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Abstract

In this paper a novel registration algorithm between 3D
point clouds is presented. It exploits the fact that current
3D point descriptors (e.g., RoPS) are accompanied by lo-
cal reference frames(LRF). LRFs of corresponding points
are used to estimate the relative rotation between the point
clouds. Thus, inlier matches will generate a cluster of ro-
tation matrices. The size and shape of this cluster is un-
known. We therefore develop a mean shift clustering al-
gorithm for noisy rotation matrices. It finds the mode of
the distribution to estimate the relative rotation. It is then
used for estimating the translation vectors from the matched
points. Here again mean shift is used for finding the transla-
tion component. The algorithm has been tested on different
types of sources of 3D data (3D scanner, Lidar, and Struc-
ture from Motion(SfM)) of small scanned objects and urban
scenes. In all these cases, the algorithm performed well
outperforming state of the art algorithms in accuracy and
in speed.

1. Introduction

The alignment of point clouds acquired from several
viewpoints, locations and sensors [12] is called 3D regis-
tration. 3D registration has numerous applications ranging
from 3D object categorization and recognition [17, 9], 3D
modeling and scene reconstruction [18], robotic perception
[12], etc.

The process consists of the following steps: (a) key point
detection. i.e., finding distinctive points on the object. (b)
Local feature descriptor computation, i.e., describing the
area around the key point. (c) Feature matching, i.e., find-
ing similar features between the two point clouds. (d) Point
cloud alignment, i.e., finding the rigid transformation be-
tween the coordinate systems of the point clouds.

The advances in technology in the last few decades led
to intense research and to the development of specialized

algorithms for key point detection and for feature descrip-
tors. Several 3D key point detector evaluations and feature
descriptor evaluations have been conducted in the literature
[22, 8, 2].

These feature descriptors can be divided in to two main
categories, Local Reference Frames (LRF) based descrip-
tors and descriptors without LRFs. The first group consists
of Rotational projection statistics (RoPS) [9], Signature
of Histogram of Orientations (SHOT) [26], and Unique
Shape Context (USC)[25] to name a few. The other group
of descriptors consists of Spin image [14] and Fast Point
Feature Histograms (FPFH) [21] which only use surface
normals. There are methods such as [1] which do not use
descriptors at all but rely on matching four co-planer points
between the cloud points.

Our algorithm relies on these LRFs created by the de-
scriptors above. An LRF consists of three orthogonal vec-
tors. The first one is the normal to the surface at the key
point. The other two lie in the tangent plane. They maybe
the maximal and minimal principal directions T1 and T2
(yielding the Darboux frame (N,T1, T2)). In this case T1
is not uniquely defined and −T1 is also possible. This can
result in true corresponding feature points with dissimilar
descriptors. This problem was addressed by Guo et al. [9]
in the RoPS descriptor in which the second and third vec-
tors were defined uniquely. Thus, a much larger number of
correct matches can be found. We will therefore be using
these descriptors as input to our algorithm.

Most algorithms use putative matches as input to a
RANSAC type algorithm which uses only the feature
points. Some state of the art methods [6, 19] use variations
of the Hough Transform to estimate the transformation. It
can be based on recognized objects in the scene or on LRFs
as will now be described. In the method we propose here we
use in addition the LRFs to help recover the relative pose
in the following way. Assuming feature point Pi matches
feature point Pj then the relative rotation matrix R can be
estimated by

Ri,j = LRFT
j LRFi.
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Since the LRF is estimated from the local region around the
feature point, it is not estimated very accurately. Still, the
rotation matrices generated from the matches should yield
a cluster from the correct matches and a random set of rota-
tion matrices from the outlier matches. Once the center of
the cluster R̂ has been found, for all matches belonging to
this cluster the translation vector t can be estimated as

ti,j = Pj − R̂Pi.

Thus, for all inliers a cluster of points in 3D will be formed.
In order to deal with the noisiness of the computed LRFs

a high quality clustering algorithm is needed. To that end
we present a mean shift algorithm designed for rotation ma-
trices. The algorithm can deal with a large number of incor-
rect matches as long as the cluster of inliers is detectable.

In the next section the algorithm will be described. In
Section 3 it will be compared to other registration algo-
rithms. Comparative experiments performed on several dif-
ferent types of data sets will be presented in Section 4. Fi-
nally, conclusions and future work will be discussed in Sec-
tion 5.

2. Proposed method
In this section we describe our method for pairwise reg-

istration. The algorithm is based on a mean shift algorithm
especially designed to deal with LRFs and will be denoted
LRFMS. The input to the algorithm is two sets of keypoints
and their corresponding LRFs and descriptors. In this work
we used a set of keypoints detected by the Harris3D [23]
interest point detector. For each keypoint the RoPS [9] LRF
and descriptor is computed. Given a set of best matches,
we use Lowe’s [15] ratio test value of 0.99 for choosing the
subset of matches to be used by the algorithm. This value is
very high compared to the value usually used in RANSAC
algorithms and yields a large number of putative matches
with a very low inlier rate. In our case however, the inlier
rate is not that important, all that is needed for the algorithm
to succeed is that the cluster of inlier rotation matrices is de-
tectable.

Given a pair of corresponding points, under the assump-
tion that both LRFs were calculated correctly, the rotational
difference between the LRF’s is the global rotation between
the point clouds. Since this assumption does not hold for
real world data we use clustering to find the rotation inliers.

When considering the appropriate clustering method, it
was shown by [24], that mean shift is an efficient approach
for finding the rigid transformations between Manifolds and
can be extended to the registration of 3D objects. While
the popular clustering method K-means is a parametric ap-
proach that requires prior knowledge on the number of clus-
ters and their shape, the mean shift algorithm has no such
requirements. It can also deal with the case in which besides

the main cluster the rest of the data is arbitrarily distributed
as in the case here.

We will therefore review in the next section the general
mean shift algorithm [3] and describe how it can adapted
for clustering 3D rotation matrices.

2.1. Mean shift

Given n data points x1, ...., xn from an unknown distri-
bution function in the Euclidean Space Rd, the probability
distribution function f(x) can be estimated by

f(x) =
ck,d
n

n∑
i=1

k

(
‖x− xi‖2

h2

)
, (1)

where k (x) is the kernel profile function, h is the bandwidth
and ck,d is a normalization constant chosen to ensure that
K(x) defined below integrates to one. K (x) satisfies

K (x) = ck,dk
(
‖x‖2

)
> 0 ‖x‖ ≤ 1. (2)

To find the mode of the density distribution, a gradient as-
cent of Eq. 1 is computed. We define G (x) = −K ′ (x). By
taking the gradient of Eq. 1, the mean shift vector at point x
is defined as

Mh(x) =

∑n
i=1 xiG

(
‖x−xi‖2

h2

)
∑n

i=1G
(
‖x−xi‖2

h2

) − x. (3)

At each iteration a new point yj+1 is computed.

yj+1 =

∑n
i=1 xiG

(
‖yj−xi‖2

h2

)
∑n

i=1G
(
‖yj−xi‖2

h2

) . (4)

This iterative procedure is applied for all points in the data
set where at the first iteration y0 = xi.

For every data point, the algorithm converges to the lo-
cally densest area. All points for which the algorithm con-
verges to very close points belong to the same cluster.

Extending the mean shift algorithm to a Non-Euclidean
space [27, 24], requires a different approach for the compu-
tation of the distances between the objects and for comput-
ing the weighted average.

Rotation matrices in 3D are a subgroup of SO(3). They
can be represented by unit vectors of length four known as
quaternions. Quite a few methods have been suggested for
computing the distance between rotation matrices. In [27,
24] one of these methods was used. Here we will use the
following efficient method suggested by Huynh [13] which
uses their quaternion representation.

dist(qi,qj) = arccos
(
|qi · qj |

)
, (5)
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Figure 1. Registration Pipeline: our unique contribution is in the rotation and translation clustering and estimation.

where qi and qj are the quaternion representations of Ri

and Rj respectively. The kernel density function is thus
defined as

f(R) =
ck,d
n

n∑
i=1

k

(
(arccos (|qi · qr|))

h

)
. (6)

In our algorithm we use the following standard kernel
function

G(x) =

{
1 x ≤ 1
0 otherwise. (7)

Thus, the weighted mean computation in Eq. 4 is simpli-
fied to a simple mean computed on a subset of the rotations
which are close to R. The mode of the rotation distribution
can be calculated by iteratively computing the mean of a set
of rotation matrices. This is done using Algorithm 1 which
finds the rotation matrix R that minimizes the angular dis-
tance between the set of rotation matrices as presented by
Hartley et al. [11].

Algorithm 1 L2 mean algorithm on SO(3)
1: Set R := R1 Choose tolerance ε ≥ 0.
2: loop
3: Compute r := 1

n

∑m
i=1 log

(
RT Ri

)
.

4: if ‖r‖ < ε then
5: return R
6: end if
7: Update R := R exp(r).
8: end loop

In this algorithm log (R) maps the rotation matrix R to a
vector in the tangent space, and exp (r) maps r back to the
SO(3) space.

Substituting the distance function and algorithm for
computing the mean in to the mean shift algorithm yields
a mean shift algorithm which can be applied to a set of ro-
tation matrices.

2.2. Algorithm Overview

Our Proposed algorithm for point cloud registration is
illustrated in Figure 1. The algorithm includes the following
steps.

1. Rotation estimation using mean shift.

2. Translation estimation using mean shift.

3. Fine tuning the registration.

We will now elaborate on these three steps.

2.3. Mean shift rotation estimation

The rotation between two viewpoints V1,V2 is calcu-
lated as the rotational movement between the LRFs of
corresponding keypoints. For each pair of corresponding
points (Pi,Pj) the rotation matrix between them is esti-
mated as

Ri,j = LRFT
j LRFi.

For each putative match, its rotation matrix Ri,j is saved
with their respective quaternion qi,j in a data structure.

Huynh [13] showed that Eq. 5 is an efficient calcula-
tion for computing the distance between quaternions. Thus,
when applying the mean shift iteration on a rotation matrix,
the distances between its quaternion and all the quaternions
in the set are computed. The subset of rotations S whose
distance is less than the threshold ta is retrieved.

Then for each such subset S the average rotation is cal-
culated using Algorithm 1 yielding the input to the next iter-
ation. This process continues until convergence. Rotations
which converge to a similar rotation are clustered together.
The mode of largest cluster is returned by this step of the al-
gorithm. We found however that in order to limit the effect
of noise on the voting process, the function returns all the
clusters whose size is ≥ 60% of the largest cluster.

This is the main part of the algorithm which also uses
most of the running time. The runtime of the algorithm de-
pends on the number of the putative matches and on the
sizes of the groups of matches on which Algorithm 1 is
run. Thus, a peculiar phenomenon occurs. For easy cases
in which the number of inlier rotations is large, the running
time of the algorithm can be much higher then for more
challenging cases. To deal with this problem we made the
following simple modification to the algorithm. For each
iteration in which the algorithm converges to a mode of
the distribution, if the size of S is larger than a predefined
threshold, the algorithm simply returns the computed ro-
tation matrix which is the mode of the distribution and the
subset S. Thus, usually after the first inlier rotation has been
processed the algorithm will terminate successfully.
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2.4. Mean shift translation estimation

For each of the rotation matrices returned by the previous
step the translation vector is estimated. The indexes of the
points that compose the Mean shift rotation MSR cluster,
are used to calculate the translation between the view points.
In order to estimate the translation vector ti,j from a pair of
putative correspondences (Pi,Pj) it is estimated as

ti,j = (−MSR)Pi + Pj .

We apply the standard mean shift algorithm to cluster
together close points. In this case the threshold td is used.
The mode of the largest cluster is returned by the algorithm.
Just like in the previous step we check all the clusters whose
size is ≥ 60% of the largest cluster, to reduce the effect of
noise on the translation.

On the points that remain after these two steps, the rigid
transformation is calculated. Once the coarse registration is
established, an ICP procedure is applied to create a more
accurate registration. The rotation matrix and translation
vector returned by the ICP procedure will be referred to as
Res and tes respectively.

3. Discussion
In this section we will review several approaches used in

the literature to estimate the rigid transformation and com-
pare their characteristics to our algorithm.

The most common method used for estimating data mod-
els such as rigid transformations is RANSAC [5, 20, 1, 16,
10]. In this case RANSAC has several deficiencies. First
while our algorithm is deterministic, RANSAC is a random-
ized algorithm. It can therefore succeed in one run of the al-
gorithm while fail in another. RANSAC also only uses the
keypoints, while our algorithm exploits also the LRF. As a
result in many cases RANSAC is not able to find a good
estimation of the rigid transformation. In addition, in hard
cases which is our focus here, the number of iterations of
the algorithm can be very high. This is since it is propor-
tional to 1

p3 , where p is the percentage of inlier rotations.
Our algorithm on the other hand can handle a large number
of outlier rotations since usually not many other rotations
are near it, causing S to be relatively small and the number
of iterations to convergence is also small.

There are however several algorithms which use LRF in-
formation. In [9], each putative match is represented by
its LRF and the translation vector computed using its LRF.
Then clustering in six dimensions is performed on the Eu-
ler angle representation of the LRF and the translation vec-
tor. Due to the fact that LRFs are very noisy, using them to
compute the translation vector yields a very large cluster for
the translation component. We however, use the computed
mode of the distribution which is usually a much more ac-
curate estimate of the sought after rotation matrix, yielding

a more compact cluster of the translation component which
can be more easily detected. Moreover, Euler angles are not
considered a good representation for rotation matrices for
clustering purposes [28][Chap. 15.3.8].

In [10], LRFs are clustered separately like in our algo-
rithm. For each suggested cluster, translations are clustered
and then the solution is verified using ICP performed on
simplified meshes of the scans. In the next section we com-
pare the performance of our algorithm to it. Due to the fact
that we use the mean shift algorithm, more accurate estima-
tions of the rotation component is found and less candidate
rotations are used and thus our algorithm runs faster. More-
over, our algorithm can run on point clouds and does not
require a mesh to be provided.

4. Experiments

To test our method we used two type of datasets, small
scale scans of 3D models, and large scale scans of cities. In
this work we used three models from the Stanford Reposi-
tory [4] (Bunny, Dragon and Armadillo), acquired by a Cy-
berware 3030 MS laser scanner.

Urban scenes were scanned by two different methods. A
structure from Motion (SfM) data of a city which contains
over 3 million points was generated from a large number of
aerial images. This data was provided to us by an high tech
company.

24 large scale scans of the city of Vancouver were pro-
vided to us by another company were acquired by a Z+F
IMAGERr5010, 3D Laser scanner. Each scan yields
11, 114, 444 3D points. The properties of each dataset can
be seen in Table 1 and scan examples can be seen in Fig-
ure 2.

We compared our method to our implementations of
RANSAC with 500,1000,5000,10000 iterations, and the
CCV method introduced by Guo et al. [10] with the
same parameters. Keypoints were detected using the Har-
ris3D [23] interest point detector and the RoPS[9] feature
descriptor was used utilizing the robustness of its LRF.

All of the experiments described in this work were con-
ducted on a computer with 3.4Ghz Intel Core i7 6700k and
32GB of RAM. The algorithms described in this work were
implemented by us in MATALB.

4.1. Stanford dataset

In order to run the LRFMS algorithm two parameters
have to be set: the rotation matrix bandwidth ta and the
translation bandwidth td. They should be large enough to
capture the cluster but not too large so that outlier elements
are not included in it. For the standard data sets we found
that the parameter values for ta and td that yield the best
results are ta = 0.8◦ and the td = 10mr, where mr is the
mesh resolution.
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N◦. of scans Avg. N◦.of vertices 103 N◦.of key
points

Keypoint detector

Armadillo 141 25 1,000 Harris3D
Bunny 45 36 1,000 Harris3D
Dragon 108 30 1,000 Harris3D
Vancouver dataset 24 980 5,000 Random
Structure from motion 2 3,800 10,000 Harris3D

Table 1. Properties of the data used in this work.

Figure 2. On the top the Stanford data set: number of views used
in brackets. In the middle the structure from motion data. On the
bottom a LIDAR Scan of Vancouver.

In addition we have to set the Lowe ratio value used in
selecting the putative matches. As the value increases the
number of inliers increases slightly while the number of out-
liers increases considerably. As mentioned above this is a
price worth paying. We therefore compare the values 0.99
and 0.9. Figure 3 shows the performance of the algorithm
for these two values as a function of ta demonstrating why
ta = 0.8◦ and Lowe ratio value 0.99 were chosen.

The evaluation method used on the Stanford Reposi-
tory was proposed by Petrelli et al. [19]. Success is mea-
sured based on the root mean square error RMSE be-
tween the registration result and the ground truth. If the
RMSE ≤ mr5 then the point clouds are considered suc-

cessfully registered.
The algorithms were run on the Stanford data set, as

shown in tables 2,3, and 4. It is important to mention that
the reported times also include the loading time and the ICP
running times. The average time for the registration of each
model without the loading time and the ICP time is reported
as Avg. Alg. Time. The number of registered pairs are av-
eraged over 20 runs of the RANSAC.

LRFMS with ICP and the LRFMS without ICP outper-
forms the RANSAC both in term of running times and the
number of successfully registered pairs. The CCV and the
LRFMS yield similar results for the number of success-
ful pair registrations. For the running time, the LRFMS
outperforms the CCV by a considerable margin. The di-
ameter of the winning rotation cluster ranges from 0.2◦ to
1.2◦. This has been obtained using the same value of ta.
The range of the diameter makes discrete methods such as
Hough transform less effective then the proposed mean shift
based method.

N◦ Registrations CPU
time
(sec)

Avg.
Alg.
Time

RANSAC 500 32 336 0.1
RANSAC 1000 33 489 1.2
RANSAC 5000 40 1427 7.8
RANSAC 10000 38 2530 15.6
LRFMS 46 724 5.1
CCV 56 860 6.1
LRFMS Without ICP 41 139 1

Table 2. The Armadillo data set contains 141 pairs. The average
algorithm time reflects the algorithm running time for a single pair
without the time for loading the data and running the ICP proce-
dure.

4.2. Real world data set

Our next goal was to test the algorithms on large scale
datasets: a sparse aerial scan and terrestrial Lidar scans
of the city of Vancouver. The angular threshold ta that
achieved the best results for both datasets was ta = 1.8◦.
While the angular threshold was the same for both datasets
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(A) Armadillo (B) Bunny (C) Dragon

Figure 3. The number of successfully registered pairs for the Stanford repository with different thresholds ta for Lowe ratio values of 0.90
and 0.99.

N◦ Registrations CPU
time
(sec)

Avg.
Alg.
Time

RANSAC 500 6 79 0.1
RANSAC 1000 7 129 0.6
RANSAC 5000 13 285 4
RANSAC 10000 11 413 6.9
LRFMS 17 236 4.8
CCV 18 336 6.6
LRFMS Without ICP 13 66 1.4

Table 3. The Bunny data set contains 45 pairs.

N◦ Registrations CPU
time
(sec)

Avg.
Alg.
Time.

RANSAC 500 26 143 .01
RANSAC 1000 32 282 0.3
RANSAC 5000 36 803 5.1
RANSAC 10000 37 1484 11.4
LRFMS 53 518 4.8
CCV 51 716 6.6
LRFMS Without ICP 44 111 1.03

Table 4. The Dragon data set contains 108 pairs.

the difference between the density of the scans led to dif-
ferent distance thresholds td. For the structure from motion
dataset the value for td that proved to be the most effec-
tive was td = 65cm, and the best result for the Vancouver
dataset was achieved td = 35cm.

To evaluate the large scale scans, we used the evaluation
method described in Guo et al. [7]. The ground truth rota-
tion R GT and the ground truth translation tGT were used
for the evaluation. The rotation and translation estimations
R E and tE are the outputs of the algorithm. The rotation
error between the ground truth and the registration result er
and the translation error et are computed as follows.

er = arccos

(
trace (Rr)− 1

2

)
180

π
. (8)

where,
Rr = RGT R−1E . (9)

et = ‖tGT − tE‖. (10)

For a registration to be successful er ≤ 2◦ and et ≤
100cm.

4.2.1 SfM dataset

The structure from motion dataset was obtained from an in-
dustrial company contains two scans. A range map and a
synthetic map, both scans contain over 3 million vertices.

This is a very challenging data set since the Range map is
very noisy and has a limited number of recognizable struc-
tures or geometry as can be seen in figures 2 & 5.

The synthetic map was generated from the scan map by
trying to model the scene from it. This is done by removing
noisy points and modelling the objects in the scene such
as buildings and roads. 10, 000 key points were selected
using Harris3D keypoint detection and matched. Matches
for which Lowe’s ratio is below 0.99 were maintained. Here
again this value yielded the best result for LRFMS.

The result of the registration can be seen in Figure 4 and
Table 5. The rotation error between the LRFMS output and
the ground truth is 0.5◦ and the translation error between the
LRFMS output and the ground truth is 50cm. The accuracy
of the results obtained the CCV algorithm are much lower.
This can also be seen in Figure 4 in which the registration
result is compared to the ground truth. This shows that the
LRFMS can handle data sets where other state of the art
methods failed.

4.2.2 Vancouver dataset

The Vancouver data set is very dense. Each scan contains
11, 114, 444 data points. Standard preliminary steps were
applied to the data by the company. A 7 × 7 median filter
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CPU
time
(sec)

Error◦ Distance
(cm)

Status

RANSAC 500 5 57◦ 1700 Fail
RANSAC 1000 9 45◦ 1530 Fail
RANSAC 5000 18 20◦ 1420 Fail
RANSAC 10000 27 18◦ 975 Fail
LRFMS 82 0.5◦ 50 Success
CCV 249 4.4◦ 840 Fail

Table 5. Results for structure from motion dataset. The error in ro-
tation between the ground truth to the estimated result is computed
using Eq. 8. The distance between the translation vectors.

Figure 4. Structure from motion dataset. On the bottom left the
CCV result is compared to the ground truth, while on the bottom
right the LRFMS is compared to the ground truth.

Figure 5. Additional views of the Rage Map

is applied on the raw scans. Points whose distance from
the median ≥ 0.03m were discarded. Next a voxel filter is
used to down-sample the data. The voxel edge size is set to
0.5m. Each voxel contributes one point to the point cloud.
On average 984, 657 points remain in the point cloud.

From those points 5, 000 key points were randomly se-
lected. The CCV algorithm uses a mesh reduction function
for its ICP based verification step. Since this data set con-
tains only point clouds CCV was not tested on this data.

Figure 6 shows a partial map of Vancouver and the center
positions of each of the 24 scans. The scans were performed
on four different streets (each shown in a different color).
The distance between a scan and the subsequent scan on the
same street is between 22 to 29 meters.

We tested The LRFMS on all 24 scans and successfully
registered all of the subsequent scans. On average the an-
gular error between the LRFMS registration result and the
ground truth is 0.25◦ and the translation error between the
LRFMS registration result and the ground truth is 25cm.
Running RANSAC with 10, 000 iterations also succeeded
but with less accuracy. Two examples are shown in fig-
ures 7 8 9 10. In each case on the left the scans are shown
before the algorithm is applied (therefore buildings can be
seen twice) and on the right the LRFMS result is shown.

We then tried to apply the algorithm on more challenging
cases. We took all pairs of scans on the same street at dis-
tance two. These pairs of scans have a much smaller overlap
between them. In this case we were able to register 3 out of
16 pairs. RANSAC failed on all these cases.

The supplementary material provides several videos
showing registration results on a few examples from the dif-
ferent datasets.

Figure 6. The region of Vancouver scanned in the data set. Red
points represents West Bute street, light blue point represents West
Hastings street, green points represents Thurlow street, yellow
point represents West Pender street. Points represents he center
of each scan.

CPU
time
(sec)

Error◦ Distance
(cm)

Status

RANSAC 500 1.5 70.8◦ 280 Failed
RANSAC 1000 1.6 62.9◦ 190 Failed
RANSAC 5000 2.4 2.6◦ 150 Failed
RANSAC 10000 3.1 0.65◦ 85 Success
LRFMS 6.1 0.25◦ 25 Success

Table 6. Vancouver dataset results on subsequent scans. The er-
ror is the rotation between the ground truth to the estimated re-
sult (Equation 8) and the distance between the translation vectors
(Equation 10).
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Figure 7. Vancouver West Hastings data set: on the left scans be-
fore the registration process and on the right the LRFMS registra-
tion results.

Figure 8. Vancouver West Hastings zoom-in data set: on the left
scans before the registration process and on the right the LRFMS
registration results.

Figure 9. Vancouver West Pender street data set: on the left scans
before the registration process and on the right the LRFMS regis-
tration results.

5. Conclusions

In this paper we presented a novel registration algorithm
between point clouds. The algorithm exploits the fact that
modern 3D descriptors are accompanied by a locally esti-
mate local reference frame (LRF). Using a mean shift al-
gorithm especially designed to cluster rotation matrices, the
mode of the distribution of the inlier LRFs is found which
is close to the relative rotation between the scans. In a sec-
ond step, mean shift is used again to find the translation
vector. Using this system we were able to deal with very
challenging pairs of point clouds. These point clouds were

Figure 10. Vancouver West Pender zoom-in data set: on the left
scans before the registration process and on the right the LRFMS
registration results.

generated by very different scanning techniques (3D scan-
ners, Lidar laser scanners, and a Structure from Motion al-
gorithm). Comparing this algorithm to several state of the
art algorithms demonstrates its superiority both in success
rate and running times.

Future work will be devoted to develop methods to
speedup our algorithm and improve its performance on
more challenging pairs of scans with lower overlap between
them.
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