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a b s t r a c t

Current technology offers a variety of ways for context-aware information delivery to mobile users. The
most challenging aspect, however, is to determine what the user is interested in. The user’s position is
the best available hint, but if we know what the user is looking at and what his or her gazing profile is,
we can narrow down the possibly relevant objects of interest. With the advent of mobile and ubiquitous
computing, it is time to explore the potential of mobile eye tracking technology for natural, intelligent
interactions between users and their smart environment, not only for specific tasks, but also for the more
ambitious goal of integrating eye tracking into the process of inferring mobile users’ interests, for the
purpose of providing them with relevant services, a research area that has received little attention so far.

In this work, we examine the potential of integrating a mobile eye tracker, as a natural interaction
device, into an audio guide system for museum visitors. Using it as a pointing device enables the system
to reason unobtrusively about the user’s focus of attention and to deliver relevant information about it
as needed. To realize this goal, we integrated an image-matching based technique for indoor positioning
and an eye-gaze detection technique to identify the user’s focus of attention into two different versions
of a mobile audio guide: (1) a proactive version that delivers information automatically whenever
user interest is detected, and (2) a reactive version that notifies the user about the availability of this
information, thus giving the user more control over information delivery. Furthermore, we developed
a conventional museum visitors’ mobile guide system using a smartphone and low-energy Bluetooth
beacons for positioning; this guide was used as a reference system.

The three museum visitors’ guides were evaluated in realistic settings at the Hecht1 Museum, a
small museum, located at the University of Haifa that has both archeological and art collections. The
experimental evaluation compared the contribution of the three versions of the audio guide to the visit
experience. The results showed that themobile eye tracking technology, although unfamiliar, and perhaps
even immature, was accepted by the participants. The mobile eye tracker audio guide was perceived
as preferable to the conventional museum mobile guide, especially with regard to learning during the
visit. Furthermore, with regard to proactivity in context-aware systems, the results showed that the
participants like to be in control, and that most of them preferred the reactive version of the mobile eye
tracker audio guide over the proactive one.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

For most of us, vision is our main sense for gathering infor-
mation. When we want to gather information about or express
interest in something in our environment, the first thing we do
is look at it. However, the only information we get in this way
is what we see: size, shape, color, distance, etc. Nowadays, a lot
of information about the objects that we see is available online
and is easily accessible. Theoretically, it is only a click away, a
query away, or available by simply activating the mobile device,
writing the query, submitting it, scrolling through the results list,
selecting the relevant one, and accessing the relevant page. This
is, however, a complicated set of actions to perform in a mobile
scenario, when immediate, personalized, and context-aware in-
formation is desired. Current technology offers a variety of ways
to deliver information to mobile users. Context awareness is the
general term describing the attempt to deliver relevant informa-
tion at the relevant time and place to the user. Most context-
aware services nowadays make use of the communication and
computational power (and sensors) of the users’ mobile devices
(mostly smartphones). In addition, they interact with their users
mainly by their mobile device’s touch screens, which have a few
major limitations: they are limited in size, the users must look
at them during the interaction, and they have to use a keyboard
or select icons. Although voice commands can be used to activate
applications, this option is still very limited.

A major challenge in the mobile scenario is to know exactly
what the user is interested in. In classic human–computer interac-
tions, the users use a pointing device, most commonly a mouse or,
in the case of a touch screen, a finger. However, this is becoming
a major challenge in the mobile setting, as noted by Calvo and
Perugini [1], who surveyed novel pointing approaches forwearable
computing. The user’s position is the best hint, accompanied by his
or her orientation. Still, there aremany possibly interesting objects
near and around the user. If we know what the user is looking at,
and what the specific user’s gazing profile is, then we can narrow
down the possibly relevant objects of interest and better serve the
user with relevant service/information.

Given the current performance of ourmobile devices,we should
be able to gain seamless access to information of interest, without
the need to take pictures or submit queries and look for results,
which are the prevailing methods of interaction with our mobile
devices. As we move towards ‘‘cognition-aware computing’’ [2],
it becomes clearer that eye-gaze based interaction should and
will play a major role in human–computer interaction (HCI) be-
fore/until brain computer interaction methods will become a real-
ity [3]. The study of eye movements started almost 100 years ago.
Jacob andKarn [4] presented a brief history of techniques thatwere
used to detect eyemovements. Themajor works on this topic dealt
with usability, and one of the important works was begun by Fitts
et al. [5] in 1947, when they began using motion picture cameras
to study themovements of pilots’ eyes as they used cockpit control
and instruments to land an airplane. ‘‘It is clear that the concept of
using eye tracking to shed light on usability issues has been around
since before computer interfaces, as we know them’’ [4]. In recent
years, commercial mobile eye trackers that enable us to detect
what someone is looking at have become available [6]. Moreover,
eye tracking and image based object recognition technology have
reached a reliable degree of maturity: it is now possible to develop
a system based on this technology, precisely identifying what the
user is looking at [7]. We shall refer to this field by reviewing
techniques for image matching and extend them for location-
awareness use, and wewill follow the approach of ‘‘What you look
at is what you get’’ [8].

The museum visit experience has been changing over the last
two decades. With the progress of technology and the spread of

handheld devices, many systems were developed to support the
museum visitor and enhance the museum visit experience. The
purpose of such systems was to encourage the visitors to use de-
vices that providemultimedia content rather than use guide books,
and therefore focus on the exhibits instead of flipping through
pages in the guide book [9–12]. With the advent of mobile and
ubiquitous computing, it is time to explore the potential of this
technology for natural, intelligent interactions between users and
their smart environment, not only for specific tasks, but also for the
more ambitious goal of integrating eye tracking into the process of
inferring mobile users’ interests and preferences, for the purpose
of providing them with relevant services and developing a better
user model to enhance their experience, an area that has received
little attention so far. This work aims at exploring the potential
of mobile eye tracking technology in enhancing the museum visit
experience by integrating and extending these technologies into
a mobile museum visitors’ guide system, so as to enable the use
of machine vision to identify visitor positions and objects of their
interest, in order to deliver personalized information.

In this study, we addressed the following questions:

• Q1: How can we use a mobile eye tracker to identify the
user’s location and object of interest?

• Q2: How canwe integrate amobile eye tracker as a pointing
device in a system that delivers information to the museum
visitor?

• Q3: To what extent does the use of a mobile eye tracker in
an audio guide contribute to the museum visit experience?

2. Background and related work

2.1. Background on eye tracking and computer vision

Eye tracking is an active area of research that has seen signif-
icant progress over the years. However, as Hansen and Ji noted
in their survey [13] of eye-tracking research, ‘‘Despite active re-
search and significant progress in the last 30 years, eye detection
and tracking remains challenging due to the individuality of eyes,
occlusion, variability in scale, location, and light conditions’’. They
concluded that ‘‘The tendency to produce mobile and low-cost
systems may increase the ways in which eye tracking technology
canbe applied tomainstreamapplications, butmay also lead to less
accurate gaze tracking. While high accuracy may not be needed
for such applications, mobile systems must be able to cope with
higher noise levels than eye trackers for indoor use’’. Relatively
inexpensive, easy to use mobile eye trackers have appeared in
recent years. In 2015, Yousefi et al. [14] surveyed a large variety
of suchmobile eye tracking applications and technologies for avia-
tion, marketing, learning, medicine, and other fields, and predicted
that such applications would continue to appear. As noted, most
existing mobile eye trackers are intended for specific applications
and tasks.

Modern mobile eye trackers usually record video of the scenes
for further analysis using a front camera [7]. With the advent of
computer vision technology, we can exploit this camera to develop
a positioning tool. An image matching procedure can be used
to identify the museum visitor’s location/position by comparing
the front camera scene with a set of known dataset images. In
that way, position can be identified in a pre-defined environment.
Furthermore, the gaze data can be used to infer the user’s attention
in a specific scene, thus making it possible to deliver personalized
information related to a specific object in the scene. Consider a
device consisting of a forward-looking camera and an eye tracker.
The device takes a picture while the user is fixating on a certain
position within the image. The challenge is to recognize the object
in the scene and deliver content related to this object to the user.
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When an image is taken, and given to the algorithm together with
a set of database images, the goal is to find the image that shows
the same scene as the test image. The algorithm should work in
cluttered scenes (scenes from which objects have been removed
or added), where the images are not taken from the same pose
and with varying illumination. In this work, we used local image
features that are unaffected by nearby clutter or partial occlusion.
The features are at least partially invariant to illumination, 3D
projective transforms, and common object variations.

The features must also be sufficiently distinctive to identify
specific objects among many alternatives. Several types of local
features have been developed. The most popular type of feature is
SIFT [15] but others also exist (e.g. SURF [16], BRISK [17], and ORB
[18]). The SIFT features are invariant to image scaling, translation,
and rotation, and partially invariant to illumination changes and
affine or 3D projection. When the SIFT algorithm is applied to an
image, it produces a set of SIFT features with their descriptors.
By matching the descriptors recovered from the test image to
the ones recovered from the image set, a set of possible matches
between the features is recovered. Images with a large number of
possible matches are candidates for the matched scene. However,
thematched scenemight still be incorrect especially if the number
of matches is small. To overcome this problem, we can exploit
the geometric relationships between the positions of the matched
features in the two images (a fundamental matrix in the general
case and a homography matrix for planar scenes). This matrix is
usually computed using a robust estimation procedure from the
RANSAC family [19–26]. These algorithms can be run on the test
image and on each of the images from the dataset. If the algorithm
succeeds, then usually the two images are of the same scene.

If, however, the image database is large, such a procedure
can be time consuming and cannot be run in real time. To ad-
dress this problem, several algorithms have been proposed for
scene recognition from a test image. Using various techniques, the
number of possible images from the database is reduced and the
aforementioned algorithms only need to be run on the remaining
ones. Some of the algorithms develop a single descriptor for the
whole image and recognize the scene using similarity measures
between the descriptors [27]. Others use convolutional neural net
classifiers for deciding whether two images belong to the same
scene [28]. Statistics on matches between local descriptors can
also be used for scene recognition [29]. Once the database image
has been recovered, it will be accompanied by a set of matches
between the test image and one database image. At this stage,
the user’s fixation point comes into play. The designer of the
application can mark in advance positions on the database images
where objects of interest are visible. In order for the object of
interest to be recognized, the fixation point on the test image has
to be transformed into a point on the database image and, if that
point is close to one of the marked objects of interest, the content
related to that object can be delivered. Using the matched points
and the recovered geometric relationships between the images
(fundamental matrix or homography), the transformation of the
fixation point is computed.

2.2. Technology and CH

Over the last 20 years, cultural heritage has been a favored
domain for personalization research. For years, researchers have
experimented with the cutting-edge technology of the day. Now,
with the convergence of internet and wireless technology, and the
increasing adoption of the Web as a platform for the publication
of information, cultural heritage material can be exploited by a
museum visitor before, during and after the visit, with different
goals and requirements in each phase. However, cultural heritage
sites have a huge amount of information to present, which must

be filtered and personalized for easy access. Personalization of
cultural heritage information requires a system that canmodel the
user (e.g., interest, knowledge, and other personal characteristics),
as well as contextual aspects, select the most appropriate content,
and deliver it in the most suitable way. It should be noted that
achieving this result is extremely challenging in the case of first-
time users, such as tourists who visit a cultural heritage site for the
first time.

The museum environment has many limitations, such as the
restriction not to make noise, not to talk loudly, not to touch
anything, etc. Obviously,mobile guides formuseumvisitors should
complement rather than replace traditional interpretation meth-
ods [30]. Under these limitations, Cheverst et al. [12] proposed two
key requirements for such guides, the first of which is flexibility.
The system is expected to be sufficiently flexible to enable visitors
to explore, and learn about, a museum in their own way, includ-
ing controlling their own pace of interaction with the system.
The second requirement is context-awareness, meaning that the
information presented to the visitors should be tailored to their
personal or environmental context. The personal context includes
the visitor’s interests, the visitor’s current location, and exhibits
already visited, while the environmental context includes the time
of day and the opening hours of the museum.

Adrissino et al. [9] have argued that the evolution and conver-
gence of technologies, together with the needs expressed in recent
museum research, open new opportunities for personalization
research, which has the potential to improve the presentation of
information, the exploration of content interesting for the specific
user, and collaboration among users having similar interests, as
well as adapt to heterogeneous user contexts and devices.

2.3. Ubiquitous computing and HCI

Weiser’s vision [31] of ubiquitous computing, with its invisi-
ble yet attentive computing environment that provides the right
information to the right person at the right time, is an exciting
vision of how to evolve computer technology. Within a ubiquitous
computing environment, the computing elements and their inter-
communication are largely hidden from the user, and the tech-
nology is not readily visible – it is worn or embedded in building
infrastructure – and is spoken with and related to. In a follow-up
to Weiser’s vision, and with the maturation of mobile technology,
the idea of context awareness emerged. ‘‘Context and context-
awareness provide computing environments with the ability to
usefully adapt the services or information they provide. It is the
ability to implicitly sense and automatically derive the user needs
that separates context-aware applications from traditionally de-
signed applications, and this makes them more attentive, respon-
sive, and aware of their user’s identity, and their user’s environ-
ment’’ [32].

Interaction between users and computers occurs at the user
interface, including both hardware and software. As computers
become mobile and invisible, designing the interaction between
humans and computers becomes more and more challenging. In-
teraction design means designing interactive products to support
people in their everyday andworking lives. Because HCI concerns a
human and amachine in conjunction, designing a user interface re-
quires knowledge of both the human and themachine side: knowl-
edge about communication theory, graphic disciplines, social sci-
ences, and cognitive psychology, on the one hand, and knowledge
about computer graphics techniques, operating systems, and pro-
gramming languages, on the other hand.Huang et al. [33] discussed
the challenges in HCI design for mobile devices. The limitations of
current mobile devices, such as limited input/output/screen size
and inconvenient navigation through hierarchical menus, are well
known and mostly a result of the device dimensions. Hence, ap-
plying implicit interaction, using eye-gaze as a natural interaction
method, may help overcome some of these challenges.
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2.4. Related work

Many studies were conducted on detecting eye movements
before the appearance of computer interfaces as we know them
today. Robert and Jacob [8] presented techniques for local cal-
ibration of an eye tracker. This technique produces a mapping
of the eye movement and eye wandering measures. In addition,
they presented a technique for fixation recognition with respect
to extracting data from noisy, jittery, error-filled streams and for
addressing the problem of ‘‘Midas touch’’, where the eye tracking
system is ‘‘misled’’ by people inadvertently looking at an item
they are not interested in. Jacob and Karn [4] presented a list of
promising eye tracking metrics for data analysis:

• Gaze duration—cumulative duration and average spatial lo-
cation of a series of consecutive fixations within an area of
interest.

• Gaze rate—number of gazes per minute on each area of
interest.

• Number of fixations on each area of interest.
• Number of fixations overall.
• Scan path—sequence of fixations.
• Number of involuntary and number of voluntary fixations

(short fixations and long fixations should be well defined in
terms of millisecond units).

Brône et al. [34] have implemented effective new methods for
analyzing gaze data collected with eye tracking devices and shown
how to integrate it with object recognition algorithms. They pre-
sented a series of arguments as to why an object-based approach
may provide a significant advantage, in terms of analytical preci-
sion. In order to identify the area of interest (AOI), they attached
physical markers to each AOI. They presented some limitations of
this technique, such as the challenge of the installation. We used
their lessons in our study by defining the object of interest (OOI)
(this term being more appropriate to our museum visit scenario)
‘‘digitally’’ on the images in the database.

Pfeiffer et al. [35] presented the EyeSee3D method. They com-
bined geometric modelingwith inexpensive 3Dmarker tracking to
align virtual proxies with the real-world objects, so that fixations
on objects of interest can be classified automatically while sup-
porting a completely free moving participant. During the analysis
of pose estimation accuracy, they found that the marker detection
failed when the participant looked sideways and there was simply
no marker within view, or due to swift head movements or ex-
treme position changes. Ohm et al. [36] tried to determine where
people look when navigating in a large-scale indoor environment
and what objects can assist them in finding their way. They con-
ducted a user study and assessed the visual attraction of objects
with an eye tracker. Their findings show that functional landmarks
like doors and stairs are most likely to be looked at and named as
landmarks.

Beugher et al. [37] presented a novel method for the automatic
analysis of mobile eye-tracking data in natural environments and
for processing this data by applying object, face, and person detec-
tion algorithms. The obtained detection results were satisfactory
for most of the objects. However, large scale variations resulted in
a lower detection rate (for objects that were looked at both from
very far away and from close by.)

Schrammel et al. [38,39] studied attentional behavior of users
on the move. They discussed the unique potential and challenges
of using eye tracking in mobile settings and demonstrated the
ability to use it to study the attention on advertising media in two
different situations: within a digital display on public transporta-
tion and towards logos on a pedestrian shopping street; they also
presented ideas for a general attention model based on eye gaze.
Kiefer et al. [40] also explored the possibility of identifying user

attention by eye tracking in the tourism setting, by examining, for
example, when a tourist gets bored looking at a city panorama.
This scenario may be of specific interest to us in future work, as
locations or objects that attractmore or less interestmay be used to
model user interest and trigger further services/information later
on.

Nakano and Ishii [41] studied the use of eye gaze as an indicator
of user engagement, trying also to adapt it to individual users.
Engagement may be used as an indicator of interest, and the
ability to adapt engagement detection to individual users may also
enable us to infer interest and build/adapt a user model using this
information. Furthermore, Ma et al. [42] demonstrated an initial
ability to extract user models based on eye gaze of users viewing
videos.

The use of handheld devices as a multimedia guidebook in
museums has led to improvement in themuseum visit experience.
Research has confirmed the hypothesis that a portable computer
with an interactive multimedia application has the potential to
enhance interpretation and to become a new tool for interpreting
museum collections [43].

Studies about integration of multimedia guidebooks with eye
tracking have already been conducted in the context of museums
and cultural heritage sites. Museum Guide 2.0 [44] was presented
as a framework for delivering multimedia content to museum
visitors that runs on a handheld device and uses the SMI viewX
eye tracker and object recognition techniques. The visitor can hear
audio information when looking at an exhibit. A user study was
conducted in a laboratory setting, but no real museum was in-
volved. We extended this work by integrating the eye tracker into
a real museum visitors’ guide and experiment on it in a realistic
setting.

Aswe have seen, there is a large body of work aboutmonitoring
and analyzing user eye gaze in general and some also in cultural
heritage. Moreover, the appearance of mobile eye trackers opens
new opportunities for research in mobile scenarios. It was also
demonstrated on several occasions that eye gaze may be useful in
enhancing a user model, as it might make it possible to identify
user attention (and interests). Inmobile scenarios, when users also
carry smartphones equipped with various sensors, implicit user
modeling can be carried out by integrating signals from various
sensors, including the new eye-gaze sensor, to better model the
user and offer better personalized services. Sensors like GPS, com-
passes, accelerometers and voice detectors have thus far been used
to model user context and interest, (see, for example, [45]). Mobile
scenarios in fact cover a wide variety of activities, from jogging to
shopping to cultural heritage. The tasks in each scenario are dif-
ferent and user attention differs according to the task. Bulling and
Gallersen [46] discuss some of the characteristics and challenges
ofmobile eye-tracking given the technological progress in the field
and, specifically, how these characteristics make eyemovements a
distinct information source about the user’s context. Giannopoulos
et al. [47] presented viGaze—an eye tracking framework that was
demonstrated in a supermarket. It allows the dynamic creation and
design of virtual shelves, their enhancement with audio and visual
information, as well as the design and enablement of gaze-based
interactions (explicit and implicit) that can take place between the
users and the virtual shelves. Using a prototype implementation
of the framework, they conducted a user study that demonstrated
its feasibility in the context of an instrumented retail environment.
They concluded that the ideas generalize easily to different kinds
of instrumented environments.

Although much research has been conducted on monitoring,
analyzing, and using eye gaze to infer user interest, little attention
has been paid so far to user gazing behavior ‘‘on the go’’. This
scenario poses major challenges as it involves splitting attention
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Fig. 1. Pupil eye-tracker (http://pupil-labs.com/pupil).

between several tasks at the same time—avoiding obstacles, gath-
ering information, and paying attention to whatever seems rel-
evant. While user behavior has been monitored and analyzed in
variousways in smart environments, using a variety of sensors, this
has hardly ever been done for eye gaze.

3. Tools and methods

For the purpose of this study, a commercial mobile eye tracker,
the Pupil-Dev eye tracker [7], was integrated into a mobile mu-
seum visitors’ guide system as a positioning tool and for focus
of attention detection, both using computer vision techniques.
It comprises a lightweight eye tracking headset, an open source
software framework for mobile eye tracking, as well as a graphical
user interface to play back and visualize video and gaze data. It
features high-resolution scene and eye cameras for monocular and
binocular gaze estimation. We used the monocular version (30hz)
as an input device for inferring the object of interest (OOI) (see
Fig. 1).

The software and GUI are platform-independent and offer real-
time pupil detection and tracking, calibration, and accurate gaze
estimation. Results of a performance evaluation show that Pupil
can provide an average gaze estimation accuracy of 0.6◦ of visual
angle with a processing pipeline latency of only 0.045 s [7].

A key challenge in using mobile technology for supporting
museum visitors is figuring out what they are interested in. This
may be achieved by tracking where the visitors are and the time
they spend there [48]. A more challenging aspect of the problem
is to identify exactly what they are looking at [49]. The developed
systemaddresses the two aforementioned challenges – it identifies
user focus of attention accurately, and it does so unobtrusively. The
systemexploits and extends an image-basedpositioning technique
(described later in Section 4) to deliver audio information about ex-
hibits in themuseum. A visitorwears themobile eye tracker,which
is connected to a laptop (carried in a backpack), and gazes steadily
at an exhibit for approximately three secondswhile standing in one
place, after which the image-based positioning procedure starts,
location/position and point of interest are identified, and audio
information regarding the desired exhibit is delivered. Tomeet the
goal of unobtrusiveness, two assumptions were made regarding
the interaction of the user with the system: the 3-s gazing period
that triggers the positioning system is long enough to avoid the
‘‘Midas touch’’ problem, and also long enough to ensure that the
user is not moving but standing and looking at an exhibit. A simple

‘‘stop’’ gesture was adopted for starting/stopping the presenta-
tions. Further studies on how the user interactswith the systemare
obviously required, possibly taking into consideration the metrics
suggested by Jacob and Karn in [4] and listed in Section 2.4.

The system (see Fig. 2) consists of three main modules: a po-
sition locator, an OOI identifier, and a broadcaster. The modules
and the databases are local on the computer for reasons of speed,
as well as to reduce the latency of delivering information to the
user/visitor. The flow of input/output is as follows: The mobile
eye tracker streams a captured scene frame from the world and a
fixation point, after which SIFT features of the frame are extracted
and sent to the position locator together with the fixation point.
The position locator module matches the current features with
a predefined set of descriptors (that are extracted from dataset
images beforehand). Once there is a match, the position locator
streams the position ID together with the fixation point to the
OOI identifier, which identifies the object of interest using the
fixation point. Finally, the OOI identifier passes the object ID to the
broadcaster, which finds the appropriate audio file and broadcasts
it to the user. We have implemented two versions of the mobile
eye tracker based audio guide:

1. Proactive: After theposition of the visitor andpoint/object of
interest are identified, a ‘‘beep’’ sound is played, and the au-
dio information about the exhibit is delivered immediately
after.

2. Reactive: After the position of the visitor and point/object
of interest are identified, a ‘‘beep’’ sound is played, and the
system waits for a mid-air gestural action (‘‘stop sign’’).
After the user makes the appropriate gesture, the audio
information is delivered.

For both versions, the same mid-air gestural action of a ‘‘stop
sign’’ was used to stop the audio presentation. We implemented
this feature using Dense Optical Flow,whichwas presented in [50].
We did so by looking at three continuous frames, each divided into
100 blocks (10 × 10), and from each block we took one point,
calculated its optical flow magnitude and counted it if it was in
the threshold range. In our case the range is between 10 to 150
pixels. We call these points violation points. We determined that a
‘‘stop sign’’ gesture was made if three consecutive frames had zero
violation points.

Since the system is to be used in a real-time scenario, the
following functional requirements should be met:

• Response time: The system should be responsive enough
to deliver the desired information within interactive time.
According to Card et al. [51], 10 s is about the limit for
keeping the user’s attention focused. In our system, we set
a maximum time limit of 5 s for delivering the desired
information.

• Accuracy: The system should be accurate enough to deliver
the correct information at the right time. This means the
correct information should be delivered when the visitor is
standing in front of the exhibit, in accordance with thewhat
you look at is what you get approach.

The performance of the eye-tracker was first evaluated in three
user studies, after which the system was evaluated in a separate
user study in a realistic setting. 22 students from the University
of Haifa participated in the latter study, which was conducted in
the Hecht Museum, a small museum at the University of Haifa that
has both archeological and art collections. The study included an
orientation session to explain the use of the eye tracker, followed
by a tour of themuseumwith the eye tracker,whichwas connected
to a laptop carried in a backpack, with audio content about the
exhibits delivered via headphones.

http://pupil-labs.com/pupil
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Fig. 2. The process of OOI identification and information delivery.

Table 1
Number of misses per grid cell.

Cell # 6 18 19 23 24
# of misses 5 5 3 5 5

Visitor experience when using two different mobile guides was
also compared: an audio guide that uses themobile eye tracker and
a conventional mobile guide that runs on a smartphone and uses
BLE (Bluetooth low energy) Estimote beacons [52] to identify the
position of the visitor. Whenever the visitor reached a predefined
area of interest, a multimedia presentation was delivered.

4. Assessing the performance of the Pupil-Dev eye tracker in
realistic settings

To assess the accuracy of the mobile eye-tracker device in
realistic settings, we first had to design and develop the system to
work and to be evaluated in the required operational range. To this
end, we conducted three preliminary user studies.

4.1. User study 1: looking at grid cells

Five students from the University of Haifa, without any visual
disabilities, participated in this study (average age is 22), the goal
of which was to determine the accuracy of the detection of a pre-
defined POI. The students were asked to look at a wall-mounted
grid from a distance of 2 m and track a finger while using the eye
tracker (see Fig. 3, left). Standing at a fixed point, they were asked
to look for approximately 3 s at each cell the finger pointed at.
On average, the eye tracker detected fixation with an accuracy of
∼80% (most of themissed fixationswere in the edges/corners—see
Table 1 for details). In addition, the average fixation point error, in
terms of distance from the center of the cell, was approximately
5 cm.

During the study, we encountered several practical problems.
The first is that the eye tracker was not fitted individually to
each participant. The device consists of two cameras, the first for

Fig. 3. Left: Screen capture from user study 1. The finger points at a cell at which
the participant was asked to look. The green circle is the fixation point returned by
the eye tracker. The size of each grid cell is 20 × 20 cm. Right: Screen capture from
eye camera. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

delivering the scene and the second directed to the right eye for
detecting fixations.When the device did not fit properly, the vision
range decreased and parts of the pupil fell outside the area of the
captured frame (see Fig. 3 (right) for example), as no fixationswere
detected. Another limitation was that tall people have to step back
from the object (to keep it in the camera’s field of view), which
affects the accuracy.

4.2. User study 2: looking at an exhibit

In this study, we examined the accuracy of the eye tracker in a
realistic setting. One participant (1.79 m tall) was asked to look at
exhibits in themuseum. Several exhibitswhere chosenwith differ-
ent factors and constraints (see Figs. 4 and 5). The main constraint
in this case was the distance from the exhibit, since the visual
range increases when the distance grows, and we have to cover
all the objects that we are interested in. Table 2 presents height of
the objects from the floor and the distance of the participant from
each object. The next step was to examine fixation accuracy after
making sure that the participant is standing at the correct distance
from the exhibit. The participant was asked to look at different
points in the exhibit/scene. In the gallery exhibits, the scan path
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Table 2
Experiment details—we considered the three glass shelves on the far left of the vitrine shown in Fig. 5 (right).

Exhibit type Width (cm) Height (cm) Height from floor (cm) Stand distance (cm)

Vitrine shelf

80 25 150 150
80 15 120 230
80 20 90 310
80 15 40 390

Gallery 60 67 150 200

Fig. 4. Gallery exhibition.

was set to be the four corners of the picture and finally the center
of it. Regarding the vitrine exhibits, for each jug, one point at the
center was defined.

Not surprisingly, we obtained 100% accuracy in the art wing
since all the pictures are placed at an ideal height. The archeological
wing is considered a more challenging environment, since objects
are placed at different heights and differ in size. Specifically, when
the user has to tilt his or her head to look down, we noticed poor
performance. As this poor performance is due to a limitation of
the current device, we did not consider low-height exhibits in our
experiments. More challenging exhibits are those that are placed
in harsh lighting conditions: conditions that change drastically
during theday, as a result of changing sunlight. Hence, in the case of
the archeologicalwing,we estimated that about 60% of the exhibits
are detectable with the current device.

As the goal of the study was to explore the potential of the
device in a realistic setting, being able to detect 60% of the exhibits
seemed good enough for our purpose. We assume that as the
technology improves, the current limitations will be reduced or
even eliminated completely.

4.3. User study 3: image-based positioning

4.3.1. Preparation
In this study, we wished to answer the question: How can

we use a mobile eye tracker to identify the location and the
object of interest? We implemented an image-based positioning
technique to identify the visitor’s position and object of interest in
a predefined museum layout. We used the SIFT algorithm [15] to
match the current scene’s camera to a set of images from a pre-
defined dataset for locating the visitor’s position. What remained
after locating the visitor’s location is to infer his/her object of inter-
est. Sincewe have amatched image from the dataset, transforming
the fixation point that we get from the eye tracker will lead us to a
point in the dataset image. Hence, with predefined regions/labels
in every dataset image, we infer the visitor’s object of interest.

A visitor entering the museum can stop/stand in front of each
exhibit at different viewpoints (in terms of distance and angle).
Consequently, preparing the dataset that represents the museum

Table 3
Standing distances.

Exhibit type Distance (cm)

Vitrine shelves 50–70
Art gallery 70–100
Small statues 50–70
Large exhibits 100–150

layout plays a crucial role in obtaining accurate matching results.
One option might be to capture several images from different
viewpoints for each exhibit. Time complexity is the limitation of
this option, since the image-to-imagematching procedure requires
massive amounts of computation, which can cause a delay in
delivering the current position. To identify typical viewpoints, 10
regular museum visitors were observed when visiting the Hecht
Museum, and their standing distance from each exhibit was mea-
sured for four types of exhibits: vitrine shelves (Fig. 5, right), art
galleries (Fig. 4), small statues (Fig. 5, left) and large exhibits (Fig. 7).
The distances are presented in Table 3. During the observations,
we ignored the angle between the visitor and the exhibit, because
several such frontal-viewing angles are possible. We therefore just
considered the distances.

Once typical distances were known, images of the exhibits
were taken and assigned distinct label values (image ID), and a
set of rectangular regions within the images (around objects) was
defined and assigned a distinct ID.

The matching procedure for location identification and interest
detection was done in four steps:

1. An eye-tracker scene camera frame was taken (Fig. 6 (left))
after the user focused on an object (looked at it steadily for
three seconds). This was done by tracking good features in
three frames within the three-second period (for each sec-
ond we stored one frame) using the Lucas–Kanade method
for optical flow [53].

2. Image-to-image matching was applied using SIFT features.
Two images (the current frame and the dataset frame) are
said to match if the number of matched features divided by
the total number of features is higher than a threshold. (in
our case we chose the threshold = 0.12). The result is an
image that matches the current location (Fig. 6 (right)).

3. A mapping transformation was obtained to transform the
fixation point identified in the scene camera of the eye-
tracker to a suitable/matched point in the image that exists
in our dataset with labeled regions (see Fig. 6, right), since
the viewpoint from which the objects were photographed
can differ in the two images. For example, one image might
be rotated relative to the other or one zoomed in/out be-
cause the visitor’s distance from the object differed from
the distance from which the data-set image was taken. The
mapping transformation was obtained using the homogra-
phy matrix, which was computed using a robust estimation
procedure from the RANSAC family [19].

4. The final step of finding the object is simple now that we
have obtained mapped fixation points and labeled regions.
What remains is to determinewhich object (if any) the point
corresponds to.
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Fig. 5. Small statue exhibit (left). Backlit vitrine exhibit (right).

Fig. 6. Left: Example of an image taken by the scene camera of the eye-tracker. The green point is the fixation point. Right: Image-to-image matching. The yellow rectangles
are the regions around each object. The green point is the fixation point after transformation from the left image is performed. The corresponding region would be R3. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

As the matching of the camera scene image with every image
from the dataset is time consuming, we optimized the process by
starting it from images near the visitor’s current location. To that
end, we represented the dataset using a graph, where each node
represents the exhibit’s image/label and the arc values represent
the physical distance between two neighboring exhibits.

4.3.2. Evaluation of the accuracy and matching time
We observed museum visitors and noticed that a visitor who

enters a museum might walk around or stand and look at an
exhibit.We have to distinguish between these two cases. To recog-
nize the event of looking at an exhibit, we set a time interval (three
seconds) of looking at a scene.We use this as a trigger for starting a
matching procedure, comparing the image of the scene with a set
of existing position-representing images (that were taken before-
hand, by the same type of camera, at every position from several
different angles, based on our observations of visitors’ behavior).
The matching procedure yields a set of scores, and the image with
the highest score is selected as representing the visitor’s current
position. During the study conducted in the Hecht Museum, one
personwas asked towalk around themuseum and look at exhibits.
When he looked steadily at an exhibit for about three seconds, the
image based positioning procedure started and the position and

the object of interest was identified. With a database of images
taken from 24 positions and representing 18 exhibits, the process
took 1.5 s on average. The experimental results are presented
in Table 4. It is clear the positions were correctly identified in
most cases. However, there were two positions/exhibits where the
performance was poor or even failed most of the time. Examining
these cases revealed that low-accuracy results were obtained for
exhibits with unusual features, e.g., those placed in such a way
that the visitor can look at them from a distance and from a wide
variety of angles (Figs. 7 and8 for example), a scenario that requires
many reference images. A possible solution is to add several images
from different distances and angles for each such exhibit. Exhibits
with different lighting conditions (especially nearbywindows) that
may affect the image-matching process will also require many
reference images. A possible solution is to add several images taken
at different times of day. In our system, we do not consider these
cases.

5. Empirical study

Once the performance of the eye tracker was studied and the
systems developed, we evaluated them in a realistic setting. The
research questions we were interested in exploring were:



Please cite this article in press as: M. Mokatren, et al., Exploring the potential of a mobile eye tracker as an intuitive indoor pointing device: A case study in cultural
heritage, Future Generation Computer Systems (2017), http://dx.doi.org/10.1016/j.future.2017.07.007.

M. Mokatren et al. / Future Generation Computer Systems ( ) – 9

Table 4
Accuracy of exhibit matching.

Item # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Accuracy 1 1 1 1 0.42 1 1 1 1 1 0.11 1 1 1 1 1 1 1

Fig. 7. Exhibit E5. A large exhibit that requires additional dataset images from different viewpoints.

Fig. 8. Exhibit E11. Additional dataset images are required for each object.

(Q3a) To what extent does a proactive version of the visitor’s audio
guide contribute to the visitor experience in museums, compared
with the contribution of a reactive version?
(Q3b) To what extent does the use of a mobile eye tracker in
an audio guide contribute to the visitor experience in museums,
compared with the contribution of conventional mobile guide?
The hypotheses for Q3a were:
H0: The proactive and reactive versions will not differ significantly
in terms of their contribution to visitor experience in museums.
H1: The proactive and reactive versions will differ significantly in
terms of their visitor experience in museums.
The hypotheses for Q3b were:
H0: Themobile eye-tracker based audio guide and the smartphone
based mobile guide will not differ significantly in terms of their
contribution to visitor experience in museums.
H1: Themobile-eye tracker based audio guide and the smartphone
basedmobile guide will differ significantly in terms of their contri-
bution to visitor experience in museums.

5.1. Participants

Twenty-two students from the University of Haifa participated
in the study, some of whom were randomly invited, and some
of whom were occasional visitors who happened to be at the
museumduring the experiments. 12 participantswere females and
10 participants were males, with an average age of 24.45 years (SD
= 4.415). The choice of university students, who are not charac-
teristic of visitors to the Hecht Museum, may impact dependent
variables, such as average age or background knowledge, which
could influence the experimental results. However, we made this
choice because regular visitors to the Hecht Museum are mainly
groups of senior citizens and classes of school children.

5.2. Experiment setup

To test the hypotheses, experiments manipulating and mea-
suring variables under controlled conditions were carried out. The
independent variable was the type of system while the dependent
variables were:
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(a) Usability factors, as measured by means of the SUS ques-
tionnaire [54], and (b) a subjective assessment of the visitor ex-
perience, as measured (in a set of three additional questionnaires)
by user preference. The goal of the subjective assessment was to
determine, whether the users felt that the guide was an effective
way to get information and learn about the objects in the exhibit,
and whether the system was sufficiently intuitive.

5.3. Procedure

The study took about an hour and a half andwas performed as a
randomized counterbalanced, within-groups study to eliminate the
learning effect.

The evaluation procedure was organized as follows:

1. It began with a brief introduction to the study, after which
the participants were asked to complete a personal and
background questionnaire.

2. Then the participants were given a short demonstration of
each system and its features. The participants were also
instructed how to perform the calibration process and, for
the reactive version, how to interact with the guide.

3. The participants were next requested to visit the exhibits
in the archeological wing, using the visitor’s guide systems.
The visit started with the calibration process. Then the vis-
itors were instructed to follow a pre-defined path in the
museum and to look at particular objects (about which we
have information).

4. During the experiment, the participants filled out the SUS
questionnaire three times—(once for every system they ex-
perienced). At the endof the experiment they filled out three
additional questionnaires (1) an individual questionnaire
whose purpose was to compare visitor experience while
using the two different versions of the mobile eye-tracker
based audio guide; (2) an individual questionnaire regarding
user acceptance and accuracy of the gaze-based interface
and (3) an individual questionnaire whose purpose was
to compare user experience while using the conventional
mobile guide and the preferred version of the mobile eye-
tracker based audio guide.

5. Finally, the participants were briefly interviewed and an-
swered two open questions:

• How was your museum visit experience when using
the mobile eye tracker audio guide?

• What do you think about the way the system interacts
with the user (the gaze-based interface)?

5.4. Experimental results

The three museum visitor’s guide systems obtained high us-
ability scores: (1) mean = 86.47 and SD = 7.96 for the proactive
version of the mobile eye-tracker audio guide; (2) mean = 86.36
and SD= 11.84 for the reactive version ofmobile eye tracker audio
guide; and (3) mean = 93.75 and SD = 5.7 for the conventional
smartphone-based mobile.

As can be seen in Fig. 9 (left), there is no real difference between
the proactive and the reactive mobile eye tracker audio guide
but there are differences between the smartphone based system
and the eye-tracker based systems. This was confirmed by the
Friedman test with Bonferroni correction. The null hypothesis that
the distributions of all three cases are the samewas rejected (χ2

=

9.829, p = 0.007). We found that there was no significant differ-
ence between the proactive and reactive versions (p = 0.706),
but there were significant differences between the proactive and
the smartphone versions (p = 0.016), and between the reactive

version and the smartphone versions (p = 0.048), both significant
at alpha (<0.05).

In addition to the usability study, the user’s subjective assess-
ment of the proactive or reactive systemwas analyzed (see Fig. 10).
The following aspects of user preference were assessed:

1. Preferred version for overall museum visit: 13 participants
preferred the reactive version compared with 9 participants
who preferred the proactive version.

2. Effectiveness for getting information and learning: 11 par-
ticipants preferred the reactive version compared with 8
who preferred the proactive version. 2 participants had no
preference.

3. Intuitiveness: 18 participants preferred the proactive version
compared to 3 participants who preferred the reactive ver-
sion. One person had no preference.

As can be seen in Fig. 10, there are slight differences between
the proactive and the reactive systems with respect to users’ pref-
erences and perceived effectiveness, where the reactive system
outperformed the proactive one: however, a binomial test showed
that the differences are not significant (p = 0.523 for the preferred
version and p = 0.648 for effectiveness). Still, the proactive system
seemed to be much more intuitive than the reactive one and the
binomial statistical test confirmed this observation (p = 0.001).

Next, the preferred mobile eye tracker audio guide was com-
pared with a conventional mobile guide on a smartphone (see
Fig. 11).

1. Preferred guide for the overall museum visit: 16 participants
preferred the mobile eye tracker audio guide compared to
6 who preferred the conventional mobile guide on a smart-
phone.

2. Ease of use and intuitiveness: 12 participants preferred the
conventional mobile guide on a smartphone compared to
10 participants who preferred the mobile eye-tracker audio
guide.

3. Learning: 17 participants preferred the mobile eye-tracker
audio guide compared to 5 participants who preferred the
conventional mobile guide on a smartphone.

As can be seen in Fig. 11, the mobile eye tracker was considered
the preferred guide, and it also outperformed the smartphonewith
respect to learning. These observations were confirmed by a bino-
mial statistical test that showed significant differences between
the systems (p = 0.52, which is marginally significant, for the
preferred version, and p = 0.017 for learning). However, there
was no real difference between the systems with respect to ease
of use, and the binomial statistical test confirmed this observation
(p = 0.832).

Wewere interested in analyzing the acceptance and accuracy of
the gaze-based interface, in order to evaluate the potential of using
the mobile eye tracker as a pointing device. To that end, we pre-
sented the participants with a four-question questionnaire, where
each question had a five-point Likert scale response. Figs. 12–15
present the responses of the participants to the questions regard-
ing the gaze-based interface: they liked the interface (Fig. 12),
the calibration process did not bother them much (Fig. 13), they
learned about objects of interest (Fig. 14), and they usually got
information about the correct object (Fig. 15).

The final step of the study was a brief, five-minute interview,
conducted at the end of the one-and-a-half-hour study, where the
overall visitor experience was briefly discussed and the partici-
pantswere asked about theirmuseumexperience using themobile
eye-tracker audio guide and to give their opinion about theway the
system interacts with the user.

The answers to these open-ended questions were transcribed
by the interviewer. Given the conditions of this part of the study,
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Fig. 9. SUS scores for the three museum visitor’s guides (left) and score distributions (right).

Fig. 10. Comparison between proactive and reactive versions of the mobile eye-tracker audio guide.

Fig. 11. Comparison between mobile eye tracker audio guide and conventional mobile guide on smartphone regarding the museum visit experience.

Fig. 12. Responses to the question, How did you like the gaze based interface?

Fig. 13. Responses to the question: To what extent was the calibration process acceptable to you?

Fig. 14. Responses to the question: Did you get information regarding the object you wanted to know about?
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Fig. 15. Responses to the question: How often did you get information regarding the object you were not interested in?

we see this step as merely complementary. Data analysis was
carried out in accordance with grounded theory analysis princi-
ples [55]. With regard to the first open question, two categories
of response were identified: those relating to visit enrichment
(‘‘Very cool and interesting, tempting me to listen to information
even if the exhibit seems uninteresting to me’’; ‘‘It enriched the
experience, I’ll remember the visit for a long time’’) and those
relating to the use of futuristic technology (‘‘Groovy, felt futuristic,
it’s what I always hoped museum visits should be like’’; ‘‘I felt I’m
living in 2020, it felt like a journey in time’’). With regard to the
second open question, the answers tended to be very short and,
repetitive, and two categories of response were also identified:
those relating to the intuitiveness of the system and those relating
to the long delay (‘‘3-s is too long’’).

6. Discussion

We developed and evaluated a mobile museum visitor’s guide
that uses an eye tracker as a pointing device. The current tech-
nology, while still limited and premature for daily use, has the
potential to be used for experimentation in realistic settings. The
evaluation results show that the system got satisfactory scores
(‘‘very good’’ scores for both the proactive and the reactive ver-
sions). Not surprisingly, the conventionalmobile guide got a higher
usability score, probably because the mobile eye-tracking technol-
ogy is still notmature enough and the experimental procedurewas
a bit cumbersome as compared to smartphones, which are used by
the visitors on a daily basis and completely familiar to them.

In contrast to its lower usability score, the mobile eye-tracker
audio guidewas shown to be preferable to the conventional smart-
phone guide with regard to overall museum visit experience. Partic-
ipants who preferred the mobile eye tracker audio guide indeed
attributed their preference to experience-related aspects of the
guide: ‘‘It is mainly because of the experience’’; ‘‘I prefer to get
audio information while looking’’; ‘‘It’s because of the ability to
get information while walking ’’; ‘‘It’s more comfortable to use,
there’s no need to play presentations and to scroll down on the
screen’’; ‘‘Less effort, more accurate, more control and gives infor-
mation per object’’; ‘‘It’s because of the innovative technology’’;
‘‘You need to search for the object in the museum when using
the smartphone’’; ‘‘It gives an opportunity to ‘live the museum’
or ‘to feel the museum’’’; ‘‘It’s more efficient, but what about
if we were in a larger museum? Why should I have to search
for the location of every object when using the smartphone? It’s
a waste of time!’’. Participants who preferred the conventional
mobile guide attributed their preference not to overall experience
but to familiarity: ‘‘I know to use the smartphone better, it’s more
intuitive’’; ‘‘I have more control over the smartphone’’; ‘‘Wearing
the mobile eye tracker is overload’’; ‘‘The use of the smartphone is
more comfortable, you are not limited in where you stand’’; ‘‘It’s
quicker’’. With regard to ease of use and intuitiveness, the results
showed no real difference between the mobile eye-tracker audio
guide and the conventional one.

With regard to learning, the results showed that most of the
participants preferred the mobile eye tracker audio guide over
the conventional one. Answering the open-ended question, these
participants justified their preference with statements such as:
‘‘I’m in focus, nothing in my hand’’; ‘‘It’s more accurate and better
for self-learning’’; ‘‘You don’t need to perform a lot of actions, just

to look’’; ‘‘More intuitive,more interesting’’; ‘‘Easier to get informa-
tion with’’; ‘‘I’m getting information while looking’’; ‘‘More control
over the objects I’m interested in’’. In contrast, those participants
who did prefer the conventional mobile guide said: ‘‘More control
in which I canmove backwards and forwards in the presentation’’;
‘‘Showing the presentation is preferable to just listening to audio’’;
‘‘I would use the mobile eye tracker audio guide when it adds new
things to the exhibit, like augmented reality’’.

With regard to the preferred guide for the overall museum visit,
the results showed that most of the participants preferred the
reactive version over the proactive version of the mobile eye-
tracker audio guide (even though there was no difference in the
usability questionnaire). The open-ended questions show that the
main reasons for preferring the reactive version are that the users
feel more in control when using this version and they can decide
when to play the audio. According to Lanir et al. [56], museum
visitors feel less in control when using proactive context-aware
systems. Our reactive version was developed as an attempt to
overcome user aversion to such proactive systems. Nonetheless,
our interaction design was not sufficiently accepted as an effective
method of user control. It was suggested that the three-second
‘‘stop’’ gesture be replaced with a button or a sensor on the mobile
eye-tracker device. Therefore, while this mobile technology is still
too premature for daily use, once improved it can be easily adopted
and used as a natural pointing device.

With regard to the effectiveness of getting information and learn-
ing, the questionnaire results showed no real differences between
the two versions of the mobile eye-tracker audio guide.

Finally, with regard to intuitiveness, the questionnaire results
showed that most of the participants preferred the proactive ver-
sion over the reactive version. The open-ended questions indicate
that this preference is mainly due to the simplicity of the interac-
tion and the fact that it requires less effort.

Like any study, the current study has its limitations. The first
limitation is technical. We used a specific eye tracker, examined
andmapped its limitations (as explained above), and tried to work
within these limitations. It may be that other devices (such as Tobii
Pro Glasses 22 for instance) are better in terms of performance
metrics such as elevation, field of view, accuracy, or latency, but
these devices are also much more expensive at this time. An ad-
ditional limitation stems from the fact that the mobile eye tracker
is a wearable device, and thus problematic for people who wear
glasses. In general, however, we assume that the technology will
get better. Hence,while noting the technical limitations,webelieve
our results are encouraging.

The gap between our exploratory study, which yielded promis-
ing results, and the integration of themobile eye tracker into a real
system, also needs to be addressed. The ‘‘Midas touch’’ problem
must be more adequately addressed in realistic settings. Correctly
identifying the user’s object of interest, a problem we solved by
setting a high threshold for the decision, might also require us to
consider additional factors, such as the options presented in [4]:
gaze duration, gaze, number of fixations overall and on each area
of interest, scan path and number of involuntary and voluntary
fixations.

System errorsmust also be dealt with: erroneous position iden-
tification, erroneous object identification, and positions/objects

2 https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/.

https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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without information. These are beyond the scope of this ex-
ploratory study. Possible solutions to the problem of system errors
may include notifying the user that the position or the specific
object of interestwere not identified or that there is no information
about them (content preparation is expensive, so it is reasonable
to assume that there will be exhibits for which no information is
available). It may also be possible to provide general information
about the area/exhibition or the exhibits in front of the visitor,
when detailed information is not available.

Finally, we need to design a natural method of gesture-based
interaction to start/stop information delivery.

In this study, we focused on exploring the potential of a mobile
eye tracker as a pointing device for natural interaction in smart
environment. An interesting alternativemay be to use a remote eye
tracker for this purpose. However, although accurate stationary
eye trackers do exist, the use of a remote system poses its own
challenges. First and foremost is the challenge of identifying the
relevant user, to ensure coherent interaction throughout the visit.
A remote system would also require the installation on many
stationary eye trackers, which would have to account for factors
such as differences in user height or standing distance. Moreover,
such systems also pose computational challenges such as inferring
the exact fixation point when the user is not standing in front of
the eye tracker [57]. Despite these challenges, the use of a remote
system is an interesting idea and a possible direction for future
work.

7. Conclusions and future work

In this work, we explored the use of a mobile eye tracker as
an intuitive pointing device in realistic settings, using cultural
heritage as a case study because of the vast amount of information
available in museums. We first studied the technical aspects and
the limitations of the device we used. Then, we developed a tool
for image-based positioning and for detecting objects/points of
interest in real-time using computer vision techniques. Finally,
we developed a context-aware mobile audio guide system using a
mobile eye tracker as a pointing device. We developed and tested
two different versions of this guide, proactive and reactive. We
evaluated the system in a user study in a realistic setting at the
Hecht Museum. The results showed that the mobile eye-tracking
technology, even though unfamiliar and possibly immature, was
accepted by the participants. The mobile eye-tracker audio guide
was perceived as the preferred museum visitors’ guide compared
to a conventional museum mobile guide, especially with respect
to learning. Unsurprisingly, the results also showed that the par-
ticipants like to be in control, as most of them chose the reactive
version of the system.

This study lays the foundations for the use of eye-trackers as a
natural HCI pointing device, in real-time mobile scenarios, where
there is a need to dynamically and quickly identify the user’s focus
of attention and act upon it, according to the user’s situation. In the
cultural heritage setting, visitor movement in space, time spent,
information requested, vocal interaction andorientation have been
used to infer user interest in museum exhibits and as the social
scenario when a group is visiting the museum together [45,58–
60]. Adding eye gaze as an additional source of information may
greatly enhance the system’s ability to pinpoint the user’s focus
of attention and interest (e.g., on products or exhibits), hence
improving the ability to model the user and better personalize
the service offered (e.g., exhibit or product information, shopping
assistance). According to Majaranta et al. [61], ‘‘Advances in the
technology open new areas for eye tracking, widening the scope
of gaze-based applications. Current hot topics include all kinds of
mobile applications and pervasive systems where the user’s visual
behavior and attention are tracked and used for eye-based inter-
action everywhere and at any time’’. In the coming years, when

mobile eye-tracking technology becomes affordable, we envision
that every person will have a device that employs this technology.

Future work will address improving the accuracy, speed, and
interactive design of the mobile eye-tracker audio guide system,
dealing also with potential errors and places where no informa-
tion exists. Furthermore, we will explore the potential of using
the mobile eye tracker as an intuitive pointing device in other
scenarios, including indoor, outdoor, and urban scenarios. Another
interesting future research direction can be to design an overall
immersive museum experience, integrating additional novel tech-
nologies, such as the real-time generation of personalized coherent
presentations, into spatial audio systems.
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