
Available online at www.sciencedirect.com
www.elsevier.com/locate/jss

The Journal of Systems and Software 81 (2008) 1248–1252
Controversy Corner

Why and how can human-related measures support
software development processes? q

Orit Hazzan a,*, Irit Hadar b

a Department of Education in Technology and Science, Technion – Israel Institute of Technology, Haifa, Israel
b Department of Management Information Systems, University of Haifa, Haifa, Israel

Received 24 November 2007; received in revised form 15 January 2008; accepted 19 January 2008
Available online 9 February 2008
Abstract

In this paper we discuss why and how measures related to human aspects should be incorporated into software development pro-
cesses. This perspective is based on the vast evidence that human aspects are the source of the majority of problems associated with soft-
ware development projects. Having said that, we do not blame the humans involved in software development processes; rather, we
suggest that human-related measures might be one means by which human aspects of software development processes can be supported.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Human aspects; Software engineering; Software measures; Process measurement
1. Introduction

When building a measurement1 model intended to guide
software development projects, three main aspects are usu-
ally addressed, all of which aim to provide high-quality
software. The first is the technical aspect, whose measures
0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2008.01.037

q Controversy corner. It is the intention of the Journal of Systems and
Software to publish, from time to time, articles cut from a different cloth.
This is one such article.

The goal of CONTROVERSY CORNER is both to present informa-
tion and to stimulate thought and discussion. Topics chosen for this
coverage are not just traditional formal discussions of research work; they
also contain ideas at the fringes of the field’s ‘‘conventional wisdom”.

These articles will succeed only to the extent that they stimulate not
just thought, but action. If you have a strong reaction to the article that
follows, either positive or negative, send it along to your editor, at
card@software.org.

We will publish the best of the responses as CONTROVERSY
REVISITED.

* Corresponding author.
E-mail addresses: oritha@techunix.technion.ac.il (O. Hazzan), hadar-

i@mis.haifa.ac.il (I. Hadar).
1 A note on terminology: Consistently with ISO/IEC Standard 15939,

we use in this paper the terms ‘measurement’ and ‘measure’ and do not use
the term ‘metric’.
deal with activities such as design, implementation, and
testing; the second aspect is the managerial aspect whose
measures address, for example, time management and sche-
dule; the third aspect is the human aspect which relates, for
instance, to communication among teammates, customer
collaboration and learning processes.

Although many of the complexities of software develop-
ment processes are closely related to human aspects, both
social and cognitive (Tomayko and Hazzan, 2004), most
measures encountered in the literature emphasize the tech-
nological and managerial aspects of software projects.
While we have the utmost respect for technological- and
managerial-related measures and their contribution to soft-
ware projects processes, we believe that a full view of both
system and process can be achieved only by taking all
aspects into account, including the influential human
aspects of software engineering. This view, we suggest, can
help us cope with the intangibility of software and the ensu-
ing challenges.

To deliver our message, we first present a general survey
of software measures as documented in the existing litera-
ture. We show that most of the measures are technical
and illustrate the under-emphasized issue of human-related
measures. Second, we discuss the importance of measures

http://agilemanifesto.org/
mailto:oritha@techunix.technion.ac.il
mailto:hadari@mis.haifa.ac.il
mailto:hadari@mis.haifa.ac.il


O. Hazzan, I. Hadar / The Journal of Systems and Software 81 (2008) 1248–1252 1249
that are related to human aspects of software engineering
and reflect on what can be achieved by examining these
measures. We conclude with some suggestions for future
research aimed at determining and evaluating human-
related measures for software development projects.

2. Existing software development measures

Extensive literature exists with respect to the significance
of measurement in software development processes (e.g.,
DeMarco, 1982; Mayrhauser, 1990; Hughes and Cotterell,
2002). Different kinds of measures are suggested for soft-
ware processes and products. Specifically, measures related
to the development process aim at reducing the risk of los-
ing control while gaining confidence with the process pro-
gress; measures related to the software product aim at
ensuring a high-quality product with respect to customer
requirements and preventing defects. In what follows, we
outline some of the existing measurement models and
frameworks.

One approach used for the measurement of the technical
aspects of a software system examines its quality-related
attributes. For example, the International Standards Orga-
nization (ISO) (Tassey, 2002) details the following main
software quality attributes: Functionality, Reliability,
Usability, Efficiency, Maintainability and Portability. Each
of these attributes is composed of 2–5 more specific sub-
characteristics. The calculation of these characteristics is
not concretely defines, hence, they constitute more abstract
guidelines for evaluating the software as a product, regard-
less of the technology, paradigm or methodology within
which it is developed. On the other hand, concrete mea-
sures exist that address very specific software attributes,
such as defects found during the software life cycle. Much
criticism, however, has been expressed as to the ability of
such measures to predict defects (Fenton and Neil, 1999).

Other standards exist that do give more specific guide-
lines for accurate quantitative software assessment. They
usually focus on a very specific aspect of the software sys-
tem and are usually paradigm dependent. Quality measures
for object-oriented software development are quite com-
mon. For instance, predictive measures for quality, such
as average class number of lines of code (ACLOC), depth
of inheritance tree (DIT) and many more are computed
to design quality measurements in terms of software system
maintainability (Misra, 2005); measurement model for
assessing complexity in an object-oriented design (McGre-
gor and Kamath, 1995); measures that deal with inheri-
tance depth or the number of methods overloaded and
redefined under the same name (Lorenz and Kidd, 1994);
measures concerning the longest path from a specific class
to the root of the inheritance tree (Henderson-Sellers et al.,
1993; Henderson-Sellers, 1996; Chidamber and Kemerer,
1994); and measures concerning cohesion and coupling
between classes (Bieman and Byung-Kyoo, 1998; Lindroos,
2004). Lately, some object-oriented measures were even
studied in the context of agile processes (Alshayeb and
Li, 2005). While these measures are very explicit and lead
to accurate assessments, they refer only to object-oriented
development and are designated to specifically assess the
aspect of maintainability.

Other measures exist that address not only the product,
but also the development processes. For example, in the
IEEE’s guide to the software engineering body of knowl-
edge (SWEBOK, 2004), product and process measures
are defined and an explicit explanation on how to measure
them is supplied. According to the SWEBOK, processes
must be adapted to local needs, such as organizational con-
text, project size, regulatory requirements, industry prac-
tices, and corporate cultures.

One such framework used today is the capability maturity
model (CMM), which integrates different methodologies,
standards and assessment models. Its more comprehensive
framework – capability maturity model� Integration
(CMMI) – is targeted mainly at supporting the development
processes by showing a measurable benefit for the organiza-
tion’s business objectives and vision. It integrates multiple
military, ISO, IEEE and other commercial standards and
procedures that cover all aspects of system building (Kasse,
2004). In practice, the CCMI provides guidelines on how to
organize and prioritize engineering, people, and business
activities; further, it aims to support coordination of multi-
discipline activities required, or potentially required for a
successful project building (Kasse, 2004).

Other standards exist that include measures for assessing
capability levels and software development process attri-
butes. For example, the ISO/IEC 15504 assessment model
defines five capability levels and the attributes of their pro-
cesses. The model enables to rate the processes’ attributes
using the following grades: ‘‘fully achieved” (86–100%
achievement), ‘‘largely achieved” (51–85%), ‘‘partially
achieved” (16–50%) and ‘‘not achieved” (0–15%). Based
on the grades given to the different attributes, it is possible
to assess the capability level of the development process
(Galin, 2004).

Another common framework is the ISO/IEC 9126, an
international standard for software quality that has been
accepted by most of the international community, and
which some countries, such as Japan, have adopted as a
national standard. The standard defines a common lan-
guage relating to software product quality and is widely
recognized as such (Cote et al., 2005). Moreover, it was
found, over a decade ago, that at least 70% of the Euro-
pean IT community were familiar with ISO/IEC 9126
(Bazzana et al., 1993). However, some important problems
are associated with this standard (Pfleeger, 2001):

� No guidelines are given on how to provide an overall
assessment of quality.
� No indications are provided on how to actually measure

the quality characteristics.
� Rather than focusing also on the user’s perspective of

the software, the model’s characteristics reflect only
the developer’s viewpoint.



Software

System
People Process

Fig. 1. Three development components – the software system developed,
the people who develop it, and the relationship between the two.

1250 O. Hazzan, I. Hadar / The Journal of Systems and Software 81 (2008) 1248–1252
The above brief survey of software measures indicates
that most of the measures are technical and highlights the
under-emphasized issue of human-related measures. One
approach that does emphasize human factors in relation
to software development is COCOMO II (Boehm et al.,
2000) in which human aspects are considered alongside tech-
nical and managerial aspects (called product, project and
platform) in the estimation of the development time of a
software product. These measures (called personnel) relate
to inherent properties of the people involved in the project,
such as professional capabilities and experience. We suggest
that human-related measures should also be monitored dur-
ing the development process, in addition to prediction-ori-
ented measures, as COCOMO II suggests. In other words,
we suggest that in addition to measures collected prior to
the project launch (referred to as static measures), dynamic
human-related measures should also be considered and con-
trolled during the development process. Examples for such
measures are presented in the next section.

Examination of the above-mentioned measurement
models reveals that they can be mapped to components
of (a) software systems, (b) the people who develop the
software systems, and (c) the development processes, which
in fact, connects the software systems and the people who
develop them. Fig. 1 illustrates the relationship between
the three components. For example, the object-oriented
code and design-related measures can be mapped to com-
ponent (a), the COCOMO II measures of software engineer
capability and application experience can be mapped to
component (b), and the process CMMI measures can be
mapped to component (c). As mentioned earlier, measures
related to software systems and development processes are
largely addressed by the existing software engineering mea-
surement literature. Therefore, the people component in
Fig. 1 is sketched with a broken line. We suggest that an
addition be made to the exiting body of knowledge
whereby measures emphasizing component (b) – people –
are formalized. Such measures can relate to cognitive
aspects, such as self-learning, and social issues such as col-
laboration between team members.
Table 1
Proposed framework for measuring human-related concerns in software
development projects

Level/Aspect Cognitive Social

Individual
Team
3. The importance of the missing human-related measures

So far, we have seen that measures tend to focus on
technical issues related to software engineering. We claim
that this is not sufficient and is, in fact, the result of the
emphasis placed by traditional software development
methods on technical aspects. Indeed, if the technical per-
spective is emphasized, then it makes sense to monitor
code-related measures. However, if the people involved in
software development environments are put at the center
of the development process, as the agile approach, for
example, does, then additional and different kinds of mea-
sures should be used. In other words, since traditional
methods refer mostly to the software life cycle and less to
the people involved, the human aspect of software develop-
ment is addressed in these processes less frequently, as are
the measures they inspire. Since awareness to human
aspects in software engineering is increasing (see, for exam-
ple, the agile manifesto (http://agilemanifesto.org/), which
specifically stresses the importance of people and interac-
tions), we suggest that this awareness should also be
reflected in the measurement model.

At this stage we can speculate why many of the prob-
lems that characterize software projects relate to the people
involved (Tomayko and Hazzan, 2004). After all, if we do
not measure these aspects, how can we approach, fix and
improve them? As Kent Beck and Cynthia Andres say:
‘‘Good teams don’t just do their work, they think about
how they are working and why they are working” (Beck
and Andres, 2004).

To bridge this gap, we suggest organizing human-related
measures as described in Table 1, in which we address cog-
nitive and social aspects, both on the individual and on the
team level. We emphasize that this classification is not the
only possible one, and other human-centric classifications
may encompass the richness of human aspects of software
engineering. We propose, however, that this presentation is
a good starting point for the exploration of this topic since
it emphasizes the main facets of software engineering on
the team level.

In what follows, we explore the kind of information that
might be supplied by measures in each cell. The challenge is
to associate concepts, such as learning and collaboration,
with measures, and to explain how such measures can
improve software development processes. It should be
noted that, from the measurement perspective, the social-
team cell is the one most frequently addressed to date.
3.1. The cognitive-individual cell

COCOMO II addresses this category by measuring per-
sonal attributes, such as analyst capability and software
engineer capability. Measures in this cell might address
topics such as personal learning, whereby, for instance,

http://agilemanifesto.org/


O. Hazzan, I. Hadar / The Journal of Systems and Software 81 (2008) 1248–1252 1251
individuals in the team might frequently measure what they
have learned during a specific period of time. This can be
done at the end of iterations or at the end of any time per-
iod as seen fit by the individual. To give such measures
numerical values, the practitioner might measure how
many times the new knowledge is used, under what circum-
stances, and how the new knowledge influences the devel-
opment process. Another example is measuring the
improvement in time estimations during the development
period and drawing of conclusions, which might address,
for example, the reasons for the improvement in time esti-
mations (if such improvement indeed occurred).

3.2. The social-individual cell

This cell addresses measures related to the collaboration
and communication between the individual and the team.
For example, one might measure the kind of collaboration
with other team members, as well as the influence such col-
laboration has on the practitioner’s performance. This
implies that developers should be aware of the kind of
interactions they have with other team members and how
these interactions contribute to, or interfere with their soft-
ware development tasks. Measures such as these are impor-
tant since face-to-face communication is so vital in
software development process; If, however, such face-to-
face interactions impede the individual’s progress, they
should be either avoided or monitored. On the other hand,
if practitioners realize that their interactions with other
team members contribute to the performance of their tasks,
they should strive to understand what kind of interactions
these are and what can be done to improve their quality.

3.3. The cognitive-team cell

This cell relates mainly to knowledge-management in
software teams. In practice, team members can establish
a knowledge-management system and measure its evolve-
ment, its use, and its contribution to the software develop-
ment processes. For example, a team might measure how
its collective knowledge is enhanced and how this knowl-
edge fosters software development processes. Another
example is when the team examines both the ways in which
it uses a practice that it decided on and the consequences of
such application. One resource for measures that belong to
this cell is the knowledge gained in the framework of the
knowledge management discipline (see for example, knowl-
edge-management measures, http://www.knowledge-man-
agement-online.com/KM-Measures.html and measures in
a customer support context: the impact of knowledge
management, http://www.systems-thinking.org/mcsc/mcsc.
htm#solm).

3.4. The social-team cell

In this case, social issues are measured on the team level.
The main emphasize here is on the level of communication
within the team and its contribution to the total progress of
the team’s work. We illustrate this with one of the examples
presented in (Dubinsky and Hazzan, 2006), which exam-
ined the roles in software teams. Specifically, a role scheme
was defined, according to which each team member has
another role (such as tracker, in charge of documentation,
etc), in addition to his or her role as a developer. As it turns
out, the role scheme provides systematic quantitative mea-
sures during the development process that reflect the cur-
rent status at each development phase with respect to
team communication. Three measures were defined:

(1) Role time measure (RTM), which measures the ratio
between time spent on development tasks and time
spent performing role activities.

(2) Role communication measure (RCM), which mea-
sures the level of communication within the team at
each development stage. This measure evolves over
time since each role holder must communicate with
other team members in order to perform his or her
individual role efficiently.

(3) Role management measure (RMM), which measures
the level of project management. Since the role
scheme aims to cover all management aspects, a max-
imal level is obtained when all role holders provide
maximum role performance.
4. Conclusion and suggestions for the future

In general, we propose that the software engineering
community should aim to build a measurement model for
tracking of software processes, which will relate to techni-
cal, managerial and human aspects of such processes.
From this perspective, questions, such as the following,
are derived: What components should a measurement
model of this kind contain? How should these components
be measured and integrated into the model? How does the
measurement model actually guide software development
processes from the technical, managerial and human
aspects? What processes are appropriate for the assimila-
tion and integration of such a measurement model into
the software industry? What are the implications of such
a measurement model on the project process and product?

It is not our intention to propose answers to these ques-
tions at this stage. We claim, however, that software intan-
gibility can largely explain why many of the main problems
associated with software engineering projects are human-
related. We further claim that this fact emphasizes the
importance attributed to human-related measures, since
the different activities related to software development pro-
cesses are not always transparent. Thus, measures are one
means for making the development processes of intangible
products, such as software systems, more transparent. This
stands in contrast to the development of tangible products
whose development is transparent and can be sensed by our

http://www.knowledge-management-online.com/KM-Measures.html
http://www.knowledge-management-online.com/KM-Measures.html
http://www.systems-thinking.org/mcsc/mcsc.htm#solm
http://www.systems-thinking.org/mcsc/mcsc.htm#solm


1252 O. Hazzan, I. Hadar / The Journal of Systems and Software 81 (2008) 1248–1252
regular senses (seeing, hearing, etc.), and therefore the need
for measures related to human aspects is lower.

In other words, since different attributes of product
development processes are expressed in software develop-
ment projects differently than they are in other professions
in which people and months are interchangeable (Brooks,
1975, 1995), and since the process control in software pro-
cesses can not rely on our regular senses, other means
should be employed to increase control over the develop-
ment process. In practice, this implies that we should make
an effort to increase software sensibility and make the pro-
cess more transparent. We suggest that one means to
achieve this goal is by using human-related measures that
can help us make the intangible software properties more
sensible.

References

Alshayeb, M., Li, W., 2005. An empirical study of system design
instability metric and design evolution in an agile software process.
Journal of Systems and Software 74, 269–274.

Bazzana, G., Andersen, O., Jokela, T., 1993. ISO 9126 and ISO 9000:
friends of foes? In: Presented at Software Engineering Standards
Symposium.

Beck, K., Andres, C., 2004. Extreme Programming Explained: Embrace
Change, second ed. Addison-Wesley.

Bieman, J.M., Byung-Kyoo, K., 1998. Measuring design-level cohesion.
IEEE Transactions on Software Engineering 24 (2), 111–124.

Boehm, B.W., Abts, C., Brown, A.W., 2000. Resources Software Cost
Estimation with COCOMO II. Prentice-Hall, New Jersey.

Brooks F.P., 1975, 1995. The Mythical Man-Month: Essays on Software
Engineering, second ed. 20th Anniversary Ed., Addison-Wesley
Professional.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering 20 (6), 476–493.

Cote, M.A., Suryn, W., Laporte, C.Y., Martin, R.A., 2005. The evolution
path for industrial software quality evaluation methods applying ISO/
IEC 9126:2001 quality model: example of MIRTE’s SWAE method.
Software Quality Journal 13, 17–30.

DeMarco, T., 1982. Controlling Software Projects: Management Mea-
surement and Evaluation. Yourdon Press.

Dubinsky, Y., Hazzan, O., 2006. Using a role scheme to derive software
project metrics. Journal of Systems Architecture 52, 693–699.

Fenton, N.E., Neil, M., 1999. Quantitative analysis of faults and failures
in a complex software system. IEEE Transactions on Software
Engineering 25 (5), 675–689.

Galin, D., 2004. Software Quality Assurance: From Theory to Imple-
mentation. Pearson Addison Wesley.

Henderson-Sellers, B., 1996. Object-Oriented Metrics Measures of Com-
plexity. Prentice Hall PTR, Upper Saddle River, NJ.
Henderson-Sellers, B., Moster, S., Seehusen, S., Weinelt, B., 1993. A
proposed multi-dimensional framework for object-oriented metrics. In:
First Australian Software Metrics Conference, Sydney.

Hughes, B., Cotterell, M., 2002. Software Project Management, third ed.
McGraw-Hill.

ISO/IEC 15939, 2007. Systems and Software Engineering – Measurement
Process.

Kasse, T., 2004. Practical Insight into CMMI�: The Look and Feel of a
Successful Implementation. Artech House, Boston, London.

Lindroos, J., 2004. Code and design metrics for object-oriented systems.
In: Seminar for Quality Models for Software Engineering, Helsinki.

Lorenz, M., Kidd, J., 1994. Object-Oriented Software Metrics. Prentice-
Hall PTR, Englewood Cliffs, NJ.

Mayrhauser, V.A., 1990. Software Engineering Methods and Manage-
ment. Academic Press.

McGregor, J.D., Kamath, S., 1995. A Psychological Complexity Measure
at the Domain Analysis Phase for an Object-oriented System.
Department of Computer Science Technical Report, Clemson
University.

Misra, S.C., 2005. Modeling design/coding factors that drive maintain-
ability of software systems. Software Quality Journal, 297–320.

Pfleeger, S.L., 2001. Software Engineering: Theory and Practice, second
ed. Prentice Hall, Upper Saddle River, NJ.

SWEBOK, 2004. Guide to the Software Engineering Body of Knowledge.
A project of the IEEE Computer Society Professional Practices
Committee, IEEE Computer Society.

Tassey, G., 2002. The Economic Impacts of Inadequate Infrastructure for
Software Testing. National Institute of Standards and Technology,
<http://www.swebok.org/>.

Tomayko, J., Hazzan, O., 2004. Human Aspects of Software Engineering.
Charles River Media.

Orit Hazzan is an associate professor at the Department of Education in
Technology and Science of the Technion – Israel Institute of Technology.
Her main research topic – human aspects of software engineering – deals
with cognitive and social issues of software engineering in general and of
agile software development in particular. She co-authored Human Aspects

of Software Engineering (with Jim Tomayko), published in 2004 by
Charles River Media and of Agile Software Engineering (co-authored with
Yael Dubinsky) to be published by Springer in 2008. Hazzan presents her
work at both software engineering conferences and computer science and
software engineering education conferences.

Irit Hadar is a lecturer at the Department of Management Information
Systems at the University of Haifa, Israel. Her main research areas include
cognitive processes that take place during software development, focusing
on development according to the object-oriented paradigm; the effect of
different methodologies and tools, such as visual models and ontologies,
on requirement engineering and software design; and human factors –
organizational, management, social and cognitive – and their influence on
software quality. Hadar is also interested in the cognitive perspective of
the teaching and learning of different software development-related
issues.

http://www.swebok.org/

	Why and how can human-related measures support software development processes?
	Introduction
	Existing software development measures
	The importance of the missing human-related measures
	The cognitive-individual cell
	The social-individual cell
	The cognitive-team cell
	The social-team cell

	Conclusion and suggestions for the future
	References


