by choosing a smaller iteration limit, at the expense of

their accuracy. SOREPP’s runtime can be further re-

duced by better implementation and parallelizing the

computation. This can be done, for example, by solving

each of the different initializations on a different core.

Figure 6 shows the performance of each algorithm as

a function of a continuous threshold τ, showing again

the low accuracy of the measured pose (prior only)

while emphasizing the advantage of using it in an es-

timation algorithm such as SOREPP. For example, for

a threshold of 10 pixels, SOREPP obtains the score

of 277, while the second best method obtains the score

of 215 (about 25% less) and the pose priors gets only 15.

Figures 7-9 present some examples from the datasets

and compares the performance of the algorithms on

them. For each image pair, the left image is the ref-

erence image with a small part of the control points

marked. The right image is the target image, with the

control points and their corresponding epipolar lines es-

timated using SOREPP. Inliers are counted as detected

by SOREPP. This lets us approximate the difficulty of

the image pair. SOREPP succeeds in estimating the

epipolar geometry while other algorithms have diffi-

culty doing so. For example, in Figure 9(8), SOREPP

overcomes prior error of 337.8 pixels and gets an er-

ror of 10.6 pixels. The second best method is BLOGS,

achieving the maximal error of 26.3 pixels over the con-

trol points.
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1 2 3

id #Control Prior #Inliers BLOGS BEEM USAC USAC BA SOREPP

points only (SOREPP 5pts 3pts Epipolar

detect)

1 7 79.4 343 (85.75%) 35.4 23.8 58.9 5.8 87 6.2

2 6 220.3 236 (59%) 11.8 4.6 156.1 390.3 225 12.5

3 8 126.9 271 (67.75%) 26.8 16.6 3.6 126.9 8.7 3

Figure 7: Images from Archi dataset matched using some of the algorithms. The Prior only column gives reference results calculated directly by

the pose prior data. Bold represents successful estimations, where the maximal control point error is smaller than the proper τ (15 pixels on this

dataset).

4 5 6 7

id #Control Prior #Inliers BLOGS BEEM USAC USAC BA SOREPP

points only (SOREPP 5pts 3pts Epipolar

detect)

4 3 79.5 23 (5.75%) 54.2 59.9 46 20.1 68.1 5.7

5 12 306.1 39 (9.75%) 22 16.4 21.1 19.8 259.4 8.1

6 6 65.6 52 (13%) 10.1 16.9 19.3 15.1 59 10

7 8 41.6 20 (5%) 511.9 19.7 100.6 103.4 40.7 7

Figure 8: Images from Open dataset. See Figure 7 for details. τ = 15 pixels.

6.4. Analyzing the Relative Pose

In the last experiment a few image pairs, with ground

truth pose data, were used to analyze and compare the

algorithms in the relative pose domain. A few dozens

of images were taken around a parking car using a Sam-

sung Galaxy SII smartphone and SitisMobile’s “Geo-

Cam” application [15], supplying the pose associated

with each image. The Bundler structure-from-motion

software package [3] was used to estimate the cameras’

pose. These poses serve as the ground truth. The al-

gorithms, their parameters, and the evaluation method

were all the same as in the synthetic data experiments.
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8 9 10 11

id #Control Prior #Inliers BLOGS BEEM USAC USAC BA SOREPP

points only (SOREPP 5pts 3pts Epipolar

detect)

8 7 337.8 41 (10.25%) 26.3 188.5 101.9 33.5 313.8 10.6

9 6 170.4 34 (8.5%) 19 25.6 32.7 5.1 189.6 4.9

10 7 217.9 28 (7%) 232 23.4 42.6 30.1 181.4 8

11 5 159.5 28 (7%) 35.8 113.8 20.8 22.3 203.6 9.5

Figure 9: Images from Urban dataset. See Figure 7 for details. τ = 15 pixels.

USAC results were averaged over 5 runs.

(a) (b)

(c) (d)

Figure 10: The car images which were used for the relative pose anal-

ysis. Image (a) was matched to the three others.

Three image pairs were chosen, representing an in-

creased difficulty level as the baseline grows. The im-

ages are shown in Figure 10. The main difficulties of

this dataset were the glistening of the car, preventing

features from being detected on its planar surfaces and

resulting in bad distribution of the putative correspon-

dences, and low quality pose position data due to the

proximity of the cameras.

The results are shown in Table 4. In the easy case of

images (a) and (b), all the algorithms converged to the

true solution and yield similar accuracies. In the moder-

ate difficulty level of images (a) and (c), all algorithms

yielded results of similar accuracy. In the difficult case

of images (a) and (d), both USAC variants suffered from

low accuracy, probably due to outliers which infiltrated

to the estimation, and the bad dispersion of the inliers.

The three-point algorithm accuracy was lower, proba-

bly due to large prior orientation errors. The epipolar

bundle adjustment failed to converge, due to the low

inlier fraction and the high pose prior noise. On the

other hand, SOREPP demonstrated its ability to over-

come this challenge and converged to the true solution,

although its accuracy was lower than in the easier ex-

amples.

7. CONCLUSION

The paper introduced SOREPP, a novel robust al-

gorithm designed to estimate epipolar geometry using

pose priors. Pose priors are used to apply an optimiza-

tion scheme, while their estimated uncertainty is used in

order to focus the search in the relevant area in the pa-

rameter space. SOREPP is able to deal with extremely

low inlier fractions of less than 10% while overcoming

significant pose noise, such as an azimuth error of 7◦. It

does so without slowing down the runtime which, unlike

RANSAC-based algorithms, is not sensitive to the inlier

fractions. Extensive evaluation on hundreds of image

pairs was performed in various conditions, demonstrat-

ing the ability of SOREPP to estimate epipolar geom-

etry even under severe, realistic conditions. When the

pose priors are supplied, SOREPP outperforms current

state-of-the-art methods. In easier cases its performance
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Image Azimuth #Inliers Pose Pose USAC USAC BA SOREPP

pair diff (true) error Prior 5pts 3pts Epi.

(a)(b) 9.5◦ 385 R 0.56◦ 0.37◦ 0.37◦ 0.39◦ 0.35◦

(96.25%) t 80.24◦ 0.28◦ 0.28◦ 0.31◦ 0.47◦

(a)(c) 32.2◦ 109 R 1.84◦ 1.41◦ 1.58◦ 1.36◦ 1.32◦

(27.25%) t 89.43◦ 3.35◦ 3.06◦ 2.15◦ 2.72◦

(a)(d) 51.5◦ 37 R 5.47◦ 7.67◦ 9.44◦ 4.14◦ 2.51◦

(9.25%) t 31.6◦ 6.8◦ 7.67◦ 32.54◦ 2.48◦

Table 4: Estimated pose errors, in the orientation (“R”) and in the translation vector (“t”).

is comparable. We therefore suggest that when pose pri-

ors are available the algorithm should be used because

of its performance in challenging cases and due to its

speed. This is especially useful for realtime applica-

tions.
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